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Design of band-gap grid structures

A. R. Diaz?, A. G. Haddow and L. Ma

Abstract This paper discusses issues related to design-
ing band-gaps in periodic plane grid structures. Finite el-
ement analysis is used to solve the dynamic behavior of a
representative unit cell and Bloch-Floquet theory is used
to extend the results to the infinite structure. Particu-
lar attention is given to the addition of non-structural
masses that are introduced as design variables. These
are used to create desirable features in the dispersion
diagram. Physical insight is presented into the optimal
choice of locations where masses should be added and
the results of several numerical examples are provided to
highlight this and other features of how band-gaps can
be created and located at desired frequency ranges. The
effect of the skew angle of the underlying grid structure
is also explored, as are mathematical refinements of the
modelling of the beam elements and the rotational iner-
tia of the added masses. A scaling feature between the
size of the reducible and the irreducible reference cell
is exploited and the manner in which this can simplify
optimization approaches is discussed.

Key words Grids, phononic structures,band-gaps, pe-
riodic structures
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Introduction

Structures exhibiting band-gaps prevent the propagation
of waves at certain frequencies. These structures may be
phononic (sonic) or photonic, depending on their band-
gap frequency range. Sonic band-gap structures can be
used as frequency filters and wave guides, while photonic
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band-gap structures have applications in optics and mi-
crowaves. Because of their potential use in emerging tech-
nologies, particularly those involving MEMS and optical
devices, the study of band-gap structures is receiving sig-
nificant attention in the current literature.

Band-gaps appear in many kinds of periodic struc-
tures. In this paper we investigate the presence of band-
gaps in plane grid structures, i.e., plane structures made
of intersecting beams which deflect in the plane perpen-
dicular to the plane of the structure. The goal is to create
and maximize band-gaps in such structures by adding
non-structural masses at strategic locations of the grid,
while retaining the periodicity of the structure. A stan-
dard optimization problem is formulated whereby opti-
mal mass distributions are identified that maximize gaps
above specific bands while limiting the amount of added
material.

The literature dealing with photonic band-gaps is
very extensive. The popular web site Photonic & Sonic
Band-Gap Bibliography (Dowling and Everitt 2004) lists
over 3000 articles on photonic band-gaps as of this writ-
ing. Work on sonic or phononic band-gaps is much less
abundant, although the pace of activity in this area is
increasing rapidly. In early work, a theoretical analy-
sis of vibration in periodic plane grids was discussed by
Heckel (1964). Heckel found bands of high attenuation
and bands of no attenuation for bending-wave trans-
mission through plane grids. In recent work related to
the present paper, Martinsson and Movchan (2003), and
Jensen (2003) studied in-plane wave propagation in two-
dimensional (2D) periodic lattice structures, including
2D truss structures, plane frames and 2D mass-spring
models. The authors showed that complete band-gaps
exist for certain distributions of stiffness and mass and
demonstrated how band-gaps can be created at low fre-
quency ranges by introducing a local resonator into pe-
riodic structures. An optimization perspective has also
been used to introduce band-gaps in materials with a
periodic structure. In Cox and Dobson (1999, 2000), a
gradient based optimization method and an evolution al-
gorithm were used to produce band-gaps in 2D photonic
crystals. In Sigmund (2001) and Sigmund and Jensen
(2002, 2003), topology optimization techniques were used
to optimize band-gaps in elastic materials and to create
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acoustic and optical wave guides. In preliminary research
leading to this work, Ma et al. (2004) showed the exis-
tence of band-gaps in plane grids. Other authors have
investigated the propagation of elastic waves in vari-
ous structures, including Parmley et al. (1995) in mass
chains, Kafesaki et al. (1995) and Vasseur et al. (1998) in
composites, and Sigalas and Economou (1994) in plates.

In this paper we analyze the grid using a finite el-
ement model. The analysis of plane wave propagation
in periodic structures using finite element methods has
been discussed by Orris and Petyt (1974), who used finite
element techniques to evaluate the phase constant asso-
ciated with the normal modes and natural frequencies
of a periodic structure. A finite element approach was
also used by Langlet et al. (1995) to investigate plane
acoustic wave propagation in periodic materials contain-
ing inclusions or cylindrical pores.

The rest of the paper is organized as follows: first,
a simple one-dimensional example is used to introduce
basic concepts in wave propagation in periodic struc-
tures. This is followed by the analysis of infinitely pe-
riodic plane grids. In Section 3 the focus is on the geom-
etry of the problem while in Section 4 the emphasis is
on vibration analysis and the derivation of the finite el-
ement model of the problem. The optimization problem
is discussed in Section 5. Examples are included for illus-
tration in Section 6, followed by concluding remarks that
summarize the results in the last section of the paper.

2
Introductory Example

Before presenting the detailed theory and definitions as-
sociated with the analysis of the periodic grid and the
optimization of its behavior, a simple 1-D example is
presented that can be easily understood and analyzed,
and yet can be generalized to more complex cases. It is
hoped that this will help bridge the language barrier that
is often encountered in the different disciplines engaging
in research in this field. In this introductory example
particular attention will be given to the physical inter-
pretation of concepts such as band-gaps, filters, standing
waves, mode shapes, and dispersion diagrams.

Fig. 1 shows a sketch of the introductory example to
be analyzed in this section. It represents a structure com-
prised of a uniform beam with additional point masses
m1 and m2 spaced a distance L/2 apart in an alternat-
ing fashion, as shown. The usual notation of E, A, I, ρ,
is adopted for the beam and in this example values are
assigned as E=30 GPa, A=15 mm2, I=10 mm4, L=100
mm, with the density ρ = 3000 kg/m3. For simplicity a
finite element model will be used based on standard 2-
node, Euler-Bernoulli beam elements. Nodes are located
at each point mass and transverse deflections and rota-
tions are defined as in the figure. The structure has a
spatial periodicity of L. There will be no intermediate
nodes located between the non-structural masses. These
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u3

u4

u1

u2

u5

u6

u7

u8

master dof slave dofslave dof

reference cell
m1 m2

Fig. 1 Schematic of the introductory example

restrictions will be removed in later sections. Also, strict
definition of terms will be postponed until that time as
the main purpose in this section is to give a physical
appreciation of the issues at hand.

The dynamic behavior of the infinite beam can be
found by considering only the reference cell and making
use of the Bloch-Floquet theory (Brillouin 1953)

un = eiknu0 (1)

This relates the deflections of any slave node un to the
deflections of a master node in the reference cell, u0. The
integer n describes the number of L translations to the
right (n > 0) or to the left (n < 0). In the example of
Fig. 1, one has:
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Fig. 2 Section of beam used to build finite element model

For clarity, the additional coordinates are not shown in
the figure but could be numbered using an appropriate
scheme. The real number k is referred to as the wave
number and, as will be shown, is used to fix the wave-
length of associated eigenvectors and the values of the
eigenvalues. The way k determines the behavior of the
system is key to a full appreciation of the general theme
of this paper. In later sections the goal will be to tailor
the distribution of the eigenvalues by the optimally sizing
and positioning of some of the system’s parameters.

In this example, the first mass will be set to four
times the mass of each beam element, i.e., m1=0.009
kg and m2 will be set to zero. Using a standard finite
element approach, the mass and stiffness matrices can
be constructed in the usual manner and a four degree of
freedom system of equations can be constructed and it
is of the form:

Mü0 + Ku0 = 0 (2)

Stiffness K and mass M matrices are assembled from
a three element segment of the infinite beam ( Fig. 2).
As all degrees of freedom in this segment are not inde-
pendent, the kinematic constraints imposed by elements
on either side of the reference cell appear in both M and
K as terms including the factor e±ik.

One can solve the eigenvalue problem arising from
(2) for a given value of the wave number k. For each k
there will be four eigenvalues λp(k), p = 1, 2, 3, 4 and
four eigenvectors. To obtain all possible values of λp(k)
one should consider all possible real values of k. However,
because of the manner in which k appears in M and K,
always in the form e±ik, M and K are 2π periodic and
one need only explore wave numbers in the range k ∈
[−π, π] to ensure that all solutions are found. Moreover,
(2) is unchanged if k is replaced by −k, therefore all
possible solutions can be generated by investigating the
range k ∈ [0, π]. Having done this, Fig. 3 shows a plot
of the natural frequencies ωp =

√
λp/(2π) of the system

as a function of the wave number. Plots such as this are
known as dispersion diagrams. There are a number of
important features to be aware of:

– Points where dω
dk = 0 correspond to stationary or

standing waves, whereas for non zero gradients of
ω, the corresponding eigenvectors generate solutions
that describe travelling waves.

– In this example there exist regions where no eigen-
values are found. Physically, this means the structure
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Fig. 3 The dispersion diagram for m1=0.009 kg and m2=0

acts as a filter to frequencies lying in this region. For
example, with reference to Fig. 3, if a time dependent
forcing term where added to the right hand side of
(2) with a frequency in the range [ω1(π),ω2(π)], no
wave would propagate through the structure. The re-
gion(s) where no eigenvalues exist - regardless of the
wave number - are called band-gap(s). Creating such
gaps and then optimizing the design of the structure
to maximize the width of these gaps is central to the
purpose of this paper.

To close this introductory section we will highlight
one issue involved in creating band-gaps. Assume that
our goal is to distribute the non-structural masses ( m1

and m2 ) in such a way as to maximize a gap. In general,
one would expect a complicated interaction between dif-
ferent frequency bands as various mass distributions are
explored. However, consider the standing waves associ-
ated with the natural frequencies that bound the gap
shown in Fig. 3: the lower band maximum value of ω1=
200 Hz at k=π and the upper band minimum value of
ω2= 395 Hz, also at k=π. The two modes associated with
these eigenvalues, plotted over the length of the reference
cell, are shown in Fig. 4. For the mode associated with
ω2(π) there is no motion at the location of m1 (x = 0
and x = L). Therefore, ω2(π) is not influenced by m1

and increasing m1 will not lower the second band. The
situation with the lower frequency mode is completely
reversed: this mode is greatly influenced by m1, since it
moves through a maximum displacement at x=0. In a
sense, there has been an uncoupling of the sensitivity of
the upper band minimum to the amount of m1 added. It
is now only influenced by m2. The opposite is true for the
lower band maximum. This interplay between the wave
number, standing waves, critical points in the band-gap,
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Fig. 4 The two lowest modes of the reference cell

and the optimal mass distribution will be further dis-
cussed in subsequent sections.

We now move on to the 2D problem involving plane
grids, the subject matter of this paper.

3
Geometry of the periodic grid structure

A periodic plane grid Ωp is a plane grid that can be
constructed by periodically repeating a sub-section Ω
of the grid through translations along two non-collinear
vectors t(1) and t(2), i.e.,

Ωp = ∪
n∈Z2

(Ω + n1t(1) + n2t(2)), n1, n1 ∈ Z

Integers n1 and n2 measure cell translations along the
tiling vectors t(1) and t(2), respectively (Fig. 5). Ω is
called a representative cell of the periodic grid. An ir-
reducible cell is the smallest representative cell capable
of tiling Ωp through this tiling process. An arbitrary
cell Ωn in the periodic grid can be identified simply
by its cell number n=(n1, n2)T as Ωn= Ω + Tn, where
T = [t(1), t(2)]. For the representative cell Ω, n=(0,0)T .

In this paper we only consider cells that are contained
exactly in the parallelepiped spanned by the tiling vec-
tors. This is not a severe limitation, as it can be shown
that any polygonal cell that tiles the plane can be re-
placed by an equivalent parallelepiped (Diaz and Benard
2001). In this case the corners of the cells Ωn define the
direct lattice of the periodic grid. This is the set

L = {x ∈ R2 : x = Tn, n ∈ Z2}

The direct lattice characterizes the periodicity of the
grid, which in turn introduces constraints on the shape
of the waves that can propagate through the structure.

Using Bloch-Floquet theory (Brillouin 1953), the vi-
bration properties of Ωp can be extracted from the anal-
ysis of an irreducible representative cell Ω. In this paper,

(a) Periodic grid ΩP

(b) Representative

cell ΩP
(c) Tiling vectors

t(1)

t(2)

Fig. 5 Infinite 2D periodic grid structure

this analysis will be based on a finite element model, i.e.,
Ω is represented as a collection of nodes and elements.
Nodes that belong to a single cell are labelled master
nodes. A master node in an arbitrary cell Ωn can be
identified by a cell number n and a node index j and is
a member of the set Mn = {(n, j)}NMN

j=1 , where NMN
is the number of master nodes in the representative cell.
Note that if (0, j) is a master node in Ω, then the master
node (n, j) in Ωn is an image of (0, j).

Master nodes in the representative cell are displayed
as filled dots and squares in Fig. 5(b). To facilitate anal-
ysis, additional nodes are added to the representative
cell to account for the mass and stiffness of the elements
connecting to neighboring cells. These additional nodes
are slave nodes and are denoted by the void dots in Fig.
5(b).

4
Vibration analysis of the periodic grid

4.1
Quasi-periodicity

Let u(0,j) denote the (generalized) displacements of mas-
ter node (0, j) in Ω. Applying Bloch-Floquet theory, the
displacements of master node (n, j) in Ωn can be ex-
pressed as

u(n,j) = eik̂Tnu(0,j) (3)

where k̂ = (k̂1, k̂2) is the wave vector. After setting

k1 = (k̂ · t(1)) and k2 = (k̂ · t(2)) (4)
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(3) can be expressed more simply as

u(n,j) = eik·nu(0,j) (5)

where k = (k1, k2) ∈ R2 and k1, k2 may be interpreted
as changes in phase of a wave between a cell and its
neighboring cells along translation vectors t(1)and t(2),
respectively.

Let um ∈ CNMD and us ∈ CNSD be the displace-
ment vectors associated, respectively, with master and
slave nodes of the representative cell. Here NMD and
NSD denote the number of degrees of freedom associ-
ated, respectively, with master and slave nodes in the
cell (note that um ≡ {

u(0,j)
}NMN

j=1
). Since slave nodes

in the representative cell are master nodes in the cell’s
neighbors, applying (5) to all slave nodes in the repre-
sentative cell permits usto be expressed in terms of um

as

us = Bum (6)

where B ∈ C(NSD,NMD). B is called here the quasi-
periodicity matrix. Clearly, B depends on the wave vec-
tor k. Since slave nodes in Ω are members of Ω(1,0)T

or
Ω(0,1)T

, B has only entries that are either 0, 1, eik1 , or
eik2 .

4.2
Stiffness and mass matrices for a 2D grid
representative cell

A standard finite element model is used here to model
the grid. The element used is a two-node, three degree
of freedom per node element, with degrees of freedom as
follows: translation perpendicular to the grid plane, ro-
tation to account for out of plane bending, and rotation
about the longitudinal axis of the element. Bending is
modelled using either Euler-Bernoulli or Timoshenko as-
sumptions. Joints at points of intersection of the grid are
assumed to be rigid and one or more elements are used to
model each segment between two adjacent intersections.
Consistent mass matrices are used in the analysis.

The stiffness and mass matrices of a representative
cell, respectively Kc and Mc, can be constructed follow-
ing a standard finite element assembly procedure. Af-
ter partitioning of the cell’s degrees of freedom uc ∈
CNMD+NSD as uc = {um,us}T , these matrices are ex-
pressed as

Kc =
[
Kmm Kms

Ksm Kss

]
(7)

and

Mc =
[
Mmm Mms

Msm Mss

]
(8)

Matrices Kc and Mc are real, symmetric and sparse but
the degrees of freedom associated with these matrices are
not independent. Using (6), Kc and Mc can be reduced
so that the resulting equations of motion are expressed
only in terms of the master degrees of freedom. This is
described in detail in the following section.

4.3
Equations of motion

The kinetic energy (T ) and potential energy (V ) of the
representative cell can be expressed as

T =
1
2
(u̇c)∗Mcu̇c (9)

V =
1
2
(uc)∗Kcuc (10)

Here ()∗denotes Hermitian transpose. In view of the pe-
riodicity of the structure, um and us are not independent
degrees of freedom and therefore, the energy expressions
(9) and (10) involve a non-minimal set of generalized co-
ordinates. We seek mass and stiffness matrices such that
kinetic and potential energies in one cell are expressed
in terms of only um, i.e., matrices M and K such that

T =
1
2
(u̇m)∗Mu̇m (11)

V =
1
2
(um)∗Kum (12)

Using (8), (9) can be written in matrix form as

T =
1
2
[(u̇m)∗, (u̇s)∗]

[
Mmm Mms

Msm Mss

] [
u̇m

u̇s

]

Since us = Bum and B is not a function of time, it
follows that

T =
1
2
[(u̇m)∗, (Bu̇m)∗]

[
Mmm Mms

Msm Mss

] [
u̇m

Bu̇m

]

or

T =
1
2
(u̇m)∗(Mmm + B∗Msm + MmsB + B∗MssB)u̇m
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from which the definition of M follows:

M = Mmm + B∗Msm + MmsB + B∗MssB (13)

Similarly, from (7), (10) and (12), the stiffness matrix K
is

K = Kmm + B∗Ksm + KmsB + B∗KssB (14)

The equations of motion of the representative cell are
therefore

Müm + Kum = f (15)

where f is a vector of generalized forces.

4.4
The dispersion diagram

Assuming a time-harmonic form of wave propagation in
the periodic structure, let

um = aeiωt (16)

where ω is the wave vibration frequency and i =
√−1.

Letting f = 0 in (15) leads to the eigenvalue problem

(K− λM)a = 0 (17)

where λ=ω2 is an eigenvalue and a ∈ CNMD is the corre-
sponding eigenvector. Note that because of the presence
of the quasi-periodicity matrix B in (13) and (14), M
and K are functions of the wave vector k = (k1, k2) and
therefore both λ and a depend on k. As discussed in
the introductory example, a dispersion diagram displays
bands of eigenfrequencies as functions of the wave vector,
where each band is associated with a given mode (this
was illustrated in Fig. 3). In principle, in order to draw
this diagram, equation (17) should be solved for each
k ∈ R2. However the periodicity of the structure results
in significant simplifications. In fact, all eigenfrequencies
on the periodic structure are produced by exploring only
a small subset of R2. This leads to the concept of recip-
rocal lattice.

The set of all wave vectors k̂ that yield waves with
the same periodicity of the direct lattice L is known as
the reciprocal lattice LR. This lattice can be described
using two tiling vectors d(1) and d(2), as the set

LR = {k̂ ∈ R2 : k̂ = m1d(1) + m2d(2), (m1,m2) ∈ Z2}

where d(1) and d(2) are the solution to

120o
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d(2)

k1^

k2^
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B

(b) Cell in reciprocal lattice 

(c) Cell in reciprocal lattice

in scaled (k1,k2 ) space 
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k2

π

π

−π

−π
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B C
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y

t(2)

t(1)

60o

(a) Cell in direct lattice 

Fig. 6 A cell in the direct lattice and its corresponding cell
in the reciprocal lattice

t(i) · d(j) = 2πδij (18)

for i, j=1, 2. In view of (3), a wave vector k̂ belongs to
LR provided that eik̂x = eik̂(x+X) for any x ∈ L and
all X ∈ L. This implies that k̂ ∈ LR if eik̂X = 1 for
all X ∈ L that is, if the product k̂Tn is a multiple of
2π for all integer vectors n. Since the function eik̂Tn has
the periodicity of the reciprocal lattice, equation (3) in-
dicates that modes u(n,j) = eik̂Tnu(0,j) are also periodic
in the (k̂1, k̂2) plane and have the same periodicity of the
reciprocal lattice. Therefore, all eigenfrequencies can be
obtained by solving (17) using only values of k̂ in one cell
of the reciprocal lattice. This is the first Brillouin zone
(Brillouin 1953). It is easy to show that using the scaled
values of the wave vectors k = k̂ · T, the first Brillouin
zone (Fig. 6(b)) is mapped into the square [−π, π]2 in the
(k1, k2) plane. Therefore, all solutions to the eigenvalue
problem (17) can be obtained even if k is evaluated only
on the square [−π, π]2 (Fig. 6 (c)). For a given structure,
the j-th band in the dispersion diagram, associated with
the j-th mode, is the set

bj = {ωj(k) : k ∈ [−π, π]2} (19)

Waves of frequency ω such that ω /∈ bjfor any j do not
propagate in the structure and hence the structure has
a band-gap at ω. The goal of the optimization problem
set up in the next chapter is to widen these gaps by a
judicious modification of the structure.
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Fig. 7 Region of the (k1, k2) space explored if grid is sym-
metric within Ω

4.5

Further Simplifications

It is possible to show that all frequencies in bj in (19) can
be obtained even when a smaller subset of the (k1, k2)
plane is explored. For instance, it is easy to show that the
mass and stiffness matrices M and K (see (13) and (14))
are invariant with respect to transformations (k1, k2) 7→
(−k1,−k2) within the first Brillouin zone. Therefore, if
a(k) is a mode with eigenfrequency ω, so is a(-k). As a
result, the j-th band can be obtained simply by searching
in the upper-half of the Brillouin zone, i.e.,

bj = {ωj(k) : k ∈ [−π, π]× [0, π]}

To account for this and perhaps other simplifications,
we define Ψ as a subset of [−π, π]2 such that all solu-
tions λ = ω2 to the eigenvalue problem (17) are obtained
whenever bj is defined as

bj = {ωj(k) : k ∈ Ψ} (20)

One additional simplification is possible when the
grid has certain symmetries within the irreducible cell
Ω. Suppose p is a parameter that affects Kc and Mc in
(7) and (8) (e.g., density, elastic modulus, nodal coor-
dinates, etc) and let the spatial variation of p within Ω
be expressed using a local set coordinates (ξ1, ξ2) mea-
sured along the tiling vectors t(1) and t(2) with origin at
the center of Ω (Fig. 7(a)). If p(ξ1, ξ2) is symmetric un-
der the transformations (ξ1, ξ2) 7→ (−ξ1, ξ2), (ξ1, ξ2) 7→
(ξ1,−ξ2), and (ξ1, ξ2) 7→ (ξ2, ξ1), then all solutions of
(17) are invariant with respect to the transformations
(k1, k2) 7→ (−k1, k2), (k1, k2) 7→ (k1,−k2) and (k1, k2) 7→
(k2, k1) within the zone [−π, π]2. In such cases the set Ψ
in (20) is reduced to the triangle enclosed by corners at
(π, π),(0,0),(π, 0) (Cox and Dobson 1999) as depicted in
Fig. 7(b).

5
Optimization problem

In this section we formulate an optimization problem to
create and maximize band-gaps in 2D periodic grids by
adding non-structural, lumped masses at strategic loca-
tions. Design variables xi in the optimization problem
control the magnitude of the lumped mass added at the
i−th design location(s), Di. In the present formulation,
lumped masses are added only at master nodes and one
variable may control the magnitude of masses added to
more than one node. Lumped mass xi affects directly
the translation degree of freedom of the affected node(s).
In addition, in order to account for the possibility that
the additional mass also affects the rotational inertia of
the structure, the mass matrices are modified by adding
fφyxi and fφxxi to the diagonal entries associated with
rotational degrees of freedom φx, and φy of the affected
nodes. Parameters fφx

and fφy
are prescribed for each

problem.
If a gap exists above the j-th mode, the gap’s size is

measured by the function

G(x) = min
k∈Ψ

ωj+1(k,x)−max
k∈Ψ

ωj(k,x) (21)

In (21) ωj and ωj+1 are, respectively, the j−th and
(j+1)-th eigenfrequencies associated with problem (17).
Clearly, a gap exists above mode j if and only if G(x)>0.
The optimization problem to be solved is: Find x ∈ Rn

that

maximizes G(x) = min
k∈Ψ

ωj+1(k,x)−max
k∈Ψ

ωj(k,x)

subject to 0 ≤ xi ≤ xmax = β ∗mref (22)

In this problem n is the number of design variables and
β and xmax are prescribed positive real numbers that
control the total amount of nonstructural material that
can be added to the cell and mref is a representative
scaling parameter, e.g., the magnitude of the structural
mass of the representative cell.

5.1
Numerical implementation of the optimization
problem

To solve problem (22) numerically, the set Ψ in (21) is
replaced by a discrete set Ψ̂ of m sample points, e.g., the
set

Ψ̂ = {k1,k2, · · · ,km} (23)

for kp ∈ Ψ . For fixed x, this introduces discrete estimates
of gap sizes evaluated at wave vectors kp and kq in Ψ̂ .
Gap sizes between bands j and j + 1 are estimated by
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Ĝ(x) = max
1≤p,q≤m

Gpq(x)

where the p× q functions Gpq(x) are defined as

Gpq(x) = ωj+1(kp,x)− ωj(kq,x) (24)

for p, q= 1,. . . , m and kp, kq ∈ Ψ̂ . In computations, (22)
is replaced by: Find x ∈ Rn that

maximizes Ĝ(x) = max
1≤p,q≤m

Gpq(x)

subject to 0 ≤ xi ≤ xmax = β ∗mref (25)

If for a given x the solutions k∗j and k∗j+1 to the min
and max problems in (21) belong to Ψ̂ , G(x) = Ĝ(x). In
particular, if this is the case for the optimal x, then the
solution to (25) is also a solution to (22). Otherwise, the
solution to (25) is only an approximation to the optimal
solution, but one that can be improved by increasing the
size of Ψ̂ .

Problem (25) can be written in a form that is more
suitable to numerical optimization as: Find x ∈ Rn and
z ≥ 0 that

maximize z

subject to Gpq(x) = ωj+1(kp,x)− ωj(kq,x) ≥ z

0 ≤ xi ≤ xmax = β ∗mref (26)

This problem is solved numerically using the method
of moving asymptotes, MMA (Svanberg 1987). This re-
quires gradients of the constraints, which are obtained
by standard sensitivity analysis, as described next.

5.2
Sensitivity analysis

The gradient of Gpq(x) with respect to design variable
x is computed using well-known formulas. Letting (·)′
denote ∂(·)/ ∂x,

G′pq = (ωj+1(kp,x))′ − (ωj(kq,x))′ (27)

where

2ωjω
′
j = (aj)∗K′aj − λj(aj)∗M′aj (28)

ω2
j = λj and aj is normalized with respect to the mass

matrix M. This expression is valid provided that the
eigenfrequencies ωj are distinct at x. In computations,

one must be mindful of the potential difficulties caused
by loss of differentiability at repeated eigenvalues. Fortu-
nately, experience shows that these difficulties are over-
come by the MMA algorithm.

In (28), λj and aj can be obtained from the current
design. Furthermore, K′ = 0 since adding non-structural
masses does not change the stiffness of the structure.
This leaves the computation of M′, which is discussed
next.

Suppose design variable xi affects master nodes m ∈
Di. As the added masses are lumped, M′ is diagonal
and has nonzero entries only at positions corresponding
to the degrees of freedom of nodes m ∈ Di, since xi

appears only at these locations. Therefore, from (28),

∂ωj

∂xi
= −ωj

2

∑

m∈Di

(aj
m)∗Faj

m (29)

where entries aj
m represents the component in the mass-

normalized eigenvector aj corresponding to the degrees
of freedom of node m and F is 3 × 3 is diagonal with
diagonal entries (1, fφx , fφy ) (recall that for each design
variable xi the mass matrix is modified by adding xi,
fφxxi, and fφyxi to the affected degrees of freedom).

Once ∂ωj

∂xi
is computed using (29), the gradient G′pqis

be obtained from (27). To facilitate computations, an ac-
tive set of strategy is introduced so that a sequence of
problems is solved by considering only a subset of the
most critical constraints in (26). To avoid introducing
redundant constraints, at most n of the most critical con-
straints are kept each time (n represents the total num-
ber of design variables). As the algorithm converges, fea-
sibility of the solution is verified against the complete set
of constraints. A solution obtained this way is a Kuhn-
Tucker point of the reduced problem and a feasible solu-
tion of (26) but possibly not a Kuhn-Tucker point. This
is because solutions to (26) may not be regular points of
the constraints and may violate constraint qualification
conditions.

6
Examples

In the following examples we consider the design of grids
characterized by representative cells Ω of different sizes,
including those shown in Fig. 8. The beam sections are
rectangular with cross section b × h = 2 × 0.5 mm with
the wide side on the plane of the grid. Masses are placed
symmetrically on Ω, at grid joints and also mid-side
in each grid segment (each grid segment between two
grid corners is discretized using two finite elements). The
bound on the maximum allowable additional added mass
is xmax = mref where mref = 8ρbhL0 and L0 = 10 mm
is the size of one grid segment. For simplicity, in what
follows x is normalized by x → x/xmax so that in re-
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Fig. 8 Symmetric cells of different sizes showing locations
for additional masses controlled by design variables

porting a solution, x=1 indicates that the upper bound
constraint is active.

Except as discussed in Example 4, it is assumed that
the addition of masses affects only the translation de-
grees of freedom, i.e., fφx = fφy = 0 in (29). The beam
model used satisfies Euler-Bernoulli’s assumptions, ex-
cept in Example 5, where results are compared to solu-
tions obtained for Timoshenko beam models. Material
properties are: E=5.28*106 GPa, G=1.98*106 GPa and
ρ=1200 kg/m

3. The section Ψ̂ of the reciprocal lattice
searched (see (23) ) includes only points on the boundary
of the triangle A-B-C in Fig. 7.This is the accepted prac-
tice in structures of this type and searching points inside
the triangle is expected to yield no additional eigenval-
ues.

6.1
Example 1

This simple example will serve to illustrate the nature
of solutions to the 2D problem. We seek to design a
band-gap into the grid by adding masses in a symmetric
arrangement characterized by a 2×2 square irreducible
cell Ω of side L = 2L0 = 20mm. The gap will be placed
above the second band.

At the solution to this problem, the dispersion dia-
gram is as shown in Fig. 9 (a). The gap appears above 34
kHz and extends to 68 kHz. The solution consists of sim-
ply adding the largest possible mass at design position 3
of the cell (mid-edge, Fig. 9(b)).

The optimal mass distribution can be explained by
examining the modes at critical locations in the disper-
sion diagram. For example, the mode associated with
the maximum eigenvalue of band 2, at point (0,0) of the
dispersion diagram, achieves the maximum magnitude
at design position 3 (Fig. 9(b)). Since adding masses at
points with larger displacements introduces more sub-
stantial drops in the corresponding eigenvalue, adding a
mass at position 3 is most effective at lowering band 2.

Simultaneously, the mode associated with the minimum
eigenvalue of band 3, at point (π,π) of the dispersion dia-
gram, has a node, i.e., a location that has no out-of-plane
motion, at design position 3. Hence, masses added at po-
sition 3 will not lower the critical point of band 3. Thus,
by lowering the low band while keeping the high band
unchanged, a mass placed at location 3 has the most
impact of the size of the gap between the two bands.
Quantitatively, from (27) and (29)

dG

dx3
= 1

2

∑
m∈D3

(ω2

∥∥a2
m

∥∥2 − ω3

∥∥a3
m

∥∥2) =

1
2

∑
m∈D3

ω2

∥∥a2
m

∥∥2
> 0

where aj
m, m ∈ D3 are amplitudes of modes j=2,3 mea-

sured at design position 3. For this particular design
a3

m = 0 at all four locations associated with position
3, insuring that dG

dx3
> 0, which explains why x3 should

be made as large as possible. A similar argument can be
applied to design position 1, to conclude that no mass
should be placed there since dG

dx1
< 0. While in general it

is cumbersome to carry this analysis on to larger, more
complex problems, the analysis does generate insights
into the nature of solutions to this problem.

6.2
Example 2

In this example we seek to design a band-gap into the
grid by adding masses in a symmetric arrangement char-
acterized by a 4×4 irreducible cell of side L = 4L0 =40
mm. We consider both a square and a skewed lattice
with angles α=90˚ and α=60˚ and translation vectors
t(1) = (L, 0)T and t(2) = L(cos α, sinα)T . Gaps are in-
troduced above bands 1, 2 and 5.

There are some general comments that can be made
regarding the results of this example. In general, the way
in which the mass is distributed around the reference cell
is dictated by the mode shapes that are involved and
the conflicting requirements of lowering the critical fre-
quency of the lower band, while trying to increase the
critical frequency of the upper band. If we wish to cre-
ate a gap between bands 1 and 2, it is advantageous to
add as much mass as possible close to the center of the
reference cell, as doing this lowers the critical point of
band 1 without a corresponding decrease in the critical
point of band 2. The situation is similar when the gap is
to be introduced above higher bands. A more quantita-
tive analysis could be presented, similar to the approach
using dG

dx3
in Example 1, but for brevity it is omitted.

Note that the upper limit of additional mass xmax

assigned in this example is not large enough to create a
gap for the square reference cell yet it is enough to open
a small gap for the skewed cell(see Fig. 10(a) and Fig.
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Fig. 9 Details associated with the solution of Example 1

10(b)). This will be discussed next, when the influence
of the skew angle is investigated further.

To expand upon this example, we now study the in-
fluence of the skew angle of the lattice α on the size of the
gap, for a variety of different cell sizes and gap locations.
Cell sizes of 1× 1, 2× 2, and 4× 4 are studied and gaps
between bands 1 and 2 (G1) and bands 2 and 3 (G2) are
sought. The results are depicted in Fig. 12. To facilitate
the display of the results, we report the magnitude of the
gap relative to the largest gap at any angle. This will be
a quantity between 1 (locating the skew angle(s) where
the gap is the largest) to 0 (which will indicate that there
is no gap possible). Perhaps the most important point to
note from these results is that the size of the gap does

no gap could be

introduced

here

x=0. x=0.06 x=0.57 x=0.65 x=0.71 x=1.

(a) no gap above band 1 (b) G=1.4 kHz above

 band 1 ω  = 8.0 kHz
L

(d) G=1.6 kHz above

 band 2 ω  = 16. kHz
L

(c) G=7.4 kHz above

 band 2 ω  = 10. kHz
L

(e) G=13. kHz above

 band 5 ω  = 30. kHz
L

(f) G=8.8 kHz above

 band 5 ω  = 25. kHz
L

Fig. 10 Example 2: material distribution in optimized cell

not always vary monotonically with the skewness of the
cell, as illustrated in Fig. 12.

6.3
Example 3

In design applications one may be interested in creating
a gap near a particular frequency. Here we discuss how
this can be attempted without changing material or sec-
tion properties, or grid dimensions. One alternative is to
fix the scale of the problem by selecting the size of the
irreducible cell - e.g., 4 × 4 - and proceed to solve sev-
eral problems, each problem maximizing the gap above
a different band. From the solutions obtained one then
selects the one that best fits the design purpose. While
there is no guarantee that a suitable band-gap in the
desired frequency range will be found this way, this pro-
cedure results in designs which may then be scaled, if
necessary, by scaling the material properties.

In order to understand the gap positioning problem
better, it is useful to look into the effect of the size of the
irreducible cell used in the analysis. If the tiling period
of the mass distribution is characterized by a 1× 1 irre-
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Fig. 11 Example 2: dispersion diagrams for solutions de-
picted in Fig. 10
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Fig. 12 Variation of the gap size with cell angle

ducible cell, optimal solutions of the problem have dis-
persion diagrams as shown in Fig. 13(a). The maximum
gap above band 1 starts at ωL = 50 kHz and extends for
95 kHz. Design variables (scaled by xmax) are x=(1,0).
If the same design were to be repeated over a 2 × 2 or
a 4× 4 patch of the grid (thus forming a reducible cell),
the dispersion diagram would show exactly the same gap
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(c) Cell size is            4 × 4

(b) Cell size is            2× 2

(a) Cell size is            1×1

Fig. 13 Dispersion diagrams for an optimized periodic ma-
terial distribution analyzed using different reference cell sizes

in the same frequency range, but the gap would appear
above a different band number. The gap appears above
band 4 in the 2× 2 and above band 16 in the 4× 4 cell.
This is illustrated in Fig. 13(b) and (c).

This suggests that, if one were interested in creating
a gap above 50 kHz, one should consider a 1 × 1 peri-
odic mass distribution, as larger cell periods will lead to
reducible local optimal solutions. For frequencies below
50 kHz, larger cell size periods should be investigated.
This analysis can proceed in sequence, looking at larger
cell period sizes, one at a time. For example, a 2× 2 ir-
reducible periodic cell has at most three gaps that can
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Fig. 14 Dispersion diagrams for optimized periodic material
distributions with different periodicities

be maximized and start below 50 kHz, namely, bands
1, 2 and 3. For the present parameter bounds, no gap
can be introduced above band 1. A gap of maximum size
above band 2 starts at ωL = 34 kHz while a gap above
band 3 starts at ωL = 40 kHz (Fig. 14 (a)). Thus, for
frequencies of interest above 34 kHz but below 50 kHz a
2 × 2 cell should be investigated. This sequence can be
continued for yet lower frequencies. The general rule is to
investigate gaps above bands 1 to 4n-1 of the larger cell
when the immediately smaller cell has its first gap above
band n. The 2×2 cell has its first gap above band 2 at 34
kHz. This suggests that a 4×4 cell period should be used
for frequencies below 34 kHz, with focus on bands below
the 8-th band. Two such solutions are displayed in Fig.
14(b), corresponding to gaps above bands 2 at 10 kHz
and 5 at 30 kHz. The material layouts corresponding to
all these solutions are shown in Fig. 15.

6.4
Example 4. Model refinements: effect of rotational
inertia

In the previous examples the additional mass did not
affect the rotational inertia of the structure, i.e., fφx =
fφy = 0 (recall that for each design variable xi the mass
matrix is modified by adding xi, fφxxi, and fφyxi to the
affected degrees of freedom). Here we explore briefly the
effect of including rotational inertia in the analysis. In
Fig. 16 we show the dispersion diagrams corresponding
to solutions obtained in the previous section for 2 × 2

(c) 2x2 cell
ωL=40 kHz above band 3 

(a) 1x1 cell
ωL=50 kHz above band 1 

(b) 2x2 cell
ωL=34 kHz above band 2 

(d) 4x4 cell
ωL=10 kHz above band 2 

(e) 4x4 cell
ωL=30 kHz above band 5 

x=0.71
x=0.0

x=1.0

Fig. 15 Example 3: optimized solutions associated with dif-
ferent material periodicities

and 4×4 cells and compare these results with dispersion
diagrams obtained using the same mass distribution but
setting now fφx = fφy = (2h)2. This would correspond
to a point mass placed a distance 2h from the beam’s
neutral axis. The results indicate that for these values of
the parameters including the rotational inertia has only
a small effect on high frequency solutions and essentially
no effect on low frequency solutions.

6.5
Example 5. Model refinements: effect of Timoshenko
model

Experts in this field may object to the use of Euler-
Bernoulli beam theory in this analysis, finding instead
that a Timoshenko model is more suitable. By means of
a couple of examples, here we expose some of the differ-
ences that one may expect to find should a Timoshenko
beam model be used. Again, we use solutions obtained in
Example 3 for 2×2 and 4×4 cells as a reference and com-
pare the dispersion diagrams under Euler-Bernoulli and
Timoshenko beam assumptions. The results are shown
in Fig. 17.

The relaxation of the kinematic constraints intro-
duced by the Timoshenko beam has a complex effect on
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Fig. 16 The influence of rotational inertia on the dispersion
diagrams
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Fig. 17 Dispersion diagrams indicating the difference be-
tween using Euler-Bernoulli and a Timoshenko beam models

the solution at higher frequencies, which in this case re-
sults in a net reduction of the gap size. The effect is less
significant at lower frequencies but there again the Timo-
shenko beam model has smaller band-gaps. It should be
noted that as the mass distributions that result in the
dispersion diagrams shown in Fig. 17(b) and (d) were
not designed to be optimal under the Timoshenko beam
assumptions, one may expect a small improvement if the
mass distribution were optimized under the new mod-
elling assumptions. However, in these examples one can
show that the improvements obtained by further opti-
mization are not significant.

6.6

Example 6. Finite size solutions

The designs performed in the previous sections are based
on the assumption that the grid is infinitely periodic
along both tiling vectors. In practice, however, any im-
plementation will involve only a finite - possibly small
- number of cells. Here we investigate whether a grid
of finite size behaves as an infinitely-periodic medium.
The results show that even a patch made of a relatively
small number of cells exhibits a frequency response sim-
ilar to the one predicted by the periodic analysis, pro-
vided that the response is measured some distance away
from the boundary, to avoid edge effects. Experience in-
dicates that boundary conditions may introduce modes
with frequencies within the gap, but these modes are
highly localized to the edges of the domain.

Square patches of 4×4 cells designed to have a maxi-
mum gap above the second band (see Fig. 10(c) and Fig.
11(c)) are built using either 6 or 12 cells per side. A spa-
tially random, time periodic, transverse load is applied to
all nodes of the patch, which is simply supported at the
edges. The response is monitored everywhere in a square
area centered on the patch center and extending half-
way towards the edge in all directions. The maximum
amplitude of the response A within the monitored area
is reported for each frequency of the input force. The re-
sponse is normalized with respect to the static response,
A0.

The frequency response curve for the smaller, 6 × 6
patch is shown in Fig. 18(a). The figure shows there
is little response when the forcing frequency is in the
gap range. Fig. 18(b), corresponding to a larger, 12× 12
patch, show an even more significant attenuation of the
response. This validates the notion that finite size imple-
mentations of designs obtained from infinitely periodic
analysis do exhibit properties similar to their infinitely
periodic counterparts.
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Fig. 18 Frequency response for simply supported patches of
cells designed to have a gap in the range [10.1,17.5] (Fig. 10(c)
and 11(c))

7

Conclusions and discussion

A variety of examples demonstrate different strategies to
design band-gaps into a plane grid structure. The sensi-
tivity of the gap width and its position relative to dif-
ferent bands has been studied with respect to the addi-
tion of non-structural masses. Solutions are found to be
related to specific critical points in the dispersion dia-
gram. Typically, these points are at values of the wave
vector associated with standing waves in the structure.
An understanding of the sensitivity of the gap width to
the mass position can be gained by studying the modes
at these critical points. The influence of the skew an-
gle of the grid on the distribution of the bands has also
been reported. The relationship between this angle, the
width of the band-gap, and the inter-band positioning
has been numerically investigated and the complexity of
this relationship was demonstrated. Clearly, this angle
could be employed as another design parameter in the
optimization scheme, but this was not detailed in the
current study. However, some effects of the underlying
mathematical modelling of the structure were investi-
gated. For instance, it was observed that the difference
between an Euler and a Timoshenko beam model was
more significant at the higher frequencies. The effect of
including rotational inertia to the non-structural masses
was also shown to influence the higher frequencies. This
latter effect could be employed as a design variable as
the construction of the actual structure might be chosen
to allow this quantity to be varied in an real design.

A novel way of viewing the scaling issue of the refer-
ence cell was discussed. The relationship between small,
irreducible cells and larger, reducible cells was presented.
Exploiting this relationship so that only a low number of
bands at the lower frequencies need be considered when
trying to position a gap can lead to a reduction in the
level of complexity of the system to be optimized. A se-
quence of 1 × 1 , 2 × 2 , and 4 × 4 reference cell sizes
where used to numerically demonstrate this observation.

The majority of the reported work dealt with periodic
structures of infinite size, but to demonstrate the validity
of the results to more practical finite systems, examples
of frequency response functions were generated for struc-
tures consisting of a small number of cells. These clearly
showed that little or no frequencies could pass through
the structure in the region of the band-gap.

All results reported here are only local optima, veri-
fied after re-starting the optimization scheme from many
random starting points. There are many numerical issues
that could be addressed more efficiently by improved op-
timization algorithms, specially tailored for this problem.
There is much room for improvement in this area.

Work is continuing to prove rigorously that only a
very limited number of critical wave vectors need be ex-
plored to ensure that optimal solutions have been lo-
cated. Moreover, results reported here suggest that the
sensitivity variation with respect to the distribution of
the design variables (whether it be mass, skew angle,
cross sectional dimension ratio of the beam elements,
etc) can be guided by the standing waves that are as-
sociated with the critical wave vectors. This promises to
be a fruitful avenue for future research and could lead to
vast simplifications in the overall optimization scheme.
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