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Design of an adaptive controller for complex dynamic systems is a big challenge faced by the researchers. In this paper, we introduce
a novel concept of dynamic pole motion (DPM) for the design of an error-based adaptive controller (E-BAC). The purpose of this
novel design approach is to make the system response reasonably fast with no overshoot, where the system may be time varying and
nonlinear with only partially known dynamics. The E-BAC is implanted in a system as a nonlinear controller with two dominant
dynamic parameters: the dynamic position feedback and the dynamic velocity feedback. For illustrating the strength of this new
approach, in this paper we give an example of a flexible robot with nonlinear dynamics. In the design of this feedback adaptive
controller, parameters of the controller are designed as a function of the system error. The position feedback Kp(e,t) and the velocity
feedback Kv(e,t) are continuously varying and formulated as a function of the system error e(t). This approach for formulating the
adaptive controller yields a very fast response with no overshoot.

1. Introduction

Recently, there has been an increasing interest in the design
of feedback controllers: from the design of conventional
approaches to the design of intelligent-based approaches.
One such approach is on the design of adaptive controller
for controlling a complex dynamic system containing non-
linearity like flexible joints. During the past, there has been
a common practice to approximate a nonlinear system by a
linear system in limited operating ranges and then make use
of the conventional controller design approaches. However,
the nonlinearity of a system is inevitable since many
systems in practice involve nonlinear relationships among
the variables such as electromechanical systems, hydraulic
systems, and pneumatic systems [1]. For decades, various
schemes of adaptive control have been proposed, and adap-
tive control for nonlinear systems with complex dynamics
has received great attention. However, not many of these
approaches are suitable for complex nonlinear systems [2–
4]. Up to the present, inverse optimal controller [5–7] using

the Lyapunov function has been considered as one of the
most effective way for designing controllers for nonlinear
systems.

In this paper, we introduce a new notion of con-
troller called error-based adaptive controller (E-BAC) with a
novel conception based upon dynamic pole motion (DPM)
approach. In general, for the design of E-BAC, we consider
two dominant parameters, the position feedback Kp(e, t) and
velocity feedback Kv(e, t), and a proper design of these two
feedback parameters will yield a faster and stable response of
the system with no overshoot. The feedback parameters are
adapted by the system error e(t) and its states x(t).

The rest of the paper is organized as follows. In Section 2,
we introduce some important observations of a step response
for a typical linear second-order system. In Section 3, we
describe the notion of dynamic pole motion (DPM) and the
design of error-based adaptive controller (E-BAC) in detail.
A flexible robotic joint control is presented in Section 4 with
E-BAC and DPM as a case study. Section 5 concludes this
paper with a discussion and future works.
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2. Some Important Observations in the Step
Response for a Second-Order Linear System

In our study, we consider a typical open-loop second-order
plant Gp(s) defined as

Gp(s) = 1

s2 + as + b
, (1a)
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Equations (1a), (1b), and (1c) represent a typical second-
order system with position (K1) and velocity (K2) feedbacks.

As shown in (1b), with position and velocity feedback
controller, the transfer function of the closed-loop system is
given by

Y(s)

R(s)
= C

s2 + (a + K2)s + (b + K1)
, (2)

where C = b + K1. This transfer function can be compared
with a general linear second-order system model as

(b + K1)

s2 + (a + K2)s + (b + K1)
= ω2

n

s2 + 2ζωns + ω2
n

. (3)

Thus, we see that

ω2
n = (b + K1) � Kp, ωn: system natural frequency,

2ζωn = (a + K2) � Kv, ζ : system damping ratio,

(4)

where the parameters Kp and Kv are defined as position feed-
back and velocity feedback, respectively.

Generally the dynamic behavior of a second-order system
can be described in terms of two dominant parameters,
the natural frequency (ωn) and the damping ratio (ζ). The
transient response of a typical control system often exhibits
damped oscillations before reaching the steady state. In
specifying the transient response characteristics of a second-
order control system to a unit-step input, the following
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Figure 1: Definition of the various parameters in the complex σ- jω
plane: natural frequency: ωn, damping ratio: ζ , damped natural

frequency: ωd = ωn

√

(1− ζ2) , and θ = cos−1ζ .

transient parameters in the design of a controller are usually
considered [1, 8, 9]:

rise time: Tr =
π − θ

ωd
= π − θ

ωn

√

1− ζ2
, θ = cos−1(ζ),

settling time: Ts =
4

ζωn
(2% criterion),

maximum overshoot: Mp = e−ζπ/
√

1−ζ2 × 100 (%),

bandwidth: ωBW = ωn

√

(1− 2ζ2) +
√

4ζ4 − 4ζ2 + 2.

(5)

It is important to note that in the step response of the second-
order system, the dominant transient parameters Tr , Ts, and
Mp are dependent upon the natural frequency (ωn) and the
damping ratio (ζ) of the system. Thus, the positions of the
poles of the system are determined by the values of ωn and ζ
as shown in Figure 1.

As shown in Figure 2, it is also to be noted that, in typical
transient responses an underdamped system (ζ < 1) yields a
faster rise time (Tr) at the expense of a large overshoot (Mp)
and a large settling time (Ts), whereas an overdamped system
(ζ > 1) yields no overshoot, that is, Mp = 0, but it yields large
Tr and Ts.

3. Development of an Error-Based Adaptive
Controller (E-BAC): Some Design Criteria

For the design of an appropriate feedback controller, let us
consider the system error e(t) as an important signal in our
feedback design. In our design methodology developed in
this paper, we will make the parameters of the feedback
controller as functions of the error. From the transient
responses shown in Figure 2(b), we can emphasize that for
large errors a small ζ and a large ωn, (i.e., an underdamped
dynamics with large bandwidth) will yield a very fast
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Figure 2: System responses to a unit-step input with two different
locations of poles (i) underdamped case (ζ < 1) and (ii) over-
damped case (ζ > 1). The desired system response curve initially
follows the underdamped curve for large errors and then settles
down to a steady-state value (following the overdamped curve) for
decreasing errors.

response with a very small rise time Tr . On the other hand,
for small errors a large ζ and a small ωn (i.e., an overdamped
system with a small bandwidth) will inhibit any overshoot.
Since ζ and ωn are dependent upon the parameters of
position feedback (Kp) and velocity feedback (Kv), if we
define Kp(e, t) and Kv(e, t) as functions of the system error,
e(t) = r(t) − y(t), then we can achieve a very fast dynamic
response with no overshoot.

From these qualitative observations on the transient
response of the step response, we derive the following design
criteria for the E-BAC [10].

Design Criteria for the Error-Based Adaptive Controller

(E-BAC)

(i) If the system error is large, then keep the damping
ratio ζ very small and natural frequency ωn very
large. A large ωn and small ζ will result into a large
bandwidth of the system, thereby a shorter rise time
and fast response.

(ii) If the system error is small, then keep the damping
ratio ζ large and natural frequency ωn small. This will
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Error-based adaptive controller

Figure 3: The proposed error-based adaptive controller (E-BAC):
x2(t) = ẋ1(t). Kp(e, t) and Kv(e, t) are defined in (8) and (12).

result into a small bandwidth of the system. For small
errors, a large damping ratio in the system will avoid
any overshoot in the system response.

Design of Parameters for the E-BAC

(i) Position feedback Kp controls the natural frequency
ωn, (Kp = ω2

n), and, therefore, the bandwidth of the
system.

(ii) Velocity feedback Kv controls the damping ratio ζ ,
(Kv = 2ζωn).

Thus, we design the adaptive controller parameters which,
in this case, are the position feedback Kp(e, t) and velocity
feedback Kv(e, t) as functions of the error, e(t). This pro-
cedure for designing the adaptive controller will introduce
a dynamic motion in the poles of the system keeping
the system response at an acceptable level. Here thus, we
introduce a new notion of the movable poles and give it the
name Dynamic Pole Motion (DPM). The proposed novel E-
BAC is illustrated in Figure 3.

This novel design philosophy for adaptive controller is
translated into the following linguistic algorithm:

As error decreases from a large value to a
small value, Kp(e, t) (=ω2

n(t)) is continuously
decreased from a very large value to a small value,
and simultaneously, Kv(e, t) (=2ζ(t)ωn(t)) is in-
creased from a small value to a large value.

This linguistic control algorithm causes a larger bandwidth
with a smaller damping ratio for large errors and smaller
bandwidth with larger damping ratio for small errors. Hence,
as discussed above and shown in Figures 2 and 3, during the
operation of the system a desired transient response from the
systems can be achieved by varying ωn and ζ as functions
of error. As given in (4), ωn and ζ are dependent upon the
position feedback Kp and velocity feedback Kv, respectively.
Some typical response curves for a second-order closed-loop
system with varying Kp and Kv are shown in Figure 4.

3.1. Design of E-BAC Parameters Kp(e, t) and Kv(e, t). Using
the design criteria for the adaptive controller stated above,
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Figure 4: System response curves of a second-order system varying
Kp (position feedback) and Kv (velocity feedback).

one can develop many types of functions for Kp(e, t) and
Kv(e, t), which satisfy the design criteria with respect to the
system error and time. Here, we give one such function for
Kp(e, t) and Kv(e, t) by defining the system error as

e(t) = r(t)− y(t), (6)

where the system output y(t) is given by

y(t) = Kp(e, t)x1(t). (7)

Thus, we define the position feedback Kp(e, t) and the veloc-
ity feedback Kv(e, t) gains as functions of e(t) as

Kp(e, t) = Kp f

(

1 + αe2(t)
)

,

Kv(e, t) = Kv f exp
[

−βe2(t)
]

,
(8)

where α and β are some gain constants which decide the
slope of the functions and affect the system response (see
Figure 5), Kp f and Kv f are the final steady-state values of

Table 1: Various possible functions and their graphic experessions
for feedback gains Kp(e, t) and Kv(e, t).

Kp(e, t)

Kp f (1 + α|e|)

Kp(e, t)

Kp f

e(t)

Kp f (1 + αe2)

Kp(e, t)

Kp f

e(t)

Kv(e, t)

Kv f
1

1 + β|e|

Kv(e, t)

Kv f

e(t)

Kv f
1

1 + βe2

Kv(e, t)

Kv f

e(t)

Kv f exp(−βe2)

Kv(e, t)

Kv f

e(t)

Many other functions can be derived for Kp(e, t) and Kv(e, t), for example,
using the hyperbolic tangent and cosine functions.

Kp(e, t) and Kv(e, t), and exp(·) is the exponential function.
The other possible functions for Kp(e, t) and Kv(e, t) are
given in Table 1.

3.2. Design of the Error-Based Adaptive Controller (E-BAC).
The error-based adaptive control signal u(e, t) is derived as a
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(a) Changes in slope for Kp(e, t) = Kp f (1 +
αe2) for various values of α: the direction
of arrows indicates the increasing value of α
from negative to positive values

Kv(e, t)

Kv f

e(t)

β

(b) Changes in slope for Kv(e, t) =
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Figure 5: The change of the slopes of Kp(e, t) and Kv(e, t) curves for
various values of α and β.
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Figure 6: A schematic diagram of a single link manipulator with a
flexible joint.

function of the error e(t) and time t using the following two
steps:

position feedback control: up(e, t) = Kp(e, t)x1(t),

velocity feedback control: uv(e, t) = Kv(e, t)x2(t),
(9)

where Kp(e, t) and Kv(e, t) are defined in (8) and (12), res-
pectively. Thus, the total feedback signal u(e, t) is given by

u(e, t) = up(e, t) + uv(e, t), (10)

and the control signal v(t) (see Figure 3) is defined as

v(t) = r(t)− u(e, t). (11)

4. A Case Study: Control of
a Flexible Robot Arm Using E-BAC

In this section, we present the design and simulation studies
of the proposed error-based adaptive controller (E-BAC) for
a flexible joint of a robot arm.

4.1. Modeling of a Single Link Flexible Robot. As shown in
Figure 6, a single link manipulator with flexible joint consists
of an actuator connected through a gear train (harmonic
drive) with the ratio n to a rigid link with length l, mass m,
and moment of inertia ml2/3.

Let us symbolize the rotor inertia of the actuator JM ,
the viscous damping of the actuator BM , the relative angular
displacement of the joint actuator θM , a torque to the motor
shaft τM , and the relative displacement of the end effector
(load) θL. The joint flexibility is modeled by a linear torsional
spring with stiffness k. The dynamics of the manipulator
with a flexible joint can be represented by Euler-Lagrange
equation defining τM = r as [11, 12]

ml2

3
θ̈L + BLθ̇L +

mgl

2
sin θL + k

(

θL +
θM
n

)

= 0,

JM θ̈M + BM θ̇M +
k

n

(

θL +
θM
n

)

= r.

(12)

Equation (12) can be rewritten using the state variables xi
(i = 1, 2, 3, 4) defining as

x1(t) = θM , x2(t) = θ̇M , x3(t) = θL, x4(t) = θ̇L.
(13)

Thus, we have

ẋ1(t)= x2(t),

ẋ2(t)= −a1x1(t)− a2x2(t)− a3x3(t) + br(t),

ẋ3(t) = x4,

ẋ4(t) = −a4x1(t)− a5x3(t)− a6 sin(x3(t))− a7x4(t),

(14)

where

b = 1

JM
, a1 =

k

JMn2
, a2 =

BM

JM
, a3 =

k

JMn
,

a4 =
3k

mnl2
, a5 =

3k

ml2
, a6 =

3g

2l
, a7 =

3BL

ml2
.

(15)

The block diagram of the system is shown in Figure 7.
This system is a nonlinear and time varying system since
the sine function in the feedback loop of the system causes
nonlinearity in the system. The output of the system is
dependent on the amplitude of the control signal, and if we
use the conventional design tools, this nonlinearity causes
some problems in designing an effective controller. In this
paper, we present a novel approach to the design of a
controller for this nonlinear timevarying system by using the
error-based adaptive controller (E-BAC) and dynamic pole
motion (DPM).
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Figure 9: Schematic diagram of the flexible joint of a robot arm
with a compensator (Gc) and E-BAC.

4.2. Design of Adaptive Controller for the Systems. In this case
study, for simplicity we set the value of the parameters ai (i ∈
[1, 7]) and b equal to 1. Thus, (14) can be rewritten as

ẋ1(t) = x2(t),

ẋ2(t) = −x1(t)− x2(t)− x3(t) + r(t),

ẋ3(t) = x4(t),

ẋ4(t) = −x1(t)−
{

1− sin(x3(t))

x3(t)

}

x3(t)− x4(t).

(16)

Now we design an error-based adaptive controller for the
single link robotic manipulator with a flexible joint. We

at t =
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Figure 10: The system response with the E-BAC to a step reference
input. Rise time Tr = 0.14 seconds; settling time Ts = 0.36 seconds.

first formulate the dynamic characteristic equation of the
system. In this study for the nonlinear and timevarying robot
arm, a new notion of timevarying complex variable g(t) =
σ(t) + jω(t) (g-plane) is applied instead of the time invariant
complex variable s = σ + jω (s-plane). The g-plane has
the same properties of s-plane with an additional property
of timevarying. The dynamic characteristic equation of
the single-link manipulator with a flexible joint shown in
Figure 7 and described in (16) is given by

g4(t)+2g3(t)+
(

3 + ψ(t)
)

g2(t)+
(

2 + ψ(t)
)

g(t)+2+ψ(t) = 0,
(17)

where ψ(t) = sin(x3(t))/x3(t).
The dynamic roots of this characteristic equation of the

transfer function can be calculated as

g1,2(t) = 1

2

{

−1−
√

−2ψ(t)− 3± 2
√

ψ2(t)− 4

}

,

g3,4(t) = 1

2

{

−1 +

√

−2ψ(t)− 3± 2
√

ψ2(t)− 4

}

.

(18)

The nonlinear function, ψ(t) = sin(x3(t))/x3(t), covers the
range −0.22 < ψ(t) < 1 for all values of x3(t) over [−∞,∞].
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Thus, the roots of the dynamic characteristic equation are
moving in the g-plane (g(t) = σ(t) + jω(t)).

The moving roots of the dynamic characteristic equation
are named as dynamic poles. (Note that in linear time-
invariant dynamic systems since the parameters of the system
remain constant, the poles and zeros of the system are
time invariant.) The plot of the four dynamic poles of this
flexible robot arm without a controller is shown in Figure 8.
From this figure, it is clear that for some values of x3 two
dynamic poles move towards the right-hand side (RHS) of
the g(t) = σ(t)+ jω(t) plane causing instability in the system.
The design criteria of our proposed error-based adaptive
controller (E-BAC) for a system are as below.

Design Criteria of E-BAC for the Flexible Joint of a Robot Arm.
For designing an E-BAC, we should consider the following
important points.

(1) For introducing the stability in the robot arm system,
we should move the dynamic poles on the left-hand
side (LHS) on g(t) = σ(t) + jω(t) plane for all values
of x3(t).

(2) Realization of DPM using E-BAC.

(a) For achieving the fast response time, the system
must have a large bandwidth for large errors
and small bandwidth for small errors. Thus, the
position feedback Kp, the bandwidth parame-
ter, must be a function of the system error e(t).

(b) For no overshoot in the system response,
damping should be adjusted continuously as
a function of the system error. The position
feedback Kp(e, t) and the velocity feedback

Kv(e, t) are designed such that they yield a small
damping ratio with large bandwidth for large
errors and a large damping ratio with small
bandwidth for small errors.

For achieving a good controller for this fourth-order flexible
robot arm, we must first add a compensator to relocate two
dynamic poles far away from the origin in the left-half of the
g-plane. In this case study, we relocate g1(t) and g2(t) far away
from the jω(t)-axis. These two relocated poles far away in the
left-side of the g-plane will induce very small time constants,
thereby, will have negligible effect in the system dynamic
response. The other two poles that are closer to the imaginary
axis are dominant poles and will cause an influence in the
system dynamic response. Then, an E-BAC is added in the
feedback loop with a position feedback Kp(e, t) and a velocity
feedback Kv(e, t) defined in the previous sections. In this
study, the compensator (Gc) used introduces two zeros in the
forward loop with the position of zeros being g(t) = −102±
j1.18. This compensator provides a control over the plant
poles [g1(t) and g2(t)] keeping them far away from the jω(t)-
axis. The feedback controller, E-BAC, provides a control over
the two plant poles [g3(t) and g4(t)]. The diagram of the
system with a compensator and an E-BAC is illustrated in
Figure 9.

The control input signal v(t) is derived using (11) as

v(t) = r(t)− u(t), (19)

where

u(t) =
{

up(e, t) + uv(e, t)
}

,

up(e, t) = Kp f

[

1 + αe2(t)
]

x3(t),

uv(e, t) = exp
[

−βe2(t)
]

x4(t).

(20)
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Figure 12: The variation of the bandwidth of the controlled system. (a) 3D sketch of the variation of the bandwidth with respect to the
frequency at each time interval, (b) the bandwidth at t = 0 (sec), (c) the bandwidth at t = 0.05 (sec), and (d) the bandwidth at t = 0.5 (sec).

x3(t) = x and x4(t) = ẋ are the states of the system, Kp f

and Kv f are the steady-state values of feedbacks Kp(e, t) and
Kv(e, t), respectively, α and β are some gain constants for
Kp(e, t) andKv(e, t), respectively, r(t) is the reference input of
the system, and e(t) = [y(t)− r(t)] = (r(t)−Kp(e, t)x3(t)) is
the system error.

As described in the design criteria, the objective of the
embedded E-BAC is to design the control u(t) to make the
system output y(t) follow the reference input signal r(t) as
closely as possible with fast rise timeTrand small settling
timeTswith no overshootMp. Thus, we continuously change
the dynamics of the close-loop system: initially for large
errors, we make large bandwidth and very small damping
ratio ζ(t), and as error decreases, the damping ratio ζ(t)
is continuously increased and the system bandwidth is
decreased.

In the design of the E-BAC, we have arbitrarily chosen
the gains α = 2, β = 1, Kp f = 70, and Kv f = 5.5. With these
values, the controlled system responded as an underdamped
system for large error at t = 0, which continuously moved
towards an overdamped system with decreasing error.

4.3. Simulation Results. Using the gains α = 2, β = 1, Kp f =
70, and Kv f = 5.5, the initial positions of the dynamic
poles of the system are placed at g1,2(0) = −100.87± j1.18
(relocated to far from jω(t)-axis by the compensator), and
g3,4(0) = −10.24 ± j45.1. During the operation of the
system, as error is decreased to zero, the final positions
of the dynamic poles are moved to −100.5639, −99.2695,
−37.9557, and −19.2109 on the g-plane. The zeros are
located at around −100 near the relocated poles by the
compensator, and the zeros attract the relocated poles not
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Figure 13: The variation of the damping ratio ζ(t) with respect to
the system error as a function of time. The value of ζ(t) changes
from a low value, ζ(t) = 0.221, to a high value, ζ(t) = 1.

to affect the dominant poles. The results of the simulation
study of this case study are shown in Figure 10. Further, the
maps of the dynamic poles motion (DPM) are illustrated in
Figure 11. The output response initially follows the trajectory
with a large bandwidth and a small damping ratio, which
settles down with a large damping and a smaller bandwidth.

It is clear from the figure that the dynamic motion of
poles of the system is decided by the value of the system
error. The initial positions of the dominant dynamic poles
are placed to generate a low damping ratio ζ(t) and large
bandwidth of the system. Thus, initially the system is under-
damped. Thereafter, the dynamic poles are optimized and
shifted as the system error decreases reducing the bandwidth
and increasing ζ(t). The final positions of the dominant
dynamic poles make the system an overdamped system.
Thus, the bandwidth becomes small, but ζ(t) becomes high.
The variation of the bandwidth at each time interval is shown
in Figure 12, and the variation of the damping ratio ζ(t) is
shown with respect to the system error at each time interval
in Figure 13.

5. Discussion and Conclusions

In this paper, we have proposed the design of an error-based
adaptive controller (E-BAC) for controlling the dynamic
response of a nonlinear system. The proposed E-BAC is the
controller with continuously changing feedback parameters
as functions of the system error: initially for large errors an
underdamped system with large bandwidth which is forced
to approach to become an overdamped system with small
bandwidth for small errors. In the beginning, for large errors
the system is underdamped, thus, it makes the system faster
with a wider bandwidth. As the error decreases, the value of
the feedback gains Kp decreases and Kv increases. The design
of this adaptive controller is conceptually error-based and
can be used to handle the complexity of systems. In order
to support the novel controller, we introduce the notion of
dynamic pole motion (DPM).

As a case study, we present a flexible joint of robot
arm, which is a nonlinear dynamic system, and this system
is controlled by the proposed E-BAC. Without a proper

controller, the system is unstable due to the nonlinearity
in the feedback loop of the system. However, as shown
in Figure 10, with E-BAC the trajectory response of the
system is very fast, Tr = 0.36 seconds, without any overshoot
(Mp = 0%). Also, as shown in Figures 12 and 13, in this step
response, the initial bandwidth of the system is very high
(≈70 Hz) which settles down to about 18 Hz in the steady-
state situation. The bandwidth of the system changes from
a large value to a small value. Similarly but contrarily, the
damping ratio ζ(t) varies from 0.221 (t = 0) to 1 (t = 0.5).
From the simulation studies, it is shown that the proposed
E-BAC is able to control nonlinear time varying systems.
Conventionally, a proper design of the controller guarantees
that the changing pole position is always positioned in
the left-hand side (LHS) on g-plane. In this novel design
approach, the dynamic poles are always located in LHS on
g-plane, thus the stability of the controlled system is assured.
Further work is under way to extend this E-BAC design
philosophy for higher-order partially known and unknown
complex dynamic systems.
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