DESIGN OF ANALOG INTEGRATED CIRCUITS AND SYSTEMS

Kenneth R. Laker

University of Pennsylvania

Willy M. C. Sansen

Katholieke Universiteit Leuven Belgium

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

	Preface							xix
1	MO	S Tran	sistor Models					1
	Introduction							1
	1-1 MOSFET and Junction FET							2
		1-1-1	JFET					2
		1-1-2	MOST					2
		1-1-3	nMOST and pMOST					4
	1-2	Capaci	tances and MOST Threshold Voltages					5
		1-2-1	MOS Capacitance					5
		1-2-2	Junction Capacitance					6
		1-2-3	MOST and JFET					7
		1-2-4	MOST Threshold Voltage					9
		1-2-5	Enhancement and Depletion MOST					12
	1-3	MOST	Linear Region and Saturation Region	,				14
		1-3-1	Large v_{GS} , Small v_{DS} , and Zero v_{BS}			•		14
		1-3-2	Large v_{GS} , Large v_{DS} , and Zero v_{BS}					15
		1-3-3	Large v_{GS} , Small v_{DS} , and Large v_{BS}					17
	1-4		Current-Voltage Characteristics					17
		1-4-1						17
		1-4-2						18
		1-4-3						19
		1-4-4						20
		1-4-5	20 00 25					22
		1-4-6						23
	1-5		Signal Model in Saturation					23
		1-5-1	Transconductance g_m					25

X CONTENTS

	1-5-2	Bulk Transconductance g_{mb}	26
	1-5-3	Output Resistance r_o	26
1-6	Weak I	nversion and Velocity Saturation	27
	1-6-1	MOST in Weak Inversion	27
	1-6-2	Transconductance-Current Ratio	29
	1-6-3	Transition Weak-Strong Inversion	30
	1-6-4	MOST in Velocity Saturation	32
1-7	Examp	les of Small-Signal Analysis	32
	1-7-1	Example of Transconductance Amplifier	32
	1-7-2	Example of Voltage Amplifier with Active Load	33
	1-7-3	Example of a MOST Diode	35
	1-7-4	Example of Source Follower	36
	1-7-5	Example of MOST as a Switch with Resistive Load	38
	1-7-6	Example with a MOST as a Switch with Capacitive Load	41
1-8	Capacit	tances	43
	1-8-1	MOST: Oxide Capacitance C_{ox}	45
	1-8-2	MOST Junction Capacitances	45
	1-8-3	MOST Junction Leakage Currents and Capacitances	47
	1-8-4	Interconnect Capacitances	47
	1-8-5	Bonding Pad Capacitance	49
	1-8-6	Package Pin Capacitance	49
	1-8-7	Protection Network Capacitance	50
	1-8-8	Total Capacitance Configurations	50
1-9	Higher	-Order Models	51
	1-9-1	VT0-KP-GAMMA-LAMBDA or TOX-PHI-NSUB-NSS?	52
	1-9-2	Parasitic Resistances	52
	1-9-3	Mobility Degradation Due to Longitudinal Electric Field	53
	1-9-4	Mobility Degradation Due to Transverse Electric Field	55
	1-9-5	Channel Width Factor DELTA	56
	1-9-6	Static Feedback Effect Parameter ETA	57
	1-9-7	Onset of Short-Channel Effects	58
	1-9-8	Punchthrough and Substrate Currents	58
1-10	-	Example	60
1-11		n FETs	62
		JFET Pinchoff Voltage	62
		JFET DC Model	6.
		JFET: DC Model in Linear Region	66
		JFET DC Model: Onset of Saturation	67
		JFET DC Model in Saturation	69
		Model for Wide-Channel JFETs	69
		JFET DC Model in Saturation: Subthreshold Region	71
		JFET Small-Signal Models	71
		JFET Example: MESFET	73
		0 JFET Design Example	74
1-12		Sources in FET	74
		Thermal or Johnson Noise	77
		Shot Noise	78
	1-12-3	1/f Noise or Flicker Noise	79

		1-12-4	Other Noise Sources	81
		1-12-5	Total Noise	81
		1-12-6	FET Noise Models	83
		1-12-7	1/f Noise in SPICE	84
		1-12-8	Equivalent Input Noise Current	85
		1-12-9	Gate Leakage Noise	86
		Summa	ury	86
		Exercis		86
		1000	lix 1-1: Notation of Symbols	90
		Referer	nces	91
2	Bipo	olar Tra	ansistor Models	92
	2-1	Bipolar	Transistor Operation	92
		2-1-1	Structure	92
		2-1-2	Depletion Layers	96
		2-1-3	Base Doping	96
		2-1-4	Forward Biasing	96
		2-1-5	Base Transit Time	100
	2-2		ansistor Beta (β)	101
		2-2-1	Beta Caused by Injection in the Emitter β_{IE}	102
		2-2-2	Beta Caused by Recombination in the Base β_{RB}	102
		2-2-3	Beta Caused by Recombination in the EB Space Charge Layer	102
		2-2-4	AC Beta β_{AC}	103
	2-3		/brid-π Small-Signal Model	106
		2-3-1	Transconductance g_m	106
		2-3-2	Input Resistance r_{π}	106
		2-3-3	Output Resistance r_o	107
		2-3-4	Voltage Gain of Small-Signal Gain Stage	110
		2-3-5	Junction Capacitances	110
		2-3-6	Diffusion Capacitance C_D	112
		2-3-7	Common-Emitter Configuration with Current Drive	112
		2-3-8	Common-Emitter Configuration with Voltage Drive	116
		2-3-9	Common-Collector and Common-Base Configurations	117
	2-4		mic Resistances	121
		2-4-1	The Base Resistance	121
		2-4-2	Extrinsic Base Resistance	121
		2-4-3	Intrinsic Base Resistance	121
		2-4-4	The Collector Resistances	125
	2-5	2-4-5	The Emitter Resistance	126
	2-3		njection and Other Second-Order Effects	126
		2-5-2	High-Injection Effects in the Base High-Injection Model of Beta	127 130
			e ;	
		2-5-3 2-5-4	Base Resistance Effects Graded Base	131
		2-5-5	Collector Current Spreading	131 131
		2-5-5	High-Injection Effects in the Collector	131
		2-5-6	Bipolar Transistors for VLSI	132
	2-6		pnp Transistors	132
	2-0	2-6-1	Substrate pnp Transistors	134
		2-0-1	Substate prop Transistors	1.04

		2-6-2	Lateral pnp Transistors	137
		2-6-3	Base Width, Early Voltage, and Punchthrough	139
		2-6-4	Base Resistance and Emitter Crowding	139
		2-6-5	Applications with pnp's	139
	2-7	Noise		142
		2-7-1	Input Noise Sources	142
		2-7-2	Equivalent Input Noise Sources	143
		2-7-3	Noise Figure	144
		2-7-4	Optimum R _S	145
		.2-7-5	Optimum NF	146
		2-7-6	Optimum I _C	146
	2-8		Example	147
	2-9		Components	147
		2-9-1	Base Diffusion Resistors	147
		2-9-2	Other Resistors	149
		2-9-3	Temperature Coefficient	150
		2-9-4	Voltage Coefficient	151
		2-9-5	Frequency Dependence	151
		2-9-6	Absolute and Relative Accuracy	152
		2-9-7	Resistors in a CMOS Process	153
		2-9-8	Thin Film Resistors	153
		2-9-9	Capacitors	153
			Inductors	155
	2-10	-	rison between MOSTs and Bipolar Transistors	156
			Input Current	157
			DC Saturation Voltage	157
			Transconductance-Current Ratio	159
		2-10-4	Design Planning	160
			Current Range	160
			Maximum Frequency of Operation	160
		2-10-7	Noise	161
		Summa		162
		Exercis	es	162
		Append		164
		Referer	nces	169
3	Feed	dback a	and Sensitivity in Analog Integrated Circuits	170
	Introd	duction		170
	3-1	Feedba	ck Theory	172
		3-1-1	Basic Feedback Concepts and Definitions	177
		3-1-2	Feedback Configurations and Classifications	185
	3-2	Analys	is of Feedback Amplifier Circuits	188
		3-2-1	Analysis When the Feedback Network is One of the Four Basic	
			Configurations in Fig. 3-7	189
		3-2-2	Blackman's Impedance Relation	194
		3-2-3	The Asymptotic Gain Relation	198
	3-3		y Considerations in Linear Feedback Systems	200
		3-3-1	Effect of Feedback on the System Natural Frequencies	202
		3-3-2	The Use of Bode Plots in Stability Analysis	212

	3-4	Sensitiv	vity, Component Matching and Yield	219
		3-4-1	Component Matching	221
		3-4-2	Sensitivity Problem in Precision Analog Circuits	222
		3-4-3	Yield Considerations in Analog Integrated Circuits	226
		Summa		231
		Exercis		232
		Append	dix 3-1: Approximate Calculations for a Two-Pole System when the Poles	
		are Rea	al and Widely Separated	238
		Append	dix 3-2: Exact Calculation of the Bode Diagram for Two-Pole Systems	241
		Referen	nces	244
4	Elen	nentary	y Transistor Stages	245
		luction	/	245
	4-1		Single-Transistor Amplifying Stages	247
	-	4-1-1	Biasing	247
		4-1-2	Low Frequency Gain	249
		4-1-2	Bandwidth	252
		4-1-4	Full Circuit Performance at High Frequencies	261
		4-1-5	Unity-Gain Frequency and Gain-Bandwidth Product	269
		4-1-6	Noise Performance	276
	4-2	100-10-10 M 100-500	r Single-Transistor Amplifying Stages	277
		4-2-1	Biasing	277
		4-2-2	Gain for Voltage Drive and Current Drive	280
		4-2-3	Frequency Performance	281
		4-2-4	Gain-Bandwidth Product	283
		4-2-5	Input Impedance	288
	4-3		and Emitter Followers	291
		4-3-1	Source Followers	292
		4-3-2	Emitter Followers	300
		4-3-3	Noise Performance	307
	4-4	Cascod	le Transistors	308
		4-4-1	MOST Cascodes	308
		4-4-2	Bipolar Transistor Cascodes	313
		4-4-3	Noise Performance	314
	4-5	CMOS	Inverter Stages	316
		4-5-1	DC Analysis of CMOS Inverters	316
		4-5-2	Low Frequency Gain	324
		4-5-3	Bandwidth .	326
		4-5-4	Current Capability and Slew Rate	329
		4-5-5	Design Procedure	332
		4-5-6	Other MOST Inverters	334
		4-5-7	Bipolar Transistor Inverter Stages	337
		4-5-8	Noise Performance	341
	4-6	Cascod	le Stages	343
		4-6-1	Cascode Configurations	343
		4-6-2	Bandwidth of Cascode with Low R_L	345
		4-6-3	Cascode with Active Load	346
		4-6-4	Noise Performance	352
		4-6-5	High Voltage Cascode	353

		4-6-6	Cascode Stages with Bipolar Transistors	354
		4-6-7	Feedforward in Cascode Amplifiers	355
	4-7	Differe	ntial Stages	357
		4-7-1	Definitions	357
		4-7-2	MOST Differential Stages	359
		4-7-3	Bipolar Transistor Differential Stages	372
	4-8	Current	t Mirrors	378
		4-8-1	Definitions	378
		4-8-2	Simple MOST Current Mirror	379
		4-8-3	Other MOST Current Mirrors	381
		4-8-4	Bipolar Transistor Current Mirrors	383
		4-8-5	Noise Output of Current Mirrors	387
		Summa		391
		Exercis		393
			dix 4-1: The Pole-Zero Diagram: Evaluation of a Transfer Characteristic	
		for Dif	ferent Parameters	401
		Referer	nces	407
5	Beh	avioral	Modeling of Operational and Transconductance	
		olifiers		408
		luction		408
	5-1		Amp Schematic Symbol and Ideal Model	410
	5-2		is of Circuits Involving Op Amps	414
	52	5-2-1	Inverting Configuration	414
		5-2-2	Noninverting Configuration	425
	5-3		al Op Amp Characteristics and Model	434
	00	5-3-1	Gain-Bandwidth and Compensation	434
		5-3-2		442
		5-3-3	Slew Rate and Full Power Bandwidth	444
		5-3-4	DC Offsets and DC Bias Currents	448
		5-3-5	Common Mode Signals	452
		5-3-6	Noise	453
	5-4		ntial and Balanced Configurations	456
	5-5		perational Transconductance Amplifier (OTA)	462
		5-5-1		463
		5-5-2	OTA Building Block Circuits	464
		5-5-3	Practical Considerations	465
		Summa	arv	467
		Exercis		467
		Referen		474
6	Ope	rationa	l Amplifier Design	475
1		luction	and Design Flow Land and a start of the COVER STATE of the COVER STATE S	475
	6-1		of a Simple CMOS OTA	477
	0.000-050	6-1-1	Gain of the Simple CMOS OTA	478
		6-1-2	The GBW and Phase-Margin	479
		6-1-3	Design Plan	482
		6-1-4	Optimization for Maximum GBW	482
	6-2		iller CMOS OTA	486

	6-2-1	Operating Principles and Biasing	486
	6-2-2	Gain of the Miller OTA	489
	6-2-3	Gain-Bandwidth Product and Phase-Margin	491
	6-2-4	Design Plan	497
	6-2-5	Miller BICMOS OTAs	500
6-3	Full Se	t of Characteristics of the Miller OTA	500
	6-3-1	Full DC Analysis: Common-Mode Input Voltage Range	
		versus Supply Voltage	502
	6-3-2	Full DC Analysis: Output Range versus Supply Voltage	503
	6-3-3	Full DC Analysis: Maximum Output Current (Source and Sink)	504
	6-3-4	AC Analysis: Low Frequencies	505
	6-3-5	Gain-Bandwidth versus Biasing Current	507
	6-3-6	Slew Rate versus Load Capacitance	510
	6-3-7	Output Voltage Range versus Frequency	511
	6-3-8	Settling Time	513
	6-3-9	Input Impedance	515
	6-3-10	Output Impedance	519
	6-3-11	Temperature Effects	522
6-4	Noise A	Analysis of OTAs	523
	6-4-1	Noise Performance at Low Frequencies	524
	6-4-2	Noise Performance at High Frequencies	527
	6-4-3	Total Integrated Output Noise	532
6-5	Matchi	ng Specifications	535
	6-5-1	Transistor Mismatch Model	535
	6-5-2	Offset Voltage Definition	537
	6-5-3	Mismatch Effects on a Current Mirror	539
	6-5-4	Differential Stage with Active Load	540
	6-5-5	Offset Drift	543
	6-5-6	CMRR	544
	6-5-7	Relation between Random V_{osr} and $CMRR_r$	546
	6-5-8	Relation between Systematic V_{oss} and $CMRR_r$	546
	6-5-9	CMRR versus Frequency	548
		Offset and CMRR of the Miller CMOS OTA	548
	6-5-11	Design for Low Offset and Drift	552
		Offset in JFET Differential Amplifier	556
		Offset and CMRR in Bipolar Differential Amplifier	556
		Bias Current, Offset, and Drift	558
6-6		Supply Rejection Ratio	562
	6-6-1	PSRR _{DD} of Simple CMOS OTA	563
	6-6-2	PSRR _{SS} of Simple CMOS OTA	567
	6-6-3	$PSRR_{DD}$ of the Miller CMOS OTA	569
	6-6-4	PSRR _{SS} of the Miller CMOS OTA	572
6-7		of Other OTAs	575
	6-7-1	Symmetrical CMOS OTA	575
	6-7-2	Cascode Symmetrical CMOS OTA	583
	6-7-3	Symmetrical Miller CMOS OTA with High PSRR	585
	6-7-4	Folded-Cascode CMOS OTA	587
	6-7-5	Operational Current Amplifier (OCA)	591

•

6-8	Design	595				
	6-8-1	Design for Optimum GBW or SR	595			
	6-8-2	Compensation of Positive Zero	598			
	6-8-3	Fully Differential or Balanced OTAs	601			
6-9	Op An	607				
	6-9-1	CMOS op Amp Configurations	607			
	6-9-2	Bipolar Op Amp Configurations	608			
	6-9-3	BIMOS and BIFET Op Amp Configurations	610			
	Summ	612				
	Exerci	612				
	Appen	622				
	Appen	628				
	Refere	References				

7 Fundamentals of Continuous-Time and Sampled-Data Active Filters

Filt	ers		648
Intro	duction		648
7-1	Linear	Filtering Concepts and Definitions	649
7-2	Schem	652	
	7-2-1	Active-RC and Active G_m/C Filters	652
	7-2-2	Active-SC Filters	657
7-3	Filter '	666	
	7-3-1	Lowpass	668
	7-3-2	Highpass	670
	7-3-3	Bandpass	671
	7-3-4	Band-Reject	672
	7-3-5	Allpass or Delay Equalizer	672
	7-3-6	Basic Filter Specifications	675
7-4	Detern	nining a Nominal H	678
	7-4-1	Maximally-Flat or Butterworth Filters	679
	7-4-2	Equi-Ripple (Chebyshev) Filters	681
	7-4-3	Cauer (Elliptic) Filters	684
	7-4-4	Bessel (Linear Phase) Filters	685
7-5	Freque	686	
	7-5-1	s-to-s Transforms	687
	7-5-2	s-to-z Transforms	688
7-6	Noise,	DC Offset, Harmonic Distortion and Dynamic Range	690
7-7	Sensiti	ivity, Variability, and Yield	696
7-8	Model	ing and Analysis of Switched-Capacitor Filters	703
	7-8-1	Periodic Time-Variance in Biphase SC Filters	704
	7-8-2	ϕ^e and ϕ^o Decomposition	708
	7-8-3	Switched-Capacitor z-Domain Models	713
	7-8-4	Active SC Integrators	718
	Summ	ary	723
	Exerci	ses	724
	Appen	dix 7-1: Sampled-Data Signals and Systems	732
	Refere	756	

8	Desi	gn and	I Implementation of Integrated Active Filters	758	
	Introd	luction		758	
	8-1	8-1 Parasitic Capacitances in Integrated Filters			
	8-2	of Practical Integrated Filter Components	764		
		8-2-1	Poly 1-Poly 2 Capacitor	764	
		8-2-2	MOST Analog Switch	765	
		8-2-3	Linearized MOST Resistor	767	
		8-2-4	Linearized OTA Transconductance	772	
	8-3	Parasiti	ics and Filter Precision	777	
		8-3-1	Reducing the Effect of Parasitics on Filter Precision	778	
		8-3-2	Parasitic Insensitive Switched-Capacitor Structures	782	
	8-4	Autom	atic On-Chip Tuning	786	
		8-4-1	On-Chip Tuning Strategies	787	
		8-4-2	Frequency Tuning with PLL	794	
		8-4-3	Q tuning with MLL	796	
	8-5	PSRR,	Clock Feedthrough and DC Offset	798	
		8-5-1	Clock Feedthrough and DC Offset Cancellation	799	
		8-5-2	Layout Measures to Improve PSRR	803	
		8-5-3	Balanced Active-RC and SC Design	808	
	8-6	First-O	rder and Biquadratic Filter Stage Realizations	808	
		8-6-1	Realizing Real Poles and Zeros	809	
		8-6-2	Types of Biquads	815	
	8-7	Fleisch	er-Laker Active-SC Biquads	822	
		8-7-1	Evaluation of the General Active-SC Biquad	826	
		8-7-2	Synthesis of Practical Active-SC Biquads	830	
		8-7-3	Examples	837	
	8-8	Integra	ted Continuous-Time Fleischer-Laker Type Biquads	843	
		8-8-1	Active-RC Biquads using MOST-R's	843	
		8-8-2	Active- G_m/C Biquads using MOST- G_m 's	847	
	8-9	High-C	Order Filter Implementation Using Cascaded Stages	849	
		8-9-1	Cascading First- and Second-Order Filter Stages	849	
		8-9-2	Time-Staggered Active-SC Stages	852	
		8-9-3	Settling Error Analysis of Delay Equalizers Realized as a Cascade		
			of Active-SC AP Stages	856	
	8-10	High-C	Order Filter Implementation Using Active Ladders	858	
		8-10-1	Sensitivity	860	
		8-10-2	Realization Using Signal Flow Graphs	862	
		8-10-3	Realizing All-Pole LP Filters	865	
		8-10-4	Realizing Symmetric All-Pole BP Filters	870	
		8-10-5	Realizing Finite Transmission Zeros	872	
		Summa		874	
		Exercis	ses	876	
		Referen	nces	885	
	Inde	v		889	
	muc	A		009	