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Design of Agricultural Field Experiments
Accounting for both Complex Blocking

Structures and Network Effects
Vasiliki Koutra , Steven G. Gilmour, Ben M. Parker, and

Andrew Mead

We propose a novel model-based approach for constructing optimal designs with
complex blocking structures and network effects for application in agricultural field
experiments. The potential interference among treatments applied to different plots is
described via a network structure, defined via the adjacency matrix. We consider a field
trial run at Rothamsted Research and provide a comparison of optimal designs under
various different models, specifically new network designs and the commonly used
designs in such situations. It is shown that when there is interference between treatments
on neighboring plots, designs incorporating network effects tomodel this interference are
at least as efficient as, and often more efficient than, randomized row–column designs. In
general, the advantage of network designs is that we can construct the neighbor structure
even for an irregular layout by means of a graph to address the particular characteristics
of the experiment. As we demonstrate through themotivating example, failing to account
for the network structure when designing the experiment can lead to imprecise estimates
of the treatment parameters and invalid conclusions.

Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

Agricultural field experiments often exhibit treatment interference, that is, the response
from a given plot depends on both the treatment applied to that plot and the treatments
applied to neighboring plots (Cox 1958,Ch.2). For example, a chemical pesticide applied to
one plot can potentially influence the responses on surrounding plots due to spray drift, a
taller plant variety in one plot may influence the growth of a shorter variety on a neighboring
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plot by shading the plants, the lack of control of a foliar disease on one plot may cause there
to be a higher disease pressure on neighboring plots, or the control or lack of control of
an insect pest on one plot may influence the pest pressure on plants in neighboring plots.
Research on reducing or accounting for neighbor effects has mainly concentrated on the
construction of either neighbor-balanced designswith crossed and nested blocking structures
or designs that are optimal for some interferencemodel (see, e.g.,David andKempton, 1996).
The current paper proposes the construction of optimal designs with complex blocking
structures, while also accounting for neighbor effects. Although our focus is primarily on
agricultural field experiments, the suggested methodology is applicable in a wide variety
of medical, marketing and industrial contexts for obtaining efficient designs tailored to the
particular experimental requirements and constraints (for experiments on networks, see, e.g.,
Aral 2016; Bapna and Umyarov 2015; Bond et al. 2012; Centola 2010). For a marketing
experiment on a social network, for example, we need to select which users should receive
which advertisements of a commercial product in order to assess differences in click-through
rates or revenue (see, e.g., Xu et al. 2015).

Blocking involves grouping together experimental units that are expected to have sim-
ilar responses in the absence of treatments (see, e.g., Mead et al. 2012,Ch.7 and Ch.8).
Agricultural field experiments are often designed with simple (e.g., randomized complete
block designs) or more complicated (incorporating nested and/or crossed structures) block-
ing structures to allow for anticipated systematic sources of variability associated with the
physical arrangement of plots or with constraints on the management of groups of plots
(see, e.g., Verdooren 2020). Systematic sources of variability associated with the physical
arrangement of plots might include trends in soil characteristics, such as pH or soil fertility,
topography (e.g., locations down a slope), or distance from a field margin or hedge that
might be a source for pests or diseases. Constraints imposed by farm management activities
could include lines of plots being drilled in a single pass of the farm machinery, or a set
of plots being simultaneously sprayed with nutrients or pesticides under a boom sprayer.
Where there is only a single source of such variability, or where multiple sources can be
confounded, then simple blocked designs can be used, but often these potential systematic
sources of variability will affect different subsets of plots, so that more complex blocking
structures need to be incorporated into the designs.

With relatively few treatments and the need to block for potential systematic variability
in two orthogonal directions, standard row–column designs might be appropriate, such as
Latin squares or Youden squares (where rows and/or columns contain a complete replicate
of the treatment set). But as the number of treatments increases, particularly where only
relatively few complete replicates are possible (as is usually the case with agricultural field
experiments), it will often be necessary to consider the impact of rows and columns of plots
within each of a number of (replicate) blocks (see, e.g., John and Williams 1995,Ch.6). In
some cases, these blocks will be physically separated due to farm management constraints,
while in other cases the blocks will be contiguous, additionally allowing for row and column
structures to run acrossmultiple blocks. Thus,many agricultural field experiments have to be
designed within large two-dimensional (row–column) arrays of plots, allowing for variation
between rows and between columns.
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Acommonly used approach are resolved row–columndesigns,where each block contains
a complete replicate of the set of treatments (John and Williams 1995, Ch.4-6). Several
authors have developed resolvable row–column designs for comparing different treatments,
for example Bose (1947), Singh and Dey (1979), Ipinyomi and John (1985), Bailey (1993)
and Piepho et al. (2015). In general, such designs are preferred when dealing with a large
number of treatments (e.g., a large number of varieties) and a small number of replications.
Other possibilities includeα-designs (introducedbyPatterson andWilliams1976),which are
resolvable block designs with respect to a single within-block sub-blocking component (see
also John and Eccleston 1986, who developed a class of orthogonal row–column designs
based on the α-designs). The software package CycDesigN (Whitaker et al. 1997) is a
practical tool for constructing efficient resolvable nested block and row–column designs.
Much recent work on the design of agricultural experiments concerns design for mixed
models with complicated correlation structures (see, e.g., Edmondson 2020; Piepho et al.
2021). This literature focuses on the unit structure (including spatial effects). In the current
paper, we instead account for treatment interference including spillover (neighbor) effects,
additionally to a complicated blocking structure.

Treatment interference is another potential source of experimental error and bias which
occurswhen the response is affected by treatments applied to neighboring plots.Adjustments
to the unit structure or modeling unit effects do not directly address the estimation of such
interference effects, which are indirect treatment effects. There are practical methods for
reducing the effects of treatment interference, such as using wider spacing between plots,
including border plants as guards, or using larger plots and only recording on inner rows
Spitters 1979; Besag and Kempton 1986.

Apart from standard experimental practices that aid in decreasing interference through
implementation, it may be possible to take account of treatment interference effects by
including additional terms in the responsemodel and optimizing the design for such amodel.
A wide variety of possible models and designs have been suggested for accommodating
treatment interference. Examples include the work of David and Kempton (1996), Druilhet
(1999), Kunert and Martin (2000), Bailey and Druilhet (2004) and Kunert and Mersmann
(2011),whodevelopedmodels and efficient designs for experimentswhere units are arranged
in a circle or a line allowing for the effects of immediate neighbors. Their suggested designs
were primarily neighbor-balanced in the sense that all pairs of treatments occur in adjacent
plots equally often in some cases allowing for the direction of any neighbor effects. Important
work suggesting ways of accommodating interference in the analysis of field experiments
is that of Besag and Kempton (1986), which investigated different causes of association
between neighboring plots and provided appropriate models for better capturing each cause
(i.e., spatial techniques for the adjustment of field variation, response interference–interplot
competition, and treatment interference).

More recently, Parker et al. (2017) suggested a model that relaxed the assumption of
neighbor effects being controlled in only one direction and allowed for a network setting.
Koutra et al. (2021) constructed efficient block designs using an extended version of that
model with the inclusion of blocks in addition to the neighbor effects for accounting for
heterogeneity across experimental units. Here, we extend the latter work to consider more
complex blocking structures and obtain optimal resolved row–column designs that are suit-
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able for use in agricultural field experiments. Possible treatment interference is governed by
a network structure, represented via a graph, and accounts for variation in responses caused
by the direct interference or competition effects due to treatments in adjacent plots. The
network structure therefore represents sources of variation due to treatments and is quite
separate from the systematic sources captured by blocking structures.

Modeling treatment interference in controlled experiments has also been addressed
widely in the causal inference literature (see, e.g., Hudgens and Halloran 2008, and Athey
et al. 2018), typically for the simpler situation of comparing two treatments in the absence of
blocking factorswith the aim of estimating both the direct treatment effects and the treatment
interference or indirect effects. Our optimal designs are tailored to the estimation of average
(direct) treatment effects obtained from a regression modeling approach (see Sect. 3). We
adjust the estimators for both blocking factors (Imbens and Rubin 2015,Ch.9) and treatment
interference, assuming linear interference (indirect) treatment effects. As is most common
in the optimal design of experiments literature, we also assume the linear model is correctly
specified; in particular, we assume no heterogeneity in treatment or interference effects as
may be caused, for example, by interactions between the treatment factor and unobserved
covariates or between the treatment factor and blocking factors. The presence of such effects
could result in biased estimators, and we briefly discuss related issues in Sect. 5.

Section 2 considers an agricultural field experiment that was designed and implemented
at Rothamsted Research and serves as a motivating example for this paper. The specification
of the adjacency matrix for this example experiment is considered in this section. Section3
provides the model on which the optimal designs will be based capturing the potential
treatment interference between neighboring units in the presence of nested and crossed
blocking factors. The formulation of As-optimality for estimating differences between the
treatment effects in the presence of nuisance network effects is also discussed in this section.
Several optimal designs are provided in Sect. 4 for the motivating example field experiment
with a detailed comparison made among them. Finally, Sect. 5 discusses relevant practical
issues and concludes the paper.

2. MOTIVATING APPLICATION

We consider an agricultural field experiment which aimed to assess differences in the natural
cereal aphid colonization of eighteen selected lines from the Watkins bread wheat landrace
collection (Wingen et al. 2014) compared to three elite wheat varieties. For practical reasons,
the experiment was restricted to small plots (1m by 1m) for testing insect preference among
the different wheat lines, with sufficient seed resources for 4 complete replicates, and space
for an array of 84 plots arranged in 14 rows and 6 columns was available. The size of
the plots and relatively small distances between neighboring plots (0.75m between rows,
0.5m between columns) suggest the potential for direct interference effects because of lines
having different levels of susceptibility to aphid infestation.

The responses were the total numbers of aphids in each plot, with the square root trans-
formation applied during the analysis to stabilize the response variance (see Appendix for
more details). The treatments to be compared are the 21 varieties, which were each repli-
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cated four times. The 84 plots were divided into four blocks, with each block containing a
full replicate. Farm operations suggest the need for additional blocking structures beyond
the relatively compact complete replicate blocks of experimental units. The two farm oper-
ations potentially influencing the responses in a systematic way are the drilling of the plots,
where a column of 14 plots will be drilled in one pass of the machinery, and the applica-
tion of any crop protection or nutritional sprays, applied by boom sprayer with rows of 6
plots across the design sprayed simultaneously. These two constraints justify the use of a
nested row–column design allowing for variation between rows of 3 plots and columns of
7 plots nested within each complete block, but also suggest a need for blocking structures
along long rows of 6 plots and long columns of 14 plots across complete blocks. Since
the long rows and long columns are not nested within blocks, we define 2 superrows of 7
rows each and 2 supercolumns of 3 columns each. Formally, these are needed to ensure
an orthogonal decomposition of sums of squares into strata—see Theorem 10.9 of Bailey
(2008). Then blocks are represented by superrow by supercolumn combinations, long rows
are nested within superrows and long columns are nested within supercolumns. The alloca-
tion of treatments was restricted so that each block contained a complete replicate of the 21
treatments—see Fig. 1).

Figure1 depicts the physical field layout with the original randomization of the 21 treat-
ments (lines). The different colors denote the four complete blocks of the nested row–column
blocking structure. The design was obtained using the CycDesigN package (https://www.
vsni.co.uk/software/cycdesign) as a resolvable row–column α-design with rows of 3 plots
and columns of 7 plots, latinized by rows (so that any treatment only occurs once in each
long row of 6 plots), partially latinized by long columns (but some treatments appear more
than once in some long columns of 14 plots) (Williams and Piepho 2013). Given that for
this implementation of the experiment the complete blocks are already defined, we call the
design resolved rather than resolvable.

In addition to the direct treatment effects of the 21 varieties, there is also potential
for interference among plots due to the neighboring treatments. The definition of neighbors
depends on the specific cause of the interference and can be described via a network structure.
In our motivating example, the network describes one of two patterns of interference: either
capturing the spatial structure to reflect distances between neighboring plots across space,
when treatments might affect adjoining plots in addition to those they are applied to; or
adjusting for farmer operations which can cause interference in other plots. The aim of the
experiment was to compare the selected wheat lines with regards to natural cereal aphid
colonization, potentially identifying lines that show some resistance to colonization. The
experimental units correspond to plots (areas of land), which form a network structure pre-
specified by the physical arrangement and practical management of the field experiment, so
as to address the particular characteristics of the field experiment. The plots constitute the
vertices of the network, with adjacencies based on the distances between the plot centroids,
allowing for both the spatial separation of plots and the plot size and shape. In particular,
the horizontal, vertical and diagonal distances between the centroids are 1.5m, 1.75m and
2.3m, respectively (see Fig. 1).

Different causes of interference among neighboring units (vertices) can result in different
specifications of the network structure. Issues to be considered include non-directional or

https://www.vsni.co.uk/software/cycdesign
https://www.vsni.co.uk/software/cycdesign
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Figure 1. Field layout and treatment allocation (numbers) for the motivating agricultural experiment at Rotham-
sted Research (year 2016). Blue/green shading indicates the superrows and light/dark shading indicates super-
columns considered in the development of alternative models and designs (Color figure online).

directional interference (e.g., impacts of spray drift might be considered as non-directional
as wind direction is probably unknown, whereas impacts of shading are probably direc-
tional defined by the orientation of the experiment and individual plots), and unweighted
or weighted interference effects (e.g., weightings might allow for geographical distances or
a different impact of neighboring units at a higher or lower altitude). When dealing with
spatial arrangements of experimental units, there are several methods available to specify
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the neighbor structure. In this case, the experimental units are arranged in a rectangular
array, and the physical distances between the units provide a natural basis for calculation of
the network structure. We should note, however, that plots are not contiguous but rather they
are separated by small distances, with different distances across rows and along columns.
We consider the effects due to the network structure separately to the different levels of
blocking complexity and additional to the particular treatment allocation.

The specification of the network structure may not be straightforward and this structure
will likely be a proxy for the actual dynamics (e.g., farmer operations) and interactions that
take place between the plots. We assume that the network structure is pre-specified (non-
stochastic) and appropriately captures the observed or potential treatment interference. In
common with other features of the design of experiments, such as the blocking structure,
subject matter expertise is needed to define an appropriate network structure for a given
experiment.

We consider two choices for this network structure, G1 and G2, as shown in Fig. 2. These
networks have been specifically chosen to represent two common forms of interference
effects that might occur in agricultural field experiments, accounting for important compo-
nents of the trial layout that might otherwise introduce a bias to the results and therefore to
the conclusions drawn by the experimenter. The network structures can be used to describe
interference between plots caused by treatments. Firstly, we consider the network effects of
the treatments applied to the immediate neighbors that are vertically, diagonally or horizon-
tally connected. The second choice for the network relates to the farmer operations.

More specifically, for our first specification (G1 left panel of Fig. 2) the network is
weighted. The weights based on the inverse spatial distance between neighboring plots
(centroids) including diagonal neighbors. For the second specification (G2 right panel of
Fig. 2), the network is unweighted and it is related to the farm operations and specifically
the directions of drilling (alternating between columns) and spraying applications (along
the rows) implemented by the farmer. In both cases the directions are indicated by arrows
in Fig. 2. For brevity we refer to these network specifications as King’s case (as in chess;
G1) and Farmer’s case (G2), respectively. Section4 explores the optimality of the designs
for these two scenarios of alternative treatment interference among neighboring plots.

An analysis of the data collected from themotivating agricultural field experiment showed
evidence for important network effects even after adjusting for the highly complex blocking
structure (for removing spatial variation). In particular, Tables 1 and 2 report the results
of two different nested model comparisons for each of the network effect specifications.
We delay the complete description of the linear model to Sect. 3; here we fit (sub-models
of) model (1), with all blocking factors modeled using random effects and assuming fixed
direct and network effects. The network effect corresponds to a specific set of parameters
in a linear model specification that dictates how outcomes for a given unit are impacted
by treatments applied to connected units (more details can be found in Sect. 3). Satterth-
waite’s approximation method (Satterthwaite 1997; Fai and Cornelius 1996) was used for
the denominator degrees of freedom. A more detailed discussion of the model fitting can be
found in the Appendix.

Comparison 1 in Tables 1 and 2 assumes the network effects are nuisance parameters,
with the sums of squares for direct treatment effects adjusted for networks (but not vice



Design of Agricultural field Experiments 533

Figure 2. Different connectivity graphs: G1 (left) and G2 (right). Plots are numbered sequentially following the
path of the drilling operations.

versa). This comparison aligns with the design perspective of estimating direct effects in
the presence of nuisance network effects. This is the perspective taken in this paper.

Comparison 2 in the tables assumes the network effects are of primary interest, with their
sums of squares adjusted for the direct treatment effects. This comparison aligns with the
modeling perspective of understanding the added contribution of the network effects over
and above that of direct treatments. This perspective might be of particular interest in, e.g.,
marketing experiments and requires a slight adjustment to the design methods in this paper,
see Parker et al. (2017) and Koutra et al. (2021).

For both comparisons and under both network structures, we see substantial variation
attributed to the network effects. The network effects appear more important in the King’s
case than in the Farmer’s case. This suggests treatment interference is, for this experiment,
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Table 1. Analysis with network effects for the King’s case

Sum Sq. Mean Sq. NumDF DenDF F-value p-value

Comparison 1 Network effect 32.58 1.63 20.00 31.76 3.24 0.0015
Variety 19.34 0.97 20.00 35.48 1.92 0.0437

Comparison 2 Variety 32.20 1.61 20.00 35.85 3.20 0.0012
Network effect 20.41 1.02 20.00 32.09 2.03 0.0361

Table 2. Analysis with network effects for the Farmer’s case

Sum Sq. Mean Sq. NumDF DenDF F-value p-value

Comparison 1 Network effect 19.73 0.99 20.00 32.65 1.68 0.0911
Variety 23.85 1.19 20.00 33.43 2.03 0.0340

Comparison 2 Variety 26.80 1.34 20.00 33.24 2.28 0.0170
Network effect 15.76 0.79 20.00 34.05 1.34 0.2188

not strongly driven by farmer operations. However, this experiment was not designed to
account for interference effects governed by either network.

3. THE DESIGN AND THE MODEL

We assume a general row–column structure and then we group rows into superrows (as
shown by the green and blue shading in Fig. 1) and columns into supercolumns (as shown by
the light and dark shadings in Fig. 1). We have (superrows/rows)×(supercolumns/columns),
where superrows and supercolumns correspond to sets of adjacent rows and sets of adja-
cent columns, respectively (see, e.g., Bailey 2008; Wingen et al. 2014). Moreover, there
is assumed to be an underlying network structure governing the experimental units (plots)
which is represented by means of a graph G = (V, E), with vertex set V = {1, . . . , n} and
edge set E consisting of the l pairs of vertices connected in the graph. The adjacency matrix
of a graph is an n × n matrix A = [

A j j ′
]
with j, j ′ ∈ V , which is a compact way to repre-

sent the connectivity structure. The elements of the matrix indicate whether pairs of vertices
are adjacent or not in the graph where A j j ′ �= 0 if and only if the pair j j ′ ∈ E . We aim to
improve accuracy as well as the precision of the experiment by controlling for heterogeneity
due to multiple sources and by adjusting for the interference between neighboring units due
to treatments. Note that we are designing the experiment on the network with respect to
fixed effects for each of the blocking model terms. If block labels are properly randomized
to blocks, it is reasonable to analyze such experiments with recovery of inter-block infor-
mation by using random effects for blocks. However, we will develop a design criterion
using the model with fixed block effects. Although the model with random block effects
may well be better for analysis, the variances of estimated treatment parameters depend on
the ratio of between- and within-block variances. Since this ratio is unknown at the design
stage, it is safest to design for the worst case, i.e., that which leads to the largest variances
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Figure 3. Hasse diagram of the unit structure of the design. Each node has two numbers: the number of levels of
the corresponding blocking factor and the corresponding degrees of freedom (in brackets), obtained by subtracting
the degrees of freedom for higher factors from the number of levels of the factor under consideration. R, C, r and
c represent superrows, supercolumns, rows and columns, respectively.

of estimated treatment parameters. This occurs when the between-block variance tends to
infinity, which is equivalent to the fixed blocks case.

Returning to themotivating agricultural experiment, the entire experiment is broken down
into superrows and supercolumns of lengths b1 = b2 = 2 (see Fig. 1, the first superrow
contains the blue-shaded plots and the second superrow contains the green shaded plots, and
the first supercolumn contains the light shaded plots and the second supercolumn contains
the dark shaded plots). The superrow by supercolumn combinations are equal to the κ = 4
blocks, and the complete array can also be broken down to κ1 = 14 rows each containing 6
plots and κ2 = 6 columns each containing 14 plots. The Hasse diagram (see, for example,
Bailey 2008,Ch.10.4) in Fig. 3 describes the unit structure for this experiment with the
corresponding degrees of freedom in each stratum. Each node in this diagram represents
either a blocking factor or the interaction of two crossed blocking factors, with the nodeU at
the top of the diagram representing the entire experiment. Recall that for the original design
of the trial, the management operations of drilling and spray applications are done column-
by-column and row-by-row, respectively, so that it is assumed that the effects of these
processes will be confounded with the positional effects (i.e., the row, column, superrow
and supercolumn effects and interactions among these terms).

Let yikgh denote the response from the experimental unit in the gth row and hth col-
umn within the i th superrow and kth supercolumn. The quadruple (i, k, g, h), where
i = 1, 2, . . . , b1; k = 1, 2, . . . , b2; g = 1, 2, . . . , κ1; and h = 1, 2, . . . , κ2, identifies
the experimental unit which corresponds to a vertex from the set {1, . . . , n} and t (ikgh)
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∈ {1, . . . ,m} corresponds to the treatment applied to unit (i, k, g, h). We should also note
that the identity of every vertex in the network has been fixed by assigning a unique label to
each one (given that a labeling is arbitrary and every choice leads to an equivalent descrip-
tion of the same network space). The most complex model we might consider incorporates
blocks (combinations of superrows and supercolumns), rows and columns within superrows
and supercolumns, respectively, and network effects. This is the Block Row–Column Net-
work Model (BRCNM), which is an extension of the block network model (Koutra et al.
2021):

BRCNM: yikgh = μ + τt (ikgh) +
b1∑

i ′=1

b2∑

k′=1

κ1∑

g′=1

κ2∑

h′=1

A{ikgh,i ′k′g′h′}γt (i ′k′g′h′)

+ Ri + Ck + (RC)ik + rig + ckh + (rC)ikg + (Rc)ikh + εikgh, (1)

where μ denotes the overall mean effect, τt (i jkl) is the (direct) treatment effect, Ri and
Ck denote the i th and kth superrow and supercolumn effects, respectively, while rig and
ckh denote the row and column effects nested within the superrows and supercolumns,
respectively, (RC)ik denotes the interaction effects of superrows and supercolumns, (rC)ikg

denotes the interaction effects of rows and supercolumns, and similarly (Rc)ikh denotes the
interaction effects of columns and superrows. The adjacency matrix A{ikgh,i ′k′g′h′} indi-
cates connections between the units (i, k, g, h) and (i ′, k′, g′, h′) of the weighted and/or
directed graph and γt (i ′k′g′h′) is the network effect of the treatment t (i ′k′g′h′) applied to the
connected unit (i ′, k′, g′, h′) when there is connection between the two experimental units
defined by these indices (neighbor or indirect treatment effect or interference effect). By
convention the diagonal elements of the adjacency matrix are all set to zero for avoiding
self-loops. Adjacency matrices are also a standard way of representing interference in the
causal inference literature (see, e.g., Aronow and Samii 2017). The εikgh are assumed to be
independent random variables, each with E(εikgh) = 0 and E(εikgh

2) = σ 2. This model
assumes that the response of a plot is due to an effect caused by the treatment applied to it
directly, a network effect caused by the treatments applied to its neighbors, where neigh-
bors are defined via the adjacency matrix, and effects due to the row, column, superrow,
supercolumn, and interactions the plot is in, as well as some random error.

The model in matrix notation can be written as

E
[
y
] = μ1 + Xττ + AXγ γ + XRR + XCC

+ XRC (RC) + Xr r + Xcc+ XrC (rC) + XRc(Rc),

where τ , γ , R,C , (RC), r , c, (rC) and (Rc) denote the treatment, network, superrow, super-
column, superrow×supercolumn interaction, row, column, row×supercolumn interaction
and superrow×column interaction effects, respectively. The model matrices Xτ , Xγ , XR ,
XC , XRC , Xr , Xc, XrC and XRc represent the treatments, network effects, superrows, super-
columns, superrow×supercolumn interactions, rows, columns, row×supercolumn interac-
tion and superrow× column interaction, respectively.
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Thus, the information matrix for this model is M = XT X , where

X = (
1 Xτ AXγ XR XC XRC Xr Xc XrC XRc

)
.

The information matrix has the form

M =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

n 1T Xτ 1T AXγ . . . 1T XRc

Xτ
T 1 Xτ

T Xτ Xτ
T AXγ . . . Xτ

T XRc

Xγ
T AT 1 Xγ

T AT Xτ Xγ
T AT AXγ . . . Xγ

T AT XRc
... · · · ...

. . .
...

XT
Rc1 XT

RcXτ XT
Rc AXγ . . . XT

RcXRc

⎞

⎟⎟⎟⎟
⎟⎟
⎠

.

We are interested in obtaining the least squares estimators of the pairwise differences
of the treatment effects, ̂τs − τs′ with s, s′ ∈ {1, . . . ,m}. The design performance will
be assessed via the As-optimality criterion, which minimizes the average variance of all
pairwise differences of treatment comparisons

2

m(m − 1)

m−1∑

s=1

m∑

s′=s+1

var( ̂τs − τs′).

This is proportional to

φ =
m∑

v=2

m+1∑

h=v+1

sT (v, h)M−s(v, h),

where s(v, h) is a contrast vector formed of zeroes of appropriate dimension, except the v and
h elements which are 1 and −1, respectively, corresponding to the particular treatments we
wish to compare in a given contrast. The matrix M = M(ξ) corresponds to the information
matrix and ξ is a design chosen from the set of all possible designs, where a design is a
choice of treatment assignments to the experimental units that correspond to the vertices of
the network. The matrix M− is a generalized inverse of the information matrix M (Harville
1997,Ch.9), which is pre- and post-multiplied by this contrast vector in the summation that
defines the optimality criterion φ across the 210 pairwise comparisons between varieties
(treatments) in this experiment. Our interest is in the variance of estimable contrasts, which
is invariant with respect to the choice of the generalized inverse. Thus, the minimization
of the criterion function leads to an As-optimal design and the minimum value of φ is the
optimal function value. Koutra et al. (2021) provides a more thorough description of the
formulation of the optimality criterion but for a simpler blocking structure.

For each potential model, the optimal design will be obtained following an optimization
algorithm that is described in the Appendix, by generating an initial treatment arrangement
with some particular properties, e.g., resolved row–column design, and making pairwise
interchanges of treatments between plots (restricting these interchanges to maintain the
overall properties where appropriate, e.g., only making interchanges within blocks for a
resolved design). We have chosen a fairly standard exchange type algorithm because its
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flexibility can be used for any design structure and it seems to work adequately for the
problems of interest. However, other methods can be used such as Tabu search (Glover
1989), or simulated annealing (Kirkpatrick et al. 1983).

For our comparisons, we consider models that are special cases of the BRCNM. In
particular:

CRM: E
[
y
] = μ1 + Xττ ,

RBM: E
[
y
] = μ1 + Xττ + XRR + XCC + XRC (RC) ,

RCM: E
[
y
] = μ1 + Xττ + Xr r + Xcc ,

BRCM: E
[
y
] = μ1 + Xττ + XRR + XCC + XRC (RC) + Xr r + Xcc

+ XrC (rC) + XRc(Rc) ,

LNM: E
[
y
] = μ1 + Xττ + AXγ γ ,

BNM: E
[
y
] = μ1 + Xττ + AXγ γ + XRR + XCC + XRC (RC) ,

RCNM: E
[
y
] = μ1 + Xττ + AXγ γ + Xr r + Xcc .

We consider the standard treatment models derived from the simplest randomization
schemes, theCompletelyRandomizedModel (CRM) and theRandomized (complete) Block
Model (RBM). The corresponding designs for thesemodels are the simplest forms of designs
to compare different treatments by randomly assigning them to experimental units (the
Completely Randomized Design (CRD) and the Randomized (complete) Block Design
where treatments are additionally arranged in, potentially resolvable, blocks). If instead of
a simple blocking structure, we allow for experimental units being in a two-dimensional
arrangement of rows and columns then we have the Row–Column Model (RCM) and if,
additionally, we consider the row and column effects to be nested within blocks we have the
Block Row–Column Model (BRCM). Extending these four models (CRM, RBM, RCM,
BRCM) to include a network model term to capture the connections among units lead to
the Linear Network effects Model (LNM) (introduced in Parker et al. 2017), the Block
Network Model (BNM) (introduced in Koutra et al. 2021), the Row–Column Network
Model (RCNM) and the Block Row–Column Network Model (BRCNM). For each model,
the responses are functions of the network effects, the treatment (and blocking) factors, plus
the error terms.We assume that, in all cases, the errors are independent and randomwith zero
mean and constant variance. Our interest lies in comparing designs under the same model,
making σ 2 redundant as it is the same for all proposed designs under the same model.

4. COMPARISON OF DESIGNS

In this section, comparisons are provided of optimal designs for estimating the direct treat-
ment differences under the models specified in Sect. 3 for the two different pre-specified
adjacency matrices (King’s and farmer’s). As-optimal, or near-optimal, designs are found
using the design search algorithm in the Appendix; we refer to these designs as “unre-
stricted.” We use an interchange–exchange algorithm running two nested computations
sequentially: visiting each unit in order and freely allowing for an exchange of the treatment
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with any of the listed competitive treatments and then interchanging those treatments until
convergence is reached.

In addition, we also find optimal designs under the restrictions of (i) equal replication of
treatment and (ii) resolvability with each block, defined by the combination of a superrow
and supercolumn, containing a complete replicate of the treatments. These designs are found
by adding the necessary restrictions into the design search algorithm.

The designs generated are labeled corresponding to the model assumed for design
construction: CRD (for the Completely Randomized Design), RBD (Randomized Block
Design), RCD (Row–Column Design), BRCD (nested Block Row–Column Design), LND
(network design under the Linear Network effects Model), BND (Block Network Design),
RCND (Row–Column Network Design), and BRCND (Block Row–Column Network
Design). When different designs have been found either under a different network structure
or when a restriction was imposed (equal replication or resolvability), then a number is
appended to the design name. For example, design BND1 is the unrestricted optimal design
under the BNM assuming the King’s adjacency matrix, BND2 and BND3 are the designs
under theKing’s adjacency assuming equal replication and resolvability, respectively, BND4
is the unrestricted design under the Farmer’s adjacency (which also has equal replication)
with BND5 is the equivalent design under the restricted for resolvability. See Tables 3 and
4. Note that the optimal designs under CRM, RBM, RCM and BRCM always have equal
replication, without the need to impose any restriction, and that an arbitrary optimal design,
out of the many designs with identical performance, has been chosen for each model. Note
also that we always assume that competing block designs have the same block partition.
The performance of each design found is then assessed under each of the 8 models. For
example, we take the optimal design, labeled BRCND1, found without restriction under the
most complex BRCNM, and assess it by calculating the As-optimality objective function
φ(·) under the BRCNM and also under the other 7 models. Hence, we are assessing the
robustness of the designs tomisspecification of themodel at the stage of design construction.
Throughout, the model specified during design assessment is consistent with the data gen-
erating process, and hence it is appropriate to assess design performance via precision (as
measured by φ(·)). The results are given in Tables 3 and 4. When we compare two designs
ξ1 and ξ2 in the text, we use relative As-efficiency Eff(ξ1, ξ2) = φ(ξ1)/φ(ξ2) ≥ 0, with the
objective function φ(·) for the two designs calculated under a common model. Typically, ξ1
will be the best design found under that particular model with Eff(ξ1, ξ2) ≤ 1.

4.1. KING’S CASE (G1; TABLE 3)

Here, the adjacency matrix represents the indirect effects of treatments in up to eight neigh-
boring plots (fewer for the edge plots). It has weights corresponding to the reciprocal of
the distances between the plot centroids. The optimality function values for each obtained
design (labeling the rows of the table) under the different models (labeling the columns
of the table) are given in Table 3. The objective function values for the optimal design
for each model are highlighted in bold, within each of the three classes of unrestricted,
equal-replicated and resolved.
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Table 3. King’s Case: values of the objective function φ(·) for the As -optimal designs under the different models
(φ(·) is a smaller the better function). † denotes equal treatment replication; ‡ denotes resolvable with
respect to blocks

Classes of designs Models

CRM RBM RCM BRCM LNM BNM RCNM BRCNM

Unrestricted
CRD† 105 111 146 159 192 238 682 642
RBD† ‡ 105 105 129 142 228 249 547 589
RCD† 105 108 126 143 199 239 552 550
BRCD† ‡ 105 106 140 126 190 210 502 499
LND1 106 110 149 153 130 158 550 549
BND1 109 112 150 159 137 144 622 506
RCND1 108 112 141 153 152 167 239 353
BRCND1 108 114 148 147 155 174 373 254
Equal-replicated
LND2† 105 106 145 145 140 155 622 625
BND2† 105 105 145 142 141 146 604 570
RCND2† 105 106 134 142 178 191 311 512
BRCND2† 105 105 144 144 163 176 401 315
Resolved
BND3† ‡ 105 105 143 142 144 148 625 533
BRCND3† ‡ 105 105 140 146 167 174 474 318
Implemented design
α-RCD† ‡ 105 105 132 137 179 191 554 513

Bold typeface indicates the lowest value ofφ(·) obtained under eachmodel and each set of restrictions (unrestricted,
equal-replicated, resolved)

When the true model for design assessment is assumed to be the BRCNM (final column
of the table), we see that all standard randomized designs found for assuming models with-
out network effects (CRD, RBD, RCD, BRCD, which we will refer to as non-network
designs) perform poorly. We obtain approximate As-efficiencies of 0.4 (= 254/642),
0.43 (= 254/589), 0.46 (= 254/550) and 0.51 (= 254/499) for the optimal CRD,
RBD, RCD and BRCD, respectively. Accounting additionally for the network effects,
with or without blocks (LND1 and BND1), produces similar efficiencies (efficiencies of
0.46 (= 254/549) for the LND1 and 0.50 (= 254/506) for the BND1). A substantial
increase in efficiency only occurs when row and column effects are accounting for when
designing the experiment (RCND1; efficiency 0.72 (= 254/353)).

If the experiment is designed for themost complexmodel (designBRCND1), it maintains
high efficiency if a simpler model is eventually used under all models except the RCNM
(efficiency 0.64 (= 239/373)). In general, designing for a more complex model does not
lead to a large loss in efficiency under the simpler models; for example LND1, BND1,
RCND1 and BRCND1 are 0.85 (= 126/149), 0.84 (= 126/150), 0.89 (= 126/141) and
0.85 (= 126/148) efficient, under the Row–Column Model (RCM). Note also that the
BND1 performs almost as well as the LND1 under the LNM (the same holds for BND2
compared to LND2).
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Table 4. Farmer’s Case: values of the objective function φ(·) for the As -optimal designs under the different
models (φ(·) is a smaller the better function). † denotes equal treatment replication; ‡ denotes resolvable
with respect to blocks

Classes of designs Models

CRM RBM RCM BRCM LNM BNM RCNM BRCNM

Unrestricted
CRD† 105 111 146 159 164 183 306 343
RBD† ‡ 105 105 129 142 159 161 249 273
RCD† 105 108 126 143 167 176 249 306
BRCD† ‡ 105 106 140 126 162 168 275 255
LND4† 105 110 140 143 130 143 223 266
BND4† 105 106 141 145 130 132 240 223
RCND4† 105 108 131 142 134 141 170 222
BRCND4† 105 107 138 131 134 138 233 174
Resolved
BND5† ‡ 105 106 146 148 135 136 237 242
BRCND5† ‡ 105 106 144 133 139 140 244 189
Implemented design
α-RCD† ‡ 105 105 132 137 153 155 258 282

Bold typeface indicates the lowest value ofφ(·) obtained under eachmodel and each set of restrictions (unrestricted,
equal-replicated, resolved)

Restricting the designs to either be equally replicated or resolvable leads moderate losses
in efficiency in this example (the lowest efficiency is 0.77 (= 239/311) for the RCND2
under the RCNM).

4.2. FARMER’S CASE (G2; TABLE 4)

The objective function values for the optimal designs under each model are shown in Table
4. We note that, unlike for the King’s case, all designs found were equally replicated.

We see that the results here follow similar patterns to those in the King’s case. One
difference, stemming from the different network specification, is that the efficiencies of the
non-network designs are slightly higher than before when assessed under a model including
the network structures. Assuming, for example, that BRCNM is true, the non-network
designs have approximate As -efficiencies of 0.51 (= 174/343), 0.64 (= 174/273), 0.57 (=
174/306) and 0.68 (= 174/255) for the CRD, RBD, RCD and BRCD, respectively.

Also, under this network structure we no longer see the big differences in efficiency
from including the row–column effects. In fact, we have efficiencies of 0.65 (= 174/266),
0.78 (= 174/223) and 0.78 (= 174/222) for the LND4, BND4 and RCND4, respectively,
implying that accounting for the block effects produces the same increase in efficiency as
accounting for the row and column effects.

When we restrict for resolvability, we lose less than 10% in efficiency (e.g., 0.92 =
174/189 for BRCND5 and 0.97 = 132/136 for BND5 efficient relative to the non-resolved
designs). This is an important observation given that in this case imposition of more restric-
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tions reduces the design space leading to faster convergence of the algorithm to an efficient
design.

In general, we can infer that when we believe that there may be important spillover
(neighbor) effects due to a structure governing the plots under experimentation, it is sensible
to incorporate them in the model. For this second network specification (the Farmer’s case)
accounting for the network effects even when we question their true existence does not do
much harm in the design efficiencies, which means that we are better off accounting for
network effects than ignoring them.

4.3. IMPLEMENTED DESIGN FOR MOTIVATING EXAMPLE

Weobtained the objective function values under the differentmodels for the resolvedα-RCD
design (shown in Fig. 1) actually used for our motivating example. The design efficiency,
with respect to the resolved BRCND3, is around 0.62 (= 318/513) for the King’s case (see
Table 3). Likewise with respect to the resolved BRCND5, the design efficiency is around
0.67 (= 189/282) for the Farmer’s case (see Table 4). This implies that we considerably
increase the design efficiency if network effects are both necessary and accounted for when
choosing a design.

4.4. CONCLUSIONS

In this section we showed that optimal designs that account for network effects outperform
conventional non-network designs in terms of efficiency when network effects are actually
present in the assumed model. Also, there is no significant loss of efficiency in assuming
the more complex model with network effects when designing the experiment; the optimal
network design is has efficiency between around 0.02 to 0.15 less than the standard non-
networked designs when the network effects are ignored. The loss becomes higher with
more complex blocking structure as the randomization of the allocation of treatments to
units is more important.

In the resulting optimal network designs, it was noticed that each replicate of every
treatment was close to at least one replicate of all the other treatments, a desirable feature
previously highlighted by Freeman (1979) for the case of row–column designs. Also, pairs
of closely connected units tend to receive the same treatment, also observed by Parker et al.
(2017) and Koutra et al. (2021). The optimal designs can be found in the Supplementary
Material.

Our study focused on precision, under the assumption that the network structure would
be correctly specified and included at the modeling stage if appropriate. Misspecifying
or ignoring important network effects may lead to biased estimators of direct treatment
effects (see, e.g., Karwa and Airoldi 2018; Forastiere et al. 2021; Sävje et al. 2021; Koutra
et al. 2021). Then, a design selection criterion that only accounts for precision would be
inappropriate and an alternative, such as mean squared error, should be employed. Some
progress in this area has been made using graph cluster randomization, see Eckles et al.
(2016).
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5. DISCUSSION

In this study, we attempted to control for the potential variation and bias resulting from
treatment interference from neighboring plots or from farm operations in agricultural field
experiments through incorporating network effects in order to improve the precision of
treatment comparisons. We show that optimal designs with network effects outperform
conventional designs in terms of efficiency, where there is strong expectation of neighbor
or network effects. This approach is especially effective when there is good information
about potential effects, for example, associated with the size of effects or the distance of
neighbors. Including network effects that might be important is better than ignoring them
and still the resulting optimal designs perform well under the conventional models CRM,
RBM, RCM, etc. Also, by not taking into account network effects in our design, we produce
an experiment which can have higher variance than necessary but also biased treatment
effect estimators.

In practice, the adjacency matrix is tailor-made reflecting the suspected underlying treat-
ment interference among plots. The choice of this matrix can also address irregular layouts
demanding further potential constraints. According to the specific problem at hand, the
experimenter should appropriately choose the adjacency matrix, suggest a suitable model to
fit and optimize the design for that model for estimating the important parameters of interest.
Various alternative specifications of the adjacency matrix might include detailed measure-
ments between neighboring plots to better reflect the spatial structure, the identification
of different field management practices, and the identification of both direct and indirect
impacts of treatments on neighboring plots. In practice, the specification of this network
might be a result of the scientific knowledge of the experimenter or elicitation of informa-
tion from farm managers on the suspected sources of spillover effects based on experience
which is likely to strongly affect the differences in treatment effects. A conclusion drawn
from the comparison of the optimal designs is that randomized designs that ignore network
effects are inefficient when network effects are present and may lead to poor results due to
additional variability associated with treatment effects.

Increasing constraints on the funding for agricultural research, particularly field experi-
ments, and an interest in being able to detect smaller and smaller treatment differences as
being statistically significant, means that there is increasing demand for the development
of statistical design approaches that can lead to the implementation of more efficient field
experiments. Although the motivating example had a rectangular array of plots, the adja-
cency matrix can be appropriately specified to accommodate other structures of potential
treatment interference. Designs explicitly incorporating neighbor effects overcome these
challenges, and the approaches described in this paper, building on the models previously
described by Parker et al. (2017) and Koutra et al. (2021), extend the pioneering research
of Besag and Kempton (1986). Thus, considering models that combine network and block
effects to capture the wide range of “nuisance” and “interference” sources of variability
provides an approach to the design of more efficient agricultural field experiments. Such
methods can help to address the current challenges of achieving more efficient and sus-
tainable food production with limited resources, through identifying treatments resulting in
small incremental improvements.
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The advantage of the suggested design approach is that we can control for the neighboring
environment according to the shapes, sizes, causes, directions andweights of the neighboring
interference. For instance, neighbor effects may depend on the speed and direction of wind
or periods in shade, which can result in an appropriate definition of the connectivity matrix
imposing suitable weights for the left or right neighbors, etc. This highlights the importance
of defining the adjacency matrix based on requirements of the experiment at hand. If the
network structure is adequately modeled, this design procedure may be expected to result
in an increase in precision of the treatment contrasts.

This study is intended to encourage the future application for agricultural field experi-
ments of designs assuming models including both network effects and complex blocking
structures, to account for the anticipated dependence among neighboring experimental units
alongside those sources of variation conventionally accounted for using blocking.
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APPENDIX

OPTIMIZATION ALGORITHM

Early algorithms for optimal row–column designs were discussed in detail by Jones and
Eccleston (1980a,b). Their optimal designs were evaluated using the As-optimality crite-
rion for minimizing the sum of the weighted variances of a set of treatment contrasts of
interest. Computer algorithms have also been suggested for obtaining row–column designs,
for instance, the design generation package ALPHA+ for obtaining α-designs developed
by Williams and Talbot (1993), described in detail by Nguyen and Williams (1993) and
the nested simulated annealing algorithm developed by John and Whitaker (1993). They
all use some form of interchange procedure where pairs of treatments are swapped in the
design, subject to an iterative improvement procedure with respect to a chosen optimal-
ity criterion. To address the problem of the interchange procedure getting stuck at a local

http://creativecommons.org/licenses/by/4.0/
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optimum, Nguyen and Williams (1993) suggested repeated runs of the algorithm using dif-
ferent starting designs, and then choosing the best design over all runs. John and Whitaker
(1993) also addressed this problemby acceptingwith low probability some randomly chosen
interchanges that do not result in an improvement in the chosen optimality criterion.

For the objectives of designing the motivating agricultural field experiment, we describe
the algorithm for themost complex case of resolvable blocks, nested row and column effects,
and equal replication. This is an interchange algorithm for the construction of efficient
resolved row–column designs with network effects. The algorithm begins with the gener-
ation of a non-singular design with a crossed blocking structure and a fixed number and
sizes of blocks, ensuring that the starting design contains all treatments. The As-optimality
criterion determines the decision rule of either allowing the interchange to occur or leaving
the design unchanged. Given that we restrict the design to be resolved, the candidate treat-
ment swaps are restricted to take place only within blocks, accepting those interchanges that
improve the criterion value for the overall design. The interchanges of pairs of treatments
are chosen systematically within the same block. Thus, the algorithm focuses on each block
in turn, keeping the treatment allocation fixed in the remaining blocks. The algorithm con-
tinues to cycle through the blocks, making interchanges until no beneficial changes can be
made in any of the blocks. The steps in the algorithm are as follows:

– Step 1: Generate a random non-singular resolved row–column design and calculate
the optimality criterion function for this starting design.

– Step 2:Make a pairwise interchange of treatments within the current block keeping the
arrangement of the treatment combinations fixed for the remaining blocks. Calculate
the optimality criterion function for the current design that corresponds to that specific
interchange. If an interchange improves the criterion value of the overall design, accept
it and continue; otherwise, undo the interchange and continue.

– Step 3: Repeat Step 2 for each unit in the block until no further interchanges in the
current block result in an improvement (or if the above holds for at least a large number
of iterations) then move on to the next block.

– Step 4: Repeat Steps 2 and 3 until a pass through all blocks yields no changes or for a
specific number of times.

– Step 5: Repeat Steps 1–4 for several randomly generated initial designs to overcome
the problem of becoming stuck in a local optimum.

In Sect. 4, we provide different designs adjusting this algorithm appropriately. In partic-
ular, we consider two modified algorithms where we drop the resolvability property and/or
the constraint of equal replication. In the first case we relax the constraint of having a
resolved design with the treatment interchanges occurring between pairs of plots within the
same replicate blocks, and let them occur across the whole design (non-resolved but equal-
replicated), while the second modified algorithm allows for treatment exchanges rather than
interchanges to generate non-equireplicate designs. For the exchanges, the algorithmmoves
systematically along all the units and exchanges the treatment with an alternative treatment
retaining the exchange if this results in an improvement in the criterion.
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5.1. ANALYSIS OF THE MOTIVATING AGRICULTURAL EXPERIMENT AT

ROTHAMSTED RESEARCH

We provide the analysis of the experiment run in 2016 to explore the presence of the possible
network effects in this type of study. In particular, we fit linear mixed effects models using
lme4 package (Bates et al. 2015) in R (R Core Team 2021) with random block effects to
assess differences in total aphid numbers between treatments (wheat lines). We include both
direct treatment and network effects as fixed effects and block structures as random effects.
We fit both the BRCM and BRCNM (Eq.1), where all blocking components are random
effects that are induced by restrictions in the randomization in the unit structure, that is
rows, columns, superrows, supercolumns, and their interactions. We fit the models using
residual maximum likelihood (REML) and the generalized least squares (GLS) estimation
method. Zero variance component estimates were mostly obtained, and that is because there
are only very small numbers of degrees of freedom left for estimating them (Gilmour and
Goos 2009). The estimated residual variances for BRCMandBRCNM (King’s and Farmer’s
cases) are 0.71, 0.50 and 0.59, respectively. Non-orthogonality of the unit structure requires
an adjustment to be made to the degrees of freedom, for example using Satterthwaite’s
approximation method (Satterthwaite 1997; Fai and Cornelius 1996) as implemented in the
lmerTest package (Kuznetsova et al. 2017).

Visual inspection of residual plots reveal small deviations from homoscedasticity and
normality, which were addressed using the Box-Cox approach which suggested the appli-
cation of a square root transformation to the total aphid counts. Tables 1 and 2 report the
results of nested model comparisons for the models BRCNM (King’s case) and BRCNM
(Farmer’s case), respectively, including two orders for fitting the direct treatment and net-
work effects for each of the network effect specifications. This is because from a design
perspective having the network effects first ties up with the optimality criterion used in this
paper (i.e., estimate direct effects in the presence of nuisance network effects), but from a
modeling perspective network effects are added second in order to understand what is their
added contribution. Despite the complex blocking structure (for removing spatial variation)
there is evidence that the network effects are important. Thus, we can observe that the back-
ground variation is partly explained by allowing for the network effects, and this provides a
justification for designing the experiment accounting for the network effects as well as the
complex blocking structure. We can discern that the network effects are significant for the
King’s case but not for the Farmer’s case suggesting that the assumption that some of the
farm management activities might have influenced the responses is not likely. Recall that
the King’s case is obtained based on the weighted spatial structure capturing the neighbor
effects from adjacent plots, while the farmer’s case is directional and unweighted capturing
the farmer activities. This might be because there is more association with the blocking
structure for the farmer’s case. However, if we assume that the best design (RCNBD) is
much better than the design that was actually used, then the design that was used may not
be powerful enough to detect these network effects even if they exist. The analysis of the
motivating agricultural experiment provides evidence that the BRCNM captures important
sources of interference by accounting for the network effects indicating the need to design
accounting for these effects.
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