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Abstract

Most common hereditary diseases in humans are complex and multifactorial. Large scale genome-

wide association studies based on SNP genotyping, have only identified a small fraction of the 

heritable variation of these diseases. One explanation may be that many rare variants (a minor 

allele frequency, MAF < 5%), which are not included in the common genotyping platforms, may 

contribute substantially to the genetic variation of these diseases. Next-generation sequencing, 

which would allow the analysis of rare variants, is now becoming so cheap that it provides a viable 

alternative to SNP genotyping. In this paper, we present cost-effective protocols for using next-

generation sequencing in association mapping studies based on pooled and un-pooled samples, 

and identify optimal designs with respect to total number of individuals, number of individuals per 

pool, and the sequencing coverage. We perform a small empirical study to evaluate the pooling 

variance in a realistic setting where pooling is combined with exon capturing. To test for 

associations, we develop a likelihood ratio statistic that accounts for the high error rate of next-

generation sequencing data. We also perform extensive simulations to determine the power and 

accuracy of this method. Overall, our findings suggest that with a fixed cost, sequencing many 

individuals at a more shallow depth with larger pool size achieves higher power than sequencing a 

small number of individuals in higher depth with smaller pool size, even in the presence of high 

error rates. Our results provide guidelines for researchers who are developing association mapping 

studies based on next-generation sequencing.
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Introduction

Determining the genetic basis of complex genetic diseases is one of the main challenges in 

human genetics [Altshuler et al., 2008; Frazer et al., 2009; Kruglyak, 2008; McCarthy et al., 

2008; McCarthy and Hirschhorn, 2008]. Genome-wide association mapping studies (GWAs) 

have revealed many susceptability loci for complex diseases such as diabetes, hypertension, 

bipolar, Crohn’s disease and others [Barrett et al., 2008; Consortium, 2007; Hindorff et al., 

accessed 1 Apr 2009; Thomas et al., 2009]. However, despite many successes, a majority of 

the additive generic variance still remains unexplained [Altshuler et al., 2008; Frazer et al., 

2009; Kruglyak, 2008; McCarthy and Hirschhorn, 2008]. One explanation for this result is 

that rare variants might play a significant role in complex diseases. Since genotyping 

platforms include SNPs that are discovered by sequencing a small panel, most of the 

included SNPs are common variants (MAF > 5%; [Frazer et al., 2007]) in previous GWAs. 

The importance of rare variants in understanding complex traits has been discussed in a 

number of recent studies [Azzopardi et al., 2008; Bodmer and Bonilla, 2008; Cohen et al., 

2004, 2006; Gorlov et al., 2008; Iyengar and Elston, 2007; Ji et al., 2008; McClellan et al., 

2007; Polychronakos, 2008]. For example, in a re-sequencing study of three genes, Ji et al. 

[2008] found several rare mutations related to hypertension, appearing in the heterozygous 

state.

The cost of re-sequencing has dropped dramatically over the past few years [Bentley et al., 

2008; Wang et al., 2008; Wheeler et al., 2008]. This recent development has made next-

generation re-sequencing a viable alternative to SNP genotyping based on chips or other 

platforms [Bentley et al., 2008; Hillier et al., 2008; Van Tassell et al., 2008]. However, in 

most studies full genome-wide re-sequencing at a high depth is still prohibitively expensive. 

Instead, two strategies are being used to reduce costs: (1) sequencing of the exome only - 

using various exon capturing techniques and (2) the use of pooled samples. With recent 

developments in exon capturing techniques, most of the human exons can be efficiently 

captured [Albert et al., 2007; Gnirke et al., 2009; Hodges et al., 2007; Krishnakumar et al., 

2008; Okou et al., 2007; Porreca et al., 2007]. While many functional variant may lie in 

noncoding regions, many of the mutations with the best potential for translational medicine 

are in coding regions, providing an extra motivation for focusing on the exome [Jones et al., 

2009; Kryukov et al., 2009; Raymond et al., 2009].

The use of pooled samples is particularly attractive in two-stage designs [Chi et al., 2009; 

Skol et al., 2006; Wang et al., 2006; Zuo et al., 2008, 2006]. In the first stage of a two-stage 

design, a large number of markers are genotyped, or re-sequencing is being used, on a 

moderate number of individuals. In the second stage, the most promising markers from the 

first stage are further examined by genotyping in a larger set of individuals. To reduce the 

cost of large-scale association studies, pools of DNA from many individuals have been 

successfully used in the first stage of the two-stage design [Bansal et al., 2002; Boss et al., 

2009; Nejentsev et al., 2009; Norton et al., 2004; Sham et al., 2002]. The use of pooled 

samples reduces cost, particularly when combined with techniques such as exon-capturing 

which has a cost associated with each pool to which it is applied. With the advent of cheap 

re-sequencing techniques, a viable, an economically attractive protocol for GWAs may 

include an initial stage of exon capturing and re-sequencing in pooled samples [Druley et al., 
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2009; Ingman and Gyllensten, 2008; Jones et al., 2009; Lavebratt and Sengul, 2006], and a 

second stage based on genotyping of the best candidate SNPs from the first stage. Such a 

protocol is cost effective and has the potential to detect rare SNPs that would not be captured 

by any of the major genotyping platforms.

Here, we examine the feasibility of this protocol, using both pooled and un-pooled samples. 

There are a number of issues related to this protocol that warrants further research, including 

the effects of sequencing errors and pooling variance, and the consequences of these factors 

for the choice of optimal experimental protocol.

We first make a limited experimental study based on Nimblegen R exons capturing, and 

sequencing using the Illumina genome analyzer®, to determine the feasibility of studies 

based on a combination of these techniques. We then use the results of this study to model 

the protocol using realistic parameters. We perform simulations to determine power and to 

identify optimal designs.

Methods

Experimental design

Our analyzes assume a two-stage design, where the first stage may include exon capturing 

and/or pooled samples, and will involve next-generation re-sequencing. The second stage is 

based on traditional SNP genotyping of the most promising variants from the first stage. 

While the properties and design of the second stage have been explored extensively in 

previous work [Skol et al., 2006; Zuo et al., 2008], the use of next-generation sequencing for 

the first stage has not previously been explored to the same degree [Nejentsev et al., 2009].

Experimental data

A small empirical study was conducted to evaluate feasibility of this novel approach and 

assess the variability introduced in real experiments. Genomic DNA was purified from blood 

leucocytes from 5 Danish volunteers recruited at Steno Diabetes Center, Denmark. The 

volunteers gave informed consent and the research protocol which is focused on studies of 

the genetics of metabolic disorders was approved by the local Ethical Committee of 

Copenhagen. Two pools were constructed, one with two individuals and the other with five 

individuals. Pooling DNA of individuals was done following the pre-PCR protocol described 

in Lavebratt and Sengul [2006] with some small modification. In our procedure, individual 

DNA was diluted to 10 ng/μl instead to 5 ng/μl before pooling. Our pooling procedure is 

summarized in Supplementary Figure 1. Exon-capturing was performed using a NimbleGen 

chip® [Albert et al., 2007], which captures 6,726 ‘exonic’ regions covering ~ 5 Mb 

sequence. The DNA sample in each pool was fragmented to an average size of 500bp, end 

repaired, ligated to Solexa adaptors®, hybridized and captured using the high-density 

oligonucleotide microarray. Finally, the DNA sample was amplified using PCR, and the 

eluted sample from it was sequenced using Solexa Genome Analyzer II®. Solexa sequence 

reads were aligned to the reference human genome(NCBI build 36) using read-alignment 

program SOAP [Li et al., 2008].
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In our design, reads from individuals in pools could be identified after re-seqrencing because 

they were re-sequenced both individually and in pools. The individual re-sequencing 

allowed the identification of unique mutations specific to each individual. Pooling efficacy 

was then measured by the degree to which the pooled DNA was comprised of an equal 

contribution of DNA from each individual.

One way to model the pooling efficacy is as follows.

(1)

where Yi,A and Yi,a are the counts of read bases generated from the two alleles in individual 

i. The parameter μ is the mean depth of each allele and αp is the parameter of a standard 

gamma distribution used to model the pooling variance. The proportion of DNA from each 

individual in the pool is then . It follows from standard probability theory that 

(R1,…,RPs)~Dirichlet(αp), where Ps is the number of individuals per pool (pool size). If 

there is an equal amount of DNA from each individual then

(2)

The parameter αp controlling the pooling variance is estimated from the data using the 

maximum likelihood method.

Variation in exon-capturing efficacy introduces extra variation in read depth across the sites. 

High depth implies efficient exon-capturing, and low depth implies poor exon-capturing 

performance. We model the exon capturing efficacy as a gamma distribution.

(3)

where μt is the mean total depth at site j. Exon-capturing might fail for some sites. In that 

case, the capturing efficacy can be modeled as a mixture of a point mass at zero and a 

gamma distribution.

We estimate the sequencing error rate conservatively as the average mismatch rate. 

Specifically, all the counts of pairwise mismatches between the reference human genome 

and aligned reads were averaged across targeted regions as well as across the aligned reads.

Experimental cost

In order to illustrate how to make cost effective choices regarding optimal design, we will 

make assumptions regarding experimental cost. Obviously, costs can change rapidly and 
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design of individual studies should take current costs into consideration. It should be noticed 

that our general conclusions are not dependent on the specific assumptions regarding costs 

made here. In the most general pooled design, the total cost of an experiment has four 

components: cost of obtaining DNA samples, cost of pooling DNA samples, exon-capturing, 

and sequencing. We will in the following ignore the cost of obtaining DNA samples and 

assume that such samples are available before the onset of the study. The DNA pooling cost 

mainly depends on the total number of individuals that are pooled. The key step in pooling is 

to dilute and accurately quantify the DNA concentration of each individual sample. We will 

here assume, for the sake of example, that initial preparation for each individual in a pool 

costs $2. We will assume that exon-capturing covering all human exons (~ 30Mb) costs 

$3,500 for each pool. The cost of sequencing is divided into two parts, a cost of preparation 

of the DNA sample which we will assume is $200, and a cost associated with the production 

of sequencing reads. We will assume a cost of $500 for Solexa-sequencing of a 30Mb exonic 

region at a depth of 2X (for details, see Supplementary Methods). The assumed 

experimental costs are summarized in Table 1. Notice that for individual sequencing, the 

exon-capturing cost rapidly increases with the number of individuals, even if the sequencing 

cost is fixed. The use of pooled samples allow deeper sequencing at the same cost.

Likelihood ratio test

The data produced by next-generation sequencing differs from that of SNP-chips. 

Genotyping, in principle, reveals the two alleles in each individual in each targeted 

nucleotide site. Next-generation re-sequencing produces large amounts of short reads. After 

mapping to the reference genome, an alignment of reads across the targeted regions is 

obtained. A schematic example of re-sequencing data at a single site is shown in Figure 1. In 

this particular example, cases and controls each consist of two pools with two individuals. 

Each nucleotide site in each individual is represented in reads a random number of times. It 

is generally unknown which of the two alleles in an individual is represented in a particular 

read. Also, there is a high probability of sequencing errors.

One of the main challenges in the use of next-generation sequencing data in association 

mapping studies aimed at detecting associations with rare SNPs, is to distinguish between 

true SNPs and false SNPs caused by sequencing errors. The nature of the data is such that, 

even after basic bioinformatic quality control procedures, sequencing errors remain a serious 

problem. Power can be gained by incorporating the possibility of errors into the statistical 

framework used for detecting associations. There is a trade-off between eliminating too 

many putative SNPs as sequencing errors, thereby eliminated a number of true SNPs, and 

eliminating too few putative SNPs, and then suffer a serious multiple testing problem. A full 

likelihood approach incorporated into the association mapping testing procedure may help to 

directly identify the optimal balance between eliminating to few or too many putative SNPs 

in a particular design, and to select the putative SNPs that most likely are associated with the 

trait. We have developed a simple version of such a likelihood approach. We have also 

extended this method so it can be applied to provide a more powerful method for pooling 

designs.
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In the following, we will discuss how the method can be developed into a likelihood ratio 

test used to test the standard hypothesis: H0 : p1 = p2 (= p0) vs HA : p1 ≠ p2, where p1 and p2 

is the minor allele frequency in cases and controls, respectively.

We test each site, j, independently of each other. Suppose that for both cases and controls, 

there are Npool pools with Ps individuals per pool. After re-sequencing, for each pool m, an 

alignment of reads  is obtained, where  is the kth read among 

the total V(m) reads in locus j. Let G(m) be the number of A (minor) alleles in pool m. (Note 

that G(m) is not observed.) Each observed read is a copy of one of the alleles in a pool, but 

copying is made with error rate ε (= P (read = A|allele = a) = P (read = a|allele = A)).

Then our likelihood ratio statistic (LRT) is computed as:

and, the likelihood for each pool m is computed as:

where  is the number of A in reads. The last equation is motivated as follows: G(m) 

follows a binomial distribution with Spool (= 2Ps) number of trials each with probability p0 

(assuming no population structure). Given that there are k minor alleles (A) in a pool, each 

read becomes of type A with probability k/Spool if there are no errors. If errors occur, the 

probability is  Assuming homogeneity in sequencing 

efficiency across chromosomes (i.e., the number of sequenced reads for each allele follows 

the same distribution) and independence, the number of A reads in the pool  follows a 

binomial distribution. Notice that the total number of reads in each pool (V(m)) is assumed to 

be given.

Maximization of the likelihood function was done using a bounded version of the BFGS 

algorithm [Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970] or the Simplex 

method [Nelder and Mead, 1965]. Overall, the Simplex method algorithm performed better, 

presumably because the computational expense in numerically approximating the gradient in 

the BFGS algorithm overwhelmed the faster convergence of this algorithm for this low 

dimensional problem. Computing our LRT statistic for 1,000 sites takes 69 seconds with the 
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Simplex algorithm, but 136 seconds with BFGS algorithm on a standard dekstop computer, 

for a total of 10,000 reads from 500 cases and 500 controls in 1,000 pools.

Simulating data

Assuming a single causative SNP, we performed extensive simulations to examine the 

statistical properties of the method. In these simulations, the power was evaluated as the 

probability of including the causative SNP among the set of SNPs selected for the second 

stage in a two-stage design. We then varied (1) the sequencing error rate per base pair, (2) 

the number of cases and control individuals, (3) the pool size (the number of individuals per 

pool), and (4) the sequencing depth per individual. To simplify the simulation procedure, we 

do not attempt to take population structure and linkage disequilibrium across loci into 

account. The general conclusions regarding relative power of different designs should not be 

affected by the strength of LD. For simplicity, we use equal numbers of cases and controls 

for all of our simulations, so, in the subsequent description, the number of total individuals is 

twice the number of cases (if not otherwise stated).

Each data set consists of aligned reads from a 300Kb region, which contains one causative 

SNP. The null set consists of two subsets, a set of true SNPs and a set of “false” SNPs. False 

SNPs are sites that are invariable in the sample but appear polymorphic due to sequencing 

errors. Based on the results of the empirical study, we will assume an error rate of 1%, if not 

otherwise stated. We compute the number of true SNPs in the region assuming a mutation 

rate of 5×10−4, as estimated in coding regions by Wang et al. [2008]. For example, with 

1000 cases and 1000 controls, the number of SNPs is computed as 

. For each true SNP under the null, the minor 

allele frequency (MAF) is drawn from the distribution of sample frequencies under the 

assumption of a standard coalescence model. Genotypes are simulated assuming Hardy-

Weinberg equilibrium and the reads are generated by copying each allele a Poisson 

distributed number of times with mean equal to half the per-individual depth. False SNPs are 

simulated by assuming a MAF of zero. Since every site has high sequencing depth and the 

next-generation sequencing error is relatively high, approx. 1%, almost all the invariable 

sites appear as false SNPs in the read alignment. The causative SNP is simulated similarly, 

but with different MAFs for cases and controls computed using a multiplicative disease 

model.

When necessary, we also simulate data with variation in pooling efficacy and exon-capturing 

efficacy. When both effects are introduced, we use the following model:

where Yi,j,A is the count of the A nucleotides from individual i at locus j. Dp is the depth of 

each pool, and Ri is the proportion of DNA from individual i. Since, αp and αc control the 

pooling variance and capturing variance, respectively, the pooling variance equals 1/αp and 

capturing variance equals 1/αc.
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Results

Experimental data

We examined seven DNA samples, consisting of data from five Danish individuals, 

sequenced individually, and in two pools: a pool with two individuals and another pool with 

five individuals. The individual sequencing data was used to detect unique mutations, which 

allow us to identify individuals of the corresponding reads. Exon-capturing was performed 

for each of the seven DNA samples, using a NimbleGen chip, and was subsequently 

sequenced using Solexa-sequencing (for details, see Methods). We evaluated (a) the 

performance of DNA pooling, (b) exon-capturing efficacy, and (c) sequencing error rate.

Both pools show good pooling efficacy, i.e. an approximately equal amount of DNA from 

each individual in the pool (Figure 2). We first identified mutations that are specific to each 

individual. Using such mutations, we then estimated the relative amount of DNA from each 

individual by averaging the number of reads from the unique mutations across the sequenced 

region.

In the pool with five individuals, 28,026 reads can be uniquely assigned to an individual 

based on 3,217 diagnostic mutations. The estimated proportion of DNA from each 

individuals was 0.186 0.210 0.191 0.211 and 0.202, respectively, showing that the 

proportions differ only slightly. Assuming the model in Equation 1, the estimated pooling 

variance (1/αp) is 1/300, which is very small. The pool with two individuals shows even 

better performance (data not shown).

The exon-capturing efficacy varies significantly across the genome compared to the Poisson 

distribution expected under a constant capturing efficacy across the genome (Supplementary 

Figure 2). The estimated exon-capturing variance is approx. 1/2 (i.e., αc is 2) (see Equation 

3). Nonetheless, exon-capturing efficacy across samples were homogeneous (Supplementary 

Figure 3).

On average, a sequencing error rate of 0.9% was estimated in the Illumina/Solexa raw reads 

(Table 2) using the method described in Methods.

Distribution of the LRT

We examined the distribution of the likelihood ratio statistic using simulations. As suggested 

by standard asymptotic theory, the distribution of the test statistic closely follows a chi-

square distribution with one degree of freedom, except in cases in which the parameters are 

close to the boundary (Supplementary Figure 4). Across a range of MAFs covering 0.05%–

0.5%, the distribution of p-values computed based on the chi-square distribution is nearly 

uniform. However, when the MAF is very small relative to the assumed sequencing error 

rate, a sharp peak near 1.0 appears in the distribution of p-values, implying an excess of test 

statistics with nearly zero values. This is due to difficulty in distinguishing true SNPs with 

very low minor alleles from false ones, and thus MAFs under both the null and the 

alternative hypothesis are estimated to be zero.
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We also varied the number of individuals in a pool (pool size) as well as the sequencing 

depth per individual. Again, the distribution of the LRT statistic closely follows the chi-

square distribution across a range of pool sizes and sequencing depths, except for the 

boundary cases (Supplementary Figures 5 and 6). When the MAF is very small, the 

distribution is affected by the pool size and the sequence depth. With increased pool size but 

constant total read depth, the peak in the distribution becomes more pronounced 

(Supplementary Figure 5), because it becomes more difficult to distinguish false SNPs from 

true SNPs. As sequencing depth increases, the peaks tends to be less pronounced, since high 

depth helps especially when only a few minor alleles exist (Supplementary Figure 6).

In summary, the LRT statistic has good statistical properties, can be used for testing for 

association, and will form the basis for our analyses of designs.

Power of LRT statistic

To examine the power of different experimental designs, we compared the power (computed 

based on our LRT statistic) varying several parameters: the number of individuals in cases 

n1, pool size Ps, individual depth Di and sequencing error rate ε, pooling variance 1/αp and 

the capturing variance 1/αc (for detailed definition, see Methods). Note that for 

computational reasons, we computed the power by selecting 50 SNPs with the strongest 

association out of 300,000 sites. This corresponds to selecting 5,000 candidate SNPs out of 

the human exome (approx. ~ 30 Mb) for further genotyping.

For simplicity, we will denote a disease variant with minor allele frequency (MAF) of m and 

relative risk (RR) of r as Dm,r.

Effect of sample size—As expected, increasing sample size increases power 

significantly, across a range of MAFs and relative risks (Figure 3A). For example, 

sequencing 500 cases at 4X with a pool size of five individuals, the power to detect a D1%, 2 

is 29.8%. However, increasing the sample size by two-fold (1000 cases) and four-fold (2000 

cases), the power becomes 53.8% and 84.3%, respectively. Also, the power to detect a 

D5%, 1.5 is 43.2%, 72.8%, and 95.7%, using 500, 1000, and 2000 cases.

Effect of pool size—By pooling DNA samples, the cost of exon capturing can be 

reduced. However, reads from pools cannot in general be assigned to individuals without 

additional labeling, potentially leading to a reduction in statistical power and accuracy. To 

explore this issue, we performed simulations for different pool sizes, but with a fixed 

number of individuals and a fixed sequencing depth. We find that the power decreases as 

pool size increases (Figure 3B), suggesting that our LRT statistic successfully captures the 

increased information associated with a smaller pool size. Nonetheless, the loss in power is 

relatively small. For example, the power to detect a D1%, 2 is 64.8%, with sequencing 1000 

cases individually at 4X. By pooling five individuals or even 100 individuals, the power is 

only reduced to 53.8% and 45.5%, respectively. These results assume that pools with an 

equal amount of DNA from each individual can be constructed. However, even when using a 

pooling variance that is 100-fold of the estimated variance from the experimental data, the 

results remain almost the same (Supplementary Figure 7)
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Effect of sequencing depth—The sequencing depth is the average number of reads 

covering a site. As expected, the power increases with increasing depth (Figure 3C). For 

example, the power to detect a D1%, 2 is 33.0%, using sequencing of 1000 cases at 2X with a 

pool size of five. However, with a depth of 4X, the power is 53.8%, and with depth of 8X, 

the power is 72.9%. The increased power at higher sequencing depth is caused by an 

increased ability to distinguish between true SNPs and sequencing errors. The advantage of 

a higher sequencing depth will, therefore, also depend on the error rate.

Effect of sequencing error rate—The sequencing error rate is one of the major 

concerns in association studies targeting rare mutations based on re-sequencing. 

Nonetheless, we find that the sequencing error rate has a relatively small effect on the power, 

when the error rate is similar or lower than the MAF of the disease SNP (Figure 3D). For 

example, even if the error rate decreases by half, from 1% to 0.5%, the power to detect a 

disease variant with MAF of 1% or more increases only slightly, at most 5%. This also 

suggests that our LRT statistic properly takes the sequencing error rate into account. With an 

error rate of 2%, there is a more pronounced decrease of power, especially for a MAF of 1% 

or less (Figure 3D). However, in most studies, the error rate will probably be at 1% or below.

Effect of pooling performance—Our simulation results suggest that the effect of the 

pooling variance is of minor concern, for the pool sizes considered here. The pooling 

variance estimated from our empirical study corresponds to Vp = 1/300, and the power with 

this pooling variance is nearly the same as with a variance equal to zero (Figure 3E). Even if 

the variance increases by 100-fold, the power decreases only slightly (Figure 3E). For 

example, the power to detact a D1%, 2 is 53.8% without pooling variance, and it is 51.8% 

with a pooling variance of 1/3.

Effect of exon-capturing efficacy—Exon-capturing efficacy may vary across sites. In 

our empirical study, the total depth varied significantly across the sites, and the estimated 

exon-capturing variance was 1/2. This leads to a markedly reduced power compared to the 

case of almost no variation in exon-capturing efficacy (Vc = 1/100) (Figure 3F). For 

example, the power to detect a D1%, 2 is 53.9% without exon-capturing variance, while, the 

power is 24% with Vc = 1/2. The major reason is that with a high exon capturing variance, 

there in an increased probability of low sequencing depth in the site containing the causal 

SNP.

Power of the LRT with estimated error rate

Our LRT statistic is computed assuming a known sequencing error rate. In practice, the 

sequencing error rate will be estimated from the data, possibly by averaging across sites in a 

region assumed to have a constant error rate. Mis-specification of the error rate may reduce 

the performance of our LRT statistic. Supplementary Figure 8 shows that mis-specification 

of the error rate as 0.5% when the true error rate is 1% decreases the power significantly. 

However, the loss of power due to mis-specification of the error rate is less of our concern, 

since the error rate can be estimated at each site under the null hypothesis. With thousands of 

reads, an error rate close to 1% can be reasonably accurately estimated as long as the pool 

size is not too large (i.e., > 100), and thus the likelihood ratio test achieves a power very 
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close to the case when the true error rate is known. Additionally, most sequencing platforms 

provide quality scores that can be interpreted as error rates. Even when these quality scores 

are not quite accurate, they can be re-calibrated to accurately reflect the error rate. Mis-

specification of the error rate is, therefore, not likely to affect carefully constructed real 

studies.

Optimal design with a fixed cost

In this section, we explore options for maximizing the power for a fixed experimental cost. 

(Examples of cost are shown in Table 1.) For a given cost, the factors we can control are the 

number of cases n1, pool size Ps, and the individual sequencing depth Di. Note, however, 

that the power is also affected by the sequencing error rate, pooling performance, and exon-

capturing effects.

Un-pooled samples

Even if pooling DNA samples may reduce cost significantly, sequencing un-pooled samples 

is of great interest as well, since eventually, sequencing whole genome might be feasible at a 

low cost. An important question then arises as how to balance the trade-off between the 

number of individuals and the individual sequencing depth, with a fixed sequencing cost. To 

illuminate this issue, we examined three designs with 500 cases, 1000 cases, and 2000 cases, 

and a fixed total depth among cases of 4000X or 8000X. Under our simulation conditions, 

power increases as the number of individuals increases (Figure 4A). For example, when the 

error rate is 1%, for a disease variant with MAF of 1% and a relative risk of 2, the power 

using 16X sequencing of 500 individuals is 52.1%, while the power using 4X sequencing of 

2000 individuals is 91.1%. When the total depth is reduced by half, so that the individual 

depth for 2000 cases is 2X, the pattern is still the same (Figure 4B). These observations 

suggest that with a reasonable sequencing error rate, such as 1%, individual sequencing of 

many individuals at a shallower depth achieves better power than sequencing less individuals 

at a higher depth. This finding might be surprising given that it is difficult to call rare SNPs 

in the presence of high error rates. Real error rates might be lower than the 1% assumed 

here, which would further strengthen our conclusions. If DNA from many individuals is 

readily available, there seems to be very little reason to sequence few individuals at a depth 

>2X. Rather, statistical power is maximized by sequencing more individuals at a lower depth 

(e.g. 2X).

Pooled samples

We investigated optimal strategies for pooled samples with a fixed cost. To fix the cost, we 

fix the total number of pools as well as the total depth, thus fixing exon-capturing cost as 

well as sequencing cost. We use four different parameter settings, in which, the setting with 

the lowest sample size corresponds to sequencing 500 cases individually at 8X. The setting 

with the biggest sample size corresponds to sequencing 4000 cases at 1X with a pool size of 

8 individuals. The four settings are shown in the x-axis of Figure 5A, in the order of sample 

size. For each parameter setting, we compared the power to detect a disease SNP with MAF 

of 1% and RR of 2, under various experimental scenarios, considering the error rate, pooling 

performance as well as exon-capturing efficacy. With an error rate of 1%, the power 
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increases with sample size, even in the presence of a more shallow sequencing depth and a 

larger pool size (Figure 5A). This may be surprising since, when individuals are pooled, it 

becomes even harder to distinguish true SNPs from errors. With a lower error rate of 0.5%, 

the gain in power with increased sample size is more pronounced. For example, when the 

error rate decreases from 1% to 0.5%, the power of sequencing 500 cases individually at 8X 

remains almost the same. While, the power of sequencing 4000 cases at 1X with a pool size 

of 8 increases from 66% to 78%. This suggests that when the individual depth is sufficiently 

enough, not much is gained by having a low error rate, but when depth is shallow and pool 

size is relatively large, then the low error rate helps considerably in distinguishing rare SNPs 

from errors. For similar reasons, a very high error rate such as 2% tends to make designs 

with a shallow sequencing depth and large pool size less favorable. Indeed, with an error rate 

of 2%, we observe that the power when sequencing 2000 individuals at 2X with a pool size 

of 4, is lower than when sequencing 1000 individuals at 4X with a pool size of two. 

However, such high error rates are unlikely to occur in practice. Assuming the the pooling 

variance and exon-capturing variance estimated in the empirical study, the power for all the 

settings decrease but the overall pattern remains the same. Presumably, the decrease in the 

power is mostly due to variation in exon-capturing efficacy. We also note that the overall 

pattern discussed above holds true for a range of MAFs and RR, especially for the most 

relevant ones, such as a MAF higher than 1% and RR larger than 1.3.

As the number of individuals available for sequencing or genotyping often is fixed, it is also 

of relevance to consider designs in which both the cost and the number of individuals is 

fixed, but the sequencing depth and pool size can vary. We create three experimental settings 

based on sequencing 1000 individuals. Figure 5B shows that with a fixed number of 

individuals, it is better to sequence at a higher depth with a larger pool size than to sequence 

in a more shallower depth with a smaller pool size. For example, with a sequencing error 

rate of 1%, a pool size of 3 and a sequencing depth of 2X, the power is 45%. However, with 

a pool size of 10 and a sequencing depth of 5.48X the power is 67.2%. A similar pattern is 

observed across a range of sequencing error rates from 0.5% to 2%. This conclusions also 

holds when taking pooling variance and exon-capturing variance into account (Figure 5B).

Overall, our finding suggests that sequencing pooled DNA samples in the region of interest 

works as an efficient protocol in association studies, especially when there is a significant 

cost involved in capturing the targeted regions. In particular, when the cost of obtaining 

DNA from individuals is low, sequencing many individuals at a more shallow depth with 

larger pool size achieves higher power than sequencing a small number of individuals in 

higher depth with smaller pool size. When a fixed number of individuals are available for the 

study, it is better to pool more individuals to save cost in capturing rather to spend more 

money on sequencing each pool deeper.

Discussion

We have here presented a simple likelihood ratio test for association mapping based on next-

generation sequencing data in pooled or un-pooled samples. The method can be improved in 

a number of ways, to take into account quality scores and known error rates. The real pattern 

of sequencing errors is much more complicated than assumed in our simulaitons (e.g., [Li et 
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al., 2009]). Most of these potential extensions are relatively trivial and should not affect the 

conclusions from the simulation studies presented here. However, it might be worthwhile in 

future studies to explore other methods than independent likelihood ratio tests for detecting 

associated SNPs. It might be natural to implement empirical Bayes approaches which first 

estimates the number of SNPs with an association and then provides a posterior for each 

SNP. Such methods could also attempt to take advantage of LD and haplotype patterns in the 

data. In many real studies, it might also be relevant to use imputation to leverage available 

SNP data from other studies [Marchini et al., 2007; Scott et al., 2007; Servin and Stephens, 

2007]. However, we have not pursued such approaches here as the primary aim of this paper 

is to use very fast computational methods to explore issues regarding design of association 

mapping studies based next-generation sequencing data.

We used a small empirical study to estimate parameters relating to exon-capturing variance 

and pooling variance in order to have reasonable parameters for use in the simulations. In 

general, none of the conclusions in the manuscript seems particularly sensitive to 

assumptions regarding exon capturing and pooling variance. However, we should note that 

our conclusions may not necessarily generalize to pools much larger than 5 individuals. Our 

assumption has been that pooling variance does not depend on sample size. If it is 

considerably more difficult to make pools of, say, 50 individuals than 5 individuals, this 

assumption may not hold. We do not have sufficient data to determine the potential accuracy 

of pooling in large samples.

We used the likelihood ratio test and the empirically estimated parameters to simulate 

association mapping studies under realistic conditions. In these simulations we ignored LD 

to increase the computational speed. While this is not a realistic assumption, it should not 

affect our general results, as LD is not expected to have a different effect on pooled and un-

poled samples, or in samples with deep versus shallow sequencing, and since our tests 

statistic is based on marginal analyses of each SNP.

Our major conclusions from the simulation studies is that relatively shallow sequencing and 

relatively large pools are almost always preferred. We have assumed quite high error rates in 

this study, in part because higher error rates makes identification of rare mutations harder, 

and this effect is exasperated under shallow sequencing and in pools where reads from each 

individual cannot be identified. Assuming high error rates, therefore, biases our conclusions 

in the opposite direction of the observed results, towards deep sequencing and small pools. It 

might be surprising that even when rare mutations are difficult to identify, shallow 

sequencing is still preferred. The main reason is that the power to detect an association 

depends on the ability to estimate allele frequencies among cases and controls. With a fixed 

amount of sequencing data being produced, the variance in the estimate of the allele 

frequency is always lower with more individuals than with few individuals. This effect is 

balanced by a potentially reduced ability to determine which sites contain true SNPs and 

which sites do not contain true SNPs. However, as illustrated by the simulations, any 

possible reduction in our ability to call SNPs does not offset the gains in power achieved by 

the more accurate estimation of allele frequencies.
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As sequencing cost continues to decrease, and as focus is changing towards rare alleles, 

next-generation sequencing is becoming a viable alternative for association mapping. We 

emphasize that at the moment, economically optimal designs are probably not based entirely 

on next-generation sequencing. A two-stage approach involving sequencing in the first stage 

and genotyping in the second stage is almost always a more efficient design, especially since 

imputation can be used in the second stage to increase power [Marchini et al., 2007; Scott et 

al., 2007; Servin and Stephens, 2007]. In fact, power in our studies was measured in terms of 

the probability of selecting a causative SNP in the first stage of a two-stage design. However, 

it is possible that in the near future, sequencing becomes so cheap that designs based entirely 

on sequencing should be considered. Our conclusions favoring shallow sequencing in many 

individuals and pooled samples as a cost-reducing measure, should be relevant in both 

candidate gene studies using sequencing and in GWAs based on either a mixed two-stage 

design or based entirely on next-generation sequencing.
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Figure 1. 
Schematic illustration of the next-generation sequencing data at a single position. Each case 

and control sample consist of two pools with two individuals in each pool. The two alleles of 

each individual are shown in the ‘Genotype’ column. There are two types of alleles (A 
shown in black and a shown in red). Each allele appears a random number of times, and may 

have been affected by sequencing errors (green).
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Figure 2. 
Pooling variance observed in the empirial study in the pool of five individuals. Using 

individual sequencing data, unique mutations for each of the five individuals were obtained, 

and the number of reads with each mutation was counted in the pooled sample. The box 

plots shows the lower quartile, median (black line), and upper quartile of the number of 

reads with each mutations (y-axis) for each individual (x-axis). The variation among 

individuals is relatively small compared to the variation within individuals.
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Figure 3. 
Power comparison across a range of sample sizes (number of cases, n1), pool sizes Ps, 

individual sequencing depths Di, sequencing error rates ε, pooling variances Vp, and 

capturing variances Vc. Note that the power is defined as the probability of including the 

causative SNP among the set of the 50 SNPs with strongest signal of association among 

300,000 sites. Each plot shows the power (y-axis) to detect a causative SNP with a specified 

minor allele frequency (black: 0.5%, red: 1%, and blue: 5%) and a specified relative risk (x-

axis), across a range of a parameter settings of interest (line types). The default experimental 
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setting is to sequence 1000 cases and 1000 controls at 4X using a pool size of five, and the 

default condition assumes a sequencing error rate of 1%, ideal pooling performance, and 

constant capturing efficacy. Notice that the solid line in the plots A–D corresponds to the 

default setting and condition.
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Figure 4. 
Power comparison among different sequencing strategies with a fixed sequencing cost. 

Power is defined as in Figure 3. The different strategies are specified in the bottom right 

corner of each plot. n1 and Di specifies the number of cases and sequencing depth per 

individual, respectively. Notice that the total sequencing depth is the same across the three 

settings compared. The power to detect a causative SNP with a minor allele frequency (red: 

1%, blue: 5%) and a specified relative risk (x-axis) are compared for different settings (line 

types).
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Figure 5. 
Optimal strategies with pooled samples. The power to detect a causative SNP with MAF of 

1% and relative risk of 2, is compared for different experimental settings with a fixed cost. 

Power is defined as in Figure 3. In the upper panel, the total number of pools and the total 

depth are fixed across the four settings, but the sample size is varied (x-axis). In the lower 

panel, the sample size is fixed across the three settings, but the depth varies (x-axis). Each 

color corresponds to different sequencing error rates, pooling variance, and exon-capuring 

variance. In the legend, ε specifies an error rate (red: 0.5%, black: 1%, and green: 2%), and 
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empi denotes the condition using the pooling variance and exon-capturing variance 

estimated from the empirical study (see Results).
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