
DESIGN OF AN OFFLINE HANDWRITING RECOGNITION

SYSTEM TESTED ON THE BANGLA AND KOREAN SCRIPTS

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering

Boise State University

August 2020

by
Nishatul Majid

© 2020

Nishatul Majid

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the dissertation submitted by

Nishatul Majid

Dissertation Title: Design of an Offline Handwriting Recognition System Tested on
the Bangla and Korean Scripts

Date of Final Oral Examination: 27 April 2020

The following individuals read and discussed the dissertation submitted by stu-
dent Nishatul Majid, and they evaluated the presentation and response to ques-
tions during the final oral examination. They found that the student passed the
final oral examination.

Dr. Elisa H. Barney Smith, PhD Chair, Supervisory Committee

Dr. Jennifer Smith, PhD Member, Supervisory Committee

Dr. Nadar Rafla, PhD Member, Supervisory Committee

Dr. Laurence Likforman-Sulem, PhD Member (External), Supervisory Committee

The final reading approval of the thesis was granted by Elisa H. Barney, Ph.D., Chair of
the Supervisory Committee. The thesis was approved by the Graduate College.

ABSTRACT

This dissertation presents a flexible and robust offline handwriting recogni-

tion system which is tested on the Bangla and Korean scripts. Offline handwrit-

ing recognition is one of the most challenging and yet to be solved problems in

machine learning. While a few popular scripts (like Latin) have received a lot

of attention, many other widely used scripts (like Bangla) have seen very little

progress. Features such as connectedness and vowels structured as diacritics make

it a challenging script to recognize. A simple and robust design for offline recogni-

tion is presented which not only works reliably, but also can be used for almost

any alphabetic writing system. The framework has been rigorously tested for

Bangla and demonstrated how it can be transformed to apply to other scripts

through experiments on the Korean script whose two-dimensional arrangement

of characters makes it a challenge to recognize.

The base of this design is a character spotting network which detects the lo-

cation of different script elements (such as characters, diacritics) from an unseg-

mented word image. A transcript is formed from the detected classes based on

their corresponding location information. This is the first reported lexicon-free

offline recognition system for Bangla and achieves a Character Recognition Ac-

curacy (CRA) of 94.8%. This is also one of the most flexible architectures ever

presented. Recognition of Korean was achieved with a 91.2% CRA. Also, a power-

ful technique of autonomous tagging was developed which can drastically reduce

iv

the effort of preparing a dataset for any script. The combination of the character

spotting method and the autonomous tagging brings the entire offline recognition

problem very close to a singular solution.

Additionally, a database named the Boise State Bangla Handwriting Dataset

was developed. This is one of the richest offline datasets currently available for

Bangla and this has been made publicly accessible to accelerate the research progress.

Many other tools were developed and experiments were conducted to more rigor-

ously validate this framework by evaluating the method against external datasets

(CMATERdb 1.1.1, Indic Word Dataset and REID2019: Early Indian Printed Doc-

uments). Offline handwriting recognition is an extremely promising technology

and the outcome of this research moves the field significantly ahead.

v

ACKNOWLEDGMENTS

I’d like to express my sincerest gratitude to my PhD advisor, Dr. Elisa H. Barney

Smith for all her support and encouragement during my doctoral program. I’d

also like to thank my committee members Dr. Nader Rafla and Dr. Jennifer Anne

Smith as well as the department of Electrical and Computer Engineering, Boise

State University for all their cooperation and guidance. I’d like to specially thank

all the volunteers that took selfless part in my Boise State Handwriting Dataset

project. Also like to thank the Center for Microprocessor Application for Training

Education and Research (CMATER) research laboratory at Jadavpur University,

Kolkata, India, Indian Statistical Institute (ISI), Kolkata, India, the BanglaLekha-

Isolated project funded by the ICT division, Bangladesh for their handwritten

Bangla isolated basic character datasets and Pradeep Kumar for their Handwritten

Bangla Word Dataset. Another special thanks to Steven Kim, Department of Com-

puter Science, Boise State University, Boise, Idaho, USA, for his participation and

contribution with the Korean handwriting recognition project.

Lastly, I’d like to acknowledge the high-performance computing support of the

R2 Compute Cluster provided by Boise State University's Research Computing

Department. Without this support, most of the research work completed would

not be possible to achieve.

vi

TABLE OF CONTENTS

ABSTRACT . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . x

1 Introduction . 1

1.1 What is Offline Handwriting Recognition . 1

1.2 Why Offline Handwriting Recognition . 2

1.3 How Offline Recognition is Done . 6

1.3.1 Segmentation-Based Recognition . 7

1.3.2 Segmentation-Free Recognition . 8

1.3.3 Traditional Machine Learning . 9

1.3.4 Deep Learning . 11

vii

1.4 Introduction to the Bangla Writing System . 14

1.5 Difficulties with Bangla Script for Offline Recognition 19

1.6 Scripts with Similar Properties . 21

1.7 Introduction to the Korean Script . 27

1.8 Outline of this Dissertation . 29

2 Literature Review . 31

2.1 Overview: It’s an Unsolved Problem . 31

2.2 Segmentation-Based Approaches . 32

2.3 Segmentation-Free Approaches . 44

2.4 Available Datasets . 51

3 Design of the Offline Handwriting Recognizer . 53

3.1 Overview . 53

3.2 The Proposed Offline Recognition System . 56

3.2.1 Basic Idea of the Design . 56

3.2.2 Implementation for the Bangla Script [85] 58

3.2.3 Implementation for the Korean Script . 62

viii

3.2.4 Implementation for any Alphabetic Script 63

3.3 Underlying Tools and Technology . 64

3.3.1 The Object Detection Network . 65

3.3.2 Transfer Learning from VGG16 and Associated Parameters . . . 66

3.3.3 Data Augmentation . 69

3.3.4 Compilation of Detected Results into a Transcription 70

3.3.5 Spell Checking . 76

3.3.6 Performance Metrics . 77

3.4 The Boise State Bangla Handwriting Dataset . 78

3.4.1 Overview . 78

3.4.2 Description of the Dataset Content . 79

3.4.3 The Data Collection Process . 83

3.4.4 Ground Truth Tag and Other Metadata . 83

3.4.5 Comparison with Other Public Datasets 85

3.4.6 Tools Developed for Preparing the Dataset 86

3.4.7 Benchmarking the Boise State Dataset with an Isolated Char-

acter Recognizer . 92

ix

3.5 External Datasets used for the Experiments . 98

3.5.1 External Bangla Datasets used for Isolated Character Recog-

nition . 98

3.5.2 External Bangla Datasets used for Transcription Evaluation . . . 98

3.5.3 Korean Dataset used for Syllable Recognition 102

3.6 Autonomous Tagging . 103

3.6.1 Background and Motivation . 103

3.6.2 Effect of Tag Variance . 105

3.6.3 Basic Idea of Autonomous Tagging Process 107

3.6.4 Implementation for Bangla . 108

3.6.5 Implementation for Korean . 111

4 Results and Analysis . 114

4.1 Benchmarking Isolated Character Set in the Boise State Bangla Hand-

writing Dataset with Other Publicly Available Datasets 115

4.2 Offline Recognition Performance for Bangla with the Proposed Char-

acter Spotting Framework . 120

4.2.1 Character Spotting Recognition with the Boise State Dataset . . 120

x

4.2.2 Character Spotting Recognition on other Bangla Datasets 127

4.3 Performance Comparison between Camera-Acquired and Scanned

Images . 129

4.4 Autonomous Tagging Performance on Bangla and Korean 136

4.4.1 Autonomous Tagging for Bangla . 136

4.4.2 Autonomous Tagging for Korean . 138

4.4.3 Significance of the Autonomous Tagging Experiment 139

5 Conclusion and Future Directions . 141

A List of High Frequency Korean Syllables obtained from the 1000 Most

Common Korean Words . 148

REFERENCES . 149

xi

LIST OF TABLES

1.1 Scripts with close resemblance to the Bangla writing system 22

2.1 Existing public Bangla Handwriting Datasets (Numbers presented

here are close estimates) . 52

3.1 The Boise State Bangla Handwriting dataset compared with other

publicly available datasets introduced in Table 2.1 86

3.2 Detection Performance with Tag Width Variation 107

4.1 Isolated basic character recognition accuracy obtained from differ-

ent training and testing sets . 117

4.2 Some notable research on isolated Bangla handwritten basic charac-

ter recognition compared with the presented approach 119

4.3 List of C-Net and D-Net Class Distribution when only the Essay

Scripts from the Boise State dataset were used . 121

4.4 Recognition Performance Scores obtained from Experiment 1 and 2 . . 122

4.5 Recognition Performance with other Bangla datasets 128

xii

4.6 Detection Results from Different Acquisition Sources for the Char-

acter/Diacritic Spotting Networks . 132

4.7 Recognition Results from Different Acquisition Sources for Hand-

written Digits . 133

4.8 Recognition Performance with Autonomous and Manual Tagging

for Bangla . 137

4.9 Korean Recognition Results on PE92 Dataset . 139

xiii

LIST OF FIGURES

1.1 Online vs. Offline Handwriting Recognition [1]. 2

1.2 Demonstration of some applications of Offline Handwriting Recog-

nition [2], [3], [4]. 4

1.3 Basic ideas of Segmentation-based and Segmentation-free offline hand-

writing recognition. Traditional segmentation-free approaches at-

tempt to find a match of a given word as a whole, whereas segmentation-

based approaches attempt to segment the characters from a word

image and find matches for each character. 7

1.4 Different stages of conventional machine learning for handwriting

recognition. 10

1.5 Typical architecture of an Artificial Neural Network [6]. 12

1.6 The Vowels in the Bangla Script. 14

1.7 The Consonants in the Bangla Script. 15

xiv

1.8 (a) Bangla diacritic use compared with the Latin script. (b) Dia-

critical forms of vowels with the consonant ’Ma’. The ‘ô’ sound is

inherent to the solo consonant in the top left. Other vowel sounds

are formed with the other diacritics attached to it. 16

1.9 (a) Bangla consonant conjuncts compared with the Latin script. (b)

A few consonant conjuncts in the Bangla script along with their

component solo constants. 17

1.10 Bangla numerals, 0 to 9 from left to right. 17

1.11 (a) A handwritten Bangla sentence, and (b) a word showing the

matra, the base and the three zones. 19

1.12 Handwriting samples of Bangla, Devanagari, Gurmukhi and As-

samese scripts. 22

1.13 Map of Asia, with colors representing the similarity of the scripts to

Bangla. 27

1.14 The alphabet (top) and handwriting sample (bottom) of the Kore-

an/Hangul script. 29

2.1 Demonstration of large bottom reservoir usually found in the join-

ing section of two characters in a Bangla handwritten word [8] 34

2.2 Word spotting overview of work by Rothacker et al. with Bangla

printed text [54]. 46

xv

2.3 Detection of keypoints from a Bangla handwritten word using dif-

ferent algorithms [59]. 47

3.1 Basic idea of the presented offline character spotting recognition

method: (a) shows an object detection network that attempts to

find character matches in the word, and (b) shows the transcription

formed using all the detected character class information. 57

3.2 C-Net and D-Net work on the same image, but are trained to detect

different symbol classes. 59

3.3 Detected symbols from C-Net and D-Net are merged to form a tran-

scription. 60

3.4 Class distribution for C-Net and D-Net training. Both networks are

trained using the Boise State Bangla Handwriting dataset. The black

colored characters are from the essay scripts and the blue colored

characters are from the conjunct word documents as described in

Section 3.4. 61

3.5 List of detection classes of the Hangul script trained with K-Net. 62

3.6 The Korean offline recognition process. This example shows a sylla-

ble made of 4 Jamos. Instead of recognizing the whole syllable, the

K-Net only spots the Jamos. Later, using the detected classes and

their corresponding locations, the compound syllable is constructed. . 63

xvi

3.7 Hierarchical building block of the offline Handwriting Recognition

Framework. Green highlights the sections which are script inde-

pendent and orange highlights where the script specific details are

implemented. 65

3.8 Layer graph of C-Net and D-Net, transformation of VGG-16 to a

Faster R-CNN . 68

3.9 Data augmentation: (a) original, (b), (c) augmentation with only

X-stretch of 150% and 50%, (d), (e) with only X-Shear of -15°and

15°and (f), (g) with only Rotation of -5°and 5°. 70

3.10 Schematic of post processing for Bangla: (a) Original detections,

(b) Eliminating detections below threshold, (c) Prioritizing detection

overlaps, (d) Allowing empty spaces for possible detection miss, (e)

Fixing order of characters and diacritics, (f) Spell correction. 72

3.11 Sample of the detection overlap issue. Green boxes are the proper

detection and the all other colored boxex are detected look-alike

sub-characters, which are removed as errors . 74

3.12 (a) Machine printed version, (b) a camera-acquired sample and (c) a

scanned sample of the isolated component document from the Boise

State Bangla Handwriting dataset. 80

3.13 (a) Machine printed version, (b) English translation, (c) a camera-

acquired sample, and (d) a scanned sample of the essay script from

the Boise State Bangla Handwriting dataset. 81

xvii

3.14 (a) Machine printed version, (b) English Translation, and (c) a sam-

ple of the conjunct word document from the Boise State Bangla Hand-

writing dataset. 82

3.15 Samples of ground truth tag metadata of the (a) isolated component

document, (b) essay script, and (c) conjunct word document from

the Boise State Bangla Handwriting dataset. The left images show

the tag overlay on the documents and the right images show the

recorded metadata. 84

3.16 Demographic distribution of the writers for the Boise State Bangla

Handwriting dataset. From left to right it shows the quantity and

distribution of gender, right/left handedness, age and profession

distribution of the participants. 85

3.17 Working interfaces for the ground truth tagging application of (a)

the essay script and (b) the isolated components document from the

Boise State dataset. 88

3.18 The tag verification application interface. 89

3.19 Tag transfer application (a) the working interface (b) Display of an

overlay of the images to verify the operation. 91

3.20 (a) to (h) illustrate the process of obtaining the pattern features for a

sample character . 95

xviii

3.21 The extraction process of all feature points. The (a) pre-processed

image, (b) zonal features, (c) pattern features, and (d) gradient features.97

3.22 Samples from the other datasets on which our framework was tested. 101

3.23 Bounding box widths were varied from the green box indicating the

accurate location to -10%, +10%, +20% and +30% as shown by boxes

of oranges and yellows. 106

3.24 Plots of detection performance with tag width variation. 107

3.25 Example of autonomous tagging from a printed font for a three

character Bangla word. Based on the character widths obtained

from the machine printed text (∗P), the widths of the characters and

associated diacritics in the handwriting are estimated (∗E). 109

3.26 The schematic illustration of how autonomous tagging works. Each

character is boxed with variable widths for training. The position of

the learned character is shown in the test words. 110

3.27 Detection from the networks trained with manual (left) vs. autonomous

tagging (right). 111

3.28 Initial estimated bounding boxes of the Jamos from a compound

Korean syllable. Widths and heights are divided into 2 or 3 zones

based on to which geometric structure from (a) to (h) it belongs. 113

xix

4.1 Histograms of mean Average Precision (mAP) and mean F1 scores

from C-Net and D-Net detection results. 124

4.2 Case demonstration of why IoU with sequential character spotting

approach is low. Green shows the exact location of the target di-

acritic. Blue shows the location used for sequential C-Net/D-Net

training which includes the associated consonant with the diacritic.

The orange box shows the D-Net detection which is closer to the

accurate location than training location. 126

4.3 Sample pair of scanned and camera-acquired document image with

ground truth bounding box tagging information from the Boise State

Bangla Handwriting dataset [111]. 131

4.4 Examples of the clipping that occurred during ground truth tag trans-

fer from camera-acquired (top) to scanned (bottom) images using a

geometric transformation . 134

4.5 Sample cases of camera-acquired test images where training on camera-

acquired images resulted in false (top-right) and miss (bottom-right)

detection, but training on scanned images was successful (top left

and bottom left) in both cases. 135

xx

LIST OF ABBREVIATIONS

BLI – Bangla-Lekha Isolated

BLSTM/BDLSTM – Bidirectional Long Short-Term Memory

BoF – Bag of Features

BoVW – Bag of Visual Words

BoW – Bag of Words

BP – Back Propagation

CBDAR – Camera Based Document Analysis and Recognition

CER – Character Error Rate

CMATER – Center for Microprocessor Application for Training Education and Re-
search

C-Net – Character Network

CNN – Convolutional Neural Network

CRA – Character Recognition Accuracy

DAG – Direct Acyclic Graph

DL – Deep Learning

D-Net – Diacritic Network

FC – Fully Connected

xxi

GA – Genetic Algorithm

HKS – Heat Kernel Signature

HLA – Hierarchical Learning Approach

HMM – Hidden Markov Model

HOG – Histogram Oriented Gradients

HWR – Handwriting Recognition

ICDAR – International Conference on Document Analysis and Recognition

ICFHR – International Conference on Frontiers in Handwriting Recognition

ICT – Information and Communication Technology

ILSVRC – ImageNet Large Scale Visual Recognition Competition

IoU – Intersection Over Union

IRB – Institutional Review Board

ISI – Indian Statistical Institute

JRA – Jamo Recognition Accuracy

KNN – K Nearest Neighbor

LGH – Local Gradient Histogram

LoG – Laplacian of Gaussian

LSTM – Long Short-Term Memory

mAP – Mean Average Precision

MKL – Multiple Kernel Learning

MLP – MultiLayer Perceptron

xxii

MQDF – Modified Quadratic Discriminant Function

NN – Neural Network

NSHP-HMM – Non-Symmetric Half Plane Hidden Markov Model

OCR – Optical Character Recognition

OHR – Offline Handwriting Recognition

OLCR – Online Character Recognition

OVA – One Versus All

OVO – One Versus One

PCA – Principle Component Analysis

PHOG – Pyramid Histogram of Oriented Gradient

RBF – Radial Basis Function

R-CNN – Convolutional Neural Network with Region

ReLU – Rectified Linear Unit

ResNet – Residual Neural Network

RNN – Recurrent Neural Network

RoI – Region of Interest

ROVER – Recognition Output Voting Error Reduction

RPN – Region Proposal Network

SGDM – Stochastic Gradient Descent with Momentum

SIFT – Scale-Invariant Feature Transform

SLLE – Supervised Locally Linear Embedding

xxiii

SPM – Spatial Pyramid Matching

SRA – Syllable Recognition Accuracy

SVM – Support Vector Machine

USURF – Upright Speed Up Robust Features

VGG – Visual Geometry Group

WER – Word Error Rate

WRA – Word Recognition Accuracy

xxiv

1

CHAPTER 1

INTRODUCTION

1.1 What is Offline Handwriting Recognition

Handwriting Recognition (HWR) is generally known as the capability of a com-

puter to interpret text information from a handwritten input source, such as paper

documents, photographs, touch based digital devices etc. This has always been

considered to be harder than Optical Character Recognition (OCR) of machine

print because of the inherent variability and randomness of writing styles. There

are two major classes of HWR, one being online and the other is offline recognition.

Online Character Recognition (OLCR) is when a person writes, usually with a

stylus or his/her finger, on a touch sensitive device, and the computer applies

a recognition process to that input using the time and stroke information of the

characters. This is considered to be much simpler because of the availability of the

time data and thus stroke information, as well as the lack of noise, skew, distortions

etc. that an offline image always suffers from. Offline Handwriting Recognition

(OHR) belongs to the class of Image Processing and Pattern Recognition, where

text is recognized solely from digitally stored image data, usually from a scanner

or a camera. An immediate advantage of offline recognition is it can be done at

2

any time after the document is written, even after years. But since it is not done

in real time as someone writes, it can’t be used for immediate text input. Offline

Handwriting Recognition has been an interest of researchers in several fields, such

as pattern recognition, artificial intelligence, computer vision etc, and the history

goes back more than 30 years. It began with an automated postal code sorting

task, but now with the increased demands for task automation, the importance is

getting bigger and more significant.

Figure 1.1: Online vs. Offline Handwriting Recognition [1].

1.2 Why Offline Handwriting Recognition

Offline handwriting recognition is still an undeveloped or at best pre-mature

technology and therefore many applications and their impact in development and

growth have not yet been fully explored. A few of the applications are demon-

strated in Fig 1.2. One of the primary sectors that offline recognition is contributing

3

to today is in task automation. This includes numerous fields such as postal ad-

dress verification, bank check processing, translating documents, digitization and

archiving manuscripts. Several industries are adopting this technology to batch

process forms and applications, and these are used in practice today. These are

relatively easy because there are specific places where certain categories of data

will lie, for instance the "Name" field looks only for text, whereas the "Date of

Birth" field expects a formatted number. The same applies for postal addresses or

bank checks. Most of the mobile client apps for top bank services provides bank

check processing using cameras and they have been working very well for years

now. Also, signatures can now be reliably verified from offline images. As time

grows and the technology becomes faster and more accurate, it’s inevitable to see

a great expansion of this application area.

4

Figure 1.2: Demonstration of some applications of Offline Handwriting Recogni-
tion [2], [3], [4].

One other important area using this technology is known as keyword spotting.

It finds certain keywords from document images to get an idea about the docu-

ment content before further processing. This is useful in many situations, such

as sorting of letters or applications, finding appropriate documents from a digital

5

archive, processing annotations from historical documents etc. One good example

to explain this application will be if someone wants to research something, say

the Second World War, and by using keyword spotting with some appropriate

keywords it is possible to isolate all written manuscripts, exchanged letters and

historical documents which talk about this topic.

This tool also helps us to preserve historical documents, the wisdom and saga

of our ancients. Not only are these very important, they are also very tricky to

deal with. Often they are very fragile and better when not touched frequently.

They suffer from discoloration, partial damage and many signs of aging. Because

of this special situation, many machine printed historical documents are digitized

and then treated with handwriting recognition techniques for better results. In

developing countries, there are often piles of documents, but not enough man

power or resources to digitize or transcribe them. Many documents are destroyed

everyday around the world and these could have told us the legacy of a thousand

years. Offline handwriting recognition is a very powerful and potent tool that can

make these historical documents much more accessible to humanity.

The advent and growth of technologies always bring new and innovative use

cases that were formerly never thought of. For example, with the increased pop-

ularity of online education, handwriting recognition is now used to transcribe

handwritten white board and tablet contents into machine printed and editable

lecture notes. Handwriting analysis is used to monitor the progress of a kinder-

garten education through the handwriting development of children. There are

many demographic studies that are emerging from handwriting analysis. Further-

more handwriting recognition is becoming useful in forensic studies, estimating a

6

person’s gender, age, profession or even stress-level all from his/her handwriting

samples.

Technologies and tools are developed all for one purpose: to reduce human

labor, to free human-kind from the chores that can be done with low level machine

intelligence. In this theme, offline handwriting recognition is vividly promising,

particularly in the field of knowledge, education and research, which essentially

translates into the growth and development of the entire civilization.

1.3 How Offline Recognition is Done

There are many different ways to design an offline recognizer, but they can be

broadly grouped into two categories - Segmentation-based or Segmentation-free

recognition. Also, the tools used can be classified into two different discussions -

classical Machine Learning and modern Deep Learning based frameworks. Each

of the categories and approaches has their strength and weakness. These are all

briefly discussed in the following subsections.

7

Figure 1.3: Basic ideas of Segmentation-based and Segmentation-free offline hand-
writing recognition. Traditional segmentation-free approaches attempt to find
a match of a given word as a whole, whereas segmentation-based approaches
attempt to segment the characters from a word image and find matches for each
character.

1.3.1 Segmentation-Based Recognition

The idea of Segmentation-Based recognition is to first segment the document

word image into individual characters and then use an isolated character recog-

nizer to obtain a transcript of the word as shown in the bottom portion of Fig

1.3. With tools like Deep Learning, the process of classifying isolated characters

is considered to be a solved problem for most scripts. The real challenge then

comes from the process of character segmentation. It can be extremely difficult

to achieve cleanly, which is particularly troublesome for scripts with a connected

nature like Bangla, cursive Latin, Arabic and many more. It is thought that the

8

only sure way of isolating a character from its connected neighbors is to be able to

identify or recognize the character first, which is an irony, because the whole point

of segmentation is just to initiate and help the recognition process. This dilemma is

famously known as Sayre’s paradox [5] - which essentially implies that neither can

segmentation be perfected without recognition, nor can recognition be accurate

without prior segmenting for cursive or connected handwritten words.

The process of segmentation is highly script dependent. The techniques rely

on some form of clever tricks applied on the formation and characteristics of a

specific script. To this date, no character segmentation process has been reported

that works reliably on every kind of handwriting even for a single script. But if the

segmentation can be achieved somehow, the classification process that follows is

relatively clean and easy.

1.3.2 Segmentation-Free Recognition

The segmentation-free approach is a very modern way of doing offline recog-

nition. The idea is as it sounds, rather than segmenting a unit into easily recogniz-

able chunks, this model tries to estimate the unit as a whole as shown in the top

portion of Fig 1.3. It skips many complications that can arise from pre-processing

stages and quite frequently it has been seen that the recognition failure is caused

by poor pre-processing. Generally, segmentation-free approaches are faster and

simpler, and usually produce better results. Also these approaches not only skip

the character segmentation process, but also avoid many other stages like scaling,

skew/slant correction, noise removal etc. Furthermore, this approach is essentially

script independent, where the character segmentation requires deep integration of

9

each script’s characteristics to work. The cost of segmentation-free processes are

usually paid in terms of slower training time and higher computational complex-

ities, which usually require powerful CPUs and GPUs for processing. Also, these

approaches generally depend more on the availability and structure of datasets

than the segmentation-based techniques.

1.3.3 Traditional Machine Learning

Machine learning, in the context of handwriting recognition is a process of

making a system learn to recognize handwritten content from digital data. The

classical or conventional way of machine learning involves a routine set of tasks.

The most commonly used idea is to train a system through lots of labeled data so

that it can develop the sense of class when unlabeled data comes in. This idea is

known as Supervised Learning. The techniques or tools within this process can

vary widely, but there are a routine set of tasks that pretty much remain constant

over all approaches. These tasks are Pre-processing, Feature Extraction, Classifica-

tion and Post-Processing. A schematic is shown in Fig 1.4.

10

Figure 1.4: Different stages of conventional machine learning for handwriting
recognition.

Preprocessing generally involves a series of operations such as de-skewing,

noise removal, binarization, layout analysis, line and word detection, script recog-

nition, normalization of aspect ratio and scale, etc. Segmentation of words into

characters is also considered to be a pre-processing step. The processed images

are then subjected to the Feature Extractor. Feature extraction is a process of ob-

taining numerical measurements of features from the handwritten images that

are specific to each class. These are represented as vectors and are intended to

reduce the volume of raw data for faster and better classification. Features are

usually handcrafted, or chosen by a human who has expertise with the specific

field. There are many techniques, a few popular ones are SIFT, SURF, gradient,

11

stroke directions etc. These features are appended into vectors that are then sub-

jected to the classifier. The classifier inspects the features and estimates the class

based on its prior knowledge or training. It is usually trained with labeled samples

with class information which are called the training data. The method is then

tested on images not previously seen which are called the test data. The clas-

sification performance is evaluated based on different metrics such as accuracy,

confidence, etc. There are many developed classifiers in use such as Support Vector

Machine (SVM), K-nearest neighbor, Logistic Regression, Naive Bayes, Multilayer

Perceptron (MLP), etc. Often when experimenting with features or classifiers,

some data from the training set is held back for performance evaluation of the

system. This portion of labeled data is called the validation set. This is used to

avoid overtraining on the test set which often leads to a biased score.

1.3.4 Deep Learning

The process called Deep Learning is considered to be a modern way of doing

machine learning. The key idea here is to develop an end to end system, getting rid

of all the stages like preprocessing, feature extraction, classification, etc. It prepares

a system which is considered to be a black box, i.e. what’s happening inside is not

controllable via direct means. Inside the black box there are multiple layers of

Artificial Neurons all connected to each other, mimicking the basic construction

of a human brain. A typical structure of a Neural Network is shown in Fig 1.5,

where there are multiple arrays of hidden neural layers. Usually, such a neural

architecture is referred to as “deep" if there are a big number of hidden layers in the

design. After constructing such a system, it is subjected to the trained or labeled

12

data. Once the data crosses all the layers inside the neural network, it generates an

arbitrary output. Then a technique called back propagation is applied in order to

tune all the parameters inside the network to a point where the network generates

the desired output when the input data is applied again. This process goes on for

all the training data over multiple passes, which is called the number of epochs.

After several iterations, the network parameters get tuned for all kinds of data and

their variants and is expected to work on unseen or test data.

Figure 1.5: Typical architecture of an Artificial Neural Network [6].

In the past decade, this approach has been exceptionally successful for pretty

much all kinds of problems. Furthermore, the simplicity of development made

it the most popular machine learning choice with the research community. To

clarify, all the stages such as preprocessing, feature extraction or classification are

still happening inside the network, but are being crafted from the system itself

13

rather than by the developer’s clever guidance. In the last few years, it has been al-

most decided that this technique works better than conventional machine learning

for most possible problems in document analysis, including offline handwriting

recognition.

The cost of this tremendous performance is paid in terms of the training time

and a need for a massive quantity of data to be used. Deep learning in general

is significantly slower than traditional machine learning when a model is being

trained. This is usually compensated for by a technique called transfer learning.

Rather than training an array of neural parameters initialized randomly, parame-

ters from an already developed network are used as initial weights and the net-

work is then trained for the current purpose. Networks such as AlexNet, VGG-16,

VGG-32 and RESNET are very popular choices for transfer learning. Also, the data

requirements (in both quantity and quality) are notably higher for Deep Learning.

This can be compensated for by a method called data augmentation. Data augmen-

tation is a technique which takes labelled data, modifies it (by stretching, skewing,

rotating, adding distortions, etc.) to form a similar but different image of the same

object and thereby generates a number of synthetic training data with known class

labels which help increase the data volume required for Deep Learning. Even with

these techniques, the overall training and data management process is distinguish-

ably troublesome in this approach. Still it is widely used because of the simplicity

and better end results. Furthermore, as the processors get faster with specialized

GPUs and innovative tools appearing frequently, it is expected to continue being

the most widely accepted toolbox in the future.

14

1.4 Introduction to the Bangla Writing System

Although the proposed methodology of offline recognition is applicable to al-

most any script, the fundamental technique and tools are developed to work with

the Bangla script. Bangla, also called Bengali, is one of the most used languages in

the world. With over 205 million people, it is the 7th most spoken native language.

The Bangla script, used also for the Assamese language, is the fifth most widely

used writing system in the world. It is the national and official language of the

People’s Republic of Bangladesh, and official language of several states in India

such as West Bengal, Tripura, Assam and Andaman.

Bangla belongs to the Abugida class of writing systems. It is written from left to

right. The script consists of 11 vowels, 10 vowel diacritics, 39 consonants, several

hundred consonant conjuncts, more than 10 consonant diacritics, 10 numeric digits

and several punctuation marks. There is no upper or lower case distinction of

characters in the Bangla script.

Figure 1.6: The Vowels in the Bangla Script.

Fig 1.6 shows the 11 vowels of the Bangla alphabet. The one in the bracket (2nd

row, 2nd element) is not used anymore, but appears in historic documents. Fig 1.7

shows the 39 consonants of Bangla. The one in the bracket has double entries in the

15

alphabet by convention. The vowel graphemes with a consonant are used not as

independent letters as shown in Fig 1.6, rather as diacritics attached to consonant

letters. Fig 1.8 (a) shows an example of how this compares with the Latin script. Fig

1.8 (b) shows how the consonant ’Ma’ appears with all possible vowel diacritics.

Figure 1.7: The Consonants in the Bangla Script.

16

(a) Use of diacritic compared with Latin

(b) Vowel diacritics in Bangla

Figure 1.8: (a) Bangla diacritic use compared with the Latin script. (b) Diacritical
forms of vowels with the consonant ’Ma’. The ‘ô’ sound is inherent to the solo
consonant in the top left. Other vowel sounds are formed with the other diacritics
attached to it.

When two or more consonants are adjacent without any vowel between them,

they form a compound consonant or consonant conjunct and usually the form of

the character is modified. An example comparing Bangla conjuncts with Latin is

shown in Fig 1.9 (a). There are a few consonants which have their own diacritics

while forming a conjunct like the vowels. Some of them have even more than one

form of ligatures.

17

(a) Comparison with Latin (b) Example Bangla conjuncts

Figure 1.9: (a) Bangla consonant conjuncts compared with the Latin script. (b)
A few consonant conjuncts in the Bangla script along with their component solo
constants.

Fig 1.10 shows the Bangla numerals. The punctuation and other symbols are

mostly similar to those used in the Latin script. One big and important difference

is with the ‘Period’ symbol. It looks like ’|’, which is a little more distinct and

makes the context based line identification process easier.

Figure 1.10: Bangla numerals, 0 to 9 from left to right.

18

One important attribute in Bangla and several other Indic scripts is the words

are usually connected by a distinctive horizontal line running along the tops of

the letters which can be seen in Fig 1.11 (a) and is highlighted in Fig 1.11 (b).

This is known as a ‘Matra’, and this is very useful for character segmentation as

will be discussed later. Also, the writing can be divided into three distinct zones

which makes the recognition process systematic. The portion of the grapheme

that appears above the “Matra” line is called the upper zone which can be due

to the character symbol or vowel or consonant diacritics. From the Matra to the

bottom-line (where all the characters end) is called the middle zone. Below the

bottom-line there can also be vowel/consonant diacritics or some dots for distinc-

tive consonants, this zone is called the lower zone. Fig 1.11 (b) demonstrates an

example of how these zones are usually divided. All of these independent vowels

and consonants from Fig 1.6 and Fig 1.7 are written from the same baseline, except

for the last consonant in the alphabet, which is written on top of other characters

when used. Many Bangla text recognition methods rely on locating these zones

and identifying the components in each.

19

(a) Handwritten Bangla sentence

(b) Handwritten Bangla word

Figure 1.11: (a) A handwritten Bangla sentence, and (b) a word showing the matra,
the base and the three zones.

1.5 Difficulties with Bangla Script for Offline Recognition

Bangla is a script with a large number of unique symbols compared to, for

example, the Latin script. Furthermore, many characters and symbols look very

similar to each other. Most complexities arise for this script because of the diacritics

and conjuncts discussed in Section 1.4. Fig 1.8 (b) and Fig 1.9 (b) illustrates sample

cases of Bangla diacritics and conjuncts and how they compare with the Latin

script. As can be seen, both the diacritics and conjuncts increase the number of

unique symbols while not increasing the alphabet. Diacritics can appear anywhere

relative to the consonant as shown in Fig 1.8 and there are no rules for predicting

the consonant conjuncts’ physical appearances (shape or location) relative to the

original letters. A conjunct can also have its own vowel diacritic. There can be

up-to 5 different components inside such a structure. It is almost impossible to

20

separate these building block components from such a complicated structure and

therefore these are better treated as unique symbols for machine learning. Because

of these, the number of uniquely shaped glyphs (from a practical machine learning

perspective) is more than 2000. For techniques like Deep Learning, there have to

be hundreds (if not thousands) of labeled data samples for each class for training.

Such a massive dataset is impractical to form just for one single script. Also, a

network trained to recognize this number of classes cannot be expected to be fast

or reliable. This is the fundamental reason why we haven’t seen any noticeable

progress in offline recognition of scripts like Bangla.

Furthermore, Bangla is a connected script by nature as can be seen from Fig 1.11

(a). Unlike Latin (or other scripts), this cannot be written in a way where characters

in a word do not touch each other. This makes any kind of segmentation-based

approach almost impossible to design. A few works that propose character seg-

mentation techniques for Bangla only talk about segmenting a very small portion

of the script, and also do not work very well. Also, while people write in vividly

different manners, in Bangla there are several styles of writing which make many

of the characters and conjuncts appear completely different. Offline handwriting

recognition is itself a very complicated task, but with scripts like Bangla it is much

more complicated. The only transcription works for this script reported so far

recognize whole words out of a small vocabulary which can be useful for forms or

fields where the expected number of input classes are restricted. Recognizing the

whole script independent of vocabulary from handwritten images is an unsolved

and almost untouched problem so far.

21

1.6 Scripts with Similar Properties

Bangla is an eastern Indo-Aryan language spoken in many parts of the Indian

subcontinent. Lots of other scripts in this region share similar attributes with

the Bangla writing system. The Assamese script is almost the same as Bangla

except for some minor differences in a few letters. Some widely used scripts like

Devanagari (for the Hindi language) and Gurmukhi (for the Punjabi language) also

share close resemblance with Bangla. Hindi and Punjabi are the fourth and tenth

most spoken first languages in the world. Many other Indo-Aryan scripts under

the Abugida writing system also have close resemblance with each other. All of

these scripts have a common root of the Brahmi script (which is no longer used).

A list of such similar scripts, along with their orthographic properties is presented

in Table 1.1 in alphabetic order. Fig 1.13 shows the map of Asia showing where

the scripts from Table 1.1 are used. Color codes are used to indicate the amount

of similarity from a holistic approach. A few handwriting samples of such similar

scripts are shown in Fig 1.12. The attributes these other scripts share with Bangla

are often so prominent that it is highly likely any recognition system developed for

one of them should have a strong influence on, if not be exactly applicable, to the

others.

22

Figure 1.12: Handwriting samples of Bangla, Devanagari, Gurmukhi and As-
samese scripts.

Table 1.1: Scripts with close resemblance to the Bangla writing system

No. Name Region Language Attributes Other Notes

1 Assamese

Assam, Parts

of Arunachal

Pradesh and

other

northeast

Indian states

Assamese/ Asamiya,

Nagamese, Nefamese

• Written from left to right

• Conjunct consonants

• Diacritics for vowels

• Horizontal line at top

links the letters

• Vowels appear as

independent letters at the

beginning of a syllable

• Originated from

Kamarupi Prakrit

• Alphabets are

similar to Bangla

except for one

consonant

2
Bangla/

Bengali

Bangladesh,

West Bengal,

Assam,

Tripura,

Bengali, Meithei,

Bishnupriya Manipuri,

Kokborok

• Written from left to right

• Conjunct consonants

• Diacritics for vowels

• Horizontal line at top

links the letters Diacritics

for vowels

• Vowels appear as

independent letters at the

beginning of a syllable

• Evolved from the

Kamarupi script

• Structural

formation is less

blocky and more of

a sinuous shape -

which is true for all

the other scripts

listed here

23

3 Devanagari
India and

Nepal

Hindi, Marathi,

Nepali, Maithili,

Bhojpuri, Dogri,

Rajasthani,

Chhattisgarhi, Santali,

Newar, Kashmiri,

Konkani, Sindhi,

Bodo, Awadhi,

Magahi, Haryanvi,

Bhili, Mundari,

Sanskrit, Pali

• Written from left to right

• Conjunct consonants

• Horizontal line at top

links the letters Diacritics

for vowels

• Vowels appear as

independent letters at the

beginning of a syllable

• Has evolved from

ancient Brahmi

script

• 4th most used

writing system in

the world

• Over 120 languages

use this script

4 Gurmukhi

Punjab

region (India,

Pakistan)

Punjabi language, Sant

Bhasha, Sindhi

language

• Written from left to right

• Conjunct consonants

• Horizontal line at top

links the letters Diacritics

for vowels

• Vowels appear as

independent letters at the

beginning of a syllable

• The script is very

similar to other

Indic scripts,

except for angles

and structural

emphasis.

• In the top 15

writing systems in

the world

5 Gujarati

Punjab

region (India,

Pakistan)

Punjabi language, Sant

Bhasha, Sindhi

language

• Written from left to right

• Conjunct consonants

• Horizontal line at top

links the letters Diacritics

for vowels

• Vowels appear as

independent letters at the

beginning of a syllable

• The script is very

similar to other

Indic scripts,

except for angles

and structural

emphasis.

• In the top 15

writing systems in

the world

24

6 Gujarati

Gujarat,

Rajasthan,

Maharashtra,

Madhya

Pradesh,

Karnataka,

Pakistan,

Eastern

Iranian

Plateau

Gujarati, Sanskrit,

Kutchi, Avestan, Bhili,

Dungra, Bhil, Gamit,

Chowdhary, Kukna,

Rajput Garasia, Varli,

Vasavi

• Written from left to right

• Conjunct consonants

• Horizontal line at top

links the letters Diacritics

for vowels

• Vowels appear as

independent letters at the

beginning of a syllable

• Used to write the

Gujarati and Kutchi

languages

• Does not use

Matra.

7 Khmer
Cambodia

and Thailand
Khmer

• Written from left to right

• Diacritics for vowels

• Consonant cluster, a

variant of conjunct

consonant - where the

2nd consonant is written

under the main consonant

in reduced form

• Words are not

separated by spaces

• There are some

independent vowel

signs, which appear

in relatively few

words

• Not all consonants

can be at the syllable

final position

8 Khudabadi
Sindhis in

India
Sindhi language

• Written from left to right

• Diacritics for vowels

• Matras are used to change

the inherent vowel.

• Vowels that appear at the

beginning of a word are

written as independent

letters.

• Special Conjunct symbols

are used

• Also known as

Vaniki, Hatvaniki

and Hatkai script.

25

9 Modi
Maharashtra,

India

Marathi (primary),

Konkani, Gujarati,

Hindi, Kannada,

Telugu, Tamil, Urdu

and Sanskrit

• Written from left to right

• Diacritics for vowels

• Head-strokes appear

before the letters

• Consonant conjuncts

• Derives from

Nagari family of

scripts

• Cursive feature

makes it very

useful for

shorthand

10 Odia/Oriya Odisha, India Odia, Sanskrit

• Written from left to right

• Diacritics for vowels

• Vowels that appear at the

beginning of a word are

written as independent

letters.

• Conjunct letters

• Developed from

the Kalinga Alphabet

• Noticeable

similarities with

the Thai alphabet

11
Ranjana/

Lanydza

Nepal,

Buddhist

monasteries

in India,

China,

Mongolia,

and Japan

Newar, Sanskrit (in

Tibet), Tibetan

• Normally written from

left to right

• Diacritics for vowels

• Known as Nepali

calligraphic script

• In Kutakshar form,

written from top to

bottom

12

Sarada/

Śāradā/

Sharada

Kashmir Sanskrit, Kashmiri
• Written from left to right

• Diacritics for vowels

• Origin of the

Gurmukhi script

13
Syloti

Nagari

Sylhet,

Mymensingh,

Netrokona,

Kishoreganj

of

Bangladesh

and in India’s

Assam

Sylheti language,

Bangla language

• Written from left to right

• Horizontal line at top

links the letters Diacritics

for vowels

• Vowels appear as

independent letters at the

beginning of a syllable

• Alphabets are a

subset of Bangla

• Doesn’t have any

ligatures

26

14 Tagbanwa Philippines Languages of Palawan

• Usually written from left

to right in horizontal

lines.

• Diacritics and

independent symbols for

vowels

• Syllables ending in

a consonant are

written without the

final consonant

• Traditionally

written on bamboo

in vertical columns

from bottom to top

and left to right

15 Tibetan

Tibet,

Bhutan,

India, Nepal

Tibetan, Dzongkha,

Ladakhi, Sikkimese,

Balti, Tamang, Sherpa,

Yolmo, Tshangla,

Gurung

• Written from left to right

• Diacritics for vowels

• Consonant clusters

• The printed form of

the alphabet is called

the Uchen script

• The handwritten

cursive form used in

everyday writing is

called the Umê script.

• Spaces not used to

divide words

16
Tirhuta/

Mithilakshar

Mithilia

region of

Bihar, India

and the

eastern Terai

region of

Nepal.

Maithili, Sanskrit

• Written from left to right

• Conjunct letters

• Diacritics for vowels

• Considered a sister

system of the

Bangla writing

system

• Most of the letters

and numerals are

identical

27

Figure 1.13: Map of Asia, with colors representing the similarity of the scripts to
Bangla.

1.7 Introduction to the Korean Script

The Korean script is known as Hangul/Hangeul in South Korea and Chosŏn’gŭl

in North Korea. This is the official script of Korea and a co-official writing system

in the Yanbian Korean Autonomous Prefecture and Changbai Korean Autonomous

County in Jilin Province, China. Some parts of Indonesia and Taiwan also use this

script. There are 28 basic characters or Jamos in the Hangul alphabet. These are

arranged into syllables by combining up-to 6 characters. This syllabic arrangement

happens in two dimensions, i.e. they can combine both horizontally and vertically

which is one of the most distinguishing features of Hangul. However, unlike

28

Bangla, the shapes of the original characters don’t change based on the character

sequencing process. This particular property makes Korean an easier script to

process than Bangla from a machine learning perspective. Furthermore, Hangul

characters are written separately and are not inherently connected like Bangla or

cursive Latin, although they do often touch when handwritten.

The Korean alphabet and a handwriting sample is shown in Fig 1.14. The

Hangul syllable is composed of three constituent parts: lead consonant, vowel,

post-consonant. The top left is the first consonant. If the vowel is a vertical symbol

that would appear on the upper right of the syllable, a horizontal symbol would

appear below the lead consonant, or a compound vowel would appear in both

geometric places. The post-consonant (if the syllable includes one) follows at the

bottom.

29

(a) Korean alphabet [7]

(b) Korean handwriting sample

Figure 1.14: The alphabet (top) and handwriting sample (bottom) of the Kore-
an/Hangul script.

1.8 Outline of this Dissertation

Offline handwriting recognition is considered to be an unsolved problem. The

traditional techniques and notable achievements for different scripts are discussed

in Chapter 2. Chapter 3 introduces the presented offline recognition design along

with the underlying tools and technologies which make it reliable and flexible.

This framework is thoroughly tested with the Bangla script and implemented for

30

the Korean script to demonstrate its adaptability. Chapter 3 also describes many

other supporting experiments for this framework and tools developed for this

research. Chapter 4 presents the results along with comparison with other related

works (when present) for all the experiments described in Chapter 3. Finally,

Chapter 5 concludes by summarizing the contributions of this research as well

as discussing the potential future direction.

31

CHAPTER 2

LITERATURE REVIEW

2.1 Overview: It’s an Unsolved Problem

Over the years, there has been a lot of research and development in offline

recognition, but still today it is considered to be an unsolved problem. Different

scripts have seen different amounts of progress. For example, popular scripts like

Latin have seen a lot more attention in the research community than most Abugida

scripts. Many approaches in practice today are script dependent and there is no

unified framework that works for all. For Bangla, even though it is one of the most

widely used scripts in the world, the offline recognition progress is close to none.

There are a lot of scattered works and solutions have been presented for some spe-

cific problems under certain conditions, but the broader aspect of transcribing from

unconstrained Bangla handwriting is yet to be reported. In other words, there are

no works published which can dependably recognize Bangla handwriting without

vocabulary restriction. Most of the works are based on isolated character/number

recognition, character segmentation algorithms, whole word recognition from a

limited sized word list and word spotting algorithms. Since many Abugida scripts

listed in Table 1.1 are very similar to Bangla, the following subsections discuss the

32

recent and notable algorithms and achievements for Bangla as well as these other

scripts. Also, the availability and conditions of Bangla datasets which are publicly

accessible for researchers are included in this discussion.

2.2 Segmentation-Based Approaches

As discussed in Section 1.3.1, the process of character segmentation can be

extremely difficult to achieve cleanly. This is true for almost every script and

Bangla is by no means an exception. Handwriting recognition is most challenging

when the characters are connected like Bangla, cursive Latin, Arabic etc. While

segmentation-free methods can be very scalable, flexible and script independent,

in contrast, the process of segmentation is usually different for different writing

systems. Most of the time, this depends on the core attributes and minute details

of the concerned script. Bangla (and similar scripts) have a relatively large number

of graphemes when the diacritics and conjuncts are considered. One of the key

traits that often has been exploited for character segmentation is the presence of

the “Matra” line in Bangla words. The "Matra" is the horizontal line shown in

Fig 1.11, on top of the characters to connect them in a word. Although not all

letters in a word have this, in most cases it is present. The trail of this line is easy

to track even in quick or bad handwriting. Usually, this is the line that connects

adjacent characters (or diacritics) together and if this line were removed, the words

appear to be a combination of isolated characters, closely but separately compiled

together.

Pal and Dutta used this property with a concept based on the water reservoir

33

principle to segment unconstrained Bangla handwritten text [8]. Here, virtual

reservoirs are formed by pouring water from the bottom of the words, and due

to that horizontal line "Matra", a large accumulation is found in the middle zone

between the characters as shown in Fig 2.1. Furthermore, their observation showed

connected characters have a larger number of reservoirs than isolated characters,

and vertical overlapping of a reservoir with a loop or another reservoir doesn’t

happen in isolated characters, whereas it does happen frequently with connected

characters. By exploiting these detailed observations they succeeded in obtaining

a result with very high accuracy. Most of the error in their work came from the con-

nected characters identified as isolated. By further considering the script specifics,

even more improved results might be achievable in this process. Later they used

this approach of segmentation to recognize city names (84 classes) using Dynamic

Programming, MQDF and directional features achieving recognition accuracy be-

tween 87% and 94% for different arrangements [9, 10]. This work was primarily

targeted at Indian postal automation and works on a heavily restricted vocabulary.

34

Figure 2.1: Demonstration of large bottom reservoir usually found in the joining
section of two characters in a Bangla handwritten word [8]

.

The use of the "Matra", as found in many Indo-Aryan scripts, often provides a

simple answer to Sayre’s paradox [5], i.e. segmentation without prior knowledge

about the characters. Numerous works have reflected this idea recently. Basu et

al. presented a fuzzy technique to identify the black pixels in the Matra and then

marked points on that line as segmentation points [11]. Identifying the Matra line

was done by a simple sum of the row method to find the longest run of dark pixels.

Afterwards, each dark pixel was associated with a region of the Matra based on its

proximity using fuzzy logic. The segment points on the Matra were computed on

the basis of a fuzzy membership function. This approach was further improved

[12, 13] by detecting the zones in a word (as shown in Fig 1.11) to locate the Matra

efficiently and using Multilayer Perceptron (MLP) classifiers to identify whether

the segmented image does or does not need further segmentation. Segmenting in

this way, where the goal is to ensure at least one character stays inside the box, is

35

known as under-segmentation. The counter way is known as over-segmentation,

which attempts to fit no more than one character in each segment and allow char-

acters to be split into multiple partitions.

In handwriting, the Matra might not always be a straight and/or horizontal

line which can cause issues for the techniques developed based on this. Roy et

al. [14] addressed this problem and proposed an intuitive skew detection and

correction routine to use before segmenting characters using zone oriented con-

nected components. Bhowmik et al. presented an area-based algorithm based on

the Hough Transformation for skew adjustment and afterwards used an MLP to

classify the contour points as to whether or not they are a break point between

characters [15]. An interesting way of dealing with skew issues was proposed by

Bag et al. [16]. They used vertex characterization of the outer isothetic polygonal

cover (for a word, or part of a word) to segment characters without the necessity

of de-skewing. Another frequent issue that troubles the segmentation process is

the overlap between rectangular hulls of successive characters as addressed by

Bishnu and Chaudhuri [17]. They proposed a recursive contour following one of

the zones along the height of the word to locate the extent where the major portion

of the character gets covered. In a more recent work, Bhattacharyya and Sarma

[18] used an Artificial Neural Network (ANN) combined with isolated character

recognition to develop a character segmentation method for the Assamese script,

which is mostly the same as Bangla. They first used a horizontal projection his-

togram to perform primary segmentation. Afterwards, the segmented images are

matched with machine printed characters using a MultiLayer Perceptron (MLP)

network. If a match is found, then the segmentation is considered to be correct, if

36

not then the segmentation boundary is moved until it finds a match. Although this

work doesn’t properly address the conjuncts or vowel combinations, the method

obtained over 95% accuracy for a limited character class.

Numerous similar attempts were made for other Abugida scripts. For example,

Tripathy and Pal used a scheme based on the water reservoir approach [19] on

unconstrained Oriya script. Though Oriya shows a lot of similarities with Bangla

in many aspects, it doesn’t feature a Matra. The connection point of two Oriya

characters were estimated using some frequent scenarios - (i) consecutive char-

acters create a large bottom and a small top reservoir (near the mean line), (ii)

the number of reservoirs and loops are greater in connected characters and (iii)

the morphology of touching characters are more complex than isolated ones. In

contrast, the Devanagari script features a Matra the same way as in Bangla, and

once again this appears very useful in character segmentation. Garg et al. [20]

presented a method for segmenting Hindi text by first identifying the three zones

(equivalent to Bangla as in Fig 1.11), then locating the Matra (the line with the

highest number of dark pixels in the upper zone) followed by looking for zero or

a minimum number of dark pixels in a vertical projection from the Matra to the

middle zone. In another attempt, Hanmandlu et al. [21] worked on removing

the Matra from a word for Hindi text and thus all the characters get separated

on their own in the middle zone. This is equally true for the Bangla writing

system; i.e without the "Matra", individual characters become isolated, becoming

disconnected from their neighbors.

Expanding the framework of segmentation for consonant conjuncts is possible,

but is often avoided due to its enormous level of complexity, rather it is considered

37

to be convenient to treat these compounds as unique objects. There are a few

works reported for the Devanagari script [20, 22] which attempt to segment fused

consonants. These algorithms should be transferable to Bangla with little to no

modification due to the characteristic similarity of these scripts.

A clever way of tackling OHR is through N-gram modeling, which requires

segmentation not into individual characters, rather into N adjacent characters.

N is usually 2 (bigram) or 3 (trigram). The biggest OHR issue comes from the

unprecedented variability for depicting characters, even with the same person

from the same page; and statistically speaking, there is more similarity in how

people write a set of characters than how they write individual characters, since

the neighboring characters influence the writing process. The N-gram modeling

takes advantage of this characteristic of handwriting and is often used to improve

the recognition result as a second pass iteration. This approach is very useful for

the scripts with fewer characters. For example, in the Latin script with 52 character

symbols, there can be 52× 52 bigram patterns, of which many are seldom or never

used in common text. Things are much more complicated for scripts like Bangla

where there are more than a thousand different symbols (due to the consonant

conjuncts and diacritics, where the conjuncts are already bigrams, trigrams or

quadrigrams) [23]. This makes the model synthesizing process extremely com-

plicated and impractical.

In theory, a character segmentation and an isolated character recognition pro-

cess can be merged into a full transcription unit, although no one has reported such

a complete system. There are many works in isolated Bangla character recognition

that yield great success. As discussed before, these usually go through some form

38

of feature extraction and then a choice of classifier. The feature extractor attempts

to obtain useful structural features of the glyph, such as height, aspect ratio, ge-

ometry of strokes, edge points, lines and loops, connection between shapes, and to

describe them in compressed forms like, histograms, color maps, vectors etc. This

makes the classification and training process simple, coherent and computation-

ally efficient. Choosing the right set of distinct and independent features is very

important for classifier performance, which makes this process sensitive to script

specifics. There are two core approaches for feature extraction - statistical and

structural. Statistical approaches usually require more data and computational

resources than structural approaches, but provide better immunity to noise and

distortions [24]. The structural approaches are very intuitive to how the human

mind works, and offer better tolerance to the variation of natural handwriting [25],

but preparing such an architecture with a confined rule base is often very chal-

lenging and problem dependent. There are also hybrid approaches, where both

statistical and structural processes are adopted for the same problem. Usually, only

a few relevant and distinctive features from all the extracted ones are presented

to the classifier - a process known as feature selection. From these, the classifier

creates an abstract class/model of the symbols which is used in training, and

ultimately decision making. Lots of classifiers have proved useful in handwrit-

ing recognition, such as Support Vector Machines (SVM), Hidden Markov Model

(HMM), K Nearest Neighbor (KNN), Bayes classifier etc. Some are particularly

tailored to NN models, such as Hopfield Network, MultiLayer Perceptron (MLP),

Back Propagation (BP), Deep Learning (DL) based classifiers etc.

Bhowmik et al. presented a Hierarchical Classification Architecture with SVM

39

for Bangla character recognition [26], and compared the results with a MultiLayer

Perceptron (MLP) and a Radial Basis Function (RBF) network. The Hierarchi-

cal Learning Architectures (HLA) based SVM outperforms the others, although

a fusion scheme of all these three classifiers was also proposed which turned out

to be marginally better than the SVM alone. Features were extracted using the

Daubechies wavelet transformation. For an image the wavelet transformation

generates one low frequency sub-band approximation and three high frequency

components for the details of the original image. The feature vector is prepared

from the approximation component for different resolutions.

The other two classifiers used, MLP and RBF, belong to the class of Neural

Networks. MLP has been a very popular choice for handwriting recognition.

For the task in [26], a modified Back Propagation (BP) model with self adaptive

learning rate values was used for the training. RBF is also widely used in many

pattern recognition problems, if not specifically for handwriting recognition. In the

network architecture, a Gaussian activation function was used as the basis function

and outputs are augmented by a sigmoid function. The gradient decent learning

method was applied to tune the network weights and basis function parameters

during supervised learning. When several classifiers are used for a single problem,

there are usually several approaches that can be implemented. In a basic single

stage classification scheme, each of the classifiers is implemented independently

and separately. In a single stage fusion scheme, the decision is taken upon majority

votes from the results. In a Hierarchical Learning Architecture (HLA), initially the

samples are grouped based on their basic features, and then each group is pro-

cessed by a particular classifier which had the best success for that group during

40

training.

In terms of multilayer hierarchical classification, Reza and Khan proposed a

method for grouping similarly shaped basic characters, numerals and vowel mod-

ifiers [27], and used the One Versus One (OVO) and One Versus All (OVA) strate-

gies for multi-class SVM for better performance. They used a Zonal Directional

Chain Code for feature extraction and compared the grouping results with mor-

phologically thickened and thinned segmented text. This kind of grouping almost

always benefits the classification process. As for the classifier, the SVM is one

of the most popular choices in the field of OHR for its simplicity and efficacy.

Majumdar and Chaudhuri used a OVA SVM with features extracted from the

Curvelet Transform [28]. They worked with four versions of morphologically

thickened and thinned samples and presented the comparison results. Das et al.

used a MLP and SVM for classification of Bangla simple and compound characters

[29]. They included 55 of the consonant conjuncts based on their high frequency of

occurrence in common literature. A single hidden layer MLP was used with a quad

tree-based shadow and longest run feature for group identification. Later on they

used a Genetic Algorithm (GA) and SVM in a multistage approach for recognizing

these compound characters [30] using both global and local feature extractors.

Also, they proposed a two-pass approach along with an automated grouping of

characters in coarse classification [31] for a signifiant jump in accuracy. They used

a GA to select the local region optimally to extract features with potential finer clas-

sification, a Quad tree based Longest Run for features and an SVM as the pattern

classifier. The same team also presented a benchmark image dataset for isolated

Bangla compound characters [32] available publicly for use by other researchers.

41

A combination of MLP and SVM is also used by Mohiuddin et al. for online Bangla

handwriting recognition [33]. Ahmed et al. used an SVM for Bangla handwritten

numeral recognition (from online samples) combined with a Supervised Locally

Linear Embedding (SLLE) algorithm [34]. Their approach presented a system

which doesn’t rely on massive training. Wen et al. proposed two approaches

for handwritten Bangla numeral recognition [35] – one uses image reconstruction

based on Principle Component Analysis (PCA) targeted for reducing the difference

between the same symbols during preprocessing, and the other uses direction

feature extraction from a Kirsch edge detector based on a combination of PCA and

SVM. One more interesting and relevant application of a SVM can be found from

work by Pal et al., where they used Gaussian Grid feature extraction for offline

Bangla signature verification [36].

The Hidden Markov Model (HMM) is a powerful tool in the field for hand-

writing recognition, not only for holistic approaches as discussed earlier. Roy et

al. proposed a zone segmentation based OHR for Bangla [37] using a HMM in the

middle zone for character recognition, and a SVM in the upper and lower zone

for modifier identification. They used a Local Gradient Histogram (LGH) as the

feature extractor and combined the results from the different zones forming the

word as a whole. This produced results with much greater accuracy than an HMM

alone for a sole segmentation-free word recognition. Another approach from the

work of Bhowmik et al. [38] uses a MLP based on stroke features. They extracted

vertical and horizontal strokes and saved them as one-pixel thick digital curves.

Afterwards, they extracted features such as shape and size from these skeleton

strokes and fed them into a MLP network. This is a kind of structural approach that

42

can be useful for other scripts too. A relatively old work by Dutta and Chaudhury

also demonstrates the power of stroke features, such as curvature, where junctions

can be exploited for both machine printed and handwritten characters [39]. Bag

et al. presented a list of structural approaches used for Bangla offline handwritten

character recognition, along with proposing a method which is invariant to the

angle of observation [40]. They used concavity/convexity of character strokes

realized in a skeleton format as features for classification.

Much research work has been reported for the scripts listed in Table 1.1, es-

pecially for the major ones. Arora et al. presented a combination of four fea-

ture extraction techniques [41] - intersection, shadow, chain code histogram and

straight line fitting with a simple feed forward MultiLayer Perceptron classifier for

handwritten Devanagari character recognition. Shadow features were computed

globally for the character, where the other three were applied on different small

segments. This approach can also be applied to recognition of other scripts, such

as Bangla as anticipated by the authors. Sharma et al. proposed chain code based

features combined with a Modified Quadratic Discriminant function (MQDF) clas-

sifier for Devanagari simple characters and numerals [42] - which also offers the

potential for other similar scripts. Sharma and Jhajj developed a zoning method

for feature extraction and compared the results with KNN and SVM classifiers for

handwritten Gurmukhi script [43]. From their work, a SVM with a polynomial

kernel gives the best results. They also described potential reasons for failure,

which can be useful for further research in this domain. Kumar et al. used a

KNN classifier for Gurmukhi, where features were extracted with diagonal and

transition features [44]. Hassan et al. presented a Multiple Kernel Learning (MKL)

43

based classifier embedded in a Decision DAG framework for Gujarati character

recognition [45]. They compared their results for three different feature extractors

– fringe feature maps, shape descriptors and Histogram of Oriented Gradients

(HOG) – with MKL 1-vs-1 and KNN classifiers.

As mentioned in Section 1.3.4, Deep Learning is the modern and most suc-

cessful approach for almost any problems related to machine learning, and this

statement is applicable to isolated character recognition as well. Although, some

people tend to avoid Deep Learning since training time and the required quantity

of data are much greater than traditional machine learning. Still, because of the

simplicity in the architecture with no pre-processing, feature extraction or classifier

design, it is one of the most popular choices among researchers. One notable work

is done by Alif et al. [46]. They used a modified Residual Network (ResNet-18)

architecture to classify isolated characters with 95.10% recognition accuracy. This

is the highest reported accuracy for a work for Bangla which addresses a few high

frequency conjuncts. In fact, using Deep Learning isolated character recognition

for any script is now considered to be a solved problem if enough data is available.

This is because of the "near-human performance" obtained with the MNIST dataset

(handwritten latin digits) using neural architectures. Several researchers achieved

over 99.97% [47], [48], [49] with this dataset in the last decade.

Devanagari is a script which has close resemblance to Bangla in many aspects.

Dutta et al. presented a work with this script [50]with a CNN-RNN hybrid archi-

tecture and lexicon-based decoding on the IIIT-HW-Dev dataset. Most other works

with Indic or similar scripts are restricted to either printed or online documents

for word-level recognition. Some scripts like Korean are inherently isolated and

44

the syllables do not touch each other (except accidentally) while written. Offline

recognition of such scripts is usually achieved by a feature extractor and a classifier,

or only a classifier if using a Deep Learning architecture. Park et al. presented an

implementation using fifteen character normalization, five feature extraction and

four classification methods and evaluated their performance on two public hand-

written Hangul datasets, SERI and PE92 [51], and obtained 93.71% and 85.99%

syllable recognition accuracy respectively [52]. Kim and Xie used Deep Learning

based modeling on the SERI95a and the PE92 datasets and achieved 95.96% and

92.92% recognition accuracy respectively, which is the highest reported for Korean

[53]. Most other approaches reported for the Korean also follow either of these two

structures for offline recognition. Technically these are segmentation-free frame-

works as Korean script is already segmented by nature, but the approaches are

better categorized as symbol recognition which matches with the segmentation-

based methods (once segmentation is done) and therefore are presented in this

section.

2.3 Segmentation-Free Approaches

Only a handful of works have been done using segmentation-free approaches

for Bangla and similar scripts. Broadly, there are two categories of work in this

approach so far – word spotting and limited vocabulary based word recognition.

For segmentation-free word spotting, one of the most flexible ideas was proposed

by Rothacker et al. [54]. They used a Bag-of-Features (BoF) representation powered

with SIFT [55] descriptors to feed a Hidden Markov Model (HMM). SIFT is a

powerful algorithm which extracts and describes local features from an image.

45

Many features can be generated for even a small object with high efficiency (close

to real-time performance). This is invariant to image scale and rotation, and offers

robustness to affine distortion, noise, illumination variance and skewing. All of

these make SIFT very useful in object recognition including handwritten docu-

ments. In their work, the codebook was prepared using a Generalized Lloyd [56]

clustering algorithm on a randomly sampled portion of all descriptors. In fact,

as a follow-up to this process, Sebastian Sudholt et al. presented a pipeline of

descriptor learning for word spotting [57]. Here the objective was to find descrip-

tor pairs which are closely spaced and far apart in the descriptor space to reduce

the errors originating from quantization. For the work in [54] the model estima-

tion was done by a bounding box query around a word to get a Bag-of-Features

(BoF) HMM encoded sequential visual appearance. After a patch-based query

from the document collection (they used the George Washington dataset of cursive

English/Latin document), the Viterbi algorithm was used to decode the model.

Bag-of-Features is a very effective approach to find distinct local histogram

signatures of objects from a scene. This converts vector-represented patches to

codewords, and prepares a codebook from those, like a dictionary. A codeword can

be thought of as being representative of several similar patches. Combined with an

HMM, one of the most powerful statistical tools in handwriting recognition (both

online and offline), their work produced excellent results. Although one of the

most incredible outcomes of this approach comes from its flexibility, as the work

produced excellent results not only with the George Washington dataset, it also

came out to be very successful with Arabic [58] as well the Bangla script [54] -

without being specifically tailored for those. An overview of the Rothacker et al.

46

work with the Bangla printed text is shown in Fig 2.2. The flexibility of this method

makes it very promising for handling different kinds of scripts. Specifically, it is

very useful for Bangla and similar Indo-Aryan scripts from Table 1.1, because the

scripts’ inherent nature makes it difficult to dissect the characters from a word

as discussed in Section 2.2. Word spotting algorithms find a word based on its

shape. The textual content of that word has to be stored external to the query. Only

whole words are usually queried, so this limits the method to a vocabulary, and

the process has to be repeated for each possible word. These algorithms always

need to have a prototype word in the document.

Figure 2.2: Word spotting overview of work by Rothacker et al. with Bangla
printed text [54].

Another interesting method that does keyword spotting without segmenta-

tion from Bangla handwriting was proposed by Zhang et al. [59]. They pre-

47

sented several popular ways of detecting keypoints such as SIFT, LoG (Laplacian

of Gaussian), the Harris algorithm, basic Morphological operations, etc., with a

nice comparative illustration as shown in Fig 2.3. In their work, the SIFT detector

and morphological operations were used for detecting keypoints. The patch size

was dynamic, decided by the local entropy around the keypoint. The Heat Kernel

Signature (HKS) was used as a fundamental feature descriptor and it was shown

to be more variation tolerant than SIFT features. The computational efficiency was

increased by narrowing the searching scope for keywords to only within the zones

which initially have enough matching of the keypoints.

Figure 2.3: Detection of keypoints from a Bangla handwritten word using different
algorithms [59].

Wshah et al. proposed a way of script independent word spotting from offline

handwritten documents [60] using an HMM which produced great results with

the English, Arabic and Devanagari scripts. This is a line-based approach backed

by both character-based and lexicon-based background frameworks. A similar

48

system was proposed by Das et al. [31] for Indic scripts highlighted for Bangla and

Devanagari, where Pyramid Histogram of Oriented Gradient (PHOG) was used as

the word spotting framework combining foreground and background features. A

comparative study [61] shows that PHOG is better suited than other features for

Bangla Handwriting, especially on the middle zone. Shekhar and Jawahar worked

on word image retrieval [62] using Bag of Visual Words (BoVW) for four important

Indian scipts including Bangla. Here, the interest points were computed with the

Harris Corner Detector and SIFT was used to describe the local information at

those interest points. The retrieval was done from the histogram index structure

in a ranked manner using a Lucene search engine. One of the major issues with

BoVW is that it ignores the spatial relationships between visual words, which

was addressed by repeatedly subdividing the image and getting local features

in finer resolution with Spatial Pyramid Matching (SPM). In another work Vajda

and Belaïd proposed a Non-Symmetric Half Plane Hidden Markov Model (NSHP-

HMM) for segmentation-free handwriting word recognition [63] working for both

Latin and Bangla. The technique applied here was to implant high level structural

information by a weighting mechanism in the baseline NSHP-HMM.

There are a group of works which approach Bangla whole word recognition

by segmentation-free approaches, but all of these are restricted to a limited vo-

cabulary. For example S. Bhowmik et al. reported several different approaches

in two different papers to recognize whole words. They used an SVM and MLP

along with other histogram based features and operated on 18,000 words with 120

different classes and obtained 83.64% recognition accuracy [64]. In another work,

they used a Neural Network with HOG features on 1020 words with 20 different

49

class and achieved 87.35% accuracy [65]. T. K. Bhowmik et al. used an HMM and

Genetic Algorithm (GA) on shape based direction features [66]. They obtained a

Word Recognition Accuracy (WRA) of 79.10% on a 35,700 word image dataset with

119 different classes.

As mentioned, nothing reliable has been reported in terms of vocabulary inde-

pendent transcription for Bangla or any of the scripts from Table 1.1. In a vocab-

ulary dependent framework, Adak et al. applied their approach on a relatively

small but random Bangla word dataset [67] and obtained a WRA of 70.67%. This

is the only attempt for unconstrained Bangla text recognition prior to my work.

Adak et al. also worked on restricted vocabulary based recognition with several

combinations of datasets and got a WRA of close to 90% in many cases.

The most common approaches of segmentation-free word recognition usually

use either the Long Short-Term Memory (LSTM) or the HMM architecture. An

LSTM is a form of a Recurrent Neural Network (RNN) which maintains a memory

using self connecting loops to prevent a vanishing gradient from affecting dis-

tinct information. One big advantage from HMMs or other RNNs that makes

LSTM suitable for these kind of problems is its relative insensitivity to gap length.

In fact, some researchers think it may be possible to build a universal language

independent OCR using such networks [68]. Most successful works using such

architectures can be found for purely alphabetic scripts like Latin, Arabic, etc. For

example, Bluche et al. used the ROVER (Recognition Output Voting Error Reduc-

tion) scheme to combine four models and reported results on the IAM (English)

dataset [69]. Two of them are based on Bidirectional Long Short-Term Memory

(BDLSTM) RNNs, and the other two are based on deep Multi-Layer Perceptrons

50

(MLPs). Menasri et al. proposed a system that uses seven recognizers based on

three different technologies - grapheme based hybrid HMM, Gaussian Mixture

HMM and Recurrent Neural Networks (RNN) [70]. They presented their results

with the RIMES (French) dataset. Stahlberg and Vogel proposed a method that

uses fully connected deep neural networks for optical modeling with features ex-

tracted from raw pixel gray-scale intensity values of foreground segments [71] and

presented their results with the IFN/ENIT (Arabic) dataset.

LSTM networks were used for whole word [72], isolated component [73], ma-

chine printed [74] and online handwriting recognition [75], but never for offline

Bangla transcription. A similar situation exists for other Indic scripts too, such

as for the printed Devanagari script Karayil et al. used (LSTM) networks [76]

and Sankaran and Jawahar used Bidirectional LSTM (BLSTM) [77] and obtained

over 80% word recognition accuracy. None has reported LSTM or HMM based

transcription for any Indic scripts. There are a number of reasons behind this. The

LSTM or HMM networks depend on character modeling and finding the char-

acters from a word image. This often generates a stream of characters which in-

cludes many false detections and duplicates of similar characters which are usually

compiled with a grammar or language based model. Most of the Indic scripts do

not have such a strong model ready to be used. The biggest problem for such

character modeling of scripts like Bangla comes from the diacritic or conjunct

like attributes. An LSTM network sweeps horizontally, but a diacritic-character

or character-character combination of Bangla can share vertical spaces with the

components too as shown in Fig 1.8 and 1.9. The same is true for conjuncts as

well. This is not only true for Abugida scripts, but also many others like Korean.

51

When characters or other symbols share vertical spaces when written, the whole

combination has to be treated as one character if it is to be modeled with an LSTM

or HMM based architecture. This leads to the problem of having a massive number

of classes (considering combination of characters) to be modeled and thereby the

requirement for dataset grows while the recognition speed and performance falls.

Therefore, although theoretically sound, no notable offline transcription works

have been reported for scripts like Bangla or Korean.

2.4 Available Datasets

Datasets are one of the most crucial components for training as well as bench-

marking the statistics of handwriting recognition algorithms. Often, the devel-

opment of any particular algorithm depends on the existence and availability of

rich and useful datasets. The Center for Microprocessor Application for Training

Education and Research in the Computer Science and Engineering Department of

Jadavpur University in Kolkata has a repository (CMATERdb) of simple and com-

pound Bangla characters, numerals, common words, etc., [78, 79, 80, 81, 82]. They

have line and word level ground truth tagging, although it was inaccessible at the

time of this writing. Bhattacharya et al. [83] presented a dataset (ISI db) of isolated

basic and compound characters, numerals and vowel modifiers. This dataset is

accessible by request. Biswas et al. [84] also presented a publicly available dataset

(BanglaLekha-Isolated) which consists of isolated basic characters, numerals and a

few high frequency conjuncts. Adak et al. presented a dataset called NewISIdb [67]

which contains word images and covers many high frequency words and syllables.

A summary of these datasets is presented in Table 2.1. Beyond these, several works

52

indicate the existence of other datasets, but none of them are publicly available for

others to access.

Table 2.1: Existing public Bangla Handwriting Datasets (Numbers presented here
are close estimates)

Attributes
CMATER

Dataset [78]

ISI

Dataset [83]

BanglaLekha

Isolated [84]

NewISIdb

HwW & HwP [67]

Basic Characters 15,000 30,000 98,000 Present∗

Numbers 6,000 23,000 19,000 Present∗

Characters with

Vowel Diacritics
None Present∗ None Present∗

Consonant Conjuncts 42,000 Present∗ 47,000 Present∗

Essay/Paragraph 150∗∗ pages None None 1,07,550 words

Ground Truth

Metadata

Line and Script

Level Information∗∗

N. A. N. A. Word Level

Accessibility Open On Request Open On Request

∗Exact numbers couldn’t be found.

∗∗Couldn’t be accessed during the time of writing

53

CHAPTER 3

DESIGN OF THE OFFLINE HANDWRITING RECOGNIZER

3.1 Overview

The fundamental contribution of this dissertation is a design for an offline

handwriting recognition method. As described in Chapter 2, this problem is still

unsolved. There are partial solutions for some popular scripts and none for many

others. Furthermore, there are no methods which can work script independently.

Therefore, our most crucial contribution to this field is a method which we call

"Character Spotting" that can be used to recognize any alphabetic script. This is

a segmentation-free approach which is fast, robust and high-performing. Unlike

word spotting algorithms and many other traditional approaches described in

Chapter 2, this method neither depends on having prototype words in the doc-

ument, nor is it restricted to a limited vocabulary. Rather this works for the entire

script and for any script as long the script uses a limited number of characters. This

technique was primarily designed to work for Bangla and was thoroughly tested

on this script. Later it was shown how it can be adapted to work for other writing

systems using Korean as an example.

One of the most limiting steps of developing an offline recognition system is

54

the dataset preparation. Although, collecting handwriting samples from many

people with proper demographic sampling can be very difficult, the most costly

process (in terms of manual labor and time) is actually preparing the dataset (such

as ground truth labeling of characters, words, etc.) to make it suitable for ma-

chine learning. Here I present a method of "Autonomous Tagging" complementing

the proposed offline character spotting recognition framework. This takes away

most of the difficulties involved in dataset preparation. This too is an extremely

flexible process and can work for any alphabetic script. The combination of the

autonomous tagging and the character spotting recognition framework makes the

development process of an offline recognition system for any writing system very

easy and effective.

I also developed an offline handwriting dataset for Bangla named the "Boise

State Bangla Handwriting Dataset". This is by far the richest dataset for Bangla

and one of the richest for any Indic script. Extensive research was done to identify

the most used conjuncts in Bangla and combine all of them in a short piece of

text. This dataset efficiently captures most of the variations of the Bangla script.

Most of the development and training for my experiments are conducted using

this dataset. This dataset has been made publicly available, which can facilitate

additional growth in the development of Bangla offline recognition.

Several other small experiments were done in conjunction with these major

contributions. We developed an isolated basic character recognizer for Bangla to

benchmark the Boise State Bangla Handwriting dataset with the other publicly

available datasets for Bangla handwriting. This produced the highest recogni-

tion accuracy ever reported for Bangla basic characters. Another experiment was

55

conducted to compare the recognition performance between scanned and camera

acquired data, where the rest of the framework and process remain the same. This

experiment was made possible since the Boise State Bangla Handwriting dataset

has most of its data digitized using both a flat-bed scanner and camera. Another

experiment was done to see how the ground truth element position tagging ac-

curacy affects the recognition performance. In other words, how much inaccuracy

can the recognition algorithm tolerate in the ground truth tagging and still succeed

in the recognition process. The outcome of this experiment not only proved the

robustness of the proposed offline recognition design, also it motivated how the

autonomous tagging method should be deployed.

This chapter describes the design, development and experiments in the follow-

ing progression:

1. The design of the offline character spotting handwriting recognizer, along

with how it works for Bangla and Korean, and why it should work for any alpha-

betic script.

2. Description of the underlying tools and technologies used to build this

framework.

3. Description of the Boise State Bangla Handwriting dataset, the tools devel-

oped to process this dataset and the external datasets used for the experiments.

4. Experiment description to determine the effect of ground truth tagging accu-

racy over recognition performance and how the outcome result is used to develop

the Autonomous Tagging framework.

56

3.2 The Proposed Offline Recognition System

3.2.1 Basic Idea of the Design

The proposed design for offline recognition works based on spotting or locating

characters within a word. The core of this system is an object detection network

which is trained to locate as well as identify characters in a given word image. This

process is explained within the context of the Latin script in Fig 3.1 (a). As seen

with this example word "Good", the object detection network attempts to find the

letters from "A/a" through "Z/z" in the word. This is not a sequential process, the

character spotting algorithm runs for all possible characters simultaneously. After

it finds all the matches, we use the classes of the characters found (like one "G",

two "o"s and one "d" in the example) and relative location information (the "G" is

detected to the left of an "o") to obtain a transcription. This process is illustrated in

Fig 3.1 (b).

57

Figure 3.1: Basic idea of the presented offline character spotting recognition
method: (a) shows an object detection network that attempts to find character
matches in the word, and (b) shows the transcription formed using all the detected
character class information.

This whole idea of character spotting is novel and not an incremental mod-

ification or combination of ideas of some existing approaches. Word spotting

algorithms as described in Section 2.3 can be analogous since our method spots

the characters in words instead of words in a page, but with a distinct difference

between these two infrastructures. In our approach, we are recognizing the charac-

ter class while spotting its location. Word spotting techniques just find the words

based on a query without knowing the inner character composition and therefore

cannot be used for transcribing. Also word spotting relies on a sample from that

58

document and is not robust against variations in handwriting. These methods

are usually useful for indexing documents, finding keywords, doing primary level

analysis, etc. On the other hand, since character spotting provides us both the

classes of the characters and their spotted locations, it can easily be utilized to

create a transcription.

Some other segmentation-free approaches that we discussed in Section 2.3 can

detect as well as recognize words, but only from a limited vocabulary. Since the

number of possible words in any script is enormous, it is not practical to build a

detection model for all possible words by showing hundreds of samples for each

of them during training. On the other hand, any alphabetic script comes with a

limited number of character symbols, therefore it is possible to train a network for

detecting each of them. Scripts like Latin, which has only 52 different symbols

in its alphabet, are very easy to work with. This is one reason why we chose

Latin to demonstrate the basic idea, although it was never used to test the frame-

work. Things get complicated for scripts like Bangla or Korean where elements

like diacritics and conjuncts come to play as explained in Section 1.5 and 1.7. In

the following subsections, we describe how this framework was implemented for

Bangla and Korean as well as why it should work for any alphabetic script.

3.2.2 Implementation for the Bangla Script [85]

As we showed in Section 1.5, because of the diacritics and conjuncts the Bangla

script can effectively have more than 2000 different classes on which the object

detection network needs to be trained. Almost all Indic scripts have this attribute.

This is a problem since for training we require hundreds of samples for each pos-

59

sible class. To address this issue, we deployed two strategies:

1. We prepared two networks, one for the characters and one for the smaller

symbols (like diacritics) which appear around the other characters keeping the

base shape unchanged. The first one is named C-Net, abbreviated for Character

Network and the later one is named D-Net for Diacritic Network. The lists of

symbols that each of these networks are trained to detect are shown in Fig 3.4. On

each word image, both of these object detection networks are applied sequentially.

The C-Net first locates and identifies the characters from the list, and afterwards

D-Net does the same with the diacritics. Therefore, even if we trained C-Net and

D-Net from the same compound characters (a basic/conjunct character with a

diacritic) from repeatedly showing the same part in different context, the C-Net

only spots the characters and D-Net only the diacritics when tested on unseen

words. This process is schematized in Fig 3.2.

Figure 3.2: C-Net and D-Net work on the same image, but are trained to detect
different symbol classes.

Once we obtain the detected classes from C-Net and D-Net along with their

location information, a transcription is formed as shown in Fig 3.3. This two-

60

network-approach breaks the 2000 class problem into two smaller chunks and

thereby the dataset requirement becomes much more manageable. This is applica-

ble for any Abugida script, since all of these share similar attributes.

Another strong point of this approach is the individual networks are trained

not only to spot the target characters, but also to ignore the surrounding char-

acters/diacritics. This pattern of training makes the character spotting approach

robust and insensitive to ground truth position tagging accuracy (demonstrated in

Section 3.6.2) and allows an autonomous method of tagging to be implemented to

avoid intensive manual labor during dataset preparation (demonstrated in Section

3.6.3).

Figure 3.3: Detected symbols from C-Net and D-Net are merged to form a tran-
scription.

2. The other strategy is to statistically reduce the number of unique appear-

ances. In Bangla, like many other scripts, there are many character classes (mostly

conjuncts) which are rarely used. To compensate for this, we analyzed a large

volume of written documents to obtain a character set which covers more than

61

99% of the entire Bangla script. This approach reduced the class size by roughly

30% and made the whole process of dataset preparation as well as training much

more convenient without sacrificing a substantial or even noticeable amount. The

conjunct column in Fig 3.4 shows the reduced conjunct list we used for the devel-

opment of our Bangla recognition framework.

Figure 3.4: Class distribution for C-Net and D-Net training. Both networks are
trained using the Boise State Bangla Handwriting dataset. The black colored
characters are from the essay scripts and the blue colored characters are from the
conjunct word documents as described in Section 3.4.

62

3.2.3 Implementation for the Korean Script

We used the same framework as for Bangla but with different strategies based

on the unique attributes of the Korean script. As we described in Section 1.7, the

Korean script does not have any diacritics, but has syllables with a two dimen-

sional structure where the 28 Jamos can appear in different places in many different

combinations. This also results in more than 2000 different possible combinational

arrangements like Bangla and therefore the problem remains the same. However,

the Jamos are written separately and are not inherently connected like Bangla

via a "Matra" as can be seen from Fig 1.14 (b). Also, the Jamos do not change

their shapes in their composite syllables like many Bangla characters do in their

conjunct appearances. Therefore, rather than trying to recognize a Korean syllable

as a whole, we tuned our object detection network to locate and identify the Jamos

inside the syllable. Since the number of Jamos are much fewer than the number

of possible syllabic combinations, our offline recognition process can be achieved

using a much smaller dataset and shorter training than the traditional approaches.

Therefore, while the basic idea remains the same as with the Bangla script, the

execution was adapted to better treat the attributes of the Korean script.

Figure 3.5: List of detection classes of the Hangul script trained with K-Net.

63

Because there are no diacritics in Hangul, we prepared a single network K-Net

(for Korean Network) to recognize the 33 character classes shown in Fig 3.5 from

the compound syllables. These are the 28 basic characters or Jamos plus 5 more

compound characters which are usually written in a connected form (classes 2, 5,

9, 11 and 14 in Fig 3.5). The rest of the architecture and tools are identical as for

Bangla. The recognition process is the same regardless of how many Jamos are in

the target syllable. Fig 3.6 shows an example syllable which is made of 4 Jamos.

Rather than trying to recognize the syllable as a whole, the K-Net spots those 4

Jamos, then from those detections we re-construct the syllable. In this way, our

object detection network only has to master spotting those 33 classes in Fig 3.5,

rather than being trained to recognize more than 2000 possible syllable classes.

Figure 3.6: The Korean offline recognition process. This example shows a syllable
made of 4 Jamos. Instead of recognizing the whole syllable, the K-Net only spots
the Jamos. Later, using the detected classes and their corresponding locations, the
compound syllable is constructed.

3.2.4 Implementation for any Alphabetic Script

The design of this offline recognition framework is such that we kept the script

specific moderations on a separate domain keeping the core framework unchanged.

64

All the Abugida scripts (with vowel diacritics) can share the same framework with

Bangla by using a sequential spotting of characters and diacritics with two detec-

tion networks. Pure alphabetic scripts like Latin, Arabic, etc. can be implemented

just using a single detection network trained on their alphabets. We also showed

how to handle scripts with compound syllables with the Korean script. Writing

from right to left (like Arabic, Syriac) or top to bottom (Kulitan, Nushu) doesn’t

change the design core, but just the compilation order of transcription. Therefore

any alphabetic or alphasyllabary scripts (which are constituted of a finite alphabet)

can be implemented using this proposed approach.

3.3 Underlying Tools and Technology

The hierarchical architecture of this offline handwriting recognition framework

is presented in Fig 3.7. The core of this framework is an object detection network

which is trained to detect the characters or symbols. Afterwards, the detection

results are compiled to form a transcription which requires script specific imple-

mentation. At the end, there is an optional post processing (such as spell checking)

to further improve the result. This object detection network is developed from a

pre-trained neural architecture using transfer learning. Then it is trained using an

annotated dataset with standard data augmentation techniques. The green boxes

in Fig 3.7 signify the portion of this framework which is script independent, and

the red boxes highlight where script specific treatments are needed. Furthermore,

the choice of the object detection network, data augmentation and transfer learning

process are also flexible in this framework. This hierarchy is described in the

following subsections.

65

Figure 3.7: Hierarchical building block of the offline Handwriting Recognition
Framework. Green highlights the sections which are script independent and
orange highlights where the script specific details are implemented.

3.3.1 The Object Detection Network

As we mentioned, the choice of the core object detection network is flexible as

it has been separated from the rest of the architecture. We chose a Faster RCNN

architecture in our design. The Faster R-CNN, introduced by Ren et al. [86], is

a faster variant and extension of R-CNN (Regions with CNN features) and Fast

R-CNN. It provides almost real time object detection and has been used in many

applications in machine learning including document image analysis. R-CNN

and Fast R-CNN use a region proposal algorithm as a pre-processing step. In

the case of Faster R-CNN, this issue is addressed by implementing the region

66

proposal mechanism using the CNN, hence making the region proposal a part

of the training and prediction. The predicted region proposals are then reshaped

using a RoI (Region of Interest) pooling layer which is then used to classify the

image within the proposed region and predict the offset values for the bounding

boxes. The cost of its fast detection speed comes from a slower training time.

The applications related to handwriting recognition fields often require a faster

recognition and very rarely require a quickly trained network. The Faster RCNN

serves this requirement very well. Some other networks like YOLO (You Only

Look Once) [87] or many HMM based approaches can also be a contender to be

used in this framework.

3.3.2 Transfer Learning from VGG16 and Associated Parameters

No matter how successful it is, Deep Learning is notorious for being slow

in training time. Even with dedicatedly designed powerful GPUs, this is much

slower than most other conventional machine learning techniques. One way to

mitigate this problem is referred to as transfer learning and this approach has been

widely adopted. The idea is to use an already well trained network regardless of

what it was originally purposed for, and re-tune the structure and network weights

from that design. Not only does it make the process of network training much

faster, in most cases it ends up producing a better design as a whole.

In our designs, we selected VGG-16, one of the most widely used pre-trained

neural networks. It is sufficiently large to handle the large number of classes of

Bangla, and not so large that it would be considered an overkill. Again, the choice

of this network is flexible, any pre-trained network like VGG-32, RESNET, etc. can

67

be used with this approach. VGG-16 is a deep neural network introduced by the

Visual Geometry Group (VGG) from the University of Oxford at the ImageNet

Large Scale Visual Recognition Competition (ILSVRC) in 2014 [88, 89]. For our

requirements, the series VGG-16 architecture was transformed into a DAG (Direct

Acyclic Graph) structure to obtain a Faster R-CNN network, shown in Fig 3.8 with

the pre-trained model weights. The building block of any CNN architecture is the

convolution layer which is an application of a filter to an input that results in an

activation. Repeated application of the same filter results in a map of activations

(feature map) which indicates the locations and strength of a detected feature

in an input. The ReLU works on a piecewise linear activation function which

will output the input directly if it is positive or zero otherwise. The bounding

boxes around potential objects in an image are handled with the Region Proposal

Network (RPN) within the Faster R-CNN. A region proposal layer has two in-

puts - the classification scores produced by the RPN classification branch and the

bounding box deltas produced by the RPN regression branch. A RoI (Region of

Interest) max pooling network is used to output fixed size feature maps for all

rectangular ROI within the input feature map in a Faster R-CNN architecture. The

FC (Fully-Connected) layer takes input from the previous layer, calculates the class

scores and outputs a one dimensional array of size equal to the number of classes.

The SoftMax is an activation function that outputs a vector which represents the

probability distributions of all potential outcomes. In our design, the features

extracted from the ReLU5_3 (Rectified Linear Unit) layer was processed by a RoI

(Region of Interest) pooling layer with 7 × 7 feature map output size replacing the

last max pooling layer from the original VGG-16 architecture. All networks (C-Net,

D-Net and K-Net) for our experiments were developed with this architecture.

68

Figure 3.8: Layer graph of C-Net and D-Net, transformation of VGG-16 to a Faster
R-CNN

Stochastic Gradient Descent with Momentum (SGDM) was used for training.

The gradient descent algorithm updates the network weights and biases to min-

imize the loss function with small steps in the negative gradient direction of the

loss

θl+1 = θl − α∇E(θl) (3.1)

where l is the iteration number, α is the learning rate, θ is the parameter vector, and

E(θ) is the loss function. The gradient ∇E(θ) is estimated with the whole training

set. The standard gradient descent algorithm uses the whole dataset at once.

The stochastic gradient descent algorithm sometimes oscillates along the path

of steepest descent towards the optimum. One way of reducing it is by adding

a momentum term to the parameter update [90]. The stochastic gradient descent

with momentum update becomes

θl+1 = θl − α∇E(θl) + γ(θl − θl−1) (3.2)

where γ determines the contribution of the previous gradient step to the current

iteration. We used 0.9 as the value of momentum. The initial learning value was

69

set to 0.001 and the number of maximum epochs to 10. Negative trainings are done

during the process by setting an overlap range with Intersection over Union (IoU)

defined as:

IoU =
Area o f Overlap

Area o f Union
or,

area(A ∩ B)

area(A ∪ B)
(3.3)

where A and B are bounding boxes of the region proposal and actual value ob-

tained from the ground truth file. Overlap ratios up-to 0.6 were used for negative

training and higher values were considered positive. Lastly, the number of region

proposals to randomly sample from each training image was set to 64. Increasing

this number can obtain higher training accuracy at the costs of increased memory

usage and a slower training process. C-Net, D-Net and K-Net, all were trained

identically with these parameters, except for the difference in number of classes.

3.3.3 Data Augmentation

Data augmentation is a widely used technique to mitigate the problem of train-

ing with smaller datasets. This is a strategy that increases the volume and diver-

sity of data without actually collecting new data. Techniques such as cropping,

padding, stretching, adding skew, etc. are commonly used to generate augmented

data. In most cases it improves the performance of the system while in rare cases

it ends up making the system over-trained. At the beginning phase of creating the

Boise State Bangla Handwriting dataset (when the volume of data was insufficient

for proper neural training), we applied three basic but effective augmentation

techniques:

1. Shearing along the X-axis (between -5° to 5°),

70

2. Rotation (between -5° to 5°), and

3. Scaling along the X-axis (between 50 - 150% of the original image width).

Augmented samples were made by randomly drawing levels for all three of

these distortions simultaneously. For each word, we generated three additional

images, thus quadrupling the training set size. Sample augmentation images are

shown in Fig 3.9. Later as the dataset got bigger, we skipped this process.

Figure 3.9: Data augmentation: (a) original, (b), (c) augmentation with only X-
stretch of 150% and 50%, (d), (e) with only X-Shear of -15°and 15°and (f), (g) with
only Rotation of -5°and 5°.

3.3.4 Compilation of Detected Results into a Transcription

As the networks (C-Net and D-Net) detect the classes and locations of the

characters and diacritics present in a word, the information is compiled into a

transcription or plain text representation of the word image. To achieve this prop-

erly, we stepped through a series of processing steps which are described in the

71

following subsections as well as demonstrated with an example in Fig 3.10. This

step was done only for Bangla and not for Korean, since we used Korean only to

demonstrate the script-flexible nature of our character spotting recognition frame-

work. Note that the Korean transcription result can also be greatly improved using

such sequence of processing and this script can also share some of these steps

exactly as we did for Bangla.

72

Figure 3.10: Schematic of post processing for Bangla: (a) Original detections, (b)
Eliminating detections below threshold, (c) Prioritizing detection overlaps, (d)
Allowing empty spaces for possible detection miss, (e) Fixing order of characters
and diacritics, (f) Spell correction.

73

Eliminate Detections below a Threshold

All detections are returned with a confidence value. Detections below a certain

confidence threshold are considered to be unreliable and those were discarded

from the transcription. The threshold is defined from the worst detection result

of the networks. For C-Net and D-Net, the classes of (dirghô ū) and (ref) had

the worst detection performances with mAPs of 0.66 and 0.79 respectively. The

thresholds for these networks were decided from the Precision-Recall graph of

these worst classes with values that maximize the Recalls. In information retrieval

Precision is a measure of result relevancy, while Recall is a measure of how many

truly relevant results are returned. The Precision-Recall curve shows the tradeoff

between Precision and Recall for different thresholds. The values for the thresholds

are 0.72 and 0.81 for C-Net and D-Net respectively, which is further discussed in

Section 4.2 and shown in Fig 4.1.

Prioritizing Detection Overlaps

Many of the returned detections overlapped with each other. Some overlaps

were expected such as a C-Net and D-Net overlap when there is a character/con-

junct with a diacritic. Overlaps from a single network indicate multiple characters

in one place. This phenomenon is expected for both Bangla and Korean (and most

other scripts), because many characters/elements visually look like extensions of

other characters/elements, and Bangla conjuncts often look like individual charac-

ters merged together. An analogous example will be the visual relations between

Latin "c" and "e", or among "r", "n" and "m". A sample of C-Net detection overlaps

74

is demonstrated in Fig 3.11. We kept the largest bounding box discarding the

smaller detected bounding boxes that it encapsulates or overlaps with regardless

of their confidence score. The overlap was computed using the IOU Equation 3.3.

Figure 3.11: Sample of the detection overlap issue. Green boxes are the proper
detection and the all other colored boxex are detected look-alike sub-characters,
which are removed as errors

Allowing Empty Spaces for Possible Missed Detections

If two detection results have a large empty space in between them, the most

likely reason is because a character was missed in the detection. These potential

missed detection spots were identified and labeled with a blank character in order

to properly assess the total number of characters in words. This helps the spell

correction process described in Section 3.3.5. For Bangla, the following conditions

are considered to be caused by a missed detection :

1. Two consecutive C-Net detections having a gap larger than 50% of the width

of the first one is considered as a miss in detection, and thereby are filled in with a

blank character.

2. There can't be two consecutive diacritics, so either one of them is a false

positive, or there is a character missed in detection between them. For cases where

75

there is a big space gap between the two diacritics (set as 50% of the previous

detection width), a blank character is inserted between them.

Using Script Knowledge to Compile the Transcription

Some script specific rules are applied at this stage to put the transcription in

proper order, as well as to mitigate some of the detection errors. For Bangla the

following properties are exploited to have a better transcription:

1. Some diacritics spatially start before the character and some afterwards, but

with Unicode all the diacritics are encoded after their primary character re-

gardless of where they visually appear. Therefore in all the overlapped re-

sults from C-Net and D-Net, the C-Net results were ordered first. There is

one exception in the Unicode transcript with the conjunct class ’ ’ (Bangla

conjunct ’ref’), which appears more like a diacritic and was processed with

the D-Net. This actually appears before the associated character class in

formation as well as Unicode encoding. Hence, for this case the D-Net result

was placed prior to the C-Net one. The overlap was calculated in the same

way as Eq. (3.11). With this exception, all the detected results were sorted

with the xmin values of their bounding boxes.

2. A vowel can't have a vowel diacritic, therefore D-Net results overlapping

with a vowel were eliminated.

3. A vowel can't form a conjunct, therefore if a C-Net result implied that it

encapsulated a vowel with something else, based on confidence score one

of them was eliminated.

76

4. As already mentioned, there can't be two consecutive diacritics. This was

assessed by the space gap between the detected bounding boxes. For over-

lapped or tightly spaced detection, the diacritic with lower confidence was

removed.

All these accommodations described above are different than a spell checker. A

spell checker reduces the problem to a fixed vocabulary. These are mostly grammar-

based rules and still allow an open vocabulary. Although the accommodations are

script specific and therefore need to be modified for other scripts, most of the ideas

remain same for all Abugida script.

3.3.5 Spell Checking

For Bangla, a basic spell checker was designed to improve the word recognition

accuracy. This was particularly helpful at the beginning phase of this experiment

where the dataset wasn’t big enough for proper training. Later as the dataset grew,

we removed this process from the framework. For this, a Bangla word library

containing 450,000 words was used. With the corrections discussed in Section

3.3.4, the number of C-Net characters in a word was being estimated with 97.62%

accuracy. Therefore, the insertion or removal of a character (from C-Net classes)

was excluded from the edit distance calculation. With that we had:

Edit Distance =
ID + RD + SC+D

No. o f Elements Detected
(3.4)

77

where ID and RD are the numbers of insertions and removals required strictly

from the D-Net classes and SC+D is the number of substitutions required from all

classes. Words not included in the library were considered misspelled words and

were replaced by the ones with the least edit distance from the detection.

3.3.6 Performance Metrics

The performance of the detection networks (C-Net, D-Net and K-Net) and the

transcription unit were evaluated with Precision, Recall, mAP (mean Average Pre-

cision) values, F1 scores, WRA (Word Recognition Accuracy) and CRA (Character

Recognition Accuracy). Precision and Recall are defined as:

Precision =
TruePositives

TruePositives + FalsePositives
, (3.5)

Recall =
TruePositives

TruePositives + FalseNegatives
. (3.6)

mAP for a set of queries is the mean of the average Precision scores for each

query. The F1 score (a.k.a F score) is the geometric mean of Precision and Recall as

calculated by:

F1 = 2 ×
Precision × Recall

Precision + Recall
. (3.7)

WRA is the ratio of the correctly transcribed words, among all test words which

is the same as 1 − WER (Word Error Rate). CRA is 1 − CER (Character Error

Rate), where CER measures the Levenshtein distance normalized by the length

of the true word. The Levenshtein distance between two words is defined as the

78

minimum number of single-character edits (insertions, deletions or substitutions)

required to change one word into the other [91].

3.4 The Boise State Bangla Handwriting Dataset

3.4.1 Overview

One of the major difficulties with any machine learning problem is to prepare a

dataset for training. Sometimes there are datasets developed by other researchers

that are available for free and public use. Unfortunately, when we started this

research there was no dataset available for offline Bangla handwriting which could

be used with the proposed approach. There are some public Bangla datasets as

discussed in Table 2.1, but none of them have character level ground truth position

tags, which is a crucial metadata for character spotting. Therefore we created our

own dataset which we call the "Boise State Bangla Handwriting Dataset" or the

Boise State dataset [92]. This project was approved by the Institutional Review

Board (IRB) at Boise State University. The dataset is freely available in the Boise

State ScholarWorks at https://doi.org/10.18122/saipl/1/boisestate.

The Boise State Bangla Handwriting dataset contains both isolated characters

and essay scripts all tagged at the character, word and line levels with associated

ground truth metadata. This ground truth tagging is one of the key features of this

dataset which other public Bangla datasets do not have. Participants from a variety

of ages and professions contributed their handwriting samples for this dataset and

their demographic metadata were also recorded. The text content was carefully

https://doi.org/10.18122/saipl/1/boisestate

79

crafted so that it covers almost the entire Bangla script. Furthermore, the volume

of this dataset is large enough to facilitate all kinds of approaches including Deep

Learning. The details of the content and the tools developed to process this dataset

are described in the following subsections.

3.4.2 Description of the Dataset Content

The Boise State Bangla Handwriting dataset has three kinds of content: a page

of isolated components, an essay script and a number of conjunct heavy words.

These are described next.

Isolated Component Document

The isolated components document of the Boise State dataset contains all 50

basic characters, 10 numbers, all 11 vowel diacritics with a consonant, ’ ’ and

10 high frequency conjuncts. Fig 3.12 shows the content of this page in machine

printed form as well as a camera-acquired and a scanned sample from the dataset.

The purpose of this is to facilitate the isolated character recognition research which

is important for applications as discussed in Section 2.2. There are 253 pages each

written by a different writer.

80

Figure 3.12: (a) Machine printed version, (b) a camera-acquired sample and (c) a
scanned sample of the isolated component document from the Boise State Bangla
Handwriting dataset.

Essay Script Document

The second part of this dataset is an essay script, which is carefully scripted

to contain all Bangla basic characters (except ’ ’, which rarely appears in its basic

form), all possible vowel diacritics and 32 high frequency conjuncts. Fig 3.13 shows

the content of this script in machine printed form with English translation as well

as a camera-acquired and a scanned sample from the dataset. The script contains

a total of 104 words or 364 characters. The words used are mostly common and

frequently used Bangla words. There are 253 pages of this script each written by

the same writer group as the isolated component document.

81

Figure 3.13: (a) Machine printed version, (b) English translation, (c) a camera-
acquired sample, and (d) a scanned sample of the essay script from the Boise State
Bangla Handwriting dataset.

Conjunct Word Document

The third part of this dataset is a page of words containing the most frequently

used conjuncts in the Bangla script. This was presented as a script format to the

82

participants, not as a list of words. Fig 3.14 shows the content of this conjunct word

document in machine printed form with English translation as well as a sample

from the dataset. This document contains 128 high frequency conjuncts as shown

in the conjunct column of Fig 3.4. These conjuncts were selected by surveying

Bangla literature from books, web sites, magazines, etc. Our study shows these

128 conjuncts covers 99.7% of the complete Bangla script. Even from this list,

some of the words were so rare that many participants had difficulties recognizing

those words. The point of this is to ensure we cover the Bangla script as much as

efficiently possible, keeping the dataset processing manageable. Beyond this, the

remaining conjuncts not included in our dataset are mostly used to write names

(or other nouns) which are translated from a different language. Along with the

conjuncts, this page also contains some basic characters and diacritics. There are

70 samples from 70 different writers for this document.

Figure 3.14: (a) Machine printed version, (b) English Translation, and (c) a sample
of the conjunct word document from the Boise State Bangla Handwriting dataset.

83

3.4.3 The Data Collection Process

The participation of the volunteers for this dataset was anonymous. The target

content was provided in machine printed form as shown in Fig 3.12 (a), Fig 3.13

(a) and Fig 3.14 (a). Contributors copied the content on their own blank paper.

The type of pen, pencil, paper and other writing environment were not specified

to the participants in order to produce data with unconstrained handwriting. The

conjunct word documents were digitized using only a flat-bed scanner. The rest

of the documents were digitized in two ways - using different cellphone cameras

and a flat-bed scanner as well. The cellphone acquired images were cropped and

skew corrected and stored in "jpg" format. These images were captured using

different cell-phones with different camera specifications. The resolutions of these

images vary from 100 to 300 dpi with an average around 200 dpi. The scanned data

were stored as "tif" in 300 dpi without any cropping or skew correction. No color

alteration, resizing or filtering was done to any of these images. Digitizing data

in multiple ways gives a natural form of data augmentation which is very useful

for training. Furthermore, the data creates an opportunity for different kinds of

experiments, one of which is described in Section 4.3.

3.4.4 Ground Truth Tag and Other Metadata

All data of the Boise State dataset were tagged with associated ground truth

from all possible levels. The term "tagging" is used here to refer the process of

finding bounding boxes that encapsulate the characters, words and lines from the

document image, and storing the coordinate information along with the ground

84

truth character, word, line labels in a separate metadata file. The bounding box

coordinate values are stored with xmin, ymin, height and width values. To keep this

simple, we stored the metadata in a plain text (*.txt) file. A sample of the ground

truth tag file with overlays on the data images for each kind of documents in the

dataset is shown in Fig 3.15. We developed a set of special tools to achieve this as

will be described in Section 3.4.6.

Figure 3.15: Samples of ground truth tag metadata of the (a) isolated component
document, (b) essay script, and (c) conjunct word document from the Boise State
Bangla Handwriting dataset. The left images show the tag overlay on the docu-
ments and the right images show the recorded metadata.

We also saved the basic demographic information of gender, age, profession

and left/right handedness information of the writers along their writing samples

for the isolated components and essay script documents of this dataset. This added

85

metadata opens up the possibility of future demographic based research. The

demographic distribution of the acquired data is shown in Fig 3.16.

Figure 3.16: Demographic distribution of the writers for the Boise State Bangla
Handwriting dataset. From left to right it shows the quantity and distribution of
gender, right/left handedness, age and profession distribution of the participants.

3.4.5 Comparison with Other Public Datasets

The attributes of the Boise State Bangla Handwriting dataset together with

the attributes of the other publicly available datasets from Table 2.1 are shown

in Table 3.1. The ground truth tagging of the scripts at the character level is one

of most the notable features of this dataset. No other public dataset for Bangla

has character level ground truth information, which is crucial for our character

86

spotting framework.

Table 3.1: The Boise State Bangla Handwriting dataset compared with other pub-
licly available datasets introduced in Table 2.1

Attributes
CMATER

Dataset [78]

ISI

Dataset [83]

BanglaLekha

Isolated [84]

NewISIdb

HwW & HwP [67]

Boise State Bangla

Handwriting Dataset [92]

Isolated Basic Characters 15,000 30,000 98,000 Present∗ 12,650

Isolated Numbers 6,000 23,000 19,000 Present∗ 2,530

Isolated Characters with

Vowel Diacritics
None Present∗ None Present∗ 2,783

Isolated Consonant Conjuncts 42,000 Present∗ 47,000 Present∗ 2,530

Essay (# pages) 150∗∗ None None 107,550 words 323 Pages

Ground Truth

Metadata

Line and Script

Level Information∗∗

N. A. N. A. Word Level
Character, Word, Line and

Essay Level Information

Accessibility Open On Request Open On Request Open

∗Exact numbers couldn’t be found.

∗∗Couldn’t be accessed during the time of writing

3.4.6 Tools Developed for Preparing the Dataset

In order to process the collected data, several applications were developed.

These are quite versatile and can be reused for other similarly structured data

regardless of what script it is. There are three tools developed in total as described

in the following.

Tool for Data Tagging

Since we knew in advance what the text content would be on a particular

document type of this dataset, a data tagging tool was developed to help draw the

bounding boxes around each character/word/line and assign the text to that box.

This tool first allows the user to edit the ground truth text content of the document

87

being processed, since in many cases the writers misspelled some words or totally

missed a few. Afterwards the interface guides the user through the image to tag

co-ordinates of all the characters in a rectangular way. It provides a control to zoom

in or out as well as a navigation thumbnail to increase the convenience of finding

the right spot on the page. During the operation it keeps track of how much text

is already labeled and displays the next character of the specific word and line to

be tagged. At the end, it creates a text file with all the line, word and character

co-ordinate information. There were two versions of this app, one for the essay

scripts and the other for the isolated character images. The working interfaces of

these applications are shown in Fig 3.17. The samples of the resulting ground truth

files are shown in Fig 3.15 (d, f).

88

(a) Essay Page Ground Truth Tagging Interface

(b) Isolated Components Document Ground Truth Tagging Interface

Figure 3.17: Working interfaces for the ground truth tagging application of (a)
the essay script and (b) the isolated components document from the Boise State
dataset.

89

Tool for Tag Verification

Another application was developed to verify the ground truth file with its

corresponding image to scrutinize the content for mistakes. This tool can de-

tect automatically whether it’s an essay script or an isolated character page and

changes its behavior accordingly. It receives the text file and the image as inputs

and displays the image with overlay of the co-ordinates. Multiple color schemes

were used for better visualization. A sample case is illustrated in Fig 3.18.

Figure 3.18: The tag verification application interface.

Tool for Tag Transfer between different Acquisition Sources

As mentioned earlier, all the data (except for the conjunct word pages) were

digitized using cell phone cameras and also a flat bed scanner. In order to min-

imize the effort required for tagging the same data already tagged in an image

90

from a different acquisition source, this application was developed to transfer

the tagging information from one image to the other by applying a geometric

projective transformation. This tool displays the two images and asks the user to

highlight a few pairs of corresponding points. The minimum number of points it

requires is 4, but usually more are required to produce a better transfer operation.

Using these control point pairs it aligns the pages and updates the co-ordinates

by warping. Then it displays the result with a highlighted image, where the user

can decide if he/she wants to add or modify any points. Once the user confirms

that he/she is satisfied with the result, it stores the transformed co-ordinates in the

same format as the original. Zooming and navigation interfaces were provided as

well as a multicolor scheme was used for fast and easy operation. Also, a feature

was added with which the user can set the horizontal or vertical offsets for shifting

large group of co-ordinates. This application drastically reduced the labor and time

of manually tagging the same image already acquired from a different source. A

portion of the working interface of this application is shown in Fig 3.19.

91

(a) Working interface for transferring tag data

(b) Display of fusion of the images to verify the transfer

Figure 3.19: Tag transfer application (a) the working interface (b) Display of an
overlay of the images to verify the operation.

92

3.4.7 Benchmarking the Boise State Dataset with an Isolated Character Recog-

nizer

An isolated character recognizer was developed with a conventional machine

learning approach to benchmark the Boise State Bangla Handwriting Dataset against

three other publicly available datasets described in Section 3.5.1 [93]. The isolated

characters (mostly in alphanumeric format) frequently appear in numerous places

- such as document identifiers, forms, postal headers, house addresses, encrypted

codes with confidential letters, handwritten flyers, posters, notices, banners, in-

vitation cards, bank checks, tickets etc. in Bangladesh and a portion of India.

Therefore, this research has its own potential to contribute to many common tasks

such as machine sorting, task automation, etc. We used an SVM classifier based

on a cubic kernel with extracted features based on zonal pixel counts, structural

strokes and grid points with U-SURF descriptors modeled with bag of features.

The details of this process are described next.

Pre-Processing

Before the features were extracted, all the sample images were preprocessed.

First, a 2D Gaussian smoothing filter with standard deviation of 0.3 was applied.

Then the color and grayscale images were converted to binary images using a

threshold obtained using Otsu's method. The data from the BanglaLekha dataset

[84] were originally binarized, therefore they were used without these two steps.

Afterwards, area filtering was done to remove isolated small objects with an area

less than 80 square pixels. The images were cropped to leave one blank or back-

93

ground pixel row and column on each edge. At the last stage, these were resized

into a fixed height of 128 pixels, with a variable width to preserve the original

aspect ratio.

Feature Extraction

Three categories of features were used for recognition. These are referred to as

Zonal, Pattern and Gradient features.

For the Zonal Features the character images were split into equal 8 × 8 zones.

From the binary images, where ‘1’ represents the dark or object pixel and ‘0’ rep-

resents the white or background, the features are computed as

Rij =
Sum o f all Pixels

Area o f the block
i/j = 1, 2, ..., 8. (3.8)

This creates a 64-bit vector mapping of different zonal footprints of the characters.

This approach with different zone dimensions was also used by Bhattacharya et al.

[83] to recognize basic Bangla characters.

For the Pattern Features processing was done to extract stroke directions for

the samples. At the first stage, using a morphological operation the interior pixels

of the object were removed leaving a thin outline of the connected border pixels

[94]. All the connected objects in a column are replaced by only one center element

of that object. The top- and left-most pixel is counted as the first key point and

a column-wise search operation traces the stroke edge. The character boundary

contour is followed. Points where the direction transitions from left to right, right

to left, up to down or down to up are considered as other key points. If the

94

boundary leads to a dead-end or a branch with a length less than 1/4 of the

image height, the trail is removed. If two key points are very close (measured

by a Euclidean distance less than 1/25 of the image height), the later one from (the

tracking direction) is removed. After these stages, a minimal clean outlined version

of the characters are found with the highlighted key points. Next, the angles of

the straight lines connecting adjacent key points are calculated. These angles are

quantized in 45◦ intervals (8 compass directions). Then the Euclidean distances

between interconnected adjacent key points are computed. Adjacent lines having

the same angle (after quantization) were merged and any connection less than

a threshold (1/5 of the image height) was ignored. The resulting connections,

which represent the stroke direction pattern feature of the sample characters, are

represented using a numeral string.

Fig 3.20 shows the various stages for obtaining these stroke direction pattern

features and a few samples of the strings obtained for particular classes. After-

wards, a histogram of the unit elements and bigrams of these representative strings

were taken as features. A total of 64 features were obtained in this process. These

were normalized before being used as the second portion of the feature vector.

Lastly, the length of all the combined strokes of vertical lines (‘2’s and ‘8’s),

positive slants (‘3’s and ‘7’s) and negative slants (‘1’s and ‘9’s) are calculated, nor-

malized and used as a 3 dimensional feature vector along with the pattern features.

The horizontal strokes (‘4’s and ‘6’s) are ignored in this case, because the majority

of these strokes belong to the Matra. The use of the Matra varies significantly

depending on handwriting style and never causes a misclassification of the basic

characters. Some conjuncts and numbers have some conflicting attributes with the

95

basic characters based solely upon the presence of this Matra, but since this work is

only for the basic characters, the horizontal stroke contributions are totally ignored

in this stage.

Figure 3.20: (a) to (h) illustrate the process of obtaining the pattern features for a
sample character

For the Gradient Features, a uniform 8 × 8 grid was created on the sample.

Upright Speed Up Robust Features (U-SURF) [95] were extracted from the inter-

section of the grid lines. U-SURF is a high performing scale invariant interest point

detector and descriptor, although here only the descriptor was used to obtain the

feature vector. Patch sizes for multi-scale extraction were selected as blocks of 32,

64, 96 and 128 square-pixels around the center. The upright version of SURF is

not invariant to image rotation which makes it computationally faster and better

suited for the cases where the camera remains more or less horizontal. The feature

descriptor is based on the sum of the Haar wavelet response around the point of

interest. The responses are then weighted by a Gaussian function with the interest

point at its center and addressed as points in a 2D space with abscissa and ordinate

96

as the horizontal and vertical responses. The summation of the horizontal and

vertical responses forms a local orientation vector. To describe the point, a square

region around that point is extracted, divided into 4 × 4 square sub-regions, and

each the Haar wavelet responses is approximated at 5× 5 regularly spaced sample

points. 80% of the strongest features from each sample were kept and fed into a

bag of features model.

As we discussed in Section 2.3, Bag of Features representations have become

very popular for their simplicity and great performance, and have been used in

handwriting recognition quite frequently [58, 54, 96]. The basic idea of this ap-

proach is to take a set of local image patches (in this case U-SURF descriptors) and

convert the vector-represented patches into codewords, which can be considered

as representative of several similar patches. The collection of all the codewords is

referred to as a codebook. This terminology is analogous to the concept of words

and a dictionary from a document corpus. Afterwards, using K-means clustering,

a 500 word visual vocabulary was prepared. Each patch in an image was mapped

to a certain codeword and the image was represented by the histogram of the

codewords.

From the zonal, pattern and gradient features a combined 631 dimension fea-

ture vector is prepared and fed into the classifier. Fig 3.21 shows the overview of all

these feature points extraction from the pre-processed image of a sample character.

97

Figure 3.21: The extraction process of all feature points. The (a) pre-processed
image, (b) zonal features, (c) pattern features, and (d) gradient features.

Classifier

A Support Vector Machine (SVM) was used on the feature vector obtained

from the character samples. An SVM is designed for two-class pattern recognition

problems. Multi-class SVMs are realized by combining several two-class SVMs.

Here, a OVO (One Versus One) multi-class classifier was used as it offers better

accuracy. The classifier was tuned with a cubic kernel. A cubic kernel is defined as

K(x, y) = (xTy + c)3 (3.9)

where x and y are the feature vectors in the input space. The higher degree poly-

nomial allows a more flexible decision boundary. Although non-linear SVMs are

expensive to train, they performed significantly better than the linear SVMs in this

case. All the features are normalized prior to the classifier input.

98

3.5 External Datasets used for the Experiments

3.5.1 External Bangla Datasets used for Isolated Character Recognition

To benchmark the character set from the Boise State Bangla Handwriting dataset

(described in Sections 3.4.7 and 4.1) we used three other publicly available datasets:

1. CMATERdb 3.1.2, developed by the Center for Microprocessor Application

for Training Education and Research (CMATER) in the Computer Science and

Engineering Department of Jadavpur University in Kolkata,

2. ISI handwritten basic Bangla characters, developed at the Indian Statistical

Institute (ISI), Kolkata, India and

3. BanglaLekha-Isolated database, developed by the Information and Com-

munication Technology (ICT) division, Bangladesh.

Further details of these datasets were presented in Section 2.4 and Table 2.1.

Only the isolated basic characters from these datasets were used to benchmark the

Boise State isolated character dataset.

3.5.2 External Bangla Datasets used for Transcription Evaluation

One of the best ways to test the strength and robustness of a recognition system

is to test with a dataset which is completely different than the one with which

it was originally trained. With this aim we used three other datasets to test our

Bangla recognition framework. These are all different from the native Boise State

99

Bangla Handwriting dataset as they are:

• Developed in Kolkata, India. The Boise State Bangla Handwriting dataset,

with which our detection networks were trained, is made of contributions

from people all from Bangladesh. Although the script is the same, there

are differences in handwriting between these two countries. This might not

be instantly apparent to most people, but could be substantial in machine

learning.

• Collected with different acquisition processes, such as different scanner, set-

tings, pre-processing, paper type, etc.

• Different in context. They all contain many different words or compositions

which our system had never seen during training.

• Written by entirely different set of writers with different demographic distri-

bution. Therefore a test with these datasets can ensure our offline recognition

framework does not have any bias to a particular type of demographic.

In a sense, the success with these datasets actually reflects the true potential of

our presented offline recognition system in the real life practice. The descriptions

of these datasets are briefly discussed in the following and a sample from each of

them are shown in Fig 3.22.

CMATERdb 1.1.1 [79, 78]

The CMATERdb 1.1.1 is one of the oldest and most used datasets for offline

Bangla handwriting research. CMATER stands for Center for Microprocessor Ap-

100

plication for Training Education and Research, developed at the Computer Science

and Engineering Department, Jadavpur University, Kolkata, India. This contains

100 pages of unconstrained handwritten documents scanned and stored in 24-bit

BMP format. Although, there are no transcriptions publicly available for this

dataset, the CMATER group provided us with segmented word coordinates for

a few of these documents.

Indic Word Dataset [97]

This is a relatively new dataset compared to the CMATERdb 1.1.1. The content

of this dataset is segmented Bangla word images, not pages. This also comes with a

transcription for each word, therefore we could use our framework on this dataset

almost instantly. Instead of standard Unicode they used Latin counter-forms for

Bangla characters, which we needed to convert before using this dataset. Right

now this dataset is not publicly available and we are grateful to Pradeep Kumar

to sharing this with us for testing. This contains 17,091 handwritten word samples

with 1,736 unique words. The words are collected from 60 handwritten document

images by writers of various professions. We tested our system with the test set

from this dataset which contains 3,856 words.

101

Figure 3.22: Samples from the other datasets on which our framework was tested.

REID2019: Early Indian Printed Documents [98]

The REID2019 dataset is not an offline handwriting dataset, rather it is a set

of scanned historical printed documents. Regardless of this major difference in

document type, we still wanted to test our system’s strength with this. Historical

documents are often very tricky to deal with because over the ages they suffer

102

from tears and are worn, which results in many different distortions. Additionally,

the content used here is almost archaic and many words are rarely used today.

Since our approach doesn’t depend on any restricted vocabulary, this was very

interesting to see how it handles worn out archaic printed documents. Originally

this dataset was used for a competition at the ICDAR (International Conference on

Document Analysis and Recognition) conference. This has many kinds of meta-

data that our system depends on, thereby the testing process was relatively easy.

The transcription and word level coordinate information was provided with this

dataset, therefore this too was instantly applicable to our approach.

3.5.3 Korean Dataset used for Syllable Recognition

We used only one dataset to test the functionality of our method on the Korean

script. This is called the PE92 dataset [51], which is one of the most popular

Korean handwriting datasets. This was collected by POSTECH, funded by ETRI

(www.etri.re.kr) in 1992. It is a large dataset containing images of 2350 classes

of syllables (not Jamos) and about 100 instances of each class, roughly 88% and

12% of them are labelled as training and test sets respectively. The ground truth is

available at the syllable level, but not at the basic character or Jamo level which we

needed. We used both manual and autonomous tagging on a small subset of this

dataset, details are provided in Section 4.4.2. This was a small scale experiment

just to demonstrate how the recognition framework is scalable to fit other scripts.

www.etri.re.kr

103

3.6 Autonomous Tagging

3.6.1 Background and Motivation

One of the most time consuming parts of preparing a classifier is collecting and

annotating datasets. In this section, we present a simple yet extremely powerful

idea which can drastically reduce the manual effort and time required to pre-

pare an offline handwriting dataset that can be used with our character spotting

method. The term "Autonomous Tagging" is used here to refer to an automated

process of drawing bounding boxes at the character level on handwritten word

images. Like the character spotting algorithm, the autonomous tagging technique

is also flexible and can be used for any alphabetic writing system. Here we demon-

strated the process with Bangla and Korean using the Boise State Bangla Handwrit-

ing dataset and the PE92 Hangul dataset.

Preparing a dataset is a major problem in the field of offline handwriting recog-

nition. Not only is it tedious, the manual process is susceptible to human errors,

which can cost more than the approach itself in terms of system performance. As

we described in Section 3.4, the Boise State Bangla Handwriting dataset contains

more than 323 pages of handwritten Bangla script with approximately 104 words

or 364 characters per page. In order to develop and test our character spotting

framework, all the words from this dataset needed to be tagged with their as-

sociated ground truth at the character level. This process involved roughly 600

hours of work, equivalent to a full-time job for almost 4 months - all for just one

script. This time estimate includes using tools to facilitate the process and excludes

104

the time required for the tool development or data acquisition. Furthermore, it

is a fatiguing process to do the tagging without making errors, which are really

difficult to spot and fix later even with the tools described in Section 3.4.6. All

these issues make this process so costly that there are a limited quantity of such

datasets publicly available for open research. For example, none of the public

Bangla datasets has character level location information and most of them do not

even have word level ground truth tags as we presented in Table 2.1.

The process presented here is not intended to segment the characters, although

some under-segmentation approaches may be used with our idea of autonomous

tagging. A character segmentation algorithm requires much more precision and is

usually combined with an isolated character/element recognition system to obtain

a transcription. As we discussed in Section 2.2, segmentation-based approaches

have not been very successful on handwritten text, and thereby are often dis-

couraged in current research. An under-segmentation process attempts to enclose

the target character in a large bounding box prioritizing the correct capture of

the entire character more than the possibility of including the adjacent elements.

Segmentation is a heavily script dependent process and is very tough to achieve

correctly, especially with cursive and connected scripts. The autonomous tagging

approach presented here is not intended to, nor it is precise enough to pre-segment

the characters to be used later by an isolated character recognizer, rather it esti-

mates the character locations with a loosely fit bounding box, which can later be

used with a detection based transcription module like in the presented recognition

framework. This type of estimation work has been attempted before, but mostly

for printed words like Xu and Nagy’s prototype [99].

105

With all the modern modeling techniques and tools, many researchers ask whether

in order do unconstrained handwriting recognition, we need a dataset prepared

with character level ground truth at all. This can be answered better by the fact

that for Bangla prior to the existence of the Boise State dataset, there were no

vocabulary free works or approaches reported which could dependably recog-

nize unconstrained handwriting. As we discussed in Section 2.3, there are some

works which recognize words as a whole unit [64, 65, 66], but they only work on

a heavily restricted vocabulary and are useful only in specific applications such

as postal automation. So no matter how difficult the preparation process is, it

is actually very crucial to have such detailed datasets for handwriting research

development. This is true not just for Bangla or Korean, but for most scripts.

Many approaches, especially with object detection algorithms, rely on datasets

with detailed annotated ground truth. Here, we present an approach for obtaining

this kind of annotation with a dataset, but without the need for intense manual

labor. Although the idea can be applied to almost any writing system, the process

is not fully generic and has to be adapted to the attributes of each script. We

tested this process with segmentation-free offline Bangla and Korean handwriting

recognition, our character spotting framework, and compared the performance

with the approach based on accurate manual tagging.

3.6.2 Effect of Tag Variance

Most datasets with ground truth tags are concerned with getting the tightest

and most accurate bounding boxes for each script element and connecting a label

to it [100]. The first study we describe consists of expanding the boundaries of

106

the precise manual ground truth tags or bounding boxes to observe how critical

the precision is to the recognition method. Each character from the Boise State

dataset was labeled using a rectangular box. As shown in Fig 3.23, we increased

(or decreased) the width of these bounding boxes by an amount of -10%, 10%,

20%, 30% and 40% while keeping the height at the initial level (which is generally

the word height) and recorded the detection performance in terms of mAP and F1

scores.

Figure 3.23: Bounding box widths were varied from the green box indicating the
accurate location to -10%, +10%, +20% and +30% as shown by boxes of oranges
and yellows.

The impact of changing bounding box widths on the recognition performance

was measured with mAP, F1 score , CRA and WRA. These parameters are defined

in Section 3.3.6. All values are converted to percent scale. The results are presented

in Table 3.2. Fig 3.24 shows a plot of all these performance parameters versus the

tag variations. As seen, while there is a decrease in performance as inaccuracies

are introduced in the tag boxes’ locations, the amounts are small. The system

works with extended boundaries very well, but not when it is shrunk, since in

many cases defining attributes of the characters/diacritics get cut off from the

edges. But when extended, the performance degradation with the introduced

107

inaccuracies of tagging is minimal even at the 40% level. We used this observation

as a foundational idea in our autonomous tagging approach.

Table 3.2: Detection Performance with Tag Width Variation

% of
Width Variation

C-Net D-Net Transcription
mAP F1 mAP F1 CRA WRA

Decrease by 10% 85.06 91.20 88.69 92.41 91.90 80.94
Precise (0%) 91.41 95.08 92.77 95.38 93.61 86.80
Increase by 10% 91.13 95.02 92.32 94.59 93.24 86.14
Increase by 20% 90.04 94.35 92.06 94.38 93.07 85.90
Increase by 30% 89.39 93.85 90.73 93.73 92.71 84.72
Increase by 40% 87.44 90.08 89.04 90.42 92.39 82.28

Figure 3.24: Plots of detection performance with tag width variation.

3.6.3 Basic Idea of Autonomous Tagging Process

The autonomous tagging process first estimates the locations of the characters

inside a word and then extends the boundaries to an amount so that even allowing

108

for variabilities in handwriting, the target character is most likely to be somewhere

inside that extended bounding box. This is possible since we already observed that

extending bounding boxes of ground truth tags does not considerably impact the

detection performance. The details of the process for initial location estimation

and boundary extension for Bangla and Korean are presented in the following

subsections.

3.6.4 Implementation for Bangla

The initial location estimation of the characters and diacritics for handwritten

Bangla words are approximated from a machine printed version of the ground

truth text. The process is explained with an example in Fig 3.25 for a three char-

acter word. Here W indicates the total width of the word composed by the three

characters (including diacritics) with widths of X, Y and Z. The subscripts H, P

and E represent the handwritten, printed and estimated character widths respec-

tively. The width of the printed characters (including diacritics) are measured from

the machine generated font, from which they are proportionately imposed on the

handwritten word with a width extension factor of η. For this experiment η was

chosen to be 20%, 30% and 40% of the initial estimated width reflecting the obser-

vation from our tag variance experiment described in Section 3.6.2. This created 3

images for each estimate all of which were used for training, which is analogous

to the 3 augmented images created during training for the original manual-tag

training [85]. Thereby, the number of training samples for both experiments are

the same. All estimated widths are extended by η/2% on both sides except for the

boundary characters, which are extended by η/2% only on the interior edge.

109

Figure 3.25: Example of autonomous tagging from a printed font for a three charac-
ter Bangla word. Based on the character widths obtained from the machine printed
text (∗P), the widths of the characters and associated diacritics in the handwriting
are estimated (∗E).

The tagging and recognition work process is shown in Fig 3.26. This example

shows the boundaries around the Bangla character ‘ ’ after autonomous tagging

for the training. The object detection network is trained to locate the same charac-

ter from a given boundary, but the boundary actually contains most of the target

character and some extra parts around it. These parts can be a diacritic, or can

be a chunk from the prior or next character or diacritic. Furthermore, these extra

undesired elements can be anywhere (left, right, top or bottom) and will not have

a fixed pattern. This phenomenon over the iteration of neural training prepares

the network to treat anything different from the target character as arbitrary and

not important for the decision. However there is a cost of training an object de-

tection network in this format. The location of the character can not be precisely

identified since it was not trained with accurate locations. Therefore, the network

110

can confidently predict the class, but only vaguely predict an area within which

the character is located as shown in Fig 3.27. This is not a problem for handwriting

recognition, since we only need the relative positions of characters or diacritics

with respect to the others. This particular drawback doesn’t impact the transcrip-

tion accuracy by a noticeable amount.

Figure 3.26: The schematic illustration of how autonomous tagging works. Each
character is boxed with variable widths for training. The position of the learned
character is shown in the test words.

For the printed font we used ‘Akaash’ which we empirically found has a nice

match with typical handwritten shape proportions. Additionally most of the time

people include a larger space before punctuation in handwriting than appears in

machine print, therefore, we inserted one blank space before each punctuation

mark to obtain a better estimate.

The difference in performance from autonomous tagging versus precise la-

belling actually comes from the eccentric property of human handwriting. No

matter how good the initial estimate is or how robust the network performs with

width tampering, there will be some cases where the autonomous tagging misses

111

the target character/diacritic completely or a major structural part of it. A similar

situation can also happen from manual labeling since that process is very error-

prone. In both cases, this issue can be solved by increasing the volume of the

dataset. With more data, the ratio of proper labeling to mislabels gets higher and

the network gets enough good samples to be effectively trained. Preparing larger

quantities of data is significantly more convenient with an autonomous tagging

framework than using manual annotation.

Figure 3.27: Detection from the networks trained with manual (left) vs. au-
tonomous tagging (right).

3.6.5 Implementation for Korean

For Korean we used a much simpler approach for the initial character size and

position estimation. This is related to the well-defined structure of the Hangul

syllables. Unlike Bangla, the Korean characters can also appear above or below

each other. We obtained a list from the Unicode foundation of how every Uni-

code Hangul syllable was composed of its three constituent parts: lead consonant,

vowel, post-consonant. We identified whether the vowel was a vertical symbol

that would appear on the upper right of the syllable, a horizontal symbol that

would appear below the lead consonant, or a compound vowel that would appear

with one component in both geometric places. Similarly it was determined if

112

there was no post-consonant, if the vowel was followed by a single Jamo or by

a compound of two Jamos. The height (or width) was then divided into 1, 2 or 3

zones and that distance apportioned to those symbols with some additional buffer

size. This resulted in the 8 different geometric structures of Hangul composites

shown in Fig 3.28.

If there are two Jamos over the vertical (horizontal) span of the syllable, the

initial zone height (width) estimate for each Jamo is 50% of the whole syllable

height (width), like the structures shown in Fig 3.28 (a) through (e). Just like the

Bangla character widths were increased, this base estimate of 50% is used, even

if the specific Jamos do not have the same height (width). The estimate of 50%

is increased for each zone to guarantee the handwritten Jamo is included, and to

produce overlap between the Jamo zones. For cases where there are three Jamos,

like the structures shown in Fig 3.28 (f), (g) and (h), the initial height estimate is

33%, which is then extended.

To expand our training set similar to with Bangla, we allowed three different

extensions. For the two Jamo partition, the initial size estimate of 50% was in-

creased to 60%, 70% and 75%. For the three Jamo partition, the initial size estimate

of 33% was increased to 40%, 45% and 50%.

Machine printed fonts could have also been used for Korean the same way we

did for Bangla to account for when the Jamos don’t have equal heights or widths,

but this approach is simpler and works well.

113

Figure 3.28: Initial estimated bounding boxes of the Jamos from a compound
Korean syllable. Widths and heights are divided into 2 or 3 zones based on to
which geometric structure from (a) to (h) it belongs.

We tested all the designs and tools we introduced in this chapter through a

number of experiments. The setup and outcome of these experiments as well as

the analysis comparing on results with other equivalent works (if available) are

presented in Chapter 4.

114

CHAPTER 4

RESULTS AND ANALYSIS

In Chapter 3 we introduced our offline handwriting recognition framework as well

as the supporting tools and algorithms like the Boise State dataset, autonomous

tagging, etc. Also we explained the experimental arrangements to verify and

validate everything we designed. In this chapter, we discuss the execution and

outcome of these experiments as well as the implication and analysis from these

results. The following is a list of the experiments that will be discussed in the rest

of this chapter -

1. Benchmarking the isolated character set in the Boise State Bangla Hand-

writing dataset with other publicly available datasets using the isolated character

recognizer described in Section 3.4.7.

2. Testing the proposed character spotting offline recognition system intro-

duced in Section 3.2 for Bangla using the Boise State dataset as well as the three

other Bangla datasets mentioned in Section 3.5.2. The details of this experiment

were discussed in Sections 3.2.2 and 3.3.

3. Testing the proposed character spotting offline recognition system for Korean

in the process described in Sections 3.2.3 and 3.3.

115

4. Comparing character spotting recognition performance when using autonomous

tagging vs. precise tagging on the training data. Autonomous tagging was im-

plemented both for Bangla and Korean as described in Sections 3.6.4 and 3.6.5

respectively.

5. Comparing character spotting and isolated character recognition perfor-

mance between camera-acquired and scanned images.

4.1 Benchmarking Isolated Character Set in the Boise State Bangla

Handwriting Dataset with Other Publicly Available Datasets

As we discussed in Section 3.4.2, a part of the Boise State Bangla Handwrit-

ing dataset is a collection of documents with isolated components which have

handwritten samples of the basic characters, diacritics, numerals and some high

frequency conjuncts. Upon launch of the Boise State dataset, we also prepared

an isolated basic character recognizer to benchmark our dataset with three other

similar public datasets [92, 93] as described in Section 3.4.7. Isolated character

recognition is an important part of offline recognition research since alphanumeric

characters in isolated form appear in many places such as postal headers, house

addresses, flyers, notices, bank checks and tickets. Therefore, an isolated character

recognizer facilitates automations of many tasks like sorting, filtering, etc. for

these kinds of documents. This also presents the inter-compatibility among these

datasets. In a conventional machine learning approach, we used features extracted

with zonal pixel counts, structural strokes and grid points with U-SURF descrip-

tors modeled with bag of features, details of which were explained in Section 3.4.7.

116

The other datasets we used with the Boise State dataset were CMATERdb 3.1.2,

ISI handwritten basic Bangla characters and Banglalekha database (described in

Section 2.4). A number of experiments were conducted using different combi-

nations of all these datasets. First, we prepared three classifiers from different

training data as follows:

1. Training set of CMATERdb 3.1.2 (12,000 samples, 240 per class),

2. Training and validation set of ISI handwritten basic Bangla characters (25,000

samples, 500 per class) and

3. A selected set of BanglaLekha database (60,000 samples, 1,200 per class).

These classifiers were then tested on the -

1. Test set of CMATERdb 3.1.2 (3,000 samples, 60 per class),

2. Test set of the ISI handwritten basic Bangla characters (12,858 samples, un-

evenly distributed) and

3. A randomly selected subset of the BanglaLekha database (5,000 samples, 100

per class).

After these experiments, we tested each of these three classifiers on the first

100 pages of the Boise State isolated component dataset (4,844 samples, unevenly

distributed). Finally, a combined dataset was formed from the three training sets

(97,000 samples, 1,940 per class) and tested on the isolated characters from the

Boise State isolated Bangla character dataset. The outcomes of each of these exper-

iments are presented in Table 4.1. The Boise State dataset was never used for both

117

training and testing simultaneously as it was not sufficiently large to partition at

the first release.

Table 4.1: Isolated basic character recognition accuracy obtained from different
training and testing sets

Dataset used

for Training

Dataset used

for Testing

Recognition

Accuracy

CMATERdb 3.1.2

Training Set

CMATERdb 3.1.2 test set 92.87%

Boise State character db 91.39%

ISI db Training

and Validation Set

ISI db test set 93.10%

Boise State character db 89.24%

BanglaLekha db

(Selected Samples)

BanglaLekha db 96.80%

Boise State character db 95.78%

Combined Boise State character db 96.42%

As can be seen from Table 4.1, the recognition accuracies were consistently

lower when the Boise State dataset was tested, but not by much. This is primar-

ily because the similarity between the training and testing datasets is lost prob-

ably since our test set was cell-phone camera acquired, where the others were all

scanned on a flat-bed scanner in 300/600 dpi. The classifier obtained from the com-

bined training set of the these three datasets produced the maximum recognition

accuracy of 96.42% when tested on the Boise State dataset. This not only supports

the well known statement of "more data is better", it also shows that the Boise State

dataset does not have any compatibility issues even when all these other datasets

are simultaneously used.

118

We present in Table 4.2 some notable works on isolated Bangla character recog-

nition along with the best recognition result we achieved. As can be seen, Roy

et al. [101] reported 86.40% accuracy on the CMATERdb 3.1.2 dataset. Alif et

al. [46] reported 95.99% accuracy on the same dataset, although the number of

classes, training and test sets were not explicit. Our approach achieved 92.87%

accuracy on this dataset. One of the best reported accuracies on the ISI dataset,

reported by Bhattacharya et al. [83], is 95.84% using a two stage classification

scheme. Our approach on this dataset produced an accuracy of 93.10% with a

single stage classifier. On the BanglaLekha-Isolated dataset the highest reported

accuracy was 95.10% by Alif et al. [46] using a convolutional neural network. This

dataset is significantly larger than the others, therefore we didn’t use the entire

dataset to replicate their experimental setup, since our primary objective was to

benchmark the Boise State dataset with their dataset. The obtained accuracy with

a randomly selected portion of this dataset with our method was 96.80%, which

is the maximum performance for Bangla isolated characters reported so far. Note

that Alif et al. used 84 classes (including some high frequency conjuncts with the

basic characters) and we used 50 classes of the basic characters only, therefore the

performance scores are not directly comparable with each other in this case.

119

Table 4.2: Some notable research on isolated Bangla handwritten basic character
recognition compared with the presented approach

Researchers # Classes Feature Classification Dataset Used Test Set Max Accuracy

Bag et al.

[40]
50 Skeletal Convexity LCS ISI 500 60.60%

Bhowmick

et al. [38]
50 Stroke Features MLP Private 4,500 84.33%

Roy et al.

[101]
50

Directional Gradient features

with ABC optimization
SVM CMATER 3,000 86.40%

Rahman

et al. [102]
49

Various Structural

Attributes

TMS, BWS, FWS, MLP,

MPC in a multistage
Private N. A. 88.38%

Bhowmik

et al. [103]
45

Wavelet

Decomposition

Two stage

HLA with SVM
Private 5000 89.22%

Bhattacharya

et al. [104]
50

Shape Feature Vectors

modeled with HMM
MLP ISI 9,481 90.42%

Bhattacharya

et al. [83]
50

Gradient Directions,

Regional Pixel Counts

MQDF and MLP

in two stage
ISI 12,858 95.84%

Alif et al.

[46]
84 N. A.

Convolutional Neural

Network ResNet-18
BanglaLekha 33,221 95.10%∗

Presented Work 50
Zonal Pixel Counts,

Stroke Patterns and SURF

SVM with

Polynomial Kernel

CMATER, ISI,

BanglaLekha,
4,844 96.80%

∗ Reported 95.99% on CMATERdb, # classes, training and test set information weren’t explicit

The maximum classification accuracy of 96.8% that we achieved is the highest

reported accuracy for isolated Bangla basic character recognition, not only among

these datasets but also among all those reported in the literature. Although, we

obtained the best result for this, the fundamental point was to see the compatibility

of this character dataset with the others. Even though the acquisition processes

are different and two of these three datasets were actually prepared with writers

from a different country, this tiny experiment shows there were no notable issues

with our dataset. This indicates for almost any experiment or approach all these

datasets can seamlessly be used as resources without any kind of special treatment.

120

4.2 Offline Recognition Performance for Bangla with the Proposed

Character Spotting Framework

The offline character spotting recognition framework we presented in Sections

3.2 and 3.3 has been the center of our research during all of our experiments.

This was primarily designed to work for Bangla and the implementation process

is explained in Section 3.2.2. The character spotting method we introduced is

a simple and very effective way of achieving offline recognition. This method

depends on segmented character level ground truth metadata, which is why we

trained our recognizer networks (C-Net and D-Net) using only the Boise State

dataset since the other public Bangla datasets do not have this. However, this is

a segmentation-free recognition process and thereby can be tested with any other

datasets. In fact, this is one of the best ways to assess the practical strength of

a recognition system and how it might perform in real-life applications. There-

fore, we tested our framework with the Boise State dataset as well as three other

Bangla datasets as described in Section 3.5.2 and the outcomes are presented in this

chapter. We also conducted a smaller experiment on the Korean script in order

to demonstrate how this framework can be adapted other scripts as well. The

results with Korean are presented together with our autonomous tagging system

performance in Section 4.4.2.

121

4.2.1 Character Spotting Recognition with the Boise State Dataset

While using our character spotting recognition framework with the Boise State

dataset, all the word images were resized to 600 pixels at its smallest dimension

(usually heights). There were two batches of experiments used to evaluate the

recognition performance – one using the first 150 camera-acquired essay pages

[85] and the other using all 253 essay pages (both camera-acquired and scanned

versions) and 70 conjunct word documents for training and testing.

Experiment 1: Using the first 150 Camera-Acquired Essay Scripts

In the first experiment, there were a total of 15,656 word images, 90% of which

were used for training and the rest for testing. The 12,525 training images were

quadrupled to 50,100 images with data augmentation (described in Section 3.3.3)

and these were used for training both the C-Net and D-Net. The class distribution

for the networks in this experiment is shown in Table 4.3. This table is the same as

Table 3.4 but without the conjuncts written in blue since those were only present

in the conjunct word documents of the Boise State dataset (Section 3.4.2).

122

Table 4.3: List of C-Net and D-Net Class Distribution when only the Essay Scripts
from the Boise State dataset were used

Table 4.4: Recognition Performance Scores obtained from Experiment 1 and 2

Network Performance Parameters
Scores from Exp 1

(150 Essay Scripts)

Scores from Exp 2

(All Essay & Conjunct)

C-Net
mAP 0.8713 0.8815

F1 Score 0.8961 0.9258

D-Net
mAP 0.9034 0.9034

F1 Score 0.9317 0.9317

Word

Recognizer

Precision 0.8825 0.8825

Recall 0.8942 0.9124

mAP 0.8842 0.9032

F1 Score 0.8996 0.9265

WRA 0.7564 0.8774

CRA 0.8880 0.9480

WRA (after spell check) 0.7848 N. A.

CRA (after spell check) 0.9109 N. A.

WRA (5-fold Cross Validation) N. A. 0.8618

CRA (5-fold Cross Validation) N. A. 0.9437

123

The recognition performance of this framework is evaluated with individual

mAP (from Average Precision or AP from individual classes) and F1 score of C-

Net and D-Net as well as Precision, Recall, mAP, F1 score, WRA and CRA of the

transcription (these parameters were defined in Section 3.3.6). The WRA and CRA

are evaluated both with and without the spell checker (described in Section 3.3.5).

All these performance scores are presented in Table 4.4 (column 3).

Histograms of the F1 scores for C-Net and D-Net are shown in Fig 4.1. The

characters with a low number of occurrences in the dataset ended up having poor

detection results, because the training simply wasn't enough to perform well. This

is especially true if that character has a visual similarity to other classes. The lowest

three F1 scores we obtained are for ’ ’ (dirghô ū), ’ ’ (e) and ’ ’ (shô + chô) of

0.66, 0.71 and 0.73 respectively. These are all from C-Net classes; the D-Net scores

are relatively stable and more uniform with the worst F1 score at 0.81. We used 0.66

and 0.81 as the confidence thresholds for C-Net and D-Net detection as explained

in Section 3.3.4.

124

Figure 4.1: Histograms of mean Average Precision (mAP) and mean F1 scores from
C-Net and D-Net detection results.

In order to measure the location accuracy of the character/diacritic spotting,

we also measured the Intersection over Union or IoU as defined in Equation 3.3

with this experiment. The IoU is a standard evaluation metric used to measure

125

the accuracy of an object detector on a particular dataset. We found the average

IoU for C-Net and D-Net to be 0.53 and 0.47 respectively. Values of IoU around

0.5 are usually considered poor, but in our approach this is quite expected since

we are forcing the networks to be trained with additional diacritic (for C-Net) and

character (for C-Net) components around as explained in Section 3.2.2. In fact, the

C-Net/D-Net detected characters/diacritics were actually more precise than the

location tags we used for training when compared to the actual location as shown

in Fig 4.2. The blue box in this figure contains a character and a diacritic. This

location was used for both C-Net and D-Net training. The green box shows the

precise location for the diacritic in this query and the orange box shows the D-Net

detected location for that diacritic. As can be seen, the D-Net detection (orange

box) is actually a better estimation of the precise diacritic location (green box)

than the location used used for training (blue box). Therefore, with this sequential

character spotting strategy the IoU scores are expected to be low and that does not

impact the recognition performance since the compilation entirely depends on the

relative locations of characters or diacritics, not on their accurate locations.

126

Figure 4.2: Case demonstration of why IoU with sequential character spotting
approach is low. Green shows the exact location of the target diacritic. Blue
shows the location used for sequential C-Net/D-Net training which includes the
associated consonant with the diacritic. The orange box shows the D-Net detection
which is closer to the accurate location than training location.

Experiment 2: Using all Essay and Conjunct Word Documents

The next experiment was done using all 253 essay scripts (both camera-acquired

and scanned versions) and the 70 conjunct word documents of the Boise State

dataset. This translates to a total of 60,157 words from which a 90% and 10% split of

the data taken from an evenly distributed from the camera-acquired and scanned

essay scripts as well as the conjunct word documents was made for training and

testing respectively. We also used a 80% - 20% training and testing combination

(similarly evenly distributed) to obtain a 5-fold cross validation result on WRA

and CRA. The experiment process was the same as the experiment 1 except that

we didn’t use the data augmentation and spell checking with this setup. Also, the

D-Net classes remained the same, all the new conjuncts from the conjunct word

documents were added to the C-Net as shown in blue text in Table 3.4. The results

are presented in Table 4.4 (column 4).

127

As expected, the score went higher by using more data even after introducing

a lot more classes than the first experiment. Furthermore, this result represents

the true offline handwriting performance for Bangla since it covers almost every

element and variability that comes with this script. One of the major problems

with the overall detection was with the high number of false positives with the

diacritic ‘ ’ (AA-kar). While in machine print this has a distinct shape, for

handwriting, in most of the cases, this just becomes a vertical line, hence, it is

easy to false detect this inside any other characters/diacritics which include such

a straight line. Therefore, one major room for improvement is to have a special

treatment for this diacritic.

4.2.2 Character Spotting Recognition on other Bangla Datasets

To test our framework with other Bangla datasets, we trained the C-Net and

D-Net with all 60,157 words from the essay scripts and conjunct word documents

in the Boise State dataset, without any data augmentation. These networks are then

tested on the CMATERdb 1.1.1, Indic Word Dataset and REID2019 as introduced

in Sections 3.5.2, 3.5.2 and 3.5.2. We tested our character spotting recognition

framework on these datasets as follows:

• For CMATERdb 1.1.1 we manually transcribed the first 25 pages from this

dataset (since the transcription was not available) and used our recognition

framework with the word coordinates of those pages provided by the CMATER

group.

• For the Indic Word Dataset we only used the test set which contains 3,856

128

word images. Word transcription metadata was available with this dataset.

• For the REID2019 dataset, the first 11 pages from the evaluation set were used

for testing. Word transcription metadata was available with this dataset too.

We measured the CRA and WRA (defined in Section 3.3.6 from the transcription

result. No spell checker was used in any of these experiments. The results are

presented in Table 4.5.

Table 4.5: Recognition Performance with other Bangla datasets

Dataset Used CRA WRA
WRA

(Top Reported)

CMATERdb 1.1.1 [79, 78] 92.36% 82.27% N. A.

Indic Word Dataset [97] 89.97% 78.21% 88.19% [97]

REID2019 [98] 93.08% 83.62% < 80% [98]

Boise State Dataset 94.80% 87.74% 87.74%

As seen, although the scores are lower than when tested with the Boise State

dataset (Table 4.4), it does not deviate much and the total in each case is still well

above the standard of reliability. There is no transcription level work reported

using the CMATERdb 1.1.1 dataset. The best reported work for the Indic Word

Dataset is presented by Mukherjee et al. [97]. They obtained a WRA of 88.19%

using a fused LSTM network using a whole word recognition method (explained

in Section 2.3 and thereby restricted recognition to only the words available in

their dataset. In contrast, our WRA of 78.21% on this dataset is using a recognition

process that is not limited to a fixed set of words.

129

Surprisingly, the best performance we obtained out of these three datasets is

with the REID2019 dataset, which is not even handwritten, rather machine printed

historical documents. This dataset was used for a competition on recognition

of early Indian printed documents in the International Conference on Document

Analysis and Recognition (ICDAR) in 2017 and 2019. All the OCR results sub-

mitted to this competition were below 80%, while we obtained a CRA of 93.08%

with this dataset in spite of the fact that our recognition framework has never seen

any machine printed text during training. Overall, the outcome of this experiment

strongly suggests that our presented framework is robust enough to be used for

unconstrained handwriting recognition in real life applications.

4.3 Performance Comparison between Camera-Acquired and Scanned

Images

Since the Boise State dataset has both scanned and cell-phone camera acquired

versions of the essay scripts and isolated element pages, we experimented to see

how the recognition performance varies based on just the acquisition source dif-

ference [105]. A visual difference between these two digitization sources is shown

in Fig 4.3. A flat-bed scanner is considered to be the ideal source of document

data acquisition. It usually offers better quality images with uniform lighting and

higher resolution. Camera-based acquisition suffers from noise, blur, perspective

distortion, jpeg compression and many other complex artifacts that arise from the

lighting condition as well as interaction of the background and foreground. As

a result, scanned images are the primary choice for most handwriting document

130

datasets. For example, CMATERdb [78, 79], ISI db [83] and Banglalekha-Isolated

[84] are the most widely used datasets for Bangla offline handwriting recognition,

and they all contain only scanned images. Not only for Bangla, most other popular

offline handwriting datasets such as MNIST (English) [106], iAM (English) [107],

IFN/ENIT (Arabic) [108] and ETL Kanji (Chinese) [109, 110] etc. are also formed

with scanned documents only.

Although a scanner produces better quality document images, a camera-based

system offers better convenience, which is vital for many applications using offline

handwriting recognition. Digital cameras are almost always embedded in cellular

phones and they are mobile as well as easy to use. In recent years they not only

have seen a significant increase in performance, they have also become cheap and

accessible all over the world. In some applications, such as with sensitive and

fragile historical documents, it is often preferred to do a contactless acquisition.

Because of these reasons, researchers as well as industries are now shifting towards

camera-based document analysis. But there is no specific work that compares

the recognition performance for handwriting documents just based on these two

acquisition sources. This is partially due to the lack of available dataset.

Here, our goal is to see how the image acquisition method affects the ability

of a classifier to recognize the text. To see the effects, two different types of base

frameworks were used: one offline Bangla handwriting recognizer with character

spotting [85] with the process described in Section 4.2.1 and one Bangla hand-

written digit recognizer with an SVM classifier[93] using the process described

in Section 4.1.

131

Figure 4.3: Sample pair of scanned and camera-acquired document image with
ground truth bounding box tagging information from the Boise State Bangla Hand-
writing dataset [111].

132

The first framework we used is our unconstrained offline character spotting

handwriting recognizer presented in Section 3.2.2. We used exactly the same se-

quence of data as the first experiment of Section 4.2.1. For the second framework,

we used the isolated character recognizer as presented in Section 3.4.7. For this we

used only the handwritten digits instead of the basic characters. This is a 10 class

problem where each class contains approximately 250 instances. The outcomes

are recorded with a 10-fold cross-validation using the same digits in each fold,

whether it be scanned or camera acquired for all the experiments. There are in

total 4 individual experiments for each network of both frameworks, training and

testing on Camera-Camera, Scan-Scan, Camera-Scan and Scan-Camera. The char-

acter/diacritic detection performance is evaluated using mAP, F1 scores and CRA

(defined in Section 3.3.6) as shown in Table 4.6. The digit recognition performance

is measured in terms of recognition accuracy, shown in Table 4.7.

Table 4.6: Detection Results from Different Acquisition Sources for the Character/-
Diacritic Spotting Networks

Training Set Testing Set
C-Net D-Net CRA

(1 - CER)mAP F1 mAP F1

Camera Images Camera Images 83.36% 84.22% 85.30% 86.81% 84.75%

Camera Images Scanned Images 80.08% 79.93% 83.26% 84.02% 82.00%

Scanned Images Camera Images 86.95% 84.56% 88.94% 91.11% 85.54%

Scanned Images Scanned Images 88.77% 87.61% 90.28% 93.66% 86.62%

133

Table 4.7: Recognition Results from Different Acquisition Sources for Handwritten
Digits

Training Set Testing Set Accuracy

Camera Images Camera Images 94.51%

Camera Images Scanned Images 90.64%

Scanned Images Camera Images 94.72%

Scanned Images Scanned Images 95.73%

As seen in Table 4.6 for the detection networks, the performance is better when

scanned images are used for both training and testing than when the camera ac-

quired images are used for both training and testing, but only by approximately

5%. Since the scanned images weren’t manually tagged with ground truth infor-

mation, rather transferred using a geometric transformation, some of these images

are slightly clipped or over extended from what was expected. A couple of sample

scenarios are shown in Fig 4.4. Therefore, the results could have been a bit better

with the scanned images if all were tagged manually.

It is not surprising that the highest recognition accuracy occurs when the net-

works are trained on scanner acquired images and also tested on scanner acquired

images. Likewise, it is not surprising that the lowest performance is when the

network is trained on the lower quality camera acquired images and tested on the

higher quality scanner acquired images. The surprise is that the overall accuracy

for the training on scanner acquired images and testing on camera acquired images

surpasses training and testing both on camera acquired images. Also, it can be

seen that the detection results decrease slightly (roughly 3%) when the acquisition

source is different from training to testing. For the C-Net, the F1 score is about

134

Figure 4.4: Examples of the clipping that occurred during ground truth tag transfer
from camera-acquired (top) to scanned (bottom) images using a geometric trans-
formation

the same regardless of training source when tested on camera acquired images. A

couple of samples, where training on camera images failed but training on scanned

images was successful on camera test images are shown in Fig 4.5.

The same trend follows with the handwritten digit recognition framework as

well, but by even narrower margins as shown in Table 4.7. The scanned image

based training and testing outperforms the camera image based one by just over

1%. Training with camera images has the lowest performance when tested on

scanned images. Also, training with scanned images still surpasses training with

camera images when both were tested on camera images, but in this case by only

0.2%. The stroke pattern features, which were used as one of the feature extractors

for the digit recognition framework, diminishes the differences between a scanned

and camera image, which may be one of the reasons that here the change in acqui-

sition sources is not making as big of differences as with the other framework.

135

Figure 4.5: Sample cases of camera-acquired test images where training on camera-
acquired images resulted in false (top-right) and miss (bottom-right) detection, but
training on scanned images was successful (top left and bottom left) in both cases.

One reason for the trend in outcomes of the scanner-camera outperforming the

camera-camera as train-test combinations, is most likely the fact that the camera-

acquired images from the Boise State Bangla Handwriting dataset were acquired

using multiple cell-phones in various lighting conditions. As a result, they do

not have any advantage of internal similarity and vary quite a lot in terms of

resolution, sharpness, illumination, lens quality and shooting angle. While this is

not optimal, this is in fact the likely scenario for many applications of offline hand-

writing recognition with camera acquired images. Thereby, it turned out that the

scanned image-based networks are simply better trained than the camera-based

ones with the same diversity of handwriting. This is one of the reasons that we

digitized the conjunct word documents of the Boise State dataset using only a

flat-bed scanner.

136

From this we conclude it is advantageous, although not by a big margin, to

train a network with higher quality images even if the application area is targeted

toward images with lower quality. Although it might not be similar for every other

experiment with different frameworks and/or datasets, the pattern we found is

likely to appear in other cases.

4.4 Autonomous Tagging Performance on Bangla and Korean

The autonomous tagging concept as introduced in Section 3.6 is an automated

process we developed to draw bounding boxes at the character level on handwrit-

ten word images using just the word level ground truth information. This method

can be used with our character spotting based offline recognition approach. The

fundamental objective is to save a great deal of time and manual labor that is

needed to prepare a dataset with character level ground truth annotation and

thereby accelerate the process of development. This technique can be used for

almost any alphabetic writing system. Here, we demonstrated the process with

Bangla and Korean, described in Sections 3.6.4 and 3.6.5. The recognition per-

formance obtained with autonomously tagged datasets compared with what we

obtained with manual tagging for these two scripts as well as the significance of

this experiment are presented in the following subsections.

4.4.1 Autonomous Tagging for Bangla

The detection performance with the autonomous tagged dataset is measured

with mAP, F1 score, CRA and WRA as in Section 3.3.6. These scores are then

137

compared with the performance obtained from precisely hand-labeled data. Table

4.8 shows all the results. As seen, the overall detection performance with au-

tonomous tagging obtained from C-Net and D-Net decreased by roughly 2% from

precise tagging. We consider this performance loss to be a worthwhile compromise

considering the time and effort saved during the process. Furthermore, the results

are on training sets of the same size. It is much easier to use more training data with

autonomous tagging which will likely increase the performance. Also reported in

Table 4.8 is the manual tagging performance (without the spell checker) reported

in [85] and described in Section 4.2.1 as Experiment 1. Despite following the

exact same process, the previous performance scores are lower than the current

experiment. This is because, after that publication we discovered and fixed some

data tagging errors. This illustrates that the recognition rates can be affected more

by the human errors that occur while attempting precise manual tagging, than

by the imperfection from the autonomous process. In fact, the overall detection

performance was improved by roughly 2% with this experiment using auto-tag

over our first attempt using manual labeling with inadvertent errors.

Table 4.8: Recognition Performance with Autonomous and Manual Tagging for
Bangla

Method of
Data Tagging

C-Net D-Net Transcription
mAP F1 mAP F1 CRA WRA

Manual (Reported in [85]) 87.12 89.61 90.27 93.18 88.82 75.55
Manual (Current) 91.41 95.08 92.77 95.38 93.61 86.80
Autonomous Tag 89.96 92.35 91.25 93.76 91.12 80.06

138

4.4.2 Autonomous Tagging for Korean

The Korean recognition performance is measured as Jamo Recognition Accu-

racy or JRA (equivalent to CRA) and compound Syllable Recognition Accuracy or

SRA (equivalent to WRA). Our experiment uses a subset of the PE92 dataset both

for training and testing. For training, we used 130 classes of syllables from the

PE92 training set (each class contains 80 to 88 instances) chosen in a manner that

every target Jamo shown in Fig 3.5 appears relatively evenly in our training. After

being trained with autonomously tagged data from this training set, we tested the

K-Net performance on 470 high frequency Hangul syllables (Appendix A) from

the PE92 test set. The list of high frequency syllables was prepared from a syllable

count in the 1000 most commonly used Korean words [112]. We also manually

tagged a small portion of the training set (10 samples each from the 130 syllable

classes). A trained network from these manually tagged data was used with the

same test set to compare the performance.

The result from recognizing when K-Net was trained with auto and manu-

ally tagged characters is presented in Table 4.9, along with two other best scores

achieved for this same dataset. As seen, using a large quantity of autonomously

tagged data can outperform a smaller amount of precisely tagged trained data.

While [52, 53] are able to achieve higher recognition rates, they devoted consider-

ably more time to tune their systems for this dataset. They also limit their results

to the 2350 syllable classes effectively implementing a spell checker, which our

system does not.

The other results presented in Table 4.9 are not directly comparable to our

139

Table 4.9: Korean Recognition Results on PE92 Dataset

Researchers Methods JRA SRA

Park et al. [52] MQDF N. A. 85.99%
Kim et al. [53] DCNN N. A. 92.92%

Presented Approach
(Using a
Subset of PE92)

Character Spotting
(Autonomous Tagging)

91.22% 84.66%

Character Spotting
(Manual Tagging)

86.64% 79.23%

reported accuracy, since we used only a fraction of the PE92 dataset for training

and testing. Still it can clearly be conjectured that our approach could achieve a

high performing offline recognition rate for any script using a very small amount

of data. Furthermore, unlike Bangla, we didn’t use any post processing steps to

assure that the detected combination of Jamos is permissible in the script. Even

though vowel position was used in the tag generation process, it was not applied

to the detection results. Such post processing steps would very likely improve the

recognition performance.

4.4.3 Significance of the Autonomous Tagging Experiment

We demonstrated in Sections 4.4.1 and 4.4.2 how the autonomous tagging and

the character spotting framework can work together for any script. Most Abugida

scripts are structurally similar to each other and therefore, handwriting recognition

for many Indo-Aryan scripts can be achieved just like Bangla. For Hangul, we

could have done the autotagging using machine printed fonts for estimation, but

we opted for a simpler approach because its well defined geometric structure

allows us to do so. Even though we used a very small dataset for Hangul mainly to

140

demonstrate how our process can be applied to any script, the performance of the

system was still great. Many other scripts with more complex structures don’t even

have labeled datasets. Therefore such a demonstration of how a working offline

recognition process can be achieved with a very small dataset and bare minimum

manual effort is a clear step forward in this field.

Modern technologies like Deep Convolutional Networks allow us to create end

to end systems requiring minimum script specific processing. The only bottleneck

that remains is to create and process a dataset. As presented here, the autonomous

tagging takes away most of the difficulties involved in achieving this. In a simple

view, this framework allows a dataset to be produced from just a collection of

handwritten images with transcripts. Many such datasets for scripts like Latin,

Arabic, Devanagari, Gurmukhi, Gujarati, etc. exist today while still no dependable

or robust offline recognition is available for most of these. Although, there is a lot

of room to improve this presented framework, we believe this simple idea has the

potential to revolutionize the entire offline handwriting recognition field.

141

CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

The problem of handwriting recognition has existed for more than half a century.

Popular scripts like Latin have seen a lot of development, while many other scripts

are mostly untouched. Here our attempt was to solve this problem altogether, for

any script. Some of the important achievements our of this research are listed

below.

1. The design and development of an offline recognition system which is

robust and flexible enough to be used with any alphabetic script. We achieved a

character recognition accuracy of almost 95% with Bangla using this approach.

This is not only the first reported work for unconstrained Bangla handwriting

recognition, but also an extremely well performing one when compared with the

achievements of other scripts. The robustness of this system was tested with three

other datasets with different structures. The flexibility was validated by transform-

ing the framework to work for Korean. This is a thorough demonstration of a very

powerful offline recognition method which can rapidly accelerate the growth of

this field.

2. The Boise State Bangla Handwriting dataset. This is a free and easy to

142

use dataset that comes many unique and useful features to support many kinds of

offline recognition research.

3. The process of autonomous tagging, which makes the preparation of of-

fline datasets for the training of the character spotting approach significantly

easier. This idea also works for different scripts which was demonstrated for

both Bangla and Korean scripts. We demonstrated how autonomous tagging is

equivalent to or even better in some cases than manual tagging. The character

spotting framework combined with the autonomous tagging process is an incredi-

bly powerful tool that can revolutionize the entire offline handwriting recognition

field.

4. The demonstration of how training with higher quality images is better

even if the application field uses low quality data. This is found from when

we experimented with scanner and camera-acquired data to compare recognition

performance. Although this was a small scale experiment and the statement might

not be true for every case, it still opens up the opportunity for further research and

questions many existing approaches like degradation models whether should or

should not be used.

There is room for improvement and expansion in many of these presented

tools, frameworks and experiments. For example, as pointed out in Section 4.2.1,

there are a high number of false positives with the diacritic ‘ ’ (AA-kar) in

our character spotting approach with Bangla. This diacritic being just a vertical

line when handwritten is highly prone to get a false detection inside any other

character/diacritic with a straight line in their structure. A possible solution to

143

this problem can be detecting this diacritic using a separate algorithm such as

our stroke feature developed for the isolated character recognition as described

in Section 3.4.7. Or a separate classifier could be designed only to look for its pres-

ence. Any improvement in the Bangla‘ ’ (AA-kar) detection can significantly

improve the D-Net detection performance and thereby the overall transcription

result.

In our experiments with the external datasets for Bangla as explained in Section

4.2.2, we only used a fraction of these datasets for testing. These datasets could

also be for training which will make the C-Net and D-Net familiarized with even

more samples of Bangla handwriting styles and therefore make the recognition

system even more robust. Since the character level ground truth location tagging

is not available with these datasets, we will have to use the autonomous tagging

from the word level ground truth information. The Indic Word Dataset already

has word level ground truth information, the CMATERdb 1.1.1 dataset does not

and thereby will have to be manually transcribed before being trained with au-

tonomous tagging.

Right now, the character spotting approach works only on word images and

therefore is dependent on a page to be segmented to words because of the way

we used the Region Proposal Network (RPN). As discussed in Section 3.3.2, the

number or anchors or proposals for regions where the object lies is set to 64 for

all of our experiments. This means 64 regions inside a given image are proposed

during training or assessed during testing. This number works nicely when we are

looking for characters from a given word image (or Jamos inside a syllable), but

does not provide enough anchor points to find characters in a document page. In

144

theory, it is possible to increase the number of region proposal from 64 to a much

bigger value so that all possible regions for characters in a document page can be

proposed during detection, but this would make the training process much slower

and thereby it is impractical. One approach is to isolate words from a document

page, which is much easier than isolating characters from words. A possibly better

approach to be able to transcribe a document page as a whole would be to slide a

window across the document page, detect characters at each window position dur-

ing the sweep and assemble the results into words and text lines. This is expected

to work perfectly with character spotting since the networks are well trained to

ignore additional components around the target classes. An intermediate solution

is to segment a bigger chunk than words, such as text lines or a group of words

and collect the locations/classes of the character components, which will bypass

the necessity of having word coordinates in a document under test. This remains

as a scope of future experiment to further improve the convenience factor of the

character spotting framework.

The Boise State dataset was developed from the contributions of volunteers

primarily from the academic environment. In the future, it would be good to add

more handwriting samples to this dataset to even out the demographic distribu-

tion from what we currently have as shown in Fig 3.16. As the dataset grows

with larger demographics for each category, it will be possible to observe how

recognition performance varies with different group of people.

Our experiments with Korean as presented in Section 4.4.2 were brief and were

primarily designed to demonstrate the potential of this method to operate success-

fully on different kinds of scripts. In the future the Korean recognition framework

145

could be expanded by using more data for training and further tuning the au-

tonomous tagging by using machine print fonts to estimate the partitions. Also we

didn’t use any grammar-based correction rules after the K-Net detection. Imple-

menting few basic rules like discarding invalid Jamo combinations or sequences

or assessing empty spaces which can be analyzed later with a spell checker can

vastly improve the recognition performance as it did for us with the Bangla script

(via the process described in Section 3.3.4). Another opportunity is to start the

K-Net training using the C-Net or D-Net parameters instead of VGG-16. VGG-16 is

primarily designed to recognize objects from the ImageNet dataset which contains

1000 different classes of images with real life objects such as people, birds, flowers,

furniture, etc. Although we trained the C-Net and D-Net using the VGG-16 net-

work weights with transfer learning, currently C-Net/D-Net have better structural

similarities with K-Net than VGG-16 in terms of the number of classes, the pattern

of target objects, etc. Therefore, this process can result in faster and better learning

and therefore improve the whole Korean recognition performance.

The offline recognition framework we designed is flexible to not only scripts,

but also flexible many of the underlying tools and technologies we used. For

example, we used a Faster RCNN for object detection and pre-trained VGG16

network weights to begin with, but the system is not dependent on any of those.

Therefore, there is room for further experimenting with other technologies that

might improve the overall performance.

Most of our experiments didn’t use any post-processing. Applying grammar

based corrections or language modeling can improve the recognition performance

even further. The situation is the same with pre-processing too. We noticed using

146

compressed images can significantly reduce the training time without sacrificing

any substantial amount of performance, but we did not do enough experiments

to draw proper conclusions on this topic and thereby it remains a topic of future

research.

Another future goal is to transform and test this framework on more new scripts.

Many scripts like Arabic, Latin, Devanagari, etc. already have handwriting datasets

with ground truth information at least at the word level and thereby can be imme-

diately applied with autonomous tagging and character spotting with very little

effort. For other scripts with no such datasets, we would have to depend on vol-

unteers to collect and transcribe handwriting samples before applying these pro-

cesses. Even with these scripts, the overall development is a manageable amount

of effort since our frameworks perform well with small amount of data and the

autonomous tagging method only needs word level ground truth data.

In this era, when technologies like Deep Learning are solving almost every

problem that is thrown at it, it is surprising to see how poor the status of offline

handwriting recognition is. Here, we presented a system that works for Bangla

and Korean, but the fundamental contribution to this field is the idea of character

spotting we demonstrated. I believe, this approach brings the decades old problem

of offline recognition very close to a solution.

Much of this work has been subjected to peer review and presented at top

international conferences. The following is a list of them.

1. N. Majid and E. H. Barney Smith, “Introducing the Boise State Bangla hand-

writing dataset and an efficient offline recognizer of isolated Bangla characters”

147

in 2018 16th International Conference on Frontiers in Handwriting Recognition

(ICFHR). IEEE, 2018, pp. 380–385, [93].

2. N. Majid and E. H. Barney Smith, “Segmentation-Free Bangla Offline Hand-

writing Recognition using Sequential Detection of Characters and Diacritics with

a Faster R-CNN” in International Conference on Document Analysis and Recogni-

tion (ICDAR), September 2019, [85].

3. N. Majid and E. H. Barney Smith, “Performance comparison of scanner

and camera-acquired data for Bangla offline handwriting recognition,” in 2019

Workshop on Camera-Based Document Analysis and Recognition (CBDAR), vol.

4. IEEE, 2019, pp. 31–36, [105].

4. N. Majid and E. H. Barney Smith, “Autonomous Data Tagging for Offline

Handwriting Recognition: Tested with Bangla and Korean Scripts” submitted for

2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR).

148

APPENDIX A

LIST OF HIGH FREQUENCY KOREAN SYLLABLES OBTAINED

FROM THE 1000 MOST COMMON KOREAN WORDS

149

REFERENCES

[1] MacStories, “Online vs. offline handwriting recognition,” 2016, [Online;
accessed April 04, 2020]. [Online]. Available: https://www.macstories.net/
reviews/nebos-handwriting-recognition-elevates-your-notes/

[2] Wikipedia, the free encyclopedia, “Center of excellence for document
analysis and recognition,” 2018, [Online; accessed April 04, 2020].
[Online]. Available: https://en.wikipedia.org/wiki/Center_of_Excellence_
for_Document_Analysis_and_Recognition

[3] CBDAR, “Summarizing lecture videos by key handwritten content
regions,” 2018, [Online; accessed April 04, 2020]. [Online].
Available: https://cbdar2019.univ-lr.fr/wp-content/uploads/2019/10/
CBDAR2019_Oral_2_a_01_CBDAR_bhargava.pdf

[4] B. Ahn, J. Ryu, H. I. Koo, and N. I. Cho, “Textline detection in degraded
historical document images,” EURASIP Journal on Image and Video Processing,
vol. 2017, no. 1, p. 82, 2017.

[5] K. M. Sayre, “Machine recognition of handwritten words: A project report,”
Pattern recognition, vol. 5, no. 3, pp. 213–228, 1973.

[6] Margaret Rouse, “What is an Artificial Neural Network (ANN),”
2019, [Online; accessed April 04, 2020]. [Online]. Available: https:
//searchenterpriseai.techtarget.com/definition/neural-network

[7] Keith Enevoldsen, thinkzone.wlonk.com, “Korean alphabet (Hangeul),”
2016, [Online; accessed April 04, 2020]. [Online]. Available: https:
//thinkzone.wlonk.com/Language/Korean.htm

[8] U. Pal and S. Datta, “Segmentation of bangla unconstrained handwritten
text,” in Seventh International Conference on Document Analysis and Recognition,
2003. Proceedings. Citeseer, 2003, pp. 1128–1132.

[9] U. Pal, K. Roy, and F. Kimura, “A lexicon driven method for unconstrained
Bangla handwritten word recognition,” in Tenth International Workshop on
Frontiers in Handwriting Recognition, 2006.

https://www.macstories.net/reviews/nebos-handwriting-recognition-elevates-your-notes/
https://www.macstories.net/reviews/nebos-handwriting-recognition-elevates-your-notes/
https://en.wikipedia.org/wiki/Center_of_Excellence_for_Document_Analysis_and_Recognition
https://en.wikipedia.org/wiki/Center_of_Excellence_for_Document_Analysis_and_Recognition
https://cbdar2019.univ-lr.fr/wp-content/uploads/2019/10/CBDAR2019_Oral_2_a_01_CBDAR_bhargava.pdf
https://cbdar2019.univ-lr.fr/wp-content/uploads/2019/10/CBDAR2019_Oral_2_a_01_CBDAR_bhargava.pdf
https://searchenterpriseai.techtarget.com/definition/neural-network
https://searchenterpriseai.techtarget.com/definition/neural-network
https://thinkzone.wlonk.com/Language/Korean.htm
https://thinkzone.wlonk.com/Language/Korean.htm

150

[10] ——, “A lexicon-driven handwritten city-name recognition scheme for
Indian postal automation,” IEICE transactions on information and systems,
vol. 92, no. 5, pp. 1146–1158, 2009.

[11] S. Basu, R. Sarkar, N. Das, M. Kundu, M. Nasipuri, and D. K. Basu, “A fuzzy
technique for segmentation of handwritten Bangla word images,” in 2007
International Conference on Computing: Theory and Applications (ICCTA’07).
IEEE, 2007, pp. 427–433.

[12] R. Sarkar, S. Malakar, N. Das, S. Basu, M. Kundu, and M. Nasipuri, “Word ex-
traction and character segmentation from text lines of unconstrained hand-
written Bangla document images,” Journal of Intelligent Systems, vol. 20, no. 3,
pp. 227–260, 2011.

[13] R. Sarkar, N. Das, S. Basu, M. Kundu, M. Nasipuri, and D. K. Basu, “A two-
stage approach for segmentation of handwritten Bangla word images,” in
Proceedings of International Conference on Frontiers in Handwriting Recognitions.
Citeseer, 2008, pp. 403–408.

[14] A. Roy, T. K. Bhowmik, S. K. Parui, and U. Roy, “A novel approach to skew
detection and character segmentation for handwritten Bangla words,” in
Digital Image Computing: Techniques and Applications (DICTA’05). IEEE, 2005,
pp. 30–30.

[15] T. Bhowmik, A. Roy, and U. Roy, “Character segmentation for handwritten
Bangla words using artificial neural network,” Proc. 1st IAPR TC3 NNLDAR,
2005.

[16] S. Bag, P. Bhowmick, G. Harit, and A. Biswas, “Character segmentation of
handwritten Bangla text by vertex characterization of isothetic covers,” in
2011 Third National Conference on Computer Vision, Pattern Recognition, Image
Processing and Graphics. IEEE, 2011, pp. 21–24.

[17] A. Bishnu and B. Chaudhuri, “Segmentation of Bangla handwritten text
into characters by recursive contour following,” in Proceedings of the Fifth
International Conference on Document Analysis and Recognition. ICDAR’99 (Cat.
No. PR00318). IEEE, 1999, pp. 402–405.

[18] K. Bhattacharyya and K. K. Sarma, “ANN-based innovative segmentation
method for handwritten text in Assamese,” arXiv preprint arXiv:0911.0907,
2009.

[19] N. Tripathy and U. Pal, “Handwriting segmentation of unconstrained Oriya
text,” Sadhana, vol. 31, no. 6, pp. 755–769, 2006.

151

[20] N. K. Garg, L. Kaur, and M. Jindal, “Segmentation of handwritten Hindi
text,” International Journal of Computer Applications, vol. 1, no. 4, pp. 22–26,
2010.

[21] M. Hanmandlu, P. Agrawal, and B. Lall, “Segmentation of handwritten hindi
text: A structural approach,” International Journal of Computer Processing of
Languages, vol. 22, no. 01, pp. 1–20, 2009.

[22] V. Bansal and R. Sinha, “Segmentation of touching and fused Devanagari
characters,” Pattern recognition, vol. 35, no. 4, pp. 875–893, 2002.

[23] B. B. Chaudhuri and A. Kundu, “Synthesis of individual handwriting in
bangla script,” Proceedings of the ICFHR, 2008.

[24] U. Pal, T. Wakabayashi, and F. Kimura, “Handwritten Bangla compound
character recognition using gradient feature,” in 10th International Conference
on Information Technology (ICIT 2007). IEEE, 2007, pp. 208–213.

[25] M. Mohamad, D. Nasien, H. Hassan, and H. Haron, “A review on feature
extraction and feature selection for handwritten character recognition,” In-
ternational Journal of Advanced Computer Science and Applications, vol. 6, no. 2,
pp. 204–212, 2015.

[26] T. K. Bhowmik, P. Ghanty, A. Roy, and S. K. Parui, “SVM-based hierarchical
architectures for handwritten Bangla character recognition,” International
Journal on Document Analysis and Recognition (IJDAR), vol. 12, no. 2, pp.
97–108, 2009.

[27] K. N. Reza and M. Khan, “Grouping of handwritten Bangla basic characters,
numerals and vowel modifiers for multilayer classification,” in 2012 Inter-
national Conference on Frontiers in Handwriting Recognition. IEEE, 2012, pp.
325–330.

[28] A. Majumdar and B. Chaudhuri, “Curvelet-based multi svm recognizer for
offline handwritten bangla: a major indian script,” in Ninth International
Conference on Document Analysis and Recognition (ICDAR 2007), vol. 1. IEEE,
2007, pp. 491–495.

[29] N. Das, B. Das, R. Sarkar, S. Basu, M. Kundu, and M. Nasipuri, “Handwritten
Bangla basic and compound character recognition using MLP and SVM
classifier,” arXiv preprint arXiv:1002.4040, 2010.

[30] N. Das, K. Acharya, R. Sarkar, S. Basu, M. Kundu, and M. Nasipuri, “A
novel GA-SVM based multistage approach for recognition of handwritten

152

Bangla compound characters,” in Proceedings of the International Conference
on Information Systems Design and Intelligent Applications 2012 (INDIA 2012)
held in Visakhapatnam, India, January 2012. Springer, 2012, pp. 145–152.

[31] A. Das, A. K. Bhunia, P. P. Roy, and U. Pal, “Handwritten word spotting
in Indic scripts using foreground and background information,” in 2015 3rd
IAPR Asian Conference on Pattern Recognition (ACPR). IEEE, 2015, pp. 426–
430.

[32] N. Das, K. Acharya, R. Sarkar, S. Basu, M. Kundu, and M. Nasipuri, “A
benchmark image database of isolated Bangla handwritten compound char-
acters,” International Journal on Document Analysis and Recognition (IJDAR),
vol. 17, no. 4, pp. 413–431, 2014.

[33] S. Mohiuddin, U. Bhattacharya, and S. K. Parui, “Unconstrained Bangla on-
line handwriting recognition based on MLP and SVM,” in Proceedings of the
2011 Joint Workshop on Multilingual OCR and Analytics for Noisy Unstructured
Text Data. ACM, 2011, p. 16.

[34] S. Ahmed, M. R. Islam, and M. S. Azam, “Bangla hand written digit recog-
nition using supervised locally linear embedding algorithm and support
vector machine,” in 2009 12th International Conference on Computers and In-
formation Technology. IEEE, 2009, pp. 390–393.

[35] Y. Wen, Y. Lu, and P. Shi, “Handwritten Bangla numeral recognition system
and its application to postal automation,” Pattern recognition, vol. 40, no. 1,
pp. 99–107, 2007.

[36] S. Pal, V. Nguyen, M. Blumenstein, and U. Pal, “Off-line Bangla signature
verification,” in 2012 10th IAPR International Workshop on Document Analysis
Systems. IEEE, 2012, pp. 282–286.

[37] P. P. Roy, P. Dey, S. Roy, U. Pal, and F. Kimura, “A novel approach of
Bangla handwritten text recognition using HMM,” in 2014 14th International
Conference on Frontiers in Handwriting Recognition. IEEE, 2014, pp. 661–666.

[38] T. K. Bhowmik, U. Bhattacharya, and S. K. Parui, “Recognition of Bangla
handwritten characters using an MLP classifier based on stroke features,” in
International Conference on Neural Information Processing. Springer, 2004, pp.
814–819.

[39] A. Dutta and S. Chaudhury, “Bengali alpha-numeric character recognition
using curvature features,” Pattern Recognition, vol. 26, no. 12, pp. 1757–1770,
1993.

153

[40] S. Bag, P. Bhowmick, and G. Harit, “Recognition of Bengali handwritten
characters using skeletal convexity and dynamic programming,” in 2011 Sec-
ond International Conference on Emerging Applications of Information Technology.
IEEE, 2011, pp. 265–268.

[41] S. Arora, D. Bhattacharjee, M. Nasipuri, D. K. Basu, and M. Kundu, “Com-
bining multiple feature extraction techniques for handwritten Devnagari
character recognition,” in 2008 IEEE Region 10 and the Third international
Conference on Industrial and Information Systems. IEEE, 2008, pp. 1–6.

[42] N. Sharma, U. Pal, F. Kimura, and S. Pal, “Recognition of off-line hand-
written devnagari characters using quadratic classifier,” in Computer Vision,
Graphics and Image Processing. Springer, 2006, pp. 805–816.

[43] D. Sharma and P. Jhajj, “Recognition of isolated handwritten characters in
Gurmukhi script,” International Journal of Computer Applications, vol. 4, no. 8,
pp. 9–17, 2010.

[44] M. Kumar, M. Jindal, and R. Sharma, “K-nearest neighbor based offline
handwritten Gurmukhi character recognition,” in 2011 International Confer-
ence on Image Information Processing. IEEE, 2011, pp. 1–4.

[45] E. Hassan, S. Chaudhury, M. Gopal, and J. Dholakia, “Use of MKL as symbol
classifier for Gujarati character recognition,” in Proceedings of the 9th IAPR
International Workshop on Document Analysis Systems. ACM, 2010, pp. 255–
262.

[46] M. A. R. Alif, S. Ahmed, and M. A. Hasan, “Isolated Bangla handwritten
character recognition with convolutional neural network,” in Computer and
Information Technology (ICCIT), 2017 20th International Conference of, 2017, pp.
1–6.

[47] K. Kowsari, M. Heidarysafa, D. E. Brown, K. J. Meimandi, and L. E. Barnes,
“RMDL: Random multimodel deep learning for classification,” in Proceed-
ings of the 2nd International Conference on Information System and Data Mining,
2018, pp. 19–28.

[48] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Convolu-
tional neural network committees for handwritten character classification,”
in 2011 International Conference on Document Analysis and Recognition. IEEE,
2011, pp. 1135–1139.

[49] V. V. Romanuke, “Training data expansion and boosting of convolutional
neural networks for reducing the MNIST dataset error rate,” Research Bulletin
of the National Technical University of Ukraine, vol. 0, no. 6, pp. 29–34, 2016.

154

[50] K. Dutta, P. Krishnan, M. Mathew, and C. Jawahar, “Offline handwriting
recognition on Devanagari using a new benchmark dataset,” in 2018 13th
IAPR International Workshop on Document Analysis Systems (DAS). IEEE,
2018, pp. 25–30.

[51] “Handwritten Hangul Datasets: PE92, SERI95, and HanDB.” https://
github.com/callee2006/HangulDB, 1992.

[52] G.-R. Park, I.-J. Kim, and C.-L. Liu, “An evaluation of statistical methods in
handwritten Hangul recognition,” International Journal on Document Analysis
and Recognition (IJDAR), vol. 16, no. 3, pp. 273–283, 2013.

[53] I.-J. Kim and X. Xie, “Handwritten Hangul recognition using deep convo-
lutional neural networks,” International Journal on Document Analysis and
Recognition (IJDAR), vol. 18, no. 1, pp. 1–13, 2015.

[54] L. Rothacker, M. Rusinol, and G. A. Fink, “Bag-of-features HMMs for
segmentation-free word spotting in handwritten documents,” in 2013 12th
International Conference on Document Analysis and Recognition. IEEE, 2013,
pp. 1305–1309.

[55] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[56] S. Lloyd, “Least squares quantization in PCM,” IEEE transactions on informa-
tion theory, vol. 28, no. 2, pp. 129–137, 1982.

[57] S. Sudholt, L. Rothacker, and G. A. Fink, “Learning local image descriptors
for word spotting,” in 2015 13th International Conference on Document Analysis
and Recognition (ICDAR). IEEE, 2015, pp. 651–655.

[58] L. Rothacker, S. Vajda, and G. A. Fink, “Bag-of-features representations for
offline handwriting recognition applied to Arabic script,” in 2012 Interna-
tional Conference on Frontiers in Handwriting Recognition. IEEE, 2012, pp.
149–154.

[59] X. Zhang, U. Pal, and C. L. Tan, “Segmentation-free Keyword spotting for
Bangla handwritten documents,” in 2014 14th International Conference on
Frontiers in Handwriting Recognition. IEEE, 2014, pp. 381–386.

[60] S. Wshah, G. Kumar, and V. Govindaraju, “Script independent word spotting
in offline handwritten documents based on hidden markov models,” in 2012
International Conference on Frontiers in Handwriting Recognition. IEEE, 2012,
pp. 14–19.

https://github.com/callee2006/HangulDB
https://github.com/callee2006/HangulDB

155

[61] A. K. Bhunia, A. Das, P. P. Roy, and U. Pal, “A comparative study of features
for handwritten Bangla text recognition,” in 2015 13th international conference
on document analysis and recognition (ICDAR). IEEE, 2015, pp. 636–640.

[62] R. Shekhar and C. Jawahar, “Word image retrieval using bag of visual
words,” in 2012 10th IAPR International Workshop on Document Analysis Sys-
tems. IEEE, 2012, pp. 297–301.

[63] S. Vajda and A. Belaïd, “Structural information implant in a context based
segmentation-free HMM handwritten word recognition system for latin and
Bangla script,” in Eighth International Conference on Document Analysis and
Recognition (ICDAR’05). IEEE, 2005, pp. 1126–1130.

[64] S. Bhowmik, S. Malakar, R. Sarkar, S. Basu, M. Kundu, and M. Nasipuri,
“Off-line Bangla handwritten word recognition: a holistic approach,” Neural
Computing and Applications, vol. 31, no. 10, pp. 5783–5798, 2019.

[65] S. Bhowmik, M. G. Roushan, R. Sarkar, M. Nasipuri, S. Polley, and
S. Malakar, “Handwritten Bangla word recognition using HOG descriptor,”
in 2014 Fourth International Conference of Emerging Applications of Information
Technology. IEEE, 2014, pp. 193–197.

[66] T. K. Bhowmik, S. K. Parui, and U. Roy, “Discriminative HMM training with
GA for handwritten word recognition,” in 2008 19th International Conference
on Pattern Recognition. IEEE, 2008, pp. 1–4.

[67] C. Adak, B. B. Chaudhuri, and M. Blumenstein, “Offline cursive Bengali
word recognition using CNNs with a recurrent model,” in 2016 15th Inter-
national Conference on Frontiers in Handwriting Recognition (ICFHR). IEEE,
2016, pp. 429–434.

[68] A. Ul-Hasan and T. M. Breuel, “Can we build language-independent OCR
using LSTM networks?” in Proceedings of the 4th International Workshop on
Multilingual OCR. ACM, 2013, p. 9.

[69] T. Bluche, H. Ney, and C. Kermorvant, “A comparison of sequence-trained
deep neural networks and recurrent neural networks optical modeling for
handwriting recognition,” in International Conference on Statistical Language
and Speech Processing. Springer, 2014, pp. 199–210.

[70] F. Menasri, J. Louradour, A.-L. Bianne-Bernard, and C. Kermorvant, “The
A2iA French handwriting recognition system at the Rimes-ICDAR2011 com-
petition,” in Document Recognition and Retrieval XIX, vol. 8297. International
Society for Optics and Photonics, 2012, p. 82970Y.

156

[71] F. Stahlberg and S. Vogel, “The QCRI recognition system for handwrit-
ten Arabic,” in International Conference on Image Analysis and Processing.
Springer, 2015, pp. 276–286.

[72] K. Dutta, P. Krishnan, M. Mathew, and C. Jawahar, “Towards accurate hand-
written word recognition for Hindi and Bangla,” in National Conference on
Computer Vision, Pattern Recognition, Image Processing, and Graphics. Springer,
2017, pp. 470–480.

[73] “Handwritten Bangla numeral recognition using deep long short term
memory, author=Ahmed, Mahtab and Akhand, MAH and Rahman, MM
Hafizur,” in 2016 6th International Conference on Information and Communi-
cation Technology for The Muslim World (ICT4M). IEEE, 2016, pp. 310–315.

[74] V. Chavan, A. Malage, K. Mehrotra, and M. K. Gupta, “Printed text recog-
nition using BLSTM and MDLSTM for Indian languages,” in 2017 Fourth
International Conference on Image Information Processing (ICIIP). IEEE, 2017,
pp. 1–6.

[75] B. Chakraborty, P. S. Mukherjee, and U. Bhattacharya, “Bangla online hand-
writing recognition using recurrent neural network architecture,” in Pro-
ceedings of the tenth Indian conference on computer vision, graphics and image
processing, 2016, pp. 1–8.

[76] T. Karayil, A. Ul-Hasan, and T. M. Breuel, “A segmentation-free approach for
printed Devanagari script recognition,” in 2015 13th International Conference
on Document Analysis and Recognition (ICDAR). IEEE, 2015, pp. 946–950.

[77] N. Sankaran and C. Jawahar, “Recognition of printed Devanagari text using
BLSTM Neural Network,” in Proceedings of the 21st International Conference on
Pattern Recognition (ICPR2012). IEEE, 2012, pp. 322–325.

[78] “CMATERdb: The pattern recognition database repository,” http://code.
google.com/p/cmaterdb, March 2018.

[79] R. Sarkar, N. Das, S. Basu, M. Kundu, M. Nasipuri, and D. K. Basu,
“CMATERdb1: a database of unconstrained handwritten Bangla and
Bangla–English mixed script document image,” International Journal on Doc-
ument Analysis and Recognition (IJDAR), vol. 15, no. 1, pp. 71–83, Feb 2011.

[80] N. Das, K. Acharya, R. Sarkar, S. Basu, M. Kundu, and M. Nasipuri, “A
benchmark image database of isolated Bangla handwritten compound char-
acters,” International Journal on Document Analysis and Recognition (IJDAR),
vol. 17, no. 4, pp. 413–431, May 2014.

http://code.google.com/p/cmaterdb
http://code.google.com/p/cmaterdb

157

[81] N. Das, R. Sarkar, S. Basu, M. Kundu, M. Nasipuri, and D. K. Basu, “A
genetic algorithm based region sampling for selection of local features in
handwritten digit recognition application,” Applied Soft Computing, vol. 12,
no. 5, pp. 1592–1606, 2012.

[82] N. Das, S. Basu, R. Sarkar, M. Kundu, M. Nasipuri et al., “An improved
feature descriptor for recognition of handwritten Bangla alphabet,” in Pro-
ceedings of 2nd International Conference on Signal and Image Processing (ICSIP),
2009, pp. 451–454.

[83] U. Bhattacharya, M. Shridhar, S. K. Parui, P. K. Sen, and B. B. Chaudhuri,
“Offline recognition of handwritten Bangla characters: an efficient two-stage
approach,” Pattern Analysis and Applications, vol. 15, no. 4, pp. 445–458, June
2012.

[84] M. Biswas, R. Islam, G. K. Shom, M. Shopon, N. Mohammed, S. Momen, and
A. Abedin, “Banglalekha-isolated: A multi-purpose comprehensive dataset
of handwritten Bangla isolated characters,” Data in brief, vol. 12, pp. 103–107,
2017.

[85] N. Majid and E. H. Barney Smith, “Segmentation-free Bangla offline hand-
writing recognition using sequential detection of characters and diacritics
with a Faster R-CNN,” in International Conference on Document Analysis and
Recognition (ICDAR). IEEE, 2019.

[86] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” IEEE Transactions on Pattern
Analysis & Machine Intelligence, no. 6, pp. 1137–1149, 2017.

[87] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 779–788.

[88] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein et al., “ImageNET large scale visual
recognition challenge,” International Journal of Computer Vision, vol. 115, no. 3,
pp. 211–252, 2015.

[89] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[90] K. Murphy, “Machine learning: a probabilistic approach,” Massachusetts
Institute of Technology, pp. 1–21, 2012.

158

[91] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions,
and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp. 707–710.

[92] N. Majid and E. H. Barney Smith, “Boise State Bangla Handwriting Dataset,”
https://doi.org/10.18122/saipl/1/boisestate, 2018.

[93] N. Majid and E. H. Barney Smith, “Introducing the Boise State Bangla
Handwriting dataset and an efficient offline recognizer of isolated Bangla
characters,” in 2018 16th International Conference on Frontiers in Handwriting
Recognition (ICFHR). IEEE, 2018, pp. 380–385.

[94] T. Y. Kong and A. Rosenfeld, Topological algorithms for digital image processing.
Elsevier, 1996, vol. 19.

[95] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features
(SURF),” Computer vision and image understanding, vol. 110, no. 3, pp. 346–359,
2008.

[96] K. Zagoris, I. Pratikakis, A. Antonacopoulos, B. Gatos, and N. Papamarkos,
“Distinction between handwritten and machine-printed text based on the
bag of visual words model,” Pattern Recognition, vol. 47, no. 3, pp. 1051–1062,
2014.

[97] S. Mukherjee, P. Kumar, and P. P. Roy, “Fusion of spatio-temporal infor-
mation for Indic word recognition combining online and offline text data,”
ACM Transactions on Asian and Low-Resource Language Information Processing
(TALLIP), vol. 19, no. 2, pp. 1–24, 2019.

[98] C. Clausner, A. Antonacopoulos, T. Derrick, and S. Pletschacher, “Icdar2019
competition on recognition of early indian printed documents–reid2019,” in
2019 International Conference on Document Analysis and Recognition (ICDAR).
IEEE, 2019, pp. 1527–1532.

[99] Y. Xu and G. Nagy, “Prototype extraction and adaptive OCR,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 21, no. 12, pp. 1280–
1296, 1999.

[100] D. Lopresti and G. Nagy, “Tools for monitoring, visualizing, and refining
collections of noisy documents,” in Proceedings of The Third Workshop on
Analytics for Noisy Unstructured Text Data, 2009, pp. 9–16.

[101] A. Roy, N. Das, R. Sarkar, S. Basu, M. Kundu, and M. Nasipuri, “Region
selection in handwritten character recognition using artificial bee colony
optimization,” in Emerging Applications of Information Technology (EAIT), 2012
Third International Conference on. IEEE, 2012, pp. 183–186.

https://doi.org/10.18122/saipl/1/boisestate

159

[102] A. F. R. Rahman, R. Rahman, and M. C. Fairhurst, “Recognition of handwrit-
ten Bengali characters: a novel multistage approach,” Pattern Recognition,
vol. 35, no. 5, pp. 997–1006, 2002.

[103] T. K. Bhowmik, P. Ghanty, A. Roy, and S. K. Parui, “SVM-based hierarchical
architectures for handwritten Bangla character recognition,” International
Journal on Document Analysis and Recognition (IJDAR), vol. 12, no. 2, pp.
97–108, March 2009.

[104] U. Bhattacharya, S. Parui, and B. Shaw, “A hybrid scheme for recognition of
handwritten Bangla basic characters based on HMM and MLP classifiers,”
in Advances In Pattern Recognition. World Scientific, 2007, pp. 101–106.

[105] N. Majid and E. H. B. Smith, “Performance comparison of scanner and
camera-acquired data for Bangla offline handwriting recognition,” in 2019
Workshop on Camera-based Document Recognition and Retrieval (CBDAR), vol. 4.
IEEE, 2019, pp. 31–36.

[106] L. Deng, “The MNIST database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–
142, 2012.

[107] U.-V. Marti and H. Bunke, “The IAM-database: an English sentence database
for offline handwriting recognition,” International Journal on Document Anal-
ysis and Recognition, vol. 5, no. 1, pp. 39–46, 2002.

[108] M. Pechwitz, S. S. Maddouri, V. Märgner, N. Ellouze, H. Amiri et al.,
“IFN/ENIT-database of handwritten Arabic words,” in Proc. of CIFED,
vol. 2. Citeseer, 2002, pp. 127–136.

[109] S. Mori, K. Yamamoto, H. Yamada, and T. Saito, “On a handprinted Kyoiku-
Kanji character data base,” Bull. Electrotech. Lab, vol. 43, no. 11-12, pp. 752–
773, 1979.

[110] T. SAITO, “On the data base ETK9B of handprinted characters in JIS Chinese
characters and its analysis,” IEICE trans, vol. 68, no. 4, pp. 757–772, 1985.

[111] N. Majid and E. H. Barney Smith, “Boise State Bangla Handwriting Dataset,”
https://doi.org/10.18122/saipl/1/boisestate, 2018.

[112] “1000 Most Common Korean Words.” https://1000mostcommonwords.
com/1000-most-common-korean-words/.

https://doi.org/10.18122/saipl/1/boisestate
https://1000mostcommonwords.com/1000-most-common-korean-words/
https://1000mostcommonwords.com/1000-most-common-korean-words/

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	What is Offline Handwriting Recognition
	Why Offline Handwriting Recognition
	How Offline Recognition is Done
	Segmentation-Based Recognition
	Segmentation-Free Recognition
	Traditional Machine Learning
	Deep Learning

	Introduction to the Bangla Writing System
	Difficulties with Bangla Script for Offline Recognition
	Scripts with Similar Properties
	Introduction to the Korean Script
	Outline of this Dissertation

	Literature Review
	Overview: It’s an Unsolved Problem
	Segmentation-Based Approaches
	Segmentation-Free Approaches
	Available Datasets

	Design of the Offline Handwriting Recognizer
	Overview
	The Proposed Offline Recognition System
	Basic Idea of the Design
	Implementation for the Bangla Script MajidICDAR
	Implementation for the Korean Script
	Implementation for any Alphabetic Script

	Underlying Tools and Technology
	The Object Detection Network
	Transfer Learning from VGG16 and Associated Parameters
	Data Augmentation
	Compilation of Detected Results into a Transcription
	Spell Checking
	Performance Metrics

	The Boise State Bangla Handwriting Dataset
	Overview
	Description of the Dataset Content
	The Data Collection Process
	Ground Truth Tag and Other Metadata
	Comparison with Other Public Datasets
	Tools Developed for Preparing the Dataset
	Benchmarking the Boise State Dataset with an Isolated Character Recognizer

	External Datasets used for the Experiments
	External Bangla Datasets used for Isolated Character Recognition
	External Bangla Datasets used for Transcription Evaluation
	Korean Dataset used for Syllable Recognition

	Autonomous Tagging
	Background and Motivation
	Effect of Tag Variance
	Basic Idea of Autonomous Tagging Process
	Implementation for Bangla
	Implementation for Korean

	Results and Analysis
	Benchmarking Isolated Character Set in the Boise State Bangla Handwriting Dataset with Other Publicly Available Datasets
	Offline Recognition Performance for Bangla with the Proposed Character Spotting Framework
	Character Spotting Recognition with the Boise State Dataset
	Character Spotting Recognition on other Bangla Datasets

	Performance Comparison between Camera-Acquired and Scanned Images
	Autonomous Tagging Performance on Bangla and Korean
	Autonomous Tagging for Bangla
	Autonomous Tagging for Korean
	Significance of the Autonomous Tagging Experiment

	Conclusion and Future Directions
	List of High Frequency Korean Syllables obtained from the 1000 Most Common Korean Words
	REFERENCES

