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Abstract: The incidence of ocular surface disease (OSD) is increasing, with a trend towards younger
ages. However, it is difficult for drugs to reach the deep layers of the cornea due to ocular surface
barriers, and bioavailability is less than 5%. In this study, DSPE-PEG2000 was modified with
L-valine (L-Val), and an HS15/DSPE-PEG2000-L-Val nanomicelle delivery system containing baicalin
(BC) (BC@HS15/DSPE-PEG2000-L-Val) was constructed using thin-film hydration, with a high
encapsulation rate, small particle size and no irritation to the ocular surface. Retention experiments
on the ocular surface of rabbits and an in vivo corneal permeation test showed that, compared with
the control, nanomicelles not only prolonged retention time but also enhanced the ability to deliver
drugs to the deep layers of the cornea. The results of a protein inhibition and protein expression assay
showed that nanomicelles could increase uptake in human corneal epithelial cells (HCEC) through
energy-dependent endocytosis mediated by clathrin, caveolin and the carrier pathway mediated by
PepT1 by inhibiting the overexpression of claudin-1 and ZO-1 and suppressing the expression of
PepT1-induced by drug stimulation. These results indicate that BC@HS15/DSPE-PEG2000-L-Val is
suitable for drug delivery to the deep layers of the ocular surface, providing a potential approach for
the development of ocular drug delivery systems.

Keywords: L-valine; nanomicelles; baicalin; PepT1; endocytosis proteins; tight junction proteins;
ocular drug delivery system

1. Introduction

Due to poor personal habits relating to the use of the eyes, as well as environmental
stimulation, the incidence of ocular surface disease (OSD) has been increasing, with a trend
towards a younger age group [1,2]. In particular, dry eye disease (DED) has become the
most frequent condition observed in ophthalmic clinical practice [3]. DED occurs on the
ocular surface. In the course of disease development, T cells migrate to the ocular surface,
secreting inflammation markers, particularly IFN-γ and IL-17. These cytokines promote the
release of various proinflammatory mediators (including cytokines, chemokines and matrix
metalloproteinases) from the corneal epithelium, increasing the access of inflammatory
mediators into the stroma, resulting in pain and more severe injury [4]. Baicalin (BC) has
been shown to significantly inhibit T cell differentiation and to downregulate the expression
of a host of proinflammatory mediators and cytokines, showing clear anti-inflammatory
activity [5,6]. Therefore, the effective delivery of drugs to the deep layers of the cornea is
key to the anti-inflammatory effect.

Eye drop administration is characterized by high patient compliance, convenience and
few side effects, and eye drops account for 90% of ophthalmic preparations [7]. However,
there are multiple barriers to the use of the ocular surface for effective drug delivery, includ-
ing short retention time due to tears [8] and difficult drug delivery into the eye because of
tight cell junctions and active transport of drugs into the corneal epithelium [9,10], resulting
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in less than 5% bioavailability [11]. Ideal ocular drug delivery systems (ODDS) should
be able to (1) increase drug retention time on the ocular surface; (2) reduce degradation
caused by enzymes in tears; (3) promote permeation through the cornea; and (4) deliver
drugs to specific tissues and minimize nonproductive absorption to increase bioavailabil-
ity [12]. Nanomicelles are considered one of the most promising strategies for topically
applied ophthalmic formulations and can increase the aqueous solubility of hydrophobic
agents, prolong retention time on the ocular surface and demonstrate better permeation
and absorption into tissue. They can also protect the drug from degradation and allow for
sustained release at the site of action, guaranteeing a constant therapeutic concentration in
the tissue [13].

Kolliphor® HS15, a nonionic surfactant consisting of 70% polyglycol mono- and di-
esters of 12-hydroxystearic acid and 30% free polyethylene glycol [14], has been used to
develop ODDS due to its excellent corneal penetration properties and ocular surface reten-
tion [15]. DSPE-MPEG2000, which is widely used in nanomicelles, contains hydrophilic
PEG and hydrophobic DSPE, with a low critical micelle concentration (CMC), good drug-
loading stability and a variety of active groups for targeted modification [16–18]. Carriers
play an important role in overcoming ocular surface barriers and intraocular pharmacoki-
netics. Among them, PepT1, a peptide carrier, is important for drug absorption, distribution
and clearance in the cornea [19] and can transport dipeptides, tripeptides and α-amino
acid esters [20,21]. L-valine (L-Val) is an α-amino acid, and with its dipeptide and ester, it
is often used for PepT1 targeting modification in prodrugs or carriers [22–25].

In order to deliver drugs to the deep layers of the cornea to improve their therapeutic
effect, we synthesized DSPE-PEG2000-L-Val using an esterification reaction and constructed
HS15/DSPE-PEG2000-L-Val nanomicelles containing BC. The results demonstrated that
with this novel delivery mechanism, the nanomicelles increased drug uptake in the corneal
epithelium through the comprehensive interaction of endocytosis proteins, tight junction
proteins and PepT1. In addition, through ocular surface retention and irritation evaluation,
we proved the feasibility of BC@HS15/DSPE-PEG2000-L-Val as an ODDS, providing a
basis for future research into its efficacy.

2. Materials and Methods
2.1. Cell Culture and Animals

Human corneal epithelial cells (HCECs) were obtained from FDCC (FDCC-HYN1135,
Fudan IBS Cell Center, Shanghai, China) and grown in Dulbecco’s Modified Eagle Medium
(DMEM) containing 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (all from
Corning Incorporated, Corning, NY, USA) at 37 ◦C with 5% CO2. The cells were passaged
once every two days.

New Zealand rabbits (2.0–2.2 kg) were obtained from Beijing Jinmuyang (Beijing,
China). All the animal studies were performed in accordance with the ARVO Statement for
the Use of Animals in Ophthalmic and Vision Research and approved by the Institutional
Animal Care and Use Committee of Beijing University of Chinese Medicine.

2.2. Synthesis of DSPE-PEG2000-L-Val

A total of 1 g of DSPE-PEG2000-NH2 (AVT, Shanghai, China) was dissolved into
10 mL of trichloromethane to obtain Solution I. A total of 125.7 mg of Fmoc-L-valine
(Shanghai Yuanye Bio-Technology Co., Ltd., Shanghai, China) was dissolved into 2 mL
of trichloromethane, with N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide (EDC) and
4-dimethylaminopyridine (DMAP) added and stirred at 0 ◦C for 1 h to obtain Solution
II. Solution II was slowly dripped into Solution I and reacted at 40 ◦C for 5 h. The crude
product DSPE-PEG2000-L-valine-Fmoc was obtained after removing trichloromethane
by rotary evaporation under a vacuum. The crude product was dissolved in 5 mL of
dichloromethane, with 1 mL of piperidine added to react at room temperature for 30 min;
then it was washed twice with water and dried with anhydrous sodium sulfate. After fil-
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tration, vacuum distillation and ice ether precipitation, DSPE-PEG2000-L-Val was obtained
by vacuum drying at 35 ◦C.

2.3. Characterizations of DSPE-PEG2000-L-Val

Infrared spectroscopy (IR) and 1H-nuclear magnetic resonance (1H-NMR) were used
to analyze the molecular structure to determine whether the products had been success-
fully synthesized [26]. The structure of DSPE-PEG2000-L-Val was determined by infrared
(IR) using a Fourier-transform infrared spectrometer (FTIR, Nicolet iS5, Thermo Fisher,
Waltham, MA, USA) and by 1H-NMR using a nuclear magnetic resonance spectrometer
(ARX-300, Varian, Palo Alto, CA, USA) in CDCl3.

2.4. Preparation of BC@HS15/DSPE-PEG2000-L-Val Nanomicelles

A mixture of 6 mg of BC (Aladdin, Shanghai, China), 175 mg of HS15 (BASF, Lud-
wigshafen, Germany) and 75 mg of DSPE-PEG2000-L-Val was dissolved in methanol and
evaporated under vacuum conditions at 37 ◦C for 10 min. The film was hydrated with
5.4 mL phosphate buffer solution (PBS, pH 5.0) and stirred at 37 ◦C for 2 h. The mixture was
centrifuged (Sorvall ST 8R centrifuge, Thermo Fisher, Waltham, MA, USA) at 12,000 rpm at
4 ◦C for 10 min and filtered through a 0.22 µm membrane to remove undissolved drug.

2.5. Characterization of Nanomicelles
2.5.1. Critical Micelle Concentration (CMC)

CMC generally reflects the stability of micelles after solution dilution. HS15 (35 mg)
and DSPE-PEG2000-L-Val (15 mg) were dissolved in 25 mL of water and diluted to yield
concentrations in the range of 0.06–2000 µg/mL. Each polymer solution was transferred to a
vial containing pyrene (Macklin, Shanghai, China). The emission spectra were determined
by a fluorescence spectrophotometer (F-4500, Hitachi, Tokyo, Japan) at 335 nm excitation
wavelength. The scanning range was 350–500 nm, the scanning speed was 240 nm/min,
the excitation and emission slits were 5 nm and 2.5 nm, respectively, the voltage of the
photomultiplier tube was 700 V, and the response time was 5 s. The intensities of I373nm
and I384nm vibronic bands were evaluated, and the ratios of these intensities were plotted
against the logarithm of the concentration of each sample. The CMC was taken as the
intersection of two regression lines calculated from the linear portions of the graphs [27].

2.5.2. Drug Loading (DL) and Encapsulation Efficiency (EE)

BC@HS15/DSPE-PEG2000-L-Val (0.1 mL) was dissolved in 10 mL of methanol and
placed in an ultrasonic bath for 10 min to completely break up the micelles. The solu-
tion was filtered through a 0.22 µm membrane and subjected to high-performance liquid
chromatography (HPLC, 1260, Agilent, Santa Clara, CA, USA) using an Agilent ZORBAX
SB-C18 column (4.6 × 250 mm, 5 µm). The mobile phase consisted of a mixture of acetoni-
trile and 0.1% phosphoric acid solution (30:70, v/v). The flow rate was 1.0 mL/min, and
the detection wavelength was 280 nm. The DL and EE were calculated as shown below in
Equations (1) and (2):

DL (%) =
weight of drug in micelles

weight of feeding carriers and drug
× 100% (1)

EE (%) =
weight of drug in micelles

weight of feeding drug
× 100% (2)

2.5.3. Morphology, Particle Size and Zeta Potential

To evaluate the physical characteristics of nanomicelles, the morphology of BC@HS15/
DSPE-PEG2000-L-Val was determined using a transmission electron microscope (TEM,
JEM-1400Flash, JEOL, Tokyo, Japan) after five times dilution with water. The size distri-
bution and zeta potential were evaluated with Zetasizer Nano-ZS (Malvern Company,
Malvern, UK).
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2.5.4. Infrared Spectroscopy (IR), Thermogravimetric Analysis (TGA) and X-ray
Diffraction (XRD)

IR, TGA and XRD are used to characterize the encapsulation of drugs in carriers.
When the IR characteristic peak of a drug moves, weakens or disappears, the TGA melting
point peak disappears and the XRD diffraction peak is covered, the drug is considered to
not exist in the form of crystals but to be encapsulated in nanomicelles or in an amorphous
form [28,29]. The structures were evaluated using an FTIR. TGA was carried out with a
thermogravimetric analyzer (Mettler Toledo, Zurich, Switzerland) under a nitrogen flow
from 40 ◦C to 500 ◦C. XRD was recorded on an X-ray diffractometer (Rigaku Ultima IV,
Rigaku, Tokyo, Japan) over the 2θ range from 5◦ to 60◦ at 40 kV and 40 mA.

2.6. Formulation Stability

The stability of nanomicelles is critical to protecting the entrapped hydrophobic
component in the core [28]. BC@HS15/DSPE-PEG2000-L-Val was made and stored in a
liquid state at 4 ◦C. Its appearance was observed on days 0, 1, 2, 3, 5, 10, 15 and 30. At
each time point, the BC concentration in the solution and particle size of the nanomicelles
were determined.

2.7. In Vitro Drug Release Study

The release behavior of BC@HS15/DSPE-PEG2000-L-Val nanomicelles in PBS (pH 6.0)
was investigated using a dynamic dialysis method at 34 ◦C. Drug-loaded micellar solution
and BC solution (containing 1 mg of BC) were transferred to dialysis bags (8–14 KDa). An
amount of 1 mL of sample solution was withdrawn at 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8,
10 and 12 h, and an equal volume of fresh PBS was added. The release concentrations were
determined by HPLC, as described in Section 2.5.2. The cumulative release percentage of
BC was calculated, and the data were plotted in various kinetic models.

2.8. Irritation Studies on Rabbit Ocular Surface

Four rabbits were assessed with a slit lamp microscope (BQ900, Haag Streit, Bern,
Switzerland) and determined to have no eye disease present. An amount of 40 µL of
BC@HS15/DSPE-PEG2000-L-Val was administered to the conjunctival sac of the left eyes,
and 40 µL of physiological saline was administered to the conjunctival sac of the right
eyes as a control. The medication was delivered four times per day, with 4 h between
treatments for 7 days. A Draize test was carried out with a slit lamp microscope to observe
the rabbit’s ocular surface each day and at 1, 2, 4, 24, 48 and 72 h after the last treatment
administration to record the ocular conditions, as shown in Tables S1 and S2 [30]. Corneal
staining with fluorescein sodium (FLS) was observed under the cobalt blue light of a slit
lamp microscope after each Draize test. The cornea, conjunctiva and iris were observed
after hematoxylin–eosin (HE) staining and scanned with a Panoramic Desk (3DHistech
Panoramic digital slide scanner, 3DHistech, Budapest, Hungary).

2.9. Retention Study on Rabbit Ocular Surface

The FLS was dissolved in a micellar solution and PBS (pH 5.0) and then infused into
the conjunctival sac of two eyes. Each group was photographed after 1, 3, 5, 10, 15 and
20 min under the cobalt blue light of a slit lamp microscope.

2.10. Permeation Study in Rabbit Cornea

HS15/DSPE-PEG2000-L-Val nanomicelles were labeled with coumarin 6 (C6, Shanghai
Yuanye Bio-Technology Co., Ltd., Shanghai, China) to observe drug distribution behavior,
and C6 was loaded into the nanomicelles using the same procedure as for BC@HS15/DSPE-
PEG2000-L-Val. An amount of 40 µL of C6@HS15/DSPE-PEG2000-L-Val was administered
in the conjunctival sac of the left eyes and 40 µL of free C6 in the conjunctival sac of the
right eyes as a control. At fixed time intervals (0, 10, 40 and 90 min), the rabbits were
euthanized via air embolism, and their eyes were immediately removed. The corneas were
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isolated and washed in physiological saline and then sliced vertically along the sagittal
plane using a cryostat microtome (NX50, Thermo Fisher, Waltham, MA, USA). The corneal
slices were observed and recorded via a laser scanning confocal microscope (Eclipse Ti,
Nikon, Tokyo, Japan).

2.11. In Vitro Cytotoxicity Assay

A CCK-8 assay was used to evaluate the toxicity of BC and BC@HS15/DSPE-PEG2000-
L-Val on HCECs. The cells were inoculated into 96-well plates (1 × 104 cells/well) and
cultured for 24 h at 37 ◦C. BC with different concentrations (1, 2, 4, 6 and 8 µg/mL), and
nanomicelles with different diluted multiples (500, 400, 300, 200 and 100) were added.
After 2 h, CCK-8 was treated for another 1 h. Absorbance was measured at 450 nm with a
microplate analyzer (Epoch2, BioTek, VT, USA).

2.12. Cellular Uptake Studies

HCECs were inoculated into 6-well plates (2.5 × 105 cells/well) and cultured for 24 h.
The cells were treated with C6 solution and C6@HS15/DSPE-PEG2000-L-Val (0.1 µg/mL
C6) for 10, 30, 60 and 120 min, followed by washing twice with PBS. The HCECs were then
photographed through a fluorescence inverted microscope (Eclipse Ts2R, Nikon, Tokyo,
Japan) at 470 nm excitation wavelength. The mean intracellular fluorescence intensity
was measured with a flow cytometer (BD FACSCanto II, BD, Franklin Lakes, NJ, USA) at
488 nm excitation wavelength.

2.13. Uptake Mechanisms Studies
2.13.1. Endocytosis Proteins

Endocytosis is an important method for cell uptake of nanoparticles [31] and is usu-
ally mediated by clathrin and caveolin and is energy dependent. For protein inhibition,
HCECs were inoculated into 6-well plates (2.5 × 105 cells/well) and cultured for 24 h. The
cells were preincubated with chlorpromazine hydrochloride (6 µg/mL), indomethacin
(36 µg/mL) and amilorid HCl dihydrate (3 µg/mL) for 30 min at 37 ◦C and then treated
with C6@HS15/DSPE-PEG2000-L-Val (0.1 µg/mL C6, containing the same concentration
of inhibitors) for 2 h at 37 ◦C. For energy inhibition, the cells were preincubated at 4 ◦C
and then treated with C6@HS15/DSPE-PEG2000-L-Val (0.1 µg/mL C6) at 4 ◦C. The mean
intracellular fluorescence intensity was measured with a flow cytometer.

2.13.2. Tight Junction Proteins

Western blotting (WB) was used to detect the effect of nanomicelles on tight junction
proteins. HCECs were inoculated into 6-well plates (2.5 × 105 cells/well) and cultured for
24 h. The cells were treated with BC and BC@HS15/DSPE-PEG2000-L-Val (4 µg/mL BC)
for 2 h. Then, the treated cells were washed twice with cold PBS and lysed with RIPA buffer
for 30 min. The lysate was centrifuged at 4 ◦C for 5 min (12,000 rpm), heated at 100 ◦C for
5 min, separated by 10% SDS-PAGE and transferred to a PVDF membrane with a TBST
buffer containing 5% skimmed milk. The membrane was sealed for 1 h and incubated
overnight at 4 ◦C with a primary antibody (claudin-1 (1:500), ZO-1 (1:500) or GAPDH
(1:1000)). Then, it was incubated with horseradish peroxidase-conjugated secondary an-
tibodies (1:8000) at room temperature for 2 h. An enhanced chemiluminescence (ECL)
reagent was used to visualize the bands.

2.13.3. PepT1

Glycylsarcosine (Gly-Sar) was used as a PepT1 inhibitor to confirm the targeting effect
of nanomicelles according to the experimental procedure described in Section 2.13.1. WB
was used to detect the effect of nanomicelles on PepT1 in accordance with the procedure
described in Section 2.13.2.
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2.14. Statistical Methods

All experiments were performed at least in triplicate, and the data were expressed as
mean ± SD. Statistical analysis was performed by one-way ANOVA; * p < 0.05, ** p < 0.01
and *** p < 0.001 were considered to be statistically significant.

3. Results
3.1. Synthesis and Characterization of DSPE-PEG2000-L-Val

The synthesis of DSPE-PEG2000-L-Val is presented in Figure 1. The IR spectra of Fmoc-
L-Val, DSPE-PEG2000-NH2 and DSPE-PEG2000-L-Val are presented in Figure 2. Overall,
the spectrum of DSPE-PEG2000-L-Val was similar to that of DSPE-PEG2000-NH2; however,
the wide absorption peak at 3600–3000 cm−1 was obviously enhanced, which may have
been influenced by the N-H stretching vibration introduced by L-Val. The 1H-NMR spectra
of Fmoc-L-Val, DSPE-PEG2000-NH2, DSPE-PEG2000-L-Val-Fmoc and DSPE-PEG2000-L-
Val are presented in Figure 3. DSPE-PEG2000-L-Val-Fmoc had a characteristic proton peak
of PEG at 3.6 ppm from DSPE-PEG2000-NH2 [18], a proton peak of -NHCO- at 8.2 ppm
and proton peaks of benzene rings at 7.0–8.0 ppm from Fmoc, indicating that Fmoc-L-
Val and DSPE-PEG2000-NH2 were linked. The signals attributed to Fmoc disappeared
in DSPE-PEG2000-L-Val, indicating that Fmoc was removed. The target product was
successfully synthesized.
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3.2. Characterization and Stability of BC@HS15/DSPE-PEG2000-L-Val

The normal volume of tears in the conjunctival sac of humans is about 7 µL, and the
average volume of eye drops is 40 µL [27]. The intensity ratio of HS15/DSPE-PEG2000-
L-Val is shown in Figure 4, and the CMC value was 114.82 µg/mL, indicating that the
nanomicelles had good stability in the aqueous media.
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As shown in Figure 5, the nanomicelles exhibited almost spherical and uniform shape
with dark solid spheres and were distributed homogeneously. The mean particle size was
19.45 ± 0.50 nm with a zeta potential value of 1.44 ± 1.61 mV, and the drug loading and
encapsulation efficiency of nanomicelles were 2.23 ± 0.04% and 99.97 ± 2.19%, respectively.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 8 of 18 
 

 

Figure 3. 1H-NMR spectra of (a) Fmoc-L-Val, (b) DSPE-PEG2000-NH2, (c) DSPE-PEG2000-L-Val-
Fmoc and (d) DSPE-PEG2000-L-Val. 

3.2. Characterization and Stability of BC@HS15/DSPE-PEG2000-L-Val 
The normal volume of tears in the conjunctival sac of humans is about 7 µL, and the 

average volume of eye drops is 40 µL [27]. The intensity ratio of HS15/DSPE-PEG2000-L-
Val is shown in Figure 4, and the CMC value was 114.82 µg/mL, indicating that the na-
nomicelles had good stability in the aqueous media. 

As shown in Figure 5, the nanomicelles exhibited almost spherical and uniform shape 
with dark solid spheres and were distributed homogeneously. The mean particle size was 
19.45 ± 0.50 nm with a zeta potential value of 1.44 ± 1.61 mV, and the drug loading and 
encapsulation efficiency of nanomicelles were 2.23 ± 0.04% and 99.97 ± 2.19%, respectively. 

The IR spectrum of drug-loaded nanomicelles was largely consistent with that of 
blank nanomicelles, while some characteristic peaks of BC were covered (Figure 6a). As 
shown in the TGA pattern (Figure 6b), the weight of BC began to change significantly at 
about 200 °C, while that of nanomicelles began to change at about 350 °C. As shown in the 
XRD pattern (Figure 6c), the typical diffraction peaks of BC were obvious in the range of 
5–30°, which disappeared in the nanomicelles. These data demonstrate that the crystallin-
ity of BC was good, while it was in an amorphous state in BC@HS15/DSPE-PEG2000-L-
Val, indicating that the drug was encapsulated in nanomicelles. 

The nanomicelle solution was light yellow and transparent, and there were no obvi-
ous changes in appearance, drug concentration or particle size when stored at 4 °C for 30 
days (Figure 7), indicating that the nanomicelles could be stored at 4 °C for at least 30 days 
without deterioration. 

 
Figure 4. CMC of mixed micellar materials. (The red lines represents regression lines). 

 
Figure 5. (a) Morphology, (b) particle size and (c) zeta potential of BC@HS15/DSPE-PEG2000-L-Val. Figure 5. (a) Morphology, (b) particle size and (c) zeta potential of BC@HS15/DSPE-PEG2000-L-Val.

The IR spectrum of drug-loaded nanomicelles was largely consistent with that of blank
nanomicelles, while some characteristic peaks of BC were covered (Figure 6a). As shown in
the TGA pattern (Figure 6b), the weight of BC began to change significantly at about 200 ◦C,
while that of nanomicelles began to change at about 350 ◦C. As shown in the XRD pattern
(Figure 6c), the typical diffraction peaks of BC were obvious in the range of 5–30◦, which
disappeared in the nanomicelles. These data demonstrate that the crystallinity of BC was
good, while it was in an amorphous state in BC@HS15/DSPE-PEG2000-L-Val, indicating
that the drug was encapsulated in nanomicelles.
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The nanomicelle solution was light yellow and transparent, and there were no obvious
changes in appearance, drug concentration or particle size when stored at 4 ◦C for 30 days
(Figure 7), indicating that the nanomicelles could be stored at 4 ◦C for at least 30 days
without deterioration.
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3.3. In Vitro Drug Release Study

The in vitro release of BC from different formulations was investigated. As shown
in Figure 8, the cumulative release of BC from solution showed a decreasing trend after
reaching the maximum at 3 h, while that of BC from nanomicelles remained unchanged
from 4 h to 12 h, indicating that BC was unstable in PBS (pH 6.0), while it was continuously
released from nanomicelles to maintain drug concentration. The data in Table 1 also
demonstrated that the solution and nanomicelles had similar release trends and were
most consistent with the first order model. According to the Ritger–Peppas model, the
release behavior of BC in solution was in accordance with Fick diffusion (K < 0.45), while in
nanomicelles, it was a combination of diffusion and skeleton dissolution (0.45 < K < 0.89),
which explained why BC released more slowly in the nanomicelles.
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Table 1. Mathematical model fitting results.

Model Equations Solution Nanomicelles

zero order Mt/M∞ = 0.3204t + 0.443
(R2 = 0.7779)

Mt/M∞ = 0.2262t + 0.4447
(R2 = 0.7449)

first order ln (1 − Mt/M∞) = −2.0149t − 0.0019
(R2 = 0.9966)

ln (1 − Mt/M∞) = −1.7096t − 0.1548
(R2 = 0.9849)

Higuchi Mt/M∞ = 0.6643t1/2 + 0.131
(R2 = 0.8842)

Mt/M∞ = 0.5546t1/2 + 0.1458
(R2 = 0.8735)

Ritger–Peppas ln (Mt/M∞) = 0.401lnt − 0.2667
(R2 = 0.8552)

ln (Mt/M∞) = 0.4809lnt − 0.3631
(R2 = 0.9055)

3.4. Irritation Studies on Rabbit Ocular Surface

A representative result of the Draize test is shown in Figure 9A. The cornea, conjunctiva
and iris were clear, with no congestion or edema, and an occasional small amount of
secretion was observed in the corner of the eyes in both the physiological saline group and
the BC@HS15/DSPE-PEG2000-L-Val group. The eye irritation response score at various
time points was ≤1, indicating no irritation. The representative result of the FLS staining
test is shown in Figure 9B. There were less than five punctate stains observed in the cornea
in the two groups, indicating that the nanomicelles caused no damage to the cornea after
multiple administrations. The representative result of HE staining is shown in Figure 9C.
Compared with the physiological saline group, the cornea, conjunctiva and iris were intact,
with clear boundaries between the layers, and there was no obvious inflammatory-cell
infiltration or hyperplasia and no edema or histopathological changes in the three tissues.
Thus, BC@HS15/DSPE-PEG2000-L-Val did not produce eye irritation, making it suitable
for ocular applications.
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PEG2000-L-Val.

3.5. Retention Study on Rabbit Ocular Surface

Due to the blink reflex and tear dilution, FLS gradually decreased until it disappeared
completely through nasolacrimal duct drainage. As shown in Figure 10, the disappearance
time of the fluorescent layer in the FLS solution group was about 5–10 min, and in the
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FLS nanomicelles this was extended to 15–20 min, indicating that the nanomicelles could
prolong the retention time on the ocular surface effectively.
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Figure 10. In vivo fluorescence imaging of rabbit ocular surfaces at various time points post-dropping
of (a) FLS solution and (b) FLS nanomicelles.

3.6. Permeation Study in Rabbit Cornea

Confocal laser scanning microscopy was carried out to observe the capacity of dif-
ferent preparations labeled by C6 on corneal permeation. As shown in Figure 11, there
was no obvious green fluorescence observed in the cornea at any time point after the
free C6 was administered, indicating that it was difficult for C6 to penetrate the cornea.
However, bright green fluorescence was observed in the corneal epithelial layer at 0 min
after C6@HS15/DSPE-PEG2000-L-Val was administered. As time progressed, the corneal
stroma layer also appeared fluorescent, and the penetration depth gradually increased. The
results demonstrated that C6 could rapidly penetrate the corneal epithelium and gradual
penetrate into the stroma with the help of nanomicelles, sustaining the hypothesis that
nanomicelles can effectively enhance the permeability of BC into the cornea.
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Figure 11. Confocal laser scanning microscopy of rabbit corneal tissues at various time points post-
dropping of (a) free C6 and (b) C6@HS15/DSPE-PEG2000-L-Val. (The white arrow represents where
C6 penetrated into the cornea).

3.7. In Vitro Cytotoxicity Assay

To evaluate the safety of BC@HS15/DSPE-PEG2000-L-Val, a CCK-8 experiment was
employed. The results revealed that compared with the control group, there was no
significant difference in the survival rate of the HCECs after 2 h post administration of
BC (1–8 µg/mL) and BC@HS15/DSPE-PEG2000-L-Val (100–500 times dilution) (p > 0.05,
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Figure 12), indicating that neither BC nor the nanomicelles in this concentration range had
cytotoxicity to the HCECs within 2 h.
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Figure 12. The survival rate of HCECs after 2 h incubation with different concentrations of (a) BC
and (b) different diluted multiples of BC@HS15/DSPE-PEG2000-L-Val (N; the control group, n = 3).

3.8. Cellular Uptake Studies

Fluorescence inverted microscope observations showed very little green fluorescence
on the HCECs within 60 min after C6 solution administration. Weak fluorescence appeared
at 120 min, and the fluorescence could be observed 10 min after C6@HS15/DSPE-PEG2000-
L-Val administration. Intensity increased significantly with extension of incubation time,
presenting an obvious time-dependence (Figure 13A). Flow cytometry determination results
showed that cellular uptake of the C6 solution was low within 60 min and increased at
120 min but was still at a low level. In the C6@HS15/DSPE-PEG2000-L-Val group, the
fluorescence intensity increased significantly at each time point in a time-dependent manner
and reached the complete uptake state at 60 min (Figure 13B). These results showed that
the HCECs had difficulty taking up free C6, but it could be enhanced in C6@HS15/DSPE-
PEG2000-L-Val, indicating that the nanomicelles were rapidly and time-dependently taken
up by the HCECs.
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Figure 13. Cellular uptake of C6 by HCECs: (A) fluorescence inverted microscope observations of
cell uptake characteristics and (B) flow cytometry determination of cell uptake characteristics; (a) C6

solution and (b) C6@HS15/DSPE-PEG2000-L-Val (n = 3).

3.9. Uptake Mechanisms Studies

Flow cytometry was carried out to determine the effects of different inhibition condi-
tions on the cellular uptake of C6 by HCECs. As shown in Figure 14, the relative cellular
uptake percentage of the control group was 100.00 ± 1.86%, chlorpromazine hydrochloride
(clathrin inhibitor) was 80.08 ± 6.30%, indomethacin (caveolin inhibitor) was 85.60 ± 2.94%,
amilorid HCl dihydrate (macropinocytosis inhibitor) was 92.76 ± 0.25%, at 4 ◦C (energy
inhibition), it was 84.85 ± 3.09% and with Gly-Sar (PepT1 inhibitor), it was 73.83 ± 2.36%.
Chlorpromazine hydrochloride, indomethacin, 4 ◦C condition and Gly-Sar significantly
inhibited the uptake of the nanomicelles (p < 0.05), indicating that the cellular uptake of the
drug in the nanomicelles was related to clathrin- and caveolin-mediated, energy-dependent
endocytosis and PepT1-mediated active transport.
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* p < 0.05, ** p < 0.01 and *** p < 0.001 significantly different compared with control).

WB was carried out to determine the changes to claudin-1, ZO-1 and PepT1 protein
expression levels in HCECs cultured with different preparations. As shown in Figure 15,
after 4 µg/mL BC administration, the expression levels of claudin-1 and ZO-1 in HCECs
were significantly increased and that of PepT1 was significantly decreased (p < 0.01), while
these trends were inhibited after BC@HS15/DSPE-PEG2000-L-Val intervention (p < 0.01),
indicating that BC upregulated the expression of tight junction proteins and downregulated
PepT1 in HCECs, making the penetration and cellular uptake of drugs more difficult, while
nanomicelles alleviated the adverse effects of BC, which promoted drug delivery to the
deep layers of the cornea.
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4. Discussion

The antioxidant and anti-inflammatory effects of BC, a flavonoid, have been demon-
strated in various disease models, including neurodegenerative, liver and kidney diseases,
diabetes, cardiovascular diseases, rheumatoid arthritis and asthma [32]. In addition, BC
has benefits in the treatment of ocular diseases, such as ocular inflammation, cataracts,
glaucoma and diabetic retinopathy [5,6]. However, BC is a BCS class IV compound with
poor solubility and permeability (Papp = 0.37 × 10−6 cm/s), which directly affects the disso-
lution rate and transmembrane transportation rate [33], resulting in low bioavailability [34].
Furthermore, BC is sensitive to pH [35]. An in vitro drug release study demonstrated that
the concentration of BC in PBS (pH 6.0) decreased gradually. In our study, the solubility
and stability of BC was improved through nanomicelle encapsulation.

Size and surface charge of nanomicelles are important factors in the design of ODDS.
Particle size affects cellular uptake processes, such as endocytosis, which may be the
main mechanism of drug uptake by corneal and conjunctiva cells. The smaller the size,
the higher the permeability [36,37]. Surface charge affects micelle interaction with cells.
Mucins on the ocular surface are negatively charged at the physiological pH and, therefore,
have a stronger affinity for positively charged ligands. Moreover, hydroxyl, carboxyl and
sulfhydryl groups on the polysaccharide branch chain of the mucins provide abundant
surface area for hydrogen bond formation. Therefore, polar hydrophilic molecules such as
polymers can enhance ocular surface adhesion. Moreover, adhesion can also be achieved
through physical chain entanglement between polymers and mucin fibers, prolonging
ocular surface retention time [38,39]. In this study, HS15 demonstrated good performance
for corneal retention [15]. DSPE-PEG2000-L-Val is a polymer material with a positive
charge, and the average particle size of BC@HS15/DSPE-PEG2000-L-Val is less than 20 nm,
which enhanced the ocular surface adhesion, prolonged the retention time and increased
the corneal permeation of drugs.

Endocytosis is mostly demonstrated by the addition of inhibitors. Common clathrin
inhibitors include chlorpromazine and sucrose; common caveolin inhibitors include in-
domethacin, nystatin, methyl-β-cyclodextrin and genistein; common macropinocytosis
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pathway inhibitors include amiloride, cytochalasin B and colchicine; and common forms of
ATP energy suppression include sodium azide, 2-deoxyglucose and low temperature [40–42].
In this study, HCECs were co-incubated with chlorpromazine, indomethacin, amiloride, at
4 ◦C and with nanomicelles, separately, proving that the cellular uptake mechanism was
energy-dependent, clathrin- and caveolin-mediated endocytosis.

At present, the main corneal tight junction proteins studied are ZO proteins (ZO-1,
ZO-2 and ZO-3), occludins and claudins (claudins 1, 2, 3, 4, 7, 9, 14 and 15). In surface
cells, ZO proteins and claudins are mainly expressed. ZO-1 is the marker protein of
tight junctions in the corneal epithelium, and claudin-1 is the main protein expressed in
claudins [43–45]. The effects of ophthalmic preparations on tight junction proteins can
be determined by PCR, WB or immunofluorescence staining [45–47]. In this study, the
expression changes of ZO-1 and claudin-1 were detected with WB, proving that the cellular
uptake mechanism of nanomicelles inhibits the overexpression of ZO-1 and claudin-1
induced by drug stimulation, which is a novel and noteworthy discovery.

PepT1 is the targeted receptor of L-Val, which was verified mostly by adding competi-
tive inhibitor Gly-Sar [25,48,49]. In this study, HCECs were co-incubated with Gly-Sar and
nanomicelles, and changes to PepT1 expression were detected with WB, proving that the
cellular uptake mechanism was PepT1-mediated active transport and that it improved the
inhibition of PepT1 induced by drug stimulation.

The study results showed that BC induced the upregulation of tight junction protein
expression in corneal epithelial cells. This phenomenon occurred due to the stimulation
of the ocular surface by 15 mM glucose, which may be a compensatory cellular response
to negative stress [45]. However, few studies have reported stimulation by therapeutic
agents, which not only reflected the advantage of using nanomicelles to deliver drugs but
also provided a new idea for studying the ocular delivery obstacles of ophthalmic drugs in
the future.

5. Conclusions

In this research, we constructed a novel ODDS, BC@HS15/DSPE-PEG2000-L-Val
nanomicelles, to enhance drug delivery into the deepest layer of cornea. The nanomicelles
effectively encapsulated BC and exhibited good drug release performance, prolonged ocular
surface retention time and had no stimulation after constantly repeated administration.
Furthermore, the constructed nanomicelles increased corneal permeation and cellular
uptake of the drug by affecting endocytosis proteins (clathrin and caveolin), tight junction
proteins (claudin-1 and ZO-1) and the carrier protein PepT1. In conclusion, an ODDS based
on L-Val modified nanomicelles meeting the requirements of ophthalmic preparations
was designed and constructed, providing a beneficial exploration for promoting drug
enrichment in the corneal deep layers through a multiple interaction approach.
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