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Design of Broadband Highly Ef cient

Harmonic-Tuned Power Ampli er Using

In-Band Continuous Class-F F Mode Transferring
Kenle Chen, Student Member, IEEE, and Dimitrios Peroulis, Member, IEEE

Abstract—A novel methodology for designing high-frequency

broadband harmonic-tuned power ampli ers (PAs) is presented in

this paper. Speci cally, a hybrid PA mode, transferring between

continuous inverse Class-F and continuous Class-F, is for the

rst time employed to design PAs with optimal performance

over more than-an-octave bandwidth. A GaN PA is designed

and realized based on this mode-transferring operation using

a three-stage transmission-line-based low-pass matching net-

work. Simulation and experimental results show that an in-band
PA-mode transferring between continuous Class-F and con-

tinuous Class-F is successfully performed. The implemented

PA achieves a measured 87% bandwidth from 1.3 to 3.3 GHz,
while exhibiting a state-of-the-art performance of 10-dB gain,

60%–84% ef ciency, and 10-W output power throughout this

band. Furthermore, modulated evaluation is carried out using a
300-kHz bandwidth 16-quadrature amplitude-modulation signal.

Good linearity performance is measured with adjacent channel

power ratio from 20 to 35 dBc and an error vector magnitude
of 4%–9% over the entire bandwidth.

Index Terms—Broadband, continuous Class-F, continuous in-
verse Class-F, ef ciency, GaN, harmonic tuned, low-pass matching

network (MN), mode transferring, power ampli er (PA), syn-

thesis.

I. INTRODUCTION

N EXT-GENERATION wireless communication systems

are required to operate at different communication

standards/frequency bands for different applications. An

ever-increasing number of high-frequency bands are being

included for achieving high data transmission ratios, such as

long term evolution (LTE) and worldwide interoperability for

microwave access (WiMax). Consequently, power ampli ers

(PAs) need to operate ef ciently over a broad frequency range

often spanning octave-wide bandwidths. Class-E PA mode

has been extensively utilized in designing and implementing

broadband PAs [1]–[3] due to its fairly simple circuitry and

high ef ciency. However, such a switch-mode operation fails

at high frequencies (see Class-E theoretical limitation [4], [5]),
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as its parallel capacitor cannot be fully charged or discharged

to support the ideal drain waveforms, leading to an ef ciency

degradation [6].

Harmonic-tuned PA modes, including Class-F and inverse

Class-F, have been the leading candidates for realizing high-ef-

ciency PAs at higher frequencies. These PA modes require

multiple accurate harmonic terminations to present to the tran-

sistor, enforcing nonoverlapped waveforms of drain voltage and

current with either square or half-sinusoidal shapes. As a re-

sult, they usually have very narrow instantaneous bandwidths in

their frequency responses. To extend the operational bandwidth,

advanced harmonic-tuned PA modes have been proposed and

recently demonstrated, known as Class-J [7], [8], continuous

Class-F [9], [10], and continuous inverse Class-F [11], [12].

These extended PA modes alleviate the precise harmonic re-

quirements of the standard ones by offering multiple impedance

solutions that can be dynamically distributed over the desired

bandwidth, while maintaining the expected output power and

ef ciency. The harmonic requirements can be further relieved

by the nonlinear output capacitor of the transistor, which assists

to shape the output voltage waveform [13]–[15].

To date, several broadband PAs have been developed using

the continuous PA mode with very ef cient performances [15],

[16], i.e., 70% average ef ciencies over 50% bandwidths.

However, it is worth noting that these reported PAs are de-

signed within fairly low-frequency bands with center frequen-

cies lower than 2 GHz, and they operate in an approximated

continuous Class-F mode due to the dif culty in controlling

both second and third harmonics simultaneously across a sub-

stantial bandwidth. Higher frequency designs with 80% ef -

ciency require optimally tuned second and third harmonic im-

pedances besides the fundamental one [17], [18]. In turn, it is

of great importance to nd an approach to properly control the

second and third harmonics for designing and realizing broad-

band harmonic-tuned PAs. To accomplish this, the selection of

PAmode needs to be considered together with the matching net-

work (MN) realizability.

In [19], we have proposed and experimentally demonstrated

a broadband harmonic tuning method for PA design based

on in-band mode transferring, which is developed from a

dual-band PA design [20]. This paper signi cantly expands

our previous work presented in [19]. First, the design concept

is extended from mode transferring between Class-F and

Class-F to a more general case of continuous Class-F and

continuous Class-F . We also show that this generalization

greatly enhances the broadband PA design space and underlines

0018-9480/$31.00 © 2012 IEEE
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Fig. 1. Class-F and inverse Class-F PA topology with ideal second and third
harmonic terminations.

that the design in [19] is a special case of the more general one

presented here. Second, the PA design in [19] is further opti-

mized achieving a higher measured ef ciency over the entire

frequency range, e.g., up to 5% improvement at the higher half

band. Third, modulated-evaluation results are presented in this

paper with a 0.3-MHz bandwidth quadrature-amplitude-mod-

ulation (QAM) modulated signal, showing a good potential of

this PA for application in practical communication systems.

II. HARMONIC-TUNED PA THEORY

A. Standard Class-F/F PA Modes

The standard Class-F PA is developed from the Class-B PA

mode by loading the active device output with proper termi-

nations at its fundamental and harmonic frequencies [21]. The

half-sinusoidal current waveform, formed by the Class-B bias

condition, has the following expression:

(1)

The above equation (1) can be expressed using Fourier series

(normalized to ), given by [15]

(2)

The output MN ( lter) is required to provide open-circuit

(O.C.) terminations at odd harmonics and short-circuit (S.C.)

terminations at even harmonics, as shown in Fig. 1. Thus, a

square voltage waveform is shaped, which has no overlap with

the half-sinusoidal current, leading to a theoretical 100% ef -

ciency. In practice, harmonic control is usually conducted up

to the third order, as further harmonic control yields limited

ef ciency improvement, but signi cantly increased implemen-

tation dif culty. Thus, the normalized voltage waveform of a

Class-F PA with a nite number of harmonic terminations can

be expressed as [7]

(3)

The above equation is able to deliver a 90.7% ef ciency at the

maximum power level. The voltage and current waveforms of

Fig. 2. Theoretical voltage and current waveforms. (a) Continuous Class-F for
(0.1 of steps). (b) Continuous inverse Class-F for

(0.1 of steps).

the standard Class-F PA mode are plotted in Fig. 2(a), indi-

cated by the red (in online version) (voltage) and black (current)

curves.

Inverse Class-F PA mode is the dual of Class-F mode. It

exploits dual harmonic loading conditions with O.C. even-har-

monic loads and S.C. odd-harmonic loads, as shown in Fig. 1.

This forms a square-wave current and half-sinusoidal-wave

voltage, which can also lead to a theoretical 100% ef ciency.

In the practical case of controlling three harmonics, the voltage

waveform is shaped by second-harmonic peaking [12]

(4)

while the current waveform takes the form of

(5)

where , , and [11]. The

voltage and current waveforms of the standard inverse Class-F

PA are plotted in red (in online version) and black, respectively,

in Fig. 2(b).

B. Continuous Class-F/F PA Modes

Recent investigations into continuous PA modes have

demonstrated that the constant O.C. and S.C. conditions are not

a unique solution for achieving optimal ef ciency and output

power. For the continuous Class-F mode, the voltage waveform
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in (3) can be extended by multiplying a de ning term, given

by [10]

(6)

The case corresponds to the standard Class-F mode. The

range of possible values must result in an absolute positive

value of the second bracket, and thus the value of in (6),

as zero-crossing or negative voltage causes interaction with the

knee region, and thus reduced ef ciency [10]. Therefore, may

vary from 1 to 1, leading to a family of voltage waveforms

that offers a continuous design space with constant output per-

formance, as shown in Fig. 2(a).

Similarly, the inverse Class-F (Class-F ) mode can also be

extended to continuous Class-F mode by modifying the cur-

rent waveform as follows [12]:

(7)

Successful operation of this PA mode requires nonzero crossing

current waveform, indicating a possible range of from 1 to

1 [12]. Thus, a new family of current waveforms is formed, as

plotted in Fig. 2(b). A standard Class-F mode is formed when

.

These continuous PA modes can be realized over the target

bandwidth by applying the required harmonic impedances for

the different or values, which can be calculated using the

following equation:

(8)

where represents the order of harmonic component. Here, we

de ne as the optimum impedance of the standard Class-B

mode with all harmonics short circuited, which is given by

(9)

For the continuous Class-F mode, harmonic impedances are cal-

culated using (2), (6), and (9) as follows:

(10)

The calculated harmonic loads of continuous Class-F mode with

are plotted in the Smith charts shown in Fig. 3(a).

The harmonic loads of continuous inverse Class-F PAs are ob-

tained in a similar manner by substituting (4) and (7) into (9),

which can be expressed in the admittance format as

(11)

Fig. 3. Calculated rst three harmonic loads. (a) Continuous Class-F in the
impedance chart . (b) Continuous inverse Class-F in the admit-
tance chart .

where . The calculated harmonic loads

of continuous Class-F mode are shown in Fig. 3(b)

with .

A broadband PA with single continuous Class-F or F mode

faces two major challenges. First, it is dif cult to t the MN’s

impedance frequency response to the needed variation of the

target loads with respect to or . Second, it is practically

very dif cult to have the third harmonic located at a constant

point as it is ideally desired, i.e., O.C. for continuous Class-F

or S.C. for continuous Class-F . However, it is noted from

Fig. 3(a) and (b) that a combined utilization of these two contin-

uous PA modes actually yields a further expanded design space.

Also, by properly selecting the partial ranges of and , it can

be easier to t the target loads to the MN behavior.

III. BROADBAND HARMONIC-TUNED PA DESIGN

USING MODE TRANSFERRING

A. Realization of Mode Transferring Using Multistage

Low-Pass MN

A proper MN is the key enabler for realizing broadband

PAs. Recently, multistage low-pass topologies implemented

using transmission lines (TLs) have been utilized for designing

broadband high-ef ciency PAs [3], [15], [22]. Design of such

a complicated network requires network synthesis, which can

be conducted using a real-frequency method [15], [22], [23] or

methods based on low-pass lter prototypes [3]. Fig. 4(a) shows
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Fig. 4. Matching scheme. (a) Multistage TL-implemented low-pass MN and
its frequency response. (b) Matching over the lower half band (continuous
Class-F mode). (c) Matching over the upper half band (continuous Class-F
mode). indicates the MN impedance at the th harmonic frequencies.

a typical three-stage low-pass lter MN and its illustrative fre-

quency response. In this network, inductors are implemented

by high-impedance TLs and capacitors by low-impedance O.C.

stubs (STs). As shown in Fig. 4(b) and (c), a well-synthesized

low-pass matching lter can provide the fundamental matching

over the desired bandwidth (octave band in this research),

corresponding to the lter passband. The harmonic frequencies

fall in the stopband of this low-pass lter while harmonic im-

pedances are located at the edge of Smith chart as the stopband

ideally yields a re ection coef cient of .

It is important to highlight that tting the MN behavior to the

target impedances of the continuous Class-F and F modes

does not require the entire ranges of and . In particular,

and are preferable for per-

forming the fundamental impedance matching using this low-

pass topology, indicated in Fig. 4(b) and (c). As for the speci c

stopband impedance trajectory of this network, the continuous

F mode and continuous Class-F mode are expected to be re-

alized across the lower and upper half parts of the entire band,

respectively.

For the lower half band, the second harmonic impedance of

the MN [ , yellow highlighted (in online version)] tracks

the target second harmonic impedance of continuous Class-F

mode , as shown in Fig. 4(b). Meanwhile, the third

harmonic impedance [ , green highlighted (in online ver-

sion)] of this band is located in the area indicated in Fig. 4(b),

covering the S.C. point. Therefore, an exact continuous inverse

Class-F mode can be realized at a frequency within the lower

half band which has an S.C. . As the frequency increases

to the upper half band, , highlighted in purple (in online

version) in Fig. 4(c), moves clockwise and ts the target second

harmonic impedance of continuous Class-F mode , while

covers the blue-highlighted (in online version) region.

Thus, an optimized continuous Class-F mode is realized at

within the upper half band, whose third harmonic impedance is

located at the O.C. point. For the rest of the band other than

and , both the fundamental and second harmonics are both

properly terminated, while the third harmonic is located along

the edge of Smith chart, so a high ef ciency can be still main-

tained [10].

Our previous design in [19] can be considered as a spe-

cial case of this mode transferring between the continuous

Class-F F modes. Fig. 4(a) underlines that and are

almost located at around the middle points of the lower and

upper half bands, respectively. Thus, they approximately

follow the dependence of . Also, can be

very close to the O.C. point, as implied in Fig. 4(a) and (b).

Therefore, a standard inverse Class-F PA is formed at and

a standard Class-F PA at , as is the case of [19]. With the

combined utilization of continuous PA modes, the design space

is greatly enlarged, while the target and can be

automatically distributed to the MN’s stopband, as indicated in

Fig. 4(b) and (c). Thus, in this design, the priority will be given

to the fundamental impedance matching.

B. Transistor Modeling and Characterization

The initial target frequency range is an octave band from 1.5

to 3 GHz. Therefore, a dc–6-GHz 10-W Cree GaN transistor

(CGH40010F) is used as the active device to experimentally

demonstrate this design concept. As the theoretical PA mode

analysis refers to the intrinsic drain plane ( -generation plane),

the parasitics of the transistor need to be carefully modeled.

This device consists of a CGH60015D bare chip and package.

Thus, the computer-aided design (CAD)-based modeling can

be conducted with a combination of the bare-chip model and

the package model, which are provided by the manufacturer

[24]. Compared to the packaged-transistor model, this com-

bined model makes it easier to set up harmonic conditions in

the load–pull characterization. The typical equivalent-circuit

model of this transistor is shown in Fig. 5(a), indicating the

intrinsic and package parasitics.

In this design, and are set to around the center points

of the upper and lower half bands, respectively, given by

GHz and GHz. First, the desired funda-

mental impedances for inverse Class-F and Class-F modes are

extracted from load–pull simulations using Agilent Advanced

Design System (ADS) [25]. The simulated impedances at the

intrinsic drain plane are purely resistive, as plotted in Fig. 5(b),

which represent the real parts of and

in (10) and (11). Such impedances are transferred from the

intrinsic-drain plane to the package plane at and , respec-

tively, shown in Fig. 5(b), yielding a reference for the output

MN design. Subsequently, the simulated impedances are further

extended to the continuous Class-F and Class-F modes using

(10) and (11), as shown in Fig. 5(c).
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Fig. 5. Transistor modeling and characterization. (a) Equivalent-circuit
model of CGH40010 showing the parasitics. (b) Simulated impedances at

GHz and GHz. (c) Extended impedance ranges of
continuous Class-F/F modes.

C. Output MN Design

The design and implementation of the low-pass MN have

been studied in detail in [3]. This design follows a similar pro-

cedure, which mainly takes three steps.

Step 1) Ideal-Network Synthesis: A three-stage low-pass

prototype is extracted from [26], which forms an

octave-bandwidth impedance transformer with

4:1 transformation ratio. The prototype is then

scaled to the desired frequency and 50- reference

impedance. Further, the real-to-real impedance

transformer is transformed to a real-to-complex one

referred to the extracted in Fig. 5(b) using

an ADS optimizer.

Step 2) Implementation Using TLs: The synthesized ideal

network is implemented using TLs. In this design,

the inductors are realized by high-impedance TLs,

while the capacitors are replaced by low-impedance

O.C. STs. For implementation on a Rogers 5880

PCB substrate,1 the width of TLs and STs are 20

and 90 mil, respectively, considering the fabrication

tolerance and dispersive effect. The corresponding

TL and ST impedances are 95 and 36 , respec-

tively.

Step 3) Post Optimization: To realize the desired transfer-

ring PA mode, the implemented OMN is connected

to the parasitic model of the transistor to obtain

the impedance at the intrinsic-drain plane, as shown

in Fig. 6(a). This means that the parasitic network

now becomes a part of the OMN. The length of

each TL section is nely tuned to properly align the

1Rogers Corporation, Rogers, CT. [Online]. Available: http://www.roger-
scorp.com/

Fig. 6. Output MN design. (a) Circuit topology, (b) MN impedance.
(c) Achieved impedance at intrinsic drain plane.

OMN impedance trajectory to the target impedances

at both the fundamental and harmonic frequencies.

The tuned OMN is nally optimized together with

the actual transistor model to achieve maximum ef-

ciency. The nalized lengths of TLs and STs are

indicated in Fig. 6(a).

Fig. 6(b) and (c) shows the fundamental, second-, and third-

harmonic impedances at the package plane and in-

trinsic-drain plane , respectively. It can be seen in

Fig. 6(b) that the implemented OMN yields the desired funda-

mental matching over the target bandwidth since the impedance

is very close to the optimal points at and . At the intrinsic

drain plane, as shown in Fig. 6(c), the fundamental impedance,

provided by the OMN, ts well with the target and

with and , respectively.

The second harmonic impedance also tracks well with the target

and with the same ranges of and . The third

harmonic impedance moves across the O.C. and S.C. points as

expected. Speci cally, an exact continuous Class-F mode is

realized at GHz, while an optimal continuous Class-F

mode is realized at GHz (slightly higher than the initial

value). The impedance at is designed to be slightly

capacitive as it leads to a higher ef ciency than the

pure-zero impedance [27]. This could be due to the nonlinear

behavior of .

IV. PA IMPLEMENTATION

A. PA Design and Fabrication

In [19], the input MN is implemented with a multisection TL

transformer. In this study, the input MN is redesigned with a

low-pass topology, which is less area consuming. A four-stage

low-pass prototype is extracted from [26], as the input matching
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Fig. 7. Circuit schematic of the broadband harmonic-tuned PA.

Fig. 8. Fabricated PA circuit.

requires a larger impedance transformation ratio than the output

one. This network is then implemented with TLs, the same as

the ones in the output network. The schematic is shown in Fig. 7,

indicating the input circuit topology and parameters of each TL

sections.

The entire PA is implemented by connecting the transistor

to the designed input and output MNs, as illustrated in Fig. 7.

Here, the geometric dimensions of and are slightly

adjusted to t the package pads of the transistor, while main-

taining the MNs’ performance. The biasing networks are real-

ized by a 17-nH inductor and 30-pF bypass capacitor. The PA

is fabricated on a Rogers 5880 substrate and is mounted on a

copper xture, as shown in Fig. 8. The footprint of the fabri-

cated PA is 60 43 mm . Compared to the previous design in

[19], this design has a more compact circuit with a size reduc-

tion of larger than 30%, which is mainly due to the redesigned

input MN.

B. Waveform Engineering

The entire PA model is established in ADS and simulated

using the harmonic-balance simulator. Fig. 9(a)–(c) shows

the simulated voltage and current waveforms at the intrinsic

drain plane, when the broadband PA is operating at 1.8, 2.3,

and 2.8 GHz with 10-W output power. Fig. 9(a) depicts a

standard inverse Class-F PA waveform with half-sinusoidal

Fig. 9. De-embedded intrinsic drain waveforms of voltage and current from
ADS simulation. (a) At 1.8 GHz (standard inverse Class-F). (b) At 2.3 GHz
(continuous inverse Class-F). (c) At 2.8 GHz (continuous Class-F).

voltage and quasi-square-wave current, which is basically due

to the speci c harmonic conditions applied at this frequency.

A continuous Class-F waveform is observed at 2.3 GHz, as

shown in Fig. 9(b). Compared to the ideal waveform shown

in Fig. 2(b), this waveform corresponds approximately to

. A continuous Class-F waveform is obtained at

2.8 GHz, as shown in Fig. 9(c). This waveform corresponds

to the case of a slightly negative , as indicated by the ideal

waveforms in Fig. 2(a). This is the result of the harmonic

condition applied at [see Fig. 6(c)].

V. EXPERIMENTAL RESULTS

A. Continuous-Wave (CW) Evaluation

The PA is rst tested under the stimulus of a single-tone CW

signal swept from 1.3 to 3.3 GHz with 0.1-GHz step. The tran-

sistor gate is biased at the threshold of 3.3 V. The drain bias

voltage is set to the value that leads to the optimal power-added

ef ciency (PAE) in the testing, which varies at different frequen-

cies, as shown in Fig. 10. The CW signal is generated by an

Agilent E4433B signal generator and boosted by a commercial
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Fig. 10. Measured output power and the optimal drain bias point across the
entire bandwidth.

Fig. 11. Simulated and measured ef ciency over the entire bandwidth.

driver ampli er (Mini-Circuits, ZHL-16W-43+)2 to provide a

suf cient input power of up to 30 dBm for the broadband testing.

The PA output power is measured using an Agilent E4448 spec-

trum analyzer. Fig. 10 shows the measured fundamental output

power from 1.3 to 3.3 GHz, which is around 10 W across the

entire frequency band.

Fig. 11 shows the measured and simulated ef ciency within

the entire frequency range. The ef ciency curve has two local

maxima at GHz and GHz with 80% values,

corresponding to the optimal continuous inverse Class-F and

Class-F modes (second and third harmonics conditions are both

satis ed), respectively. The overall measured ef ciency is from

60% to 84% with an average value of around 73%. Simulation

agrees well with the measurement for the majority of the band,

while a small difference occurs around the frequency point of

mode transition (see Fig. 11). This is mainly due to inaccuracies

in the modeling and fabrication. To extract the PAE, the power

gain of the PA is considered and measured, which ranges from

10 to 13 dB within the entire bandwidth, as shown in Fig. 12. A

PAE of 56% to 79% is measured.

This design exhibits a state-of-the-art PA performance com-

pared to the contemporary broadband PA results recently pub-

lished, listed in Table I. A frequency-weighted average ef -

ciency (FE) is introduced here to evaluate the PA ef ciency

together with frequency, which has often been utilized in the

MTT-5 Student Design Competition and [14]. It can be seen

from Table I that this paper, in particular, presents the widest

2Mini-Circuits Corporation, Brooklyn, NY. [Online]. Available: http://www.
minicircuits.com/

Fig. 12. Measured PAE and gain across the entire frequency range.

TABLE I
STATE-OF-THE-ART BROADBAND HIGH-EFFICIENCY PAs

CF: continuous Class-F, : continuous inverse Class-F, DE: drain ef -

ciency, AE: average ef ciency.

FE denotes the frequency-weighted ef ciency, AE

center frequency GHz , similar to the metric used in MTT-5 Student

PA Design Competition.

The design is based on a bare-chip transistor.

fractional bandwidth and the highest frequency-weighted ef -

ciency. We attribute this excellent performance to the combined

utilization of two continuous PA modes, while other studies are

all based on a single mode.

The PA is also characterized under different driving powers to

evaluate its dynamic performance. Fig. 13(a) and (b) shows the

measured gain, drain ef ciency, and PAE versus input power at

1.8 and 2.8 GHz, respectively. The gain compresses at

dBm and dBm for these two frequencies, cor-

responding to the maximum PAE values. It is also seen from

Figs. 13 that 50% ef ciency can be maintained within 5 dB

of output power back-off, indicating a good potential for ampli-

fying amplitude-modulated signals.

B. Modulated Evaluation

To evaluate the PA performance in an actual communica-

tion system, the implemented PA is tested with a 16 quadra-

ture-amplitude-modulation (16QAM) signal with a symbol rate

of 300 ks/s, which has peak-to-average power ratio of around

7 dB. This 16QAM signal is generated by an Agilent E4438C

signal generator and is ampli ed to a suf cient driving level

by the commercial PA used in Section V-A. The biasing con-

dition used in this measurement is also the same as that in

the CW evaluation. The measured PA performance over the

entire frequency band is shown in Fig. 14, indicating an av-

erage output power of around 36 dBm, average gain of around

10 dB, and average ef ciency of 30%–48%. These curves have

similar shapes with the corresponding CW results, as shown in

Section V-A.
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Fig. 13. Measured PA performance versus input power at: (a) 1.8 and
(b) 2.8 GHz.

Fig. 14. Measured broadband PA performance characterized under stimulus of
a frequency-swept 16QAM signal.

Fig. 15 plots the measured output spectrum at 2.8 GHz with

an average input power of 25 dBm, exhibiting an adjacent

channel power ratio (ACPR) of 32 dBc measured at 150-kHz

frequency offset. Compared to the input spectrum, the spectrum

regrowth only leads to an ACPR increase of 13 dB at this

frequency, indicating a good linearity performance of this PA.

The system-level linearity performance of this PA is measured

using a real-time spectrum analyzer (Tektronix RSA3408A).

Fig. 16 presents the measured error vector magnitude (EVM)

and ACPR across the desired bandwidth, showing an overall

EVM of 3%–9% and ACPR from 36 to 20 dBc. Improved

linearity is observed for the upper half band, which could

be due to the mitigation of transistor’s switching behavior at

higher frequencies.

Fig. 15. Measured output spectrum under stimulus of a 300-kHz 16QAM
signal at 2.8 GHz.

Fig. 16. Measured EVM and ACPR over the entire bandwidth.

Fig. 17. Measured PA performance with a power-swept input stimulus.

Subsequently, the PA is tested with a power-swept QAM

signal (from 19 to 28 dBm). Fig. 17 shows the measured

average output power, gain, and ef ciency with respect to the

input power. The gain compression point is around 26 dBm of

input power, while the maximum ef ciency of 50% is achieved

at input power of 28 dBm. Fig. 18 shows the linearity perfor-

mance of the PA versus input power. The EVM and ACPR

are at very low levels for small (EVM 4.2%, ACPR

33 dBm), and they increase sharply with input power when

dBm. It can be seen from Figs. 17 and 18 that optimal

input power is around 25 dBm for a QAM signal that yields a

good balance between ef ciency and linearity.
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Fig. 18. Measured EVM and ACPR versus input power.

VI. CONCLUSION

This paper has presented an innovative approach for de-

signing high-frequency broadband harmonic-tuned PAs based

on mode-transferring between continuous inverse Class-F

and continuous Class-F. Compared to the single continuous

Class-F/F mode, such a hybrid PA mode can be easier

to realize over an octave bandwidth. Speci cally, the target

fundamental and harmonic impedances can be well tted to the

frequency behavior of a three-stage low-pass MN implemented

using TLs. For technology demonstration, a broadband PA

was designed exploiting this method with a commercial 10-W

GaN transistor. The in-band PA-mode transferring between

continuous Class-F and continuous Class-F is demonstrated

using waveform engineering. The fabricated PA exhibits an

overall bandwidth of from 1.3 to 3.3 GHz (87% fractional band-

width) with state-of-the-art measured performance, i.e., drain

ef ciency of 60%–84%, gain of 10-dB, and output power of

10 W. Moreover, modulated evaluation with a 300-kHz band-

width 16-QAM signal reveals a good linearity performance of

this PA with ACPR from 20 to 35 dBc and EVM of 4%–9%

throughout the entire bandwidth.
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