
 Open access Journal Article DOI:10.1109/LCOMM.2008.071843

Design of cages with a randomized progressive edge-growth algorithm
— Source link

A. Venkiah, David Declercq, Charly Poulliat

Published on: 15 Apr 2008 - IEEE Communications Letters (IEEE)

Topics: Girth (graph theory), Odd graph, Chordal graph, Triangle-free graph and Indifference graph

Related papers:

 Design of regular (2,d/sub c/)-LDPC codes over GF(q) using their binary images

 Low-density parity check codes over GF(q)

 Low-Density Parity-Check Codes

 Regular and irregular progressive edge-growth tanner graphs

 A recursive approach to low complexity codes

Share this paper:

View more about this paper here: https://typeset.io/papers/design-of-cages-with-a-randomized-progressive-edge-growth-
18teqnk6eg

https://typeset.io/
https://www.doi.org/10.1109/LCOMM.2008.071843
https://typeset.io/papers/design-of-cages-with-a-randomized-progressive-edge-growth-18teqnk6eg
https://typeset.io/authors/a-venkiah-1on3fk2v3z
https://typeset.io/authors/david-declercq-5e2k3rlpdw
https://typeset.io/authors/charly-poulliat-1kh1uod3t0
https://typeset.io/journals/ieee-communications-letters-1u981e0h
https://typeset.io/topics/girth-graph-theory-190elekr
https://typeset.io/topics/odd-graph-gakv8v4b
https://typeset.io/topics/chordal-graph-1s9kadl9
https://typeset.io/topics/triangle-free-graph-37nrns9c
https://typeset.io/topics/indifference-graph-1ffkpojm
https://typeset.io/papers/design-of-regular-2-d-sub-c-ldpc-codes-over-gf-q-using-their-4hlcc048qj
https://typeset.io/papers/low-density-parity-check-codes-over-gf-q-50bjem2qhx
https://typeset.io/papers/low-density-parity-check-codes-vltmv2dex4
https://typeset.io/papers/regular-and-irregular-progressive-edge-growth-tanner-graphs-4lk89d1cm7
https://typeset.io/papers/a-recursive-approach-to-low-complexity-codes-46n6titexv
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/design-of-cages-with-a-randomized-progressive-edge-growth-18teqnk6eg
https://twitter.com/intent/tweet?text=Design%20of%20cages%20with%20a%20randomized%20progressive%20edge-growth%20algorithm&url=https://typeset.io/papers/design-of-cages-with-a-randomized-progressive-edge-growth-18teqnk6eg
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/design-of-cages-with-a-randomized-progressive-edge-growth-18teqnk6eg
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/design-of-cages-with-a-randomized-progressive-edge-growth-18teqnk6eg
https://typeset.io/papers/design-of-cages-with-a-randomized-progressive-edge-growth-18teqnk6eg

1

Design of Cages with a Randomized

Progressive Edge-Growth Algorithm

Auguste Venkiah, David Declercq and Charly Poulliat

ETIS - CNRS UMR 8051 - ENSEA - University of Cergy-Pontoise

Abstract

The Progressive Edge-Growth (PEG) construction is a well known algorithm for constructing

bipartite graphs with good girth properties. In this letter, we propose some improvements in the PEG

algorithm which greatly improve the girth properties of the resulting graphs: given a graph size, they

increase the girth g achievable by the algorithm, and when the girth cannot be increased, our modified

algorithm minimizes the number of cycles of length g. As a main illustration, we focus on regular

column-weight graphs, which are a class of graphs widely used for non-binary LDPC codes that can be

seen as monopartite graphs: for a given target girth gt, this new instance of the PEG algorithm allows

to construct cages, i.e. graphs with the minimal size such that a graph of girth g exists, which is the

best result one might hope for.

Index Terms

Progressive Edge-Growth (PEG), Low Density Parity Check (LDPC) codes, girth, Tanner graphs.

I. INTRODUCTION

Sparse bipartite graphs with large girths are extremely useful in coding theory and most good

LDPC code constructions focus on avoiding short cycles in their associated Tanner graph. Graphs

of particular interest in the recent literature are those with dv = 2 edges on the variable nodes,

also called “cycle graphs” [1]. Such graphs are used to design ultra sparse non-binary (NB)

LDPC codes that achieve very good performance at small to moderate codeword lengths and

high Galois field orders [2], and in that case it is crucial to focus on the girth properties of the

underlying Tanner graph.

November 5, 2007 DRAFT

2

A construction based on a progressive edge-growth (PEG) of the graph was proposed in [3],

which results in graphs that have higher girths compared to pre-existing techniques. In this letter,

we propose some modifications in the PEG algorithm which further improve the girth properties

of the resulting graphs: given a graph size, our method improves the girth g achievable by

the PEG algorithm, and when the girth cannot be increased, our modified algorithm, that we

called RandPEG for “Randomized Progressive Edge-Growth”, minimizes the number of cycles

of length g.

For a given graph setting and a given target girth, there exists a the minimal size for the graph

such that a graph of girth gt exists, which is often given in terms of a lower bound. In the case

of cycle codes (dv = 2), there exists a monopartite representation of the Tanner graph where the

vectices of the monopartite graph represent check nodes, and edges represent variable nodes.

When such a graph is minimal, meaning that it achieves the lower bound on the size, it is called

a cage.

II. NOTATIONS AND DEFINITIONS

In this section, we briefly review the PEG algorithm to introduce the notations. A bipartite

graph is denoted as (V,E) where V (resp. E) is the set of the vertices (resp. edges). V = Vc∪Vs

where Vc is the set of check nodes and Vs the set of symbol nodes. Let N = |Vs| denote the

total number of symbol nodes, which we will refer to as the size of the graph. When the graph

is the Tanner graph of an LDPC code, N is the codeword length. For a given graph setting,

namely a 3-tuple (dv, dc, g), we denote by N
(dv,dc)
g the lower bound on N such that a regular

(dv, dc) graph of girth g exists. This lower bound can be easily computed by using the results

of [3, lemma 3], and is known not to be tight when dv = 2, for g ≥ 18 [4].

Let N l
sj

denote the set of all check nodes reached by a tree spanned from symbol node sj

within depth l, and N̄ l
sj

denote the complementary set in Vs. At a given stage of the construction,

only a subset of the check nodes have reached a connectivity of dc, and we call candidates the

check nodes in N̄ l
sj

whose incident edges have not been all affected. When a particular check

node is selected among the candidates, an edge is added in the graph between the node sj and

that check node.

The original PEG algorithm [3] is a procedure for constructing a bipartite graph in an edge by

edge manner, where the selection of each new edge aims at minimizing the impact on the girth:

November 5, 2007 DRAFT

3

at each step the local girth is maximized. For each node sj , the first edge is chosen randomly,

and the other edges are chosen in the set N̄ l
sj

, where l is such that N̄ l
sj

6= ∅ and N̄ l+1
sj

= ∅,

i.e. among the nodes that are at the largest depth from the symbol node sj . This maximizes

the length of the cycles created through this new edge. When multiple choices are possible, the

algorithm selects the candidate that has the smallest degree under the current setting.

Even though the original PEG algorithm produces only almost regular graphs, the construction

of strictly regular graphs can be easily enforced by discarding all candidates where all the edges

have already been assigned.

III. THE RANDOMIZED-PEG ALGORITHM

There are basically two differences between the original PEG algorithm and the RandPEG

algorithm that we propose in this paper: firstly, the way we build and use the spanning tree is

different, and secondly, we introduce an objective function for the edge selection. The RandPEG

algorithm is based on a randomization approach: given a target girth gt, we consider, at each

stage of the construction, the maximum number of possibilities when adding an edge in a graph,

and we use the objective function to discriminate among the numerous edge candidates. Similarly

to Monte Carlo approaches, the algorithm runs many times and stores the best graph.

In this section, we describe our contributions in details. Our goal is to actually reach a given

target girth gt of the bipartite graph, when all the edges of the graph have been assigned.

Therefore, if at some point of the construction there is no possibility to add an edge without

creating a short1 cycle, then we consider that the algorithm fails. In the sequel, we only consider

the construction of (dv, dc) regular graphs, in order to compare to the known bounds for regular

graphs. We point out that this limitation concerns only our study, not the RandPEG algorithm

itself, which can be used for the design of regular or irregular graphs.

A. Truncated spanning tree

Instead of spanning to the maximal possible depth, we span the tree only up to a maximal depth

lmax. This technique, which defines the nongreedy version of the algorithm [3], is suggested for

the construction of long codes where it would be computationally expensive to build the whole

1 by short cycle, we mean cycles shorter than the target girth

November 5, 2007 DRAFT

4

tree. Here, we argue that this is not only a computational or speed-up enhancement of the

algorithm, but that this technique should be used when one wants to construct a graph that

matches the lower bound N
(dv ,dc)
g . We justify our argument with the following three points.

1) Diameter argument: First, we give a justification on how deep the construction tree should

be spanned, based on a graph argument: for a given value of the target girth gt, if the graph has

minimum size N = N
(dv,dc)
gt then the diameter of the graph equals d = gt/2 [5]. Therefore in that

case, the tree must be spanned up to a maximal depth lmax = gt, so that the diameter is ensured

to equal d = gt/2. Indeed, if at some point the algorithm selects a node in N̄ l
sj

with l > gt, then

the condition that diameter of the graph equals gt/2 cannot hold, and the construction will fail.

The spanning of the tree at a given depth l = gt gives a set of candidates for which we ensure

that no cycle smaller than the target girth gt can be created if such a candidate is selected.

2) The randomization approach: We recall that our goal is to reach a given target girth gt,

when all the edges of the graph have been assigned. By spanning the tree less deeply, the number

of candidates at each step of the algorithm becomes much larger, and each edge is selected

among a very large number of candidates. Thus, the algorithm is based on a certain amount

of randomness in the construction: if at some point the construction fails, then all the edges

are discarded and the procedure restarts from scratch. This justifies the name of “Randomized

PEG”, and ensures that a wide variety of solutions are explored.

3) Reduced probability of construction failure: When spanning the tree to its maximal depth,

the first cycles that are created by the algorithm are locally optimal in the sense that they are

of the largest possible size. However, as the procedure progresses, the construction problem

becomes too constrained and eventually fails if the target girth is relatively high compared to

the graph parameters. Our extensive tests show that by spanning the tree at a lower depth, we

create smaller cycles at the beginning of the procedure and thus the choice of the edge is not

locally optimal, but nevertheless the probability that the algorithm actually terminates if much

higher.

B. The objective function

We consider in this section the general case where N ≥ N
(dv ,dc)
g , i.e. when the graph size

N is large enough such that a (dv, dc) graph of girth g may exist. The set of candidates can

November 5, 2007 DRAFT

5

be potentially very large, especially at the beginning of the graph construction, and it becomes

possible (and necessary) to discriminate among the multiple candidates.

We describe here the objective function that we used, which minimizes the number of created

cycles. We would like to point out that other objective functions could be used complementarily:

the minimization of other topological structures such as the number of created stopping sets,

trapping sets etc. or the minimization of an ACE metric [6], as done in [7] for the construction

of irregular graphs.

When the construction tree is spanned up to a maximal depth lmax, the objective function

restricts the set of candidates N̄ lmax
sj

, as follows:

If there are candidates at depth lmax, then discard all the candidates that are not exactly at the

depth lmax. By doing so, we only create cycles of size exactly lmax, and ensure that the diameter

argument is fulfilled

2- For each candidate cj , compute nbCyclesj , the number of cycles that would be created if

cj is selected. Discard all candidates that would create more than minj(nbCyclesj).

3- Compute dc
min, the lowest degree of all remaining candidates. Discard all candidates with

current degree dc > dc
min

At this point, the algorithm randomly samples among the remaining candidates.

C. Refinement for spanning the tree

For a given target girth gt, the diameter argument does not hold anymore for lengths N such

that N
(dv ,dc)
gt < N < N

(dv ,dc)
gt+2 . In that case, the diameter may be larger than g/2, and we propose

an alternative strategy by introducing a gap variable: we span the tree up to a maximal depth

lmax = gt + gap.

At the beginning of the construction, cycles of size larger than gt + gap are created. Each

time that it is no longer possible to add any edge, we decrease the value of gap, and therefore

allow to create smaller cycles. At some point, we span the tree only up to a depth l = gt, and

only at this point the algorithm starts creating cycles of size gt.

This technique, coupled with the objective function described in the previous section, allows

to minimize the multiplicity of the girth, i.e. the number of cycles length gt. It is not necessary

for the simulations presented in the next section, but leads to a better LDPC code design when

dv ≥ 3.

November 5, 2007 DRAFT

6

g\dc 3 4 5 6 7 8 9 10 · · · 50

6 6
∗ [6] 10

∗ [10] 15
∗ [15] 21

∗ [21] 28
∗ [28] 36

∗ [36] 45
∗ [45] 55

∗ [55] . . .∗ 1275
∗ [1275]

8 9
∗ [9] 16

∗[20] 25
∗ [35] 36

∗ [48] 49
∗ [70] 64

∗ [116] 81
∗ [162] 100

∗ [230] . . .∗ 2500
∗ [???]

10 15
∗ [18] 38

(34)[42] 90
(65) [110] 189

(111) [225] 385
(175) [441] 728

(260) [812]

12 21
∗ [27] 52

∗ [104] 105
∗† [380] 186

∗† [966]

14 36
∗ [36] 260 [292]

16 45
∗ [72] 160

∗† [850]

18 114
(69) [150]

20 201
(93) [285]

22 447
(141) [558]

TABLE I

FOR VARIOUS VALUES OF GIRTH g AND VARIOUS VALUES OF CHECKNODE DEGREE dc , WE REPORT THE SMALLEST GRAPH

SIZE N SUCH THAT THE RANDPEG ALGORITHM COULD CONSTRUCT A REGULAR (2, dc) GRAPH OF GIRTH g.

IV. PERFORMANCE OF THE RANDPEG ALGORITHM FOR dv = 2 GRAPHS

A. Design of ultra-sparse graphs

In table I we report, for different values of dc and g, the smallest value of N such that the

RandPEG algorithm could construct a regular (2, dc) graph of girth g. When this value achieves

the lower bound N
(2,dc)
g , we indicate so by super-scripting with a star (∗), and the corresponding

graph defines a (dc,
g

2
)-cage. Otherwise the value of the lower bound N

(2,dc)
g is super-scripted

with parenthesis. Some values are super-scripted with a dag, which means that the RandPEG

was initialized with a tree for these constructions. For comparison, the value of N such that the

standard PEG algorithm could construct the corresponding graph is reported in square brackets.

For all values of dc that we tested up to 50, the RandPEG successfully constructs cages

for target girths g = 6, 8. Moreover, for lower values of dc = 3, 4 the algorithm successfully

constructs graphs of girth up to 16 that achieve the lower bound. The corresponding graphs are

available on [8].

B. Application to the design of NB-LDPC codes

We now illustrate the interest of our algorithm for the design of non-binary LDPC codes. We

designed two codes of rate one-half, with (2, 4) graphs of size N = 160. For this graph setting

the regular PEG algorithm constructed a graph of girth 12, whereas the RandPEG constructs a

cage of girth 16. For both graphs, we optimized the non-binary coefficients in GF (64) according

November 5, 2007 DRAFT

7

1 1.5 2 2.5 3 3.5 4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

NB−LDPC codes of size N=160 symobols in GF(64)

E
b
 / N

0

F
ra

m
e
 E

rr
o
r

R
a
te

PEG

RandPEG

SP 59

Fig. 1. Performance comparison for the design of non-binary LDPC codes: two codes whose underlying Tanner graphs were

constructed with respectively the PEG and RandPEG algorithm are simulated over a BIAWGNC.

to the method described in [2], and simulated the resulting codes on a binary input additive white

gaussian noise channel (BIAWGNC). The simulation results on Fig. 1 show that for ultra-sparse

non-binary LDPC codes, a graph with better girth properties performs better in the error floor

region, by inducing better spectrum and minimum distance properties [2].

C. Girth multiplicity

One important property that does not appear in Table I is the multiplicity of the girth, i.e the

number of cycles with length equal to the girth. The multiplicity of the girth can be extremely

important if the graph is used for designing (binary or non-binary) LDPC codes. We designed

regular (3, 6) binary LDPC codes of size N = 504 and N = 1008. All the codes were of girth 8,

but for N = 504, the PEG code had a girth multiplicity of 808, whereas the RandPEG code had

a multiplicity of only 452. For N = 1008, the PEG code had a girth multiplicity of 167, whereas

the RandPEG code had a multiplicity of only 31. Simulation results show that the RandPEG

codes perform better that the PEG codes.

November 5, 2007 DRAFT

8

REFERENCES

[1] H. Song, J. Liu, and B.V. Kumar, “Large girth cycle codes for partial response channels,” IEEE Trans. Magn., vol. 40, no.

4, pp. 3084–3086, July 2004.

[2] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2, dc) LDPC codes over GF(q) using their binary image,”

accepted for publication in IEEE Trans. Commun., 2007.

[3] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-growth tanner graphs,” IEEE Trans.

Inform. Theory, vol. 51, no. 1, pp. 386–398, Jan. 2005.

[4] N. Biggs, “Constructions for cubic graphs with large girths,” The electronic journal of Combinatorics, vol. 5, no. 1, 1988.

[5] R. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured LDPC codes,” Proc. of ISTA, 2001.

[6] T. Tian, C. Jones, J. Villasenor, and R. Wesel, “Selective avoidance of cycles in irregular LDPC code construction,” IEEE

Trans. Commun., vol. 52, no. 2, pp. 1242–1247, Aug. 2004.

[7] H. Xiao abd A. H. Banihashemi, “Improved progressive-edge-growth (peg) construction of irregular LDPC codes,” IEEE

Commun. Lett., vol. 8, no. 12, pp. 715–717, Dec. 2004.

[8] “David declercq’s homepage,” http://perso-etis.ensea.fr/∼declercq/graphs.php.

November 5, 2007 DRAFT

