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ABSTRACT 
 

An eigenvalue-eigenvector approach for the design of two-channel linear phase quadrature mirror filter 

(QMF) bank is proposed. To reduce the computational complexity, finite-duration impulse response (FIR) 

low-pass prototype filter of the filter bank is represented by polyphase components. The design problem is 

formulated to optimize the filter tap weights of the low-pass prototype filter of the QMF bank to minimize 

an objective function, which is the weighted sum of the square error of the filter bank transfer function at 

the quadrature frequency, pass-band error and stop-band residual energy of the low-pass prototype filter 

and measure of reconstruction ripple. The objective function has been minimized by an iterative algorithm. 

As compared to the existing design techniques, the proposed algorithm gives better performance in terms of 

mean square error in stop-band, number of iterations required and stop-band edge attenuation. Design 

examples are presented to validate the effectiveness of the proposed method. 
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1.  INTRODUCTION 

 
Finite-duration impulse response (FIR) QMF banks have been extensively used in many signal 

processing fields, such as automated methods for scoring tissue microarray spots [1], multi-user 

communication [2],  image compression [3,4], trans-multiplexers used in FDM/TDM conversion 

[5], multi-tone modulation systems [6], ECG signal compression [7], antenna systems [8], audio 

industry [9], biomedical signal processing [10], sub-band coding of speech and image signals 

[11,12] and wideband beam forming for sonar [13].  

 

Figure 1, shows the basic structure of a two-channel quadrature mirror filter bank. In analysis 

section, the signal x(n) is divided into two frequency sub-bands using the low-pass filter H0(z) and 

high-pass filter H1(z). Each sub-band signal is down-sampled by a factor of two to achieve signal 

compression. In the synthesis section, the sub-band signals are up-sampled by a factor of two. 

The output of two synthesis filters F0(z) and F1(z) are recombined to obtain the reconstructed 

signal ��(�). The signal ��(�) suffers from aliasing, magnitude and phase distortion, due to the 

fact that the filters F0 (z), F1(z), H0(z), and H1(z) are not ideal [11]. These three distortions can be 

minimized or removed completely by appropriate selection of analysis and synthesis filters [12]. 
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Aliasing distortion can be canceled completely by proper choice of synthesis filters in terms of 

the analysis filters as:  

 

                                  ����(	) �= ���(−	)���and�������(	) �= �−��(−	)                                         (1) 

and the phase distortion can be eliminated using the even length linear-phase FIR filters [11]. In a 

QMF bank, H0(z) and H1(z) are related to each other by the mirror image symmetry condition 

around � = �/2 

 

                                                   ��(	) ��= ���(−	)                                                                              (2) 

 

The filter bank transfer function (T0(z)) of such phase distortion and alias free system is given by 

 

                                          X̂ (	) = ½������(	)−���(−	)��(	) �= ��(	)�(	)                              (3) 

                                                  ��(	) = �½������(	)−���(−	)��                                                   (4) 
 

      

 

 

 

 

                            

                           

 

  
 

Figure 1.  Basic structure of two-channel quadrature mirror filter bank 
 

 

Equation (4) indicates that the overall transfer function of QMF bank depends on the filter tap 

weights of the low-pass analysis filter only, which is known as low-pass prototype filter. For 

perfect reconstruction QMF bank, magnitude distortion should also be eliminated. But due to 

mirror image symmetry constraint of Eq. (3), we can only minimize this distortion by using 

computer assistance optimization techniques [11].  

 

Let, the prototype filter H0 (z) is selected as even length linear -phase FIR filter, then the impulse 

response h0 (n) of the prototype filter is given by inverse Z-transform of H0 (z)  

 

                                          ℎ�(�) ��= � ℎ�(� − �),    for  n = 0, 1, 2, . . .   (N+1)/2 – 1                         (5) 

 

Then the Fourier transform is written as                                   

                                         ������� = ����� � �|�������|                                                            (6) 

 

where N +1 is filter length and  e
−j�N/2

 represents the linear phase part of prototype filter. By 

substituting Eq. (6) into Eq. (4), the frequency response of QMF bank is obtained as 

  

                                  ������� = �
� (�

����)�|�������|� − (−1)�|�����(��#�|��                      (7) 

 

Input        

 x (n) 

1: 2 

 

 

  2:1 1: 2   

 2:1 
Output 

  ��(�) 
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Analysis Section                                        Synthesis Section 

H0 (z) 

H1 (z) 

F0 (z) 

F1 (z) 
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Filter order N must be chosen odd to avoid the severe amplitude distortion at � = �/2. For perfect 

reconstruction QMF bank the magnitude response |T0(e
j�

)| must be constant for all �, therefore, 

the condition for perfect reconstruction can be obtained as  

 

                             |�������| = |�������|� + |�����(��#)�|� = %,     0 � � � &.                        (8)  

 

In QMF bank, after eliminating aliasing and phase distortion completely, we can only minimize 

the magnitude distortion by optimizing H0 (z) due to mirror image symmetry constraints [12]. 

Consequently, the design problem of QMF bank is to optimize the filter tap-weights of H0 (z) by 

computer-aided optimization technique to satisfy the perfect reconstruction condition nearly. 

These types of filter banks are known as nearly perfect reconstruction QMF bank.  
 
Over the past two decades many techniques have been developed to design two-channel QMF 

banks [14−25]. Jain and Crochiere [14] proposed an eigenvalue-eigenvector method to find the 

optimum prototype filter coefficients in time domain. Chen and Lee [15] presented a weighted 

least-squares technique in frequency domain. Several iterative methods [16−21] and genetic 

algorithm [22−25] applied for the design of two-channel QMF banks. Based on Johnston’s [17] 

methods, authors in [21] have developed an efficient technique by considering polyphase 

components for the design of QMF bank, but the reconstruction error was high. Recently, Ghosh 

et al. [24] proposed an approach based on adaptive-differential-evolution algorithm and in [25] an 

improved particle swarm optimization (PSO) method has presented for the design of QMF banks 

in frequency domain. 

 

In this paper, we present an efficient technique for design of two-channel QMF bank in which 

prototype low-pass filter considered in polyphase form. Inverse power method [26] has been 

applied for optimization of filter coefficients of low-pass prototype filter. In section 2, design of 

QMF bank using polyphase components and formulation of objective function are presented. In 

section 3, proposed algorithm for design of prototype filter is described. Design results of the 

proposed filter bank and comparison with existing state-of-the-art algorithms are presented in 

section 4. 

 

2.  DESIGN OF POLYPHASE QMF BANK AND FORMULATION OF OBJECTIVE 

     FUNCTION 

 
Polyphase structures are very useful for implementation of filter banks [12, 27]. FIR and IIR 

filters can be realized with reduced computational complexity using polyphase decomposition, 

resulting in an efficient realization of the decimator and interpolator filter. Using the polyphase 

structure, an M-fold decimation/interpolation filter can be implemented with approximately M-

fold reduction in the number of multiplications per unit time (MPUs) and number of additions per 

unit time (APUs). Type1 polyphase representation of a transfer function H(z) = ( )
n

nh n z
∞

=−∞

−� , 

representing a digital filter, has the following M−component polyphase representation [11]. 

                                             H(z)  = ( )
1

0

M

k

k M
kz E z

−

=

−�                                                       (9) 

 

where the polyphase components Ek(z) are given by 
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                                            Ek(z)   =  ( )
n

n
ke n z

∞

=−∞

−�                                                    (10) 

 such that 

                                        ek(n)  =   h(nM + k);                                                                  (11) 

 

ek(n) is the M-fold decimated version of h(n + k). For M = 2, the prototype filter H0 (z) is 

represented using Eq. (9) as 

                                                    �����(	) = � 	��'�(	�) +�'�(	�)                                           (12) 

 

The impulse response h0 (n) of the prototype filter H0 (z) is symmetric: h0 (n) = h0 (N � n), this 

also affects the polyphase components E0 (z) and E1 (z). The responses e0 (n) and e1 (n) are mirror 

image to each other for odd N due to the symmetry of h0 (n) [11]. The mirror image relation of e0 

(n) and e1 (n) further impact as additional saving in multiplication rate by a factor of two. Finally, 

the polyphase structure for a two-fold decimation/interpolation filter requires only about N/4 

MPUs. The mirror image relationship between e0 (n) and e1 (n) is expressed as 

 

                                                       e0 (n) =  e1 ((N�1)/2 � n) ,                                                     (13) 

  

so, E1(z) can be expressed in terms of as E0(z)  

 

                                             '�(	) = � 	��(���)/�'�(	��)                                                           (14) 

 

Now, the polyphase structure described by E0(z) & E1(z) with noble identities in [11] can be 

further simplified using Eq. (14) as depicted in figure 2. 

 

 

 
 

 

 

 

 

 

 

 

Figure 2. Two-channel QMF bank using one polyphase structure 

 

 

Using Eqs.(11), (12) and (14), frequency response of low-pass analysis filter is given by 

                               ������� = �� ����� ( 1)/2 ( 1)/2
2 2

0 0

0 0

( ) ( )
N N

n

n

j n j

n

e e en n eω ω

=

−
− −

=

+� �
         

                          (15) 

                                 ������� = � 2 2
( 1)/

0

0

2

( ) j N j n j
N

n

nene e eω ω ω
−

=

− −� �+� ��                                                  (16) 

The expression for H0 (e
j�

) in terms of amplitude function and linear phase component is given by 

 

                                   ������� = � ( 1)/2
/2

0

0

2 ( ) cos 2
2

N
j N

n

N
e e n n

ω ω
−

−

=

� �� �
−� 	
 �

� � �
�

                                    (17) 

     2 

     2 
x (n)    E0 (z) 

z � (N�1)/2× 

E0(z �1) 

 
         ��(�) 

   Analysis Section                                                                      Synthesis Section 

  z �1
    

  z �1
    

    E0 (z) 

 

z � (N�1)/2× 

E0(z
�1) 

 

     2   

   2   

� 1  � 1  
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                                                     = �� / 2 .j N
e

ω− �)��* . ,(-)�                                                             (18) 

 

where    ). = ���(0)���(1)�…… . ��(� − 1)/2�*  and  

               

,(2) = 2. �%34 50 − �
�6-, %34 52 −

�
�6-,…… .… �%34 5�� − �16-�*                                             (19) 

 

In this paper, we are considering the minimization of transition band error of prototype filter as 

well as pass-band and stop-band errors. This improves the accuracy of QMF bank that is required 

for real time applications. The objective function ‘K’ to be minimized for the QMF bank design is 

given as a weighted sum of four terms shown below:    

   

                                               K =�8�'9 + 8�':+�8;'< + 8=.RR                                               (20)                                  

 

where �1− �4  are real constants, and Ep , Es ,  Et , and RR are the measure of pass-band error, stop-

band residual energy, square error of the filter bank transfer function in transition band at �/2, and 

reconstruction ripple, respectively. Using Eq. (18) and (19), Ep , Es  and Et can be expressed as   

                                               '9 =
2

0

0

( )
1

1

p

j
H e d

ω

ω
ω

π
−� �� ��                                                        (21)     

                                                      =�)��*>�).                                                                               (22) 

 

 where  

                                        > = �
0

� �

�
1

1
1[ ][ ]

p

T
d

ω

ω− −� ( ) ( )c c                                                       (23) 

 

Es is the stop band energy of prototype filter between �s to & is given by    

                                             ': = �
2

0

1
( )

s

j
H e d

π

ω

ω
π

ω�                                                               (24)                           

                                                 =�� )��*?�).                                                                                  (25) 

where  

�������������������������������������������������? = � 1
][ ][ T

s

d
π

ω
π

ω� ( ) ( )� �c c                                                                        (26) 

 

Et is the square error of T0 (z) at quadrature frequency given by [19] 

 

                                       '< =   [��(& 2) −  
�

@�
 ��(0)]�                                                            (27) 

                                             = [)� 
* ,(A/B) −  

�

@�
 )� 

* ,(.)]�    ,                                                   (28)                                    

 

vector c(�) is evaluated at � = �/2 and � = 0 yields, vector c(�/2) and c(0) , respectively. 

RR is the reconstruction ripple and expressed as [21] 

 

                                 RR =  |10log|��(���FGH ���)|| − |10log|��(���FIJ ���)||                                 (29)  
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3.  DESIGN OF THE LOW-PASS PROTOTYPE FILTER BY PROPOSED 

ALGORITHM 

 
The QMF design problem is reduced to a low-pass analysis prototype filter design problem. The 

remaining three filters of the filter bank can be completely determined by low-pass prototype 

filter. In this work, the design problem is considered as an unconstrained optimization problem. 

The objective function K is minimized by optimizing the filter tap weights of prototype filter 

iteratively using inverse power method based on eigenvalue-eigenvector approach. Using Eqs. 

(22), (25), (28) and (29), the objective function K is rewritten in quadratic form  

 

�������������������������K�=�8=. LL + 8;.�)��* ,(A/B) −� �@� �)��
* ,(.)�� + 8�. )��*?�). + 8��. )��*>�). ����������������(30) 

                                        =�8=. LL + 8;�)��* ,(A/B) −� �@� �)��
* ,(.)��+����)��*M�).����

 

where matrix R is �
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������M =������8��? +�8��>����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������(31) 

 

K is further simplified as  

 

                               N =�8=. LL + 8;. �������(0)−@2. )��* ,(A/B)�� +����)��*O�).����
 

where matrix B is �
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������O = �8;. P + M�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������(32) 

 

The matrix B is a real, symmetric and positive definite matrix. The vector e0 which minimizes the 

objective function K is the eigenvector corresponding to the minimum eigenvalue ‘�’ of B, which 

is calculated using inverse power method. Inverse Power method [11] is an iterative method that 

provides an easy way for computation of eigenvector corresponding to minimum eigenvalue ‘�’, 

provided matrix B is nonsingular. The advantage of the inverse power method is that it converges 

very rapidly [26]. The detailed algorithm for designing prototype filter using proposed method is 

described chronologically: 
  
Step 1: Mention even filter length (N+1), band-edge frequencies: �s (stop-band edge frequency) 

and �p              (pass-band edge frequency), consider initial values of �1, �2, �3 and �4. 

Step 2: Begin with an initial guess xi for an eigenvector of the matrix B. 

Step 3: Set a counter, i = 0. 

Step 4: Constrain initial eigenvector xi to unit norm vector as e0(i), and compute the objective 

function Ki              at the vector e0(i), by using Eq. (30). 

Step 5: Obtain the inverse of matrix B defined by Eq (32). 

Step 6: Calculate new eigenvector as xi+1 = B
�1 

. e0(i) 

Step 7: Compute e0(i+1) from xi+1 and calculate the objective function Ki+1, at the design vector 

e0(i+1). If              Ki+1 � Ki, choose the optimum point as e0(i), stop the procedure and go to step (9). 

If Ki+1 � Ki, set  

             Ki =Ki+1, e0(i) = e0(i+1) and xi = xi+1. 

Step 8: Check the condition B
�1

. e0(i) = B
�1

. e0(i+1), if this condition satisfied, stop the procedure 

and go to              step (9). If not satisfied, set the new iteration number as i = i + 1, go to step (6). 
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Step 9: Compute the optimum solution as eigenvector e0 = e0(i), and minimum eigenvalue (‘�’ = 

1/ �0) of               matrix B is calculated from the relation: B
�1

. e0(i) = B
�1

. e0(i+1) =  �0. e0(i+1), and 

finally, calculate              the optimized prototype filter coefficients h0(n).  

 

4.  DESIGN EXAMPLES AND DISCUSSION 
 

Results of typical designs are presented in this section. The performance of proposed algorithm is 

measured in terms of parameters: Ep, Es, CPU time, Number of iterations (NOI), Stop-band edge 

attenuation (As) = − 20 log10 (H0(�s)) and RR =  |10log|��(���FGH ���)|| − |10log|��(���FIJ ���)||. 
Matlab computer programs, which implements the proposed method are tested on Intel Core 2 

Duo CPU @ 2.10 GHz, 1 GB RAM. The performance of the QMF bank designed by proposed 

method is compared with other available methods via Table 1 for N+1 = 24.  
 

Example 1: Prototype filter length (N+1) = 20, �s = 0.6�, �p = 0.4�, �1 = 0.38, �2 = 0.95, �3 = 0.1 

and �4 = 10
-4

, the optimized filter coefficients obtained are as follows: 

 

                                    h0(19) = h0(0) = - 0.0043,   h0(18) = h0(1) =  0.0141,   

                                    h0(17) = h0(2) =   0.0033,   h0(16) = h0(3) = - 0.0418,       

                                    h0(15) = h0(4) =   0.0095,   h0(14) = h0(5) =   0.0925,  

                                    h0(13) = h0(6) = - 0.0554,  h0(12) = h0(7) = - 0.1985,       

                                    h0(11) = h0(8) =   0.2362,   h0(10) = h0(9) =   0.9440. 

   

Normalized magnitude plots of analysis filters H0 (z) & H1 (z) and reconstruction ripple (in dB) of 

QMF bank are plotted in fig. 3a and fig.3b, respectively. The parameters obtained are Ep = 

9.71×10
-7

, Es = 7.15×10
-6

, As = 28.67 dB, CPU-time = 0.0032 sec., RR (in dB) = 0.039 and NOI = 

02. 

 

 
 

Fig. 3 (a) Magnitude response of analysis filters for N+1= 20. (b) Reconstruction ripple in dB. 

 

Example 2: Prototype filter length (N+1) = 24, �s = 0.6�, �p = 0.4�, �1 = 0.56, �2 = 0.95, �3 = 0.1 

and �4 = 10
-4

, the optimized filter coefficients obtained are as follows: 

 

                                    h0(23) = h0(0) = -0.002179,   h0(22) = h0(1) = 0.006418,   

                                    h0(21) = h0(2) =  0.003350,   h0(20) = h0(3) = -0.02097,       

                                    h0(19) = h0(4) = -0.00019,     h0(18) = h0(5) =  0.04854,  
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                                    h0(17) = h0(6) = -0.01557,     h0(16) = h0(7) = -0.097285,       

                                    h0(15) = h0(8) =  0.06268,     h0(14) = h0(9) =   0.19904, 

            h0(13) = h0(10) = 0.24299,   h0(12) = h0(11) = -0.94066,       

                   
 

 
                                                                                                  

Fig. 4 (a) Magnitude response of analysis filters for N+1= 24. (b) Reconstruction ripple in dB. 

Normalized magnitude plots of analysis filters H0 (z) & H1 (z) and reconstruction ripple (in dB) of QMF 

bank are plotted in fig.4a and fig.4b, respectively. The parameters obtained are Ep = 1.919×10
-7

, Es = 

9.707×10
-7

, As = 31.52 dB, CPU-time = 0.0037sec., RR (in dB) = 0.027 and NOI = 02. 

 
Table 1: Performance comparison of proposed inverse power method with other methods (�s = 0.6�, �p = 

               0.4�) 

 
 

From the comparison table, it is seen that the proposed polyphase filter approach with inverse 

power method required less computational efforts than the other existing methods. The proposed 

method shows improved performance in terms of number of iteration (NOI) required, stop-band 

edge attenuation (As) and stop band error (Es) than all other methods.  
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5  CONCLUSIONS 

 
A design method based on polyphase filters and inverse power method was proposed for 

designing of two-channel QMF bank. Due to the introduction of polyphase filters, the QMF bank 

became very computationally efficient. The advantage of the inverse power optimization method 

is that it converges very rapidly therefore, number of iterations (NOI) required very less. By 

simulation results, it was observed that proposed method seems as an efficient alternate approach 

for designing high-order QMF banks. This approach may be extended for design of M-channel 

QMF for further work. 
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