IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001 619

Design of Capacity-Approaching Irregular
Low-Density Parity-Check Codes

Thomas J. Richardson, M. Amin ShokrollaMember, IEEEand Ridiger L. Urbanke

Abstract—We design low-density parity-check (LDPC) codes
that perform at rates extremely close to the Shannon capacity. The
codes are built from highly irregular bipartite graphs with care-
fully chosen degree patterns on both sides. Our theoretical analysis
of the codes is based on [1]. Assuming that the underlying commu-
nication channel is symmetric, we prove that the probability densi-
ties at the message nodes of the graph possess a certain symmetry.
Using this symmetry property we then show that, under the as-
sumption of no cycles, the message densities always converge as
the number of iterations tends to infinity. Furthermore, we prove
a stability condition which implies an upper bound on the fraction
of errors that a belief-propagation decoder can correct when ap-
plied to a code induced from a bipartite graph with a given degree
distribution.

Our codes are found by optimizing the degree structure of the
underlying graphs. We develop several strategies to perform this
optimization. We also present some simulation results for the codes
found which show that the performance of the codes is very close
to the asymptotic theoretical bounds.

Index Terms—Belief propagation, irregular low-density parity-
check codes, low-density parity-check codes, turbo codes.

. INTRODUCTION

N this paper we preseirregular low-density parity-check Fig.1. A(3, 6)-regular LDPC code of lengtt0 and rate one-half. There are
(LDPC) codes which exhibit a performance extremely closé variable nodes and five check nodes. For each check node check;rtbee
to the best possible as determined by the Shannon capacity f§f? (©ver GR2)) of all adjacent variable nodes is equal to zero.
mula. For the binary-input additive white Gaussian noise (Bg]— . . :
AWGN) channel, the best code of rate one-half presented in t Rve _tf)_ez?) _desk:gned for tr?esde coﬂgs. Third, LDPC dZCOdmO?
paper has a threshold within 0.06 dB from capacity, and simuf3-venhaoie in the sense that decoding to a correct codewor

tion results show that our best LDPC code of length one millidhﬁ a getecterl]ble ;—‘"?”t- Onde_ practicall ot_)jeqtiohn tﬁ IbDPC codes
achieves a bit-error probability af—¢ less than 0.13 dB away '2S Peen that their encoding complexity Is high. One way to

from capacity, surpassing the best (turbo) codes known so fet around this problem is to slightly modify the construction

LDPC codes possess several other distinct advantages cgf(?OdeS from bipartite graphs to a cascade of such graphs, see

turbo codes. First, (belief-propagation) decoding for LDPE" [24], [3]. An altgrnative SO'U“P” for practi(?al PUrposes,
codes is fully parallelizable and can potentially be accon‘ﬁ\!hICh does not require cascades, is presented in [4].

plished at significantly greater speeds. Second, as indicated irlret us recall some basic notation. As originally suggested by

an earlier paper [1], very low complexity decoders that close hner [5], LDPC codes are well represented by bipartite graphs
paper [1] 4 piextty Ewhich one set of nodes, thariable nodescorresponds to

approximate belief propagation in performance may be (a
PP propag P y ( elements of the codeword and the other set of nodes;hbek
Manuscript received May 28, 1999; revised September 1, 2000. The matehigides corresponds to the set of parity-check constraints which

in this paper was presented in part at the IEEE International Symposium @afine the codeReguIarLDPC codes are those for which all
Information Theory, Sorrento, Italy, June 2000.

T. J. Richardson was with Bell Labs, Lucent Technologies, Murry Hill, Nf‘Odes of the same type have the Same_ degree. For e>_(am_ple,
07974 USA. He is now with Flarion Technologies, Bedminster, NJ 07921 USa (3, 6)-regular LDPC code has a graphical representation in

(e-mail: richardson@flarion.com). _ _which all variable nodes have degrand all check nodes have
M. A. Shokrollahi was with Bell Labs, Lucent Technologies, Murry Hill, NJ

07974 USA. He is now with Digital Fountain, San Francisco, CA 94110 USQegreEﬁ' The blpartlte graph determlnlng such a code is shown

(e-mail: amin@digitalfountain.com) _ in Fig. 1. Irregular LDPC codes were introduced in [2], [24]
R. Urbanke was W|th Bell Labs. He is now with EPFL, LTHC-DSC, CH-101%nd were further studied in [6]-[8]. For such an irregular LDPC
Lausanne (e-mail: rudiger.urbanke@epfl.ch). d he d f h f nod h di
Communicated by F. R. Kschishang, Associate Editor for Coding Theory.CO e, the degrees of each set of nodes are chosen according to

Publisher Item Identifier S 0018-9448(01)00738-6. some distribution. Thus, an irregular LDPC code might have a

0018-9448/01$10.00 © 2001 IEEE



620 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

graphical representation in which half the variable nodes have In the same manner, assuming that the codeshakeck
degrees and half have degre®g while half the constraint nodes nodes,E can also be expressed as
have degreé and half have degre® 1

For a given length and a given degree distribution, we define m-—q———.
anensemblef codes by choosing edges, i.e., the connections be- Jo pl)dz
tween variable and check nodes, randomly. More precisely, we Equating these two expressions 6y we conclude that
enumerate the edges emanating from the variable nodes in some L
arbitrary order and proceed in the same way with the edges em- m=n fo p(x) dx
anating from the check nodes. Assume that the number of edges fol Mz) dz '
is E. Then a code (a particular instance of this ensemble) can be . ) )
identified with a permutation o’ letters. By definition, all el- Generically, assuming that all these check equations are
ements in this ensemble are equiprobable. In practice, the edges Inéarly independent, we see that thesign rates equal to
are not chosen entirely randomly since certain potentially unfor- n—m fl p(z) dz
tunate events in the graph construction can be easily avoided. r(A, p)i=——=1- 01—

In [1], an asymptotic analysis of LDPC codes under mes- n Jo Az) d

sage-passing decoding was presented. To briefly recall the main as was first shown in [2].

results let us assume that we have the following setup.

[Channel] We are given an ordered family of binary-input

memoryless channels parameterized by a real parameter

6 such that if6; < & then the channel with parameter
62 is a physically degradedrersion of the channel with
parameters;, see [1]. Furthermore, each channel in this
family is output-symmetri¢ i.e.,

plylz = 1) = p(—ylz = —-1). @)
[Ensemble] We say that a polynomig(z) of the form
Yz) =Y yiat L
i>2
is adegree distributionf v(x) has nonnegative coefficients

and~(1) = 1. Note that we associate the coefficieptto
21 rather thanz’. We will see that this notation, which

was introduced in [2], leads to very elegant and compact
descriptions of the main results. Given a degree distribution

pair (A, p) associate to it a sequence of ccelesembles
C™(A, p), wheren is the length of the code and where

dy
Az) = Z Nzt
i=2

(p(z) = 2%, piai~!) specifies the variable (check)
node degree distribution. More precisely, (p;) repre-
sents the fraction afdgesemanating from variable (check)
nodes of degreé. For example, for thg3, 6)-regular
code we have\(z) := z? andp(z) := x°. The maximum
variable degreeandcheck degreé denoted by, andd,,

[Message-Passing Decoder] Select@ssage-passintge-
coder. By definition, messages only contextrinsicinfor-
mation, i.e., the message emitted along an eddges not
depend on the incoming message along the same edge. Fur-
ther, the decoder fulfills the followingymmetry conditions
Flipping the sign ofallincoming messages atavariable node
resultsinaflip ofthe sign of all outgoing messages. The sym-
metry condition at a check node is slightly more involved.
Lete be an edge emanating from a check nodehen flip-

ping the sign of incoming messages arriving at nagex-
cluding the message along edgeresults in a change of
the sign of the outgoing message along eddy (—1)°.

In all these cases, only the sign is changed, the reliability
remains unchanged. Finally, we generally require that the
decoder be asymptotically monotonic with respect to the
channel parameter. Roughly speaking, this meansthatin the
limit of infinitely long codes, the probability of error of the
decoder is nondecreasing in the channel parameter given a
fixed number of iterations. In the case of the belief-propa-
gation decoder, this property is a direct consequence of the
decoder’s asymptotic optimality and the fact that we con-
sider families of channels which can be ordered by phys-
ical degradation (see Section Ill). For many other decoders
ofinterestthe monotonicity property can be proved directly,
and it seems to hold for virtually all decoders of interest. In
this paper, we are interested almost exclusively in the belief-
propagation decoder, so we shall implicitly assume mono-
tonicity throughout.

Under the above assumptions, with, p) and the channel
family fixed, there exists a thresholé*, i.e., a maximum
channel parameter, with the following properties. For any0

respectively. Assume that the code hagariable nodes.
The number of/ariable nodes of degre&is then

n Aifi = — Aifd andé < &*, there exists a length(e¢, §) and a numbef(e, &)
22 Aild Jo Mz)dx such that almost evetgode inC*(\, p), n > n(e, §), has
Iz

i bit error probability smaller than assuming that transmission
and sok, the total number of edges emanating from ajl,es place over the channel with paramétend thaté(e, 6)
variable nodes, is equal to iterations of message-passing decoding are performed. Con-
" Z Aifi - 1 ' versely, for any fixed upper bound on the number of iterations,
= fol \z) dz fol \z) dz if the transmission takes place over a channel with parameter

§ > &%, then almost evefycode inC™(), p) has bit-error
1it is reassuring to note théihear binary codes are known to be capable of
achieving capacity on binary-input memoryless output-symmetric channels, se&More precisely, the fraction of codes for which the above statement is true
[9]. converges exponentially fast (i) to one.
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probability larger than some constant= (), wherey does ticular message-passing decoder. Since any giver{ pajr) of
notdepend on the number of iterations performed. degree distributions has an associated threshold, 6allit p),

The main steps taken to arrive at these conclusions are the fak natural to search for those pairs that maximize this threshold.
lowing. The first shows that if one fixes the number of iterationsThis was accomplished, with great success, in the case of the
then the performance of the various realizations of the graphasure channel [2], [24], [10], [11]. For most other memory-
and channel concentrate around their expected value, where kbés channels of interest the situation is much more complicated
concentration is exponential in the length of the code. (The exd new methods must be brought to bear on the optimization
ponent may in general depend on the degree distribution paipblem. Fig. 2 compares the performance of an instance of the
(A, p), the chosen message-passing decoder, and the cha(®eé)-regular LDPC ensemble (which is the best regular en-
parameter4) Therefore, in order to characterize the performanaemble) with the performance of an instance of the best irregular
of (almost all) sufficiently long codes it suffices to determinéDPC ensemble we found in our search and with the perfor-
their average performance. Unfortunately, it does not seemnt@nce of an instance of the standard parallel concatenated en
be an easy task to determine this average performance forstémble introduced by Berrou, Glavieux, and Thitimajshima[12].
nite-length ensembles. In the limit of very long codes, howevek|l three codes have rate one-half and their performance under
the average performance can be determined as follows. One firslief-propagation decoding over the BIAWGNC is shown for a
observes that with probability— O(%) the decoding neighbor- code word length of0°. Also shown is the Shannon limit and the
hood of a given variable node igee-like i.e., it does not con- threshold value of our best LDPC ensemfaté = 0.9718). Itis
tain any repetitions/cycles. When the decoding neighborhoodeadent from this figure that considerable benefit can be derived
a tree, the performance of the decoder is fairly straightforwafiddm optimizing degree distribution pairs. Fer= 10° and a
to determine because all involved random variablegwal@pen- bit-error probability ofLl0~¢, our best LDPC code is only 0.13
dent Moreover, under the above mentioned symmetry assungB away from capacity. This even surpasses the performance of
tions of the channel and the decoder, one can assume thatttitbo codes. Even more impressive, the threshold, which indi-
all-one codeword was transmitted, i.e., the conditional bit-erroates the performance for infinite lengths, isamere 0.06 dB away
probability is independent of the transmitted codeword. By cofrom the Shannon capacity limit.
vention, we choose the messages in such a way that, under thEhe empirical evidence presented in Fig. 2 together with
all-one codeword assumptigmpsitivemessages signifyorrect  the results presented in Section Il beg the question of whether
messages whereaggativemessages indicate errors. This isl. DPC codes undebelief-propagationdecoding can achieve
e.g., the case for belief-propagation decoders where the mespacity over a given binary-input memoryless output-sym-
sages are log-likelihood ratios of the foroy % The metric channet. The only definitive results in this direction
distribution of the messages initially emitteé) is determined Bre those of [2], [24], [15], which give explicit sequences of
the channel and it has an associated probability of error. Undtagree distribution pairs whose thresholds over the binary
the aboveéndependence assumptiave now track the evolution erasure channel (BEC) converge to the Shannon capacity limit.
of the message distributions as they progress up the tree, i.e.;Tioe following theorem, due to Gallager, imposes, at least for
ward the root. In particular, one is interested in the evolution tie binary symmetric channel (BSC), a necessary condition on
the error probability as a function of the iteration number. THeDPC codes that would achieve capacity: their maximum check
threshold is then defined as the “worst” channel parameter sudggreed. must tend to infinity. Although this result bounds
that the message distribution evolves in such a way that its #se performance of LDPC codes away from capacity, the gap is
sociated probability of error converges to zero as the numberextremely small and the gap converges to zero exponentially
iterations tends to infinity. This procedure of tracking the evdast in d.. Hence, although of great theoretical interest, the
lution of the message distribution is terméehsity evolution  theorem does not impose a significant practical limitation.

In [1], an efficient numerical procedure was developed toim- -, _ [13, p. 37]:Let C' e C™(A, p) be an LDPC code

plement density evolution for the important case of beIief-pro%—f rater. LetC be used over a BSC with crossover probabiity
agation decoders and to therewith efficiently compute the asso- y

; . . d assume that each codeword is used with equal probability. If
ciated threshold to any desired degree of accuracy. Also in [if> 1— h(8)/h(p*), whereh( - ) is the binary en?ropypfunctiony

threshold values and simulation results were given for a variet

of noisy channel models but the class of LDPC codes consm}S
ered was largely restricted tegular codes. In this paper, we . 14+ (1—28)%
present results indicating the remarkable performance that can p=—5

be achieved by properly choseregular codes. 5 - T ) i )
. . . . . . \We may also optimize degree distribution pairs under various constraints.
The idea underlying this paper is quite straightforward. Agor example, the larger the degrees used, the larger the code size needs to be
sume we are interested in transmission over a particular familyiwprder to approach the predicted asymptote. Therefore, it is highly desirable

binary-inputmemoryless output-symmetric channelsusingap Z':%'; Iﬁ;tgggezzgdegree distribution pair with someriori bound on the

6In the case ofmaximum-likelihoodiecoding this was answered in the af-
3We conjecture that actually the following much stronger statement fgmative by Gallager and McKay, see [13], [14].
true—namely, thatall codes in a given LDPC ensemble have bit-error “We conjecture that asimilar statement (and proof) can be given for continuous
probability of at leasty regardless of their lengtandregardless of how many channels.
iterationsare performed. 8In fact, a similar theorem holds also for the erasure channel [15, Theorem
4In our proofs, however, the obtained exponent depends only on the degtgeand yet, there are capacity-achieving sequences of degree distributions for
distribution pair(X, p). that channel.
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Ey/Ng [dB]

1.0 0.977 0.955 0.933 0912 0.891 0.871 0.851 G
0.159 0.153 0.147 0.142 0.136 0.131 0.125 0.12 P,

Fig. 2. Comparison of the error rates achieved I§$.a6)-regular LDPC code, turbo code, the and optimized irregular LDPC code. All codes are of16figth
and of rate one-half. The bit-error rate for the BIAWGNC is shown as a functidn ¢iV, (in decibels), the standard deviationas well as the raw input bit-error
probability P .

then the (block or bit)-error probability is bounded away frorsatisfy a certairsymmetrycondition which is invariant under
zero by a constant which is independentof density evolution. Many simplifications arise in this symmetric
channel case and they afford us considerable insight into the na-
Qure of density evolution. In particular, we will derivestability
conditionwhich gives rise to an upper bound on the threshold
for the case of general binary-input memoryless output-sym-

Discussion: Note that the capacity of the BSC is equal t
1 — h(6). Sincep* > 1/2 for any finited., we haveh(p*) < 1
and, thereforel — h(8)/h(p*) < 1 — h(6). A quick calcu-

l%&?n shows that thgapto capacity is well approximated by.metric channels. We also show that the threshold can, at least

1 — 26)%% which decreases to zero exponentially fast in__ . ) : . !
élné(allager)state d the above theorem(téy, d )F-)regular CZ des partially, be characterized by the (non)existencéxafd points
(ol il C .

S ) . of density evolution. Finally, in Section IV, we describe the nu-
An examination of the proof reveals, however, that it remains _ . TR | X

. . o merical optimization techniques which were used to generate
valid for the case of irregular codes with interpreted as the

. .~ .~ the tables in Section Il. Throughout the paper we will motivate
maximum check node degree. The key to the proof lies in the - . .
realization that the entropy of the received word can be bound&g. definitions and statements for general binary-input mem-
o Py o o oryless output-symmetric channels with their counterpart for the
as follows: given a received word, describe it by specifying t . : ST
- S . o EC channel. We will see that despite the simplicity of the BEC

value ofrn systematic bits (which is equivalent to specifying a

codeword) plus the value of th@ — r)n. parities (which will model many of its iterative decoding properties are shared by the

specify the coset). Since a parity is one with probability p*, general class of channels considered in this paper.
which is strictly less than one-half, the entropy of the received
word is strictly less tham bits, which gives rise to the stated

upper bound. Details of the proof can be found in [13, p.989]. A. Optimization Results

Il. CAPACITY-APPROACHINGDEGREEDISTRIBUTION PARIS

The outline of this paper is as follows. We start by presenting Using numerical optimization techniques described in some
tables of some very good degree distribution pairs in Section dletail in Section 1V, we searched for good degree distribution
Although we focus mostly on the BIAWGNC and rate one-halpairs of rate one-half with various upper bounds on the max-
we also give a few examples for different channels and rates. Weum variable degreé,. The result of our search for the BI-
discuss some simulation results that show that the promised p&WGNC is summarized in Tables | and II. Table | contains those
formance can be closely achieved for reasonably long codesdiyree distribution pairs witth, = 4, ..., 12, whereas Table Il
Section Ill, we describe and study properties of density evoloentains degree distribution pairs with = 15, 20, 30, and
tion. Under the assumption that the input distribution arises froso. In each table, columns correspond to one particular degree
a symmetric channel, we show that the message distributiafistribution pair. For each degree distribution pair, the coeffi-

i i 10
9We note that a slightly sharper bound can be given if we replasdth the cients ofA andp are given as well as the threshaid,:© the
average degree of tl{@ — r)-fraction of highest degree nodes. However, since
the improvement is usually only slight and since the exact size of the gap is not®We assume standard pulse-amplitude modulation (PAM) signaliage +
significant in practice, we leave the details to the interested reader. z with 2 = £1 andz « N(0, o2).
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TABLE |
GOOD DEGREEDISTRIBUTION PAIRS OF RATE ONE-HALF FOR THE BIAWGNC WITH MAXIMUM VARIABLE NODE DEGREESdy = 4, 5, 6, 7, 8, 9, 10, 11,
and12. FOR EACH DEGREE DISTRIBUTION PAIR THE THRESHOLD VALUE ¢*, THE CORRESPONDING(f]—S)* IN DECIBELS, AND
p* = Q(1/5") (i.e., THE INPUT BIT-ERROR PROBABILITY OF A HARD-DECISION DECODER) ARE GIVEN. ALSO LISTED IS Az, THE
MAXIMUM STABLE VALUE OF A2 FOR THEGIVEN p’(1) AND FORo = o*

d 4 5 6 7 8 9 10 11 12

5 [ 0.38364 | 0.34648 | 0.34043 | 0.31571 | 0.30166 | 0.28321 | 0.27165 | 0.26269 | 0.25522

Xz | 0.38354 | 0.32660 | 0.33241 | 0.31570 | 0.30013 | 0.27684 | 0.25105 | 0.23882 | 0.24426

X | 0.04237 | 0.11960 | 0.24632 | 0.41672 | 0.28395 | 0.28342 | 0.30938 | 0.29515 | 0.25907

X4 | 0.57409 | 0.18393 | 011014 0.00104 | 0.03261 | 0.01054

X5 0.36988 0.05510

X6 0.31112

Y 0.43810

X8 0.41592 0.01455

2o 0.43974

Mo 0.43853 0.01275

A1 0.43342

iz 0.40373

ps | 0.24123

pe | 075877 | 0.78555 | 0.76611 | 0.43810 | 0.22919 | 0.01568

pr 0.21445 | 0.23389 | 0.56190 | 0.77081 | 0.85244 | 0.63676 | 0.43011 | 0.25475

o 0.13188 | 0.36324 | 0.56989 | 0.73438

po 0.01087

o* | 09114 | 0.9194] 00304 | 0.9424 | 0.9497 | 0.9540 | 0.9558 | 0.9572 | 0.9580
[(Er);5 | 08085 | 0.7299 | 0.6266 | 0.5153 | 0.4483 [ 0.4090 [ 0.3927 [ 0.3799 | 0.3727

p* | 0.1369 | 0.1384] 0.1412 | 0.1443 | 0.1462 | 0.1473 | 0.1477 | 0.1481 [ 0.1483

corresponding value aF;, /Ny in decibels, and finally the raw ertheless, optimizing a degree distribution pair for a particular

bit-error probabilityp* of the input if it were quantized to 1 bit, channel will generally give even better results.

he. p" = Q(1/0"), whereQ(z) is the well-knownQ-func- Example 1 [BIAWGNCt = &]: In this example, we con-

tion. In Section llI-E, we will show that, given the channel and. s 9 .
) . ! N Sider codes of rate = ¢ for the BIAWGNC channel. For this

¢'(1), there is anaximum stablealue of A,, call it A5. More 9

precisely, we will show that for any degree distribution pairwitrate’ the Shannon bound foris o, = 0.528936. We found

% strictly larger than\ the probability of bit error cannot con-t e following degree distribution pair which has a theoretical

. . trgeshold ofo* = 0.5183:
verge to zero, regardless of how many iterations are performed.

This value); is also listed in the tables. As required, we can(@) := 0-1575z + 0.3429z” + 0.0363z° + 0.0590z°
see that for every listed degree distributidn < A3, and the +0.27902% + 0.12532°
two values are fairly close. and
The results are quite encouraging. Compared to regulgs(z) := 0.8266x>* + 0.13452% + 0.008727° +0.0302z 7.

LDPC codes for which the highest achievable threshold fafjowing higher degrees would almost certainly result in degree

the BIAWGNC isc™ = 0.88, irregular LDPC codes have sub-yistribution pairs with larger thresholds. .
stantially higher thresholds. The threshold increases initially
rapidly with d, and for the largest investigated degrke= 50,  Example 2 [BSC;» = 3]: The ultimate threshold,

It is quite tempting to conjecture that the threshold will confopt = 0.110028. The best degree distribution pair we have
verge to the ultimate (Shannon) limit (which, up to the precisidQund so far hag* = 0.106 and is given by
given, is equal tar,,, = 0.9787 for rate one-half codes) a§  A(z) := 0.157581x + 0.164953z2 + 0.022429123
t(ha_nds to i_n_finilty. l_Jdnfortunater, as ofr:_his moment, we only have +0.0455412% + 0.01145452° + 0.09990962°
this empirical evidence to support this conjecture. 7 . 8 . 9
Although in this paper we focus mainly on the BIAWGNC +0.0160667x t00'00208277x 41_10'0040479737 12
and binary codes of rate one-half, the following examples show +0.00092876727" + 0.01883612™" + 0.0648277
that the same techniques can be used to find very good degree  + 0.0206867z'2 + 0.000780516z* + 0.03836032'°
distribution pairﬁ fozc other merr;orylessdchanne(;s anbd different + 0.0419398216 + 0.00231172° + 0.00184157x2°
rates. We note that, for a particular rate, degree distribution pairs 29 28 . 39
that were optimized for the BIAWGNC are usually very good + 0'011419:%01 + 0'011663(2? + 0'080018‘227
degree distribution pairs for a large class of channels, including + 0.01048z™" + 0.0169308z°” + 0.0255644x
the binary-input Laplace channel (BILC) and the BSC. Nev- +0.03640862™° + 0.08693591 74
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TABLE I +0.001137512°% + 0.005653262°* + 0.01780792°°

GooD DEGREEDISTRIBUTION PAIRS OF RATE ONE-HALF FOR THE BIAWGNC 56 - 59 64
WITH MAXIMUM VARIABLE NODE DEGREESdy = 15, 20, 30, AND 50. +0.0268887”" + 0.0003958172”" 4- 0.00229811x

FOR EACH DEGREE DISRRIBUTION PAIR THE THRESHOLD VALUE ¢*, = 73 r T4

THE CORRESPONDING(f]—S)* IN dB AND p* = Q(1/c*) (i.e., THE +0.01445682°" + 0.126305z
INPUT BIT-ERROR PROBABILITY OF A HARD-DECISION DECODER ARE andp(x) = 0.252% + 0.75x1°. The maximum variable node
GIVEN. ALSO LISTED IS A%, THE MAXIMUM STABLE VALUE OF Az and check node degrees are agdirand11, respectively. e

FOR THEGIVEN p’(1) AND FOR0 = o*

B. Simulation Results

dy 15 20 30 50

X5 | 0.24446 | 0.23261 | 0.21306 | 0.18379 The concentration results proved in [1] guarantee that for
%2 | 0.23802 | 0.21991 | 0.19606 | 0.17120 sufficiently large block lengths almost every code in the given
Az | 0.20997 | 0.23328 | 0.24039 | 0.21053 ensemble will have vanishing probability of bit error for

Ay | 0.03492 | 0.02058 0.00273 channels with parameters below the calculated threshold. Nev-
As | 0.12015 ertheless, the lengths required by the proofs are far beyond any
A6 0.08543 | 0.00228 practical values and one might expect that medium-sized codes
A7 | 0.01587 | 0.06540 | 0.05516 | 0.00009 will deviate significantly from the predicted performance.
As 0.04767 | 0.16602 | 0.15269 Given that the maximum possible number of loop-free itera-
Ay 0.01912 | 0.04088 | 0.09227 tions grows only logarithmically in the block length, it seems
;1" 00450 0.01064 | 0.02802 a priori doubtful that simulation results for practical lengths
)\1: 0:37627 001506 can closely match the predicte(_JI asymptotic perform_ance. For
o 008064 - regular LDPC codes, hgwever, it was demonstratgd in [1] that
a0 092798 the actual convergence is much faster and that reah_stlcally sized
s 0.00251 block (?odes already pe_rfgrm close to the asymptotllc value.

X30 0.28636 | 0.07212 For irregular codes, finite-length effects not only include the
5o 0.25830 deviation of the input variance from its mean and a nonzero
s | 0.98013 | 0.64854 | 0.00749 probability of small loops but also the deviation of a given sup-
0o | 0.01987 | 0.34747 | 0.99101 | 0.33620 port tree from its average, i.e., for a given node the fraction
P10 0.00399 | 0.00150 | 0.08883 of neighbors of this node with a given degree might deviate
P11 0.57497 from its expected value. This effect is expected to influence the

finite-length performance more severely for largigrand d..
Also, when operating very close to a degree distribution pair’'s
threshold, it will require a large number of iterations (one thou-
sand or more) to reach target bit-error probabilities of, 5ay?.
(In the limit the number of iterations convergesde) Fortu-
variable node degree @6 and a maximum check node degre?ha:sl)r/;or;gvivse;/erf asmall margin from a degree distribution pairs
of 11. _ ypu_:ally enough to drastically reduce the required
number of iterations.

Example 3 [BILC;r = %]: Consider the binary-input La-  Simulation results show that even in the irregular case the ac-
place channel (BILC) with continuous output alphabet and addiital convergence of the performance of finite-length codes to
tive noise. More precisely, the channel is modeleg by x+2, the asymptotic performance is much faster than predicted by
wherez € {+1} and where is a random variables with prob-the bounds appearing in the analysis. Fig. 3 shows the perfor-

o* ] 0.9622 ] 0.9649 [ 0.9690 | 0.9718
(#)5s | 03347 03104 | 02735 | 0.2485
p* | 01493 ] 0.1500 [ 0.1510 | 0.1517

andp(z) := 0.252° 4+ 0.752°. Here we allowed a maximum

ability density mance of particular LDPC codes. The chosen lengths start at one
1 thousand and go up to one million. More precisely, the lengths
ppIL(2) = ﬁc_T. presented ar@03, 10*, 10°, and10°. The maximum variable

degrees appearing age 20, 50, and 50, respectively. In each
The ultimate threshold for the BILC of rate (as given by the case, we let the decoder run for enough iterations to get the
Shannon formula) is equal t4,,, = 0.752. We found the best possible performance. (The number of practically useful
following degree distribution pair which has a threshold abovterations is a function of length and, since our interest here is
A* = 0.74: in the question of parameter design, we shall not address this
A(z) := 0.0869518z + 0.26831z + 0.09283572° ibs_sue.) For Iefr_lgtho?’,otlhe error rates aredgiven flor systerr:jatic
4 0.02149182* + 0.01204792° + 0.004162872° its. (A specific enco ler was constructe ) For_ er_mﬁ an
- s g above, the error rate is given over all of the bits in the code-
1 0.010689z" + 0.002716562" + 0.00478356 word. These graphs were not chosen entirely randomly. The de-
+0.00097687921° + 0.0198119z1! + 0.0681859z'2  gree-two nodes were made loop-free for lengths less thén
+ 00229726.1‘13 + 00782138%‘14 + 000315161%‘15 and, |n the |enﬁth|03 Cahse(;, all ththem COH’eSp(IZ)nd to nonsys-
4 0.00333452 + 0.00251733217 + 0.002431452%° tematic bits. The length0® graph was rgndom y co_nstructed
20 o 9o except that double edges and loops with two variable nodes
+0.002244132™ + 0.003723452 + 0.012011z were avoided. For shorter lengths some small loop removal was
+0.0076332322* + 0.06159222%° + 0.01226782%% performed. We note that, particularly for small lengths, better
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107 ;

10° +-

10°® E

Ey/N, [dB]

1.0 0977 0955 0933 0912 0891 0871 0851 0832 0813 C©

0159 0.153 0.147 0142 0.136 0131 01425 012 0115 0109 P,

Fig. 3. Comparison between bit-error rates achieved by turbo codes (dashed curves) and LDPC codes (solid curves)otdehgths 04, 105, and10°.
All codes are of rate one-half. Observe that longer LDPC codes outperform turbo codes and that the gap becomes the more significantithenasger. For
short lengths, it appears that the structure of turbo codes gives them an edge over LDPC codes despite having a lower threshold.

performance can be achieved by using degree distribution palistribution issymmetricand that this symmetry is preserved
with smaller values ofl, even though such degree distributiorunder belief-propagation decoding. Further, we will discuss
pairs have a smaller threshdldWe see that for. = 10°, the a stability conditionof density evolution which stems from
actual performance is quite close to the predicted asymptadicalyzing the convergence behavior of density evolution under
performance and that for longer lengths these codes handitg assumption that small error probabilities have already been
beat the best known turbo code of the same length. At one nakhieved in the evolution process. Finally, we will give a partial
lion bits, the code is less than 0.13 dB away from capacity elharacterization of the threshold in terms of the (non)existence
bit-error probabilities ofl0—¢. Given that LDPC codes haveof fixed points of the density evolution recursion. For each
slightly lower complexity, are fully parallelizable, and allowtopic, we will motivate our definitions/statements by consid-
many different decoding algorithms with a far ranging tradeoéfring the equivalent definitions/statements for the simple case
between performance and complexity, LDPC codes can be cofthe BEC. Quite surprisingly, given the uncharacteristically
sidered serious competitors to turbo codes. simple nature of the BEC, we will find that many results extend
Although we spent a considerable amount of computing tinte the general case.
on the optimization it is clear that any given degree distribution
pair can be further (slightly) improved given enough patierice A- Belief Propagation
The main result of this section, stated in Theorem 2, is an
[ll. ANALYTIC PROPERTIES OFDENSITY EVOLUTION explicit recursion which connects the distributions of messages
In this section, we will study and exhibit some analytid?assed from variable nodes to check nodes at two consecutive

properties of density evolution for belief-propagation gdterations ofboelief p_ropag_ationln the case of the_ BEC, this task

coders. Without loss of generality, we will assume that tHe2S beenaccomplished in[2], [24], [10] where it was shown that

all-one codeword was transmitted and that the messages Bfe€xpected fraction of erasure messages which are passed in

represented as log-likelihood ratios. Under thdependence thefth iteration, call itz,, evolves as

assumptionwe will then give a compact mathematical de- xg = zoA1 — p(1 —x¢1)), £>1.

scription of the evolution of the message densities as theyr general binary-input memoryless output-symmetric chan-

proceed up the tree. In doing so we largely follow [1]. We wilhels, the situation is much more involved since one has to keep

show that for output-symmetric channels the received messaggk of the evolution of general distributions, which usually
11The degree distribution pairs presented here are those giving the high%@pnm be parameterlzeq by a Sm_gle paramet_er. .

threshold under a maximum degree constraint. For small graphs it is not al-Let us begin by recalling thbelief-propagationalgorithm.

ways b_est to pickth_e dpgr_ee dist_ribution pair with the_highest threshold. Whele will use the standard binary PAM mép+— 1,1 — —1

look Tor tne ghest possibie hreshold under an appropriats constrain on fizoUghoU. At each iteration, messages are passed along the

allowed number of iterations. edges of the graph from variable nodes to their incident check
12ndeed this has been accomplished in [16]. nodes and back. The messages are typically real-valued but they
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can also take on the valudsx, reflecting the situation where assumptions, the conditional error probability is independent
some bits are known with absolute certainty. of the transmitted codeword, see [1]. In the sequel, we will
Generically, messages which are sent in thte iteration only be interested in output-symmetric channels and we
will be denoted bym©. By m{¥ we denote the message senill therefore always assume that the all-one codeword was
from the variable node to its incident check node, while by transmitted. Note that in this case any actually obseryed
m§€> we denote the message passed from check nddeats must fulfill 0 < p(y|z = 1). It follows that the log-likelihood
incident variable node. Each message represents a quantitatios log]% take values in the range-oc, +oc]. A
In (p*/p~), wherep™ = p(x = 1jy), p~ = p(® = —1|y), short glance at the above update equations then showalthat
x is the random variable describing the codeword bit valusessages sent during the course of belief propagation lie in this
associated to the variable nodeandy is the random variable range, i.e., that no message can ever take on the vatue

describing all the information incorporated into this message.

By Bayes rule we have B. Distributions
ple=1y) . pye=1) For some channels, e.g., the BEC and the BSC, the density
plx=-1y)  plylz=-1) of received log-likelihood ratios is discrete. For others, e.g., the

sincez is equally likely£1. The messagen is the log-likeli- BIAWGNC, the density is continuous. In the first case, the mes-
hood ratio of the random variable (under theindependence sage densities will themselves be discrete and in the second case,
assumptioh the message densities will be continuous. In order to be able to

As we will see shortly, to represent the updates performéeat all these cases in a uniform manner we shall work with a
by check nodean alternative representation of the messagesfairly general class of distributions. The reader only casually
appropriate. Let us define a map interested in the technical aspects of this paper is advised to

~: [—o00, +oo] — GF(2) x [0, 4+-o0] th'mk.of smooth densﬂps and their assougted continuous dis-
tributions and to only skim the current section.
- Let F denote the space of right-continuous, nondecreasing
y(x) := (i (), y2(2)) = (sgna:, - lntanh‘—‘) . (2) functionst' defined onR satisfyinglim,_,_., £ (z) = 0 and
2 lim, o F(z) < 1. To eachF € F we associate a random

variablez over(—oo, +oc]. The random variable haslaw or
distribution ', i.e.,

as follows. Givenr € [—oo, +o0], z # 0, let

Several remarks are in order. We defirdn(0) := +oo.
Further, we make the following slightly unconventiopabba-
bilistic definition of the sign function:

0, ifz>0 Pr{z € (—o0, z]} = F(x).
. 1
sgn () == 0, Wfth probabflftyi ff =0 The reason we allowim, ..., F(z) < 1 rather than

1,  with probability 5 if z =0 lim,_ 400 F(z) = 1 is to permitz to have some probability
1, if z < 0. mass at-co, indeed

The S|gn_a55|gnm_ent Whezp = 0 does not effe_ct th(_a _b_ellef— Pr{z = 400} =1 — lim F(z).

propagation algorithm but it is useful for certain definitions to z—+4o0

follow.

A random variable: over (—co, +o0] is completely specified

Let mo be the log-likelihood ratio of the codeword bity s distributionF., € F. Given an elemenk € F we define
x = +1 associated to the variable nodeonditioned only on F~(z) to be the left limit of " atz, i.e.

the channel observation of this bit. The update equations for

the messages undeelief propagatiorare then the following: F(z):= li%n Fy).
ylx
mo, if =0 . ,

© @ _ Note that#'~ is left continuous.

Muc” = § Mo+ Z My if£>1 @) We will work with “densities” over(—oo, +oc] which, for-
< CC\ (<} mally, can be treated as (Radon—Nikodyn) derivatives of ele-
ments ofF. The derivative, when it exists, is the density of the

© _ -1 (-1 4 associated random variabteover (—oco, +00) although there

Mo’ =7 Z T\ Mve ) @) may be an additional point masssato: recallPr{z = +oo} =

Vvt 1 — F~(o0). We will use densities primarily in the following

whereC, is the set of check nodes incident to variable nede way. The Lebesgue-Stieltjes integyalh(x) dF(x) is well-de-
andV. is the set of variable nodes incident to check node  fined for, e.g., nonnegative continuous functiénand £’ € F.

It is easy to check that the belief-propagation decoder gsf is the density corresponding to the distributiBrwe will
defined above fulfills the symmetry conditions discussed irite Jo M) f(z) dz as a proxy forfy h(z) dF(x).24
Section I. Therefore, if we restrict ourselves to output-sym- Consider the update equations of belief propagation given in

metric channels, then we can assume that the all-one codew@gand (4). Note that they consist of the following two com-
was transmitted without loss of generality since, under these
f lim,, , o F(2) < 1 andlim,_, { .. h() exists then one could/should
13The reader might wonder ho((+oc) + (—oc)) is defined in (3), but it include the term{1 — lim, _, o« F'(2))(lim._ 4 k(x)) in the definition of
is impossible under belief propagation for a node to receive both the messddé” h(x) f(«) da. For our purposes, however, it will always be the case when
+o0 and the message~o. (Either message implies absolute certainty of theve use this notation that eithbm,, . F(z) =1 orlim, ;. h(z) =0,
value of the associated bit but with opposite signs.) so we need not be concerned with this issue.
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ponents: i) summation of messages, where these message®ate thatl'(£.) € G, and, in particular

eiFher in Iog-llike_llihood ra_t.io representation or represented as  lim [o(F.)(z)— lim Iy(F.)(x) = Pr{z = 0}.
“sign-and-reliability” and ii) change of representation. We are *—+° o TFo0 .

interested in the evolution of the message distributions under thd-€t G = X{s=0}G" + x{s=13G" be an element of. We
independence assumpticFherefore, we will now discuss how SPeak of densities over GE) x [0, +oc]

distributions evolve when independent random variables (in ei- g(s, ) = X{s=o}90($) + X{s=1}91($)7
ther representation) are summed and when the representatiopyofubstituting forG® and G* their associated densities. The
such variables is changed. definition is analogous to that used f@f except that, here,
Given I, G € F their convolutionf” @ G € F is defined ¢° has a point mass at = 0 of magnitudel — G°(0) and
bys both ¢° and g* have point masses at = +oo of magnitude
Llimg .y oo FO(x) = lim,_ 4 oo F1{(x)). For['(F.) this corre-
(FoG)(r):= /RF(“j — ) dGly) = /R Glw —y) dF (). SQ,F()onds tJE) assién)ingn(o) t:; {1, 0(} )e)qually fike?y. We shall

This generalizes the notion of convolution of densities farif Ny be interested in densities over Gf x [0, +oc] that sat-

andG have corresponding densitigsandg, respectively, then ISy these conditions. o _

(F®G)(x) is the distribution corresponding to the dengityyg. The functionl” has a well-defined inverse. Given

We _writef g for. arpitrery densities to ipdicate the density as- G = X{S:O}GO + X{S:I}Gl €G

sociated to the distributioh’ ® G € F.. Itis easy to check that

if z; andz, are independent random variables ojetc, +oc] W€ have

with distributionsF”,, andF’,, respectively, then the distribu-~1(y(3) = X (250} G° (_ ln tanh f)

tion of z; + # is F,, ® F, (as is the case for independent 2

random variables defined overoo, o0)). X (2 <0y G <_ In tanh __“7) (6)
Now, suppose we have a random variablever(—oco, +o0] 2

with distribution F, and we wish to describe the “distribution” gng

of the random variable/(z) = (y1(2), v2(2)), where~, (z)

and~,(z) are defined as in (2). We approach this problem by (@) (0) = Jm G(x).
assigning two connected distributions associateg{e) under
the conditionsy; (z) = 0 and~,(z) = 1, respectively. It is easy to check thdt~1: ¢ — F and that"~}(I'(F)) = F

Any function G over GF(2) x [0, +0c) can be written as for all ' € F. Further[" and'~! are additive operators on the
0 1 spacesF andg, respectively.

Gl @) = Xga=0} G (@) + X{a=y G (2) For convenience, although it constitutes an abuse of notation,
where x(;=,) denotes the characteristic function of the sate will applyI’ andl'~* to densities. It is implicitly understood
{s =a},i.e.,x(s=ay = 1if s = a andyy,—,; = 0 otherwise. that the notation is a representation of the appropriate operation
Let G denote the space of functions over @ x [0, +o0) such  applied to distributions.
thatG°(x) andG*(z) are nondecreasing and right continuous The spaceG has a well-defined convolution. Here, the

lim Q%) > lim G'(z) convolution of two distributionsy (,—1}G° + x(s=1;G* and
g‘(—’;roo . de(—(’);roo 0. (The last ¢ X {s=01H" + x{s=13 H* is the distribution

and such thaG"(0) > 0 an = 0. e last two con-
ditions correspond to the conditiotisn,, .., () < 1 and X(s=0}((G° @ HY) + (G" @ HY))
lim,— oo F(z) = 0 for functions inF.) +x(o=1} ((G° @ HY) +(G' @ HY))

Given a random variable € (—oo, +eo] with distribution \here hereg denotes the (one-sided) convolution of standard
I, we define the “distribution” ofy(z) as distributions. In other words, the new convolution is a convolu-
D(FL)(s, ) = x{s=0yo(F2)(#) + x(s=13'1(F2)(x) (5) tion over the group GE2) x [0, +oc). By abuse of notation,

we denote this new convolution by the same symboRAgain,
x we shall allow the convolution operator to act on the densities
Po(F.)(z)=1-F_ (— Intanh 5) associated to elements@fwith the implicit understanding that
and the above provides the rigorous definition.
o x If z; andz, are independent random variables over(&Fx
D) (@) =1 (hl tanh 5) ' [0, +oo] with distributions@.,,, G.., € G, respectively, tr(le)n:the
Thus distribution ofz; + 22 IS G, @ G, .

where

Po(F2)(x) = Pr{vi1(z) = 0, y2(2) < z} Example 4: Let us give a few examples of densities of in-
=Pr{z > —Intanh 3} terest. ByA ., z € R, we denote the density corresponding to
and the distributiony (>} € F.InotherwordsA.(z) = 6(z—z),
whereé denotes the Dirac delta function. A special casAis
Di(F)(2) = Pr{m(z) = 1, 12(2) < 2} which corresponds to the distributione .
=Pr{z <Intanh §}. The densityl’(Ao) is given by

15The integral is defined for almost atland right continuity determines the

1 1
rest. L(Ao)(s, x) = §X{s=0}A0<>($) + §X{s=1}AO<>($)-
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Expressed using distributions, we hd%e (>0 )(s, ) = 0.  variable nodes to the check nodes at ttieiteration of belief
The density'(A) is given byl'(A)(s, ) = x{s=01Q0. propagation then, under thredependence assumption
Expressed using distributions, we hd¥@®)(s, =) = x{s=0}- .
Pr=Po@ AT (p(T(Pr-1)))) 9)

C. Description of Density Evolution where the operator§ andI'~! are defined in (5) and (6), re-

The symbolsP, andQ, will be sh?rthand(r;otations for the spectively.
g . ¢ ‘ -
densities of the random varlablea(c andme,’, respectively. Discussion: The result of the previous theorem is in com-

We will use the notatiorf P and [ Q. to denote the assomatedplete agreement with the result for the erasure channel obtained

distributions. , - reviously in [2], [10]; in fact, it contains it as a special case.
By (4), we see that the random variable describing the m Rdeed, using distributions in this case, we hgve,(z) =
sage passed from check nad® variable node is the image Zex (03 Itis easily seen that

undery~! of a sum of random variables from GE) x [0, +¢].

These random variables are independent byindependence r </ Pé> (s, ¥) = X{s=0} (1 — zc).
assumptionSo, the density of their sum is the convolution of ’
their densities. We then obtain
Let the graph have degree distribution p@ir p) where
arap g Pt o) p<F </Pz>>(8, Y) = X(s=0yP(1 — 7¢)
Az) = Z Nzl and p(z) = Zpixi_l. and

i>2 i>2

v ([ P0) () = (= ol - exios.
Recall that the fraction of edges connected to a variable nodei:?rﬁa”
degreei is A;, and the fraction of edges connected to a check y
node of degreé is p;. Thus, a randomly chosen edge in the(/ Po) @\ <F1p <1“ </ P4>>>
graph is connected to a check node of degneéh probability
pi. Therefore, with probability; the sum in (4) hagi — 1) = 2o A(1 = p(1 — 2¢))x (23>0}
terms, corresponding to the edges connedtitmall its neigh- g we recover
borsother thanv. We conclude that, in this case, the density of
m is equal ta 1 (I'(P,—1)®¢~1). Summing up over all the e =2oMl = p(1 = 2ea))
possibilities for the degrees of the check nadee see that the Which is the same as the formula proved in [2], [24], [10].
density of the messagegf) equals

D. Symmetry

Definition 1 [Symmetry]: We call I € F symmetric if

/R hz) dF(z) = /R " h(—z) dF ()

for any functionha for which the integral exists. For densities,
(rather thanEiZQ pi) for p(x). the equivalent statement is that the dengitis symmetric if

A recursion forP, in terms ofQ), is derived similarly and is flz) = " f(-z)forz € R.
quite straightforward. The density of the message passed fronExample 5: Aq and A, are symmetric. .
check node to variable node at round? is equal taQ,. At v the
incoming messages from all check nodes other thare added
to mg, the received value for, and the result is sent back to
c. Since, by thendependence assumptitive random variables
describing these messages are independent, the density of
message equals Theorem 3:For a given binary-input memoryless output-
symmetric channel leP, denote the initial message density
Pr=Po@\Qu) :=Po@ Y Ni(Q)*C Y (8) of log-likelihood ratios, assuming that the all-one word was

Qe =T (p(D(Pe-1))) :=T7" (Z pi(F(Pé—l))®(i_l)> .

i>2
@)
This equation also explains the unusual defini@ril22 pixt !

Our aim in this section is to prove that the density functions
of messages passed from variable to check nodes during the
belief propagatiorare symmetric, provided that the channel is
(EHltgut-symmetric.

i>2 transmitted. For a fixed degree distribution p@ir p) define
wherePy, is the density of the random variable describing the P i=Po @ MI' ™ (p(T(Pe-1)))), 21
channel. ThenP, is symmetric.

Combining (7) and (8) we obtain the desired recursiorPfor

. First note the following immediate corollary. For a distribu-
in terms ofP,_;.

tion F with density f we define thesrror probability operator
Theorem 2:For a given binary-input output-symmetricP.(f) := $(¥~(0) + F(0)).

memoryless channel I&t, denote the initial message density

of log-likelihood ratios, assuming that the all-one codeworg

was transmitted. If, for a fixed degree distribution pgir p),

P, denotes the density of the messages passed from the€ror a definition of convergence see Section IlI-F

Corollary 1: P.(P,) converges to zero ifP, converge® to

oo
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Before proceeding with the proof of Theorem 3, we exem- Lemma 1: The convolution of symmetric distributions is
plify the symmetry of some well-known noise densities. symmetric.

Example 6 [BEC]: For the erasure channel the initial mes- Proof: Let f andg be two symmetric densities. Then

sage density iy = eAg + (1 — ¢)A,. Since linear combina- / flz—y)gly) dy = / Y fy — 2)elg(—y) dy
tions of symmetric functions are symmetric, the result follows, —o0
asAg andA,, are symmetric. _ / & fly — 2)g(—y) dy
Example 7 [BSC]: For the BSC with crossover probabilidy
the initial message density is / f(—z —y)g(y) dy. O
Po(y) = 0A —log 1=¢ + (1 6)Alog15;6
Fory # yo := 1Ong we havePo(iu) — 0, so to show  Consider the iteration formula of Theorem 2
symmetry we only need to prove thBg(yo) = e Po(—yo), P, =Po@ XTI Hp(I'(P; 1)))).
which is straightforward. ®* \We already know thaP, is symmetric. Hence, we can prove
Example 8 [BIAWGNC]: Here the initial message density ISby induction thatP, is symmetric for all/ if we show that
o7 )% L(p(T(f))) is symmetric whery is.
— ) _— _
Poly) := gr * ) Definition 2: We sayG € G is symmetric if
The symmetry condition is then verified b o0 o0
Y Y SRR Y / h(x)tanh(z/2) dG°(z) = / h(z) dG(x)
Y e L 0 0
Po(y) = Vsr© for any nonnegative continuous functian
2 (cy- )%t Proposition 2:
= O_ e~ §5 Y= PO(—y)ey, ° P

1) ThefunctionF' € Fis symmetricifand only if’(F') € G
iS symmetric.

2) If G, H € G are symmetric distributions over GE) x
[0, +o0), then so is their convolutio& ® H.

Example 9 [BILC]: As a final example, the initial message
density for the Laplace channel is given by

Again, it is easy to check that the symmetry condltlon is 1) LEtf be the density associatedfgi.e., f () = 7. F(x)
fulfilled. ° andlim, .. F'(z) = 1. Then we have
— Intanh(r/2

For the proof of Theorem 3, we proceed in several steps. We L(f)(s, 1) = X{s=0} K sinh(r§ /2)
will first establish the symmetry of the initial message density F(intanh(r/2))
under general conditions. Once this is done, we will prove that +X5=1n.a$.
symmetry is preserved under convolutions. Using Theorem 2, it _ . sinh(r)
then remains to show thatf is symmetric, thel — (p(I'(F))) Using the symmetry condition fof, we see that

is symmetric as well. To do this, we first characterize symmetry tanh(r/2) f(—ln tanh(r/2)) = f(lntanh(r/2))

in G and prove that, also in this representation, symmetry ispre-  soI°(f) is symmetric.

served under convolutions. We will present the proofs of the next 2) By definition, the convolution of and# is the densityt
three results using densities. A rigorous proof can be obtained  \yhere

by formally translating the subsequent proof into the language W = (°® ho) (o
of distributions. L L p0

ut = (9" @h') +(g' @h%).

We need to show thatmh( /2)ul(r) = ( ). Smceg
is symmetric, we haveanh(r/2)g"(r) = g'(r), s

1 1)

Proposition 1: Consider a binary-input memoryless output-
symmetric channel and |&t, be the initial message density in
log-likelihood ratio form under the all-one word assumption.

ThenP, is symmetric. () +g'(r) = ¢°(r) 257
Proof: From the channel symmetry condition we obtain Also
= — = — Oy,. 1/, _ Oy, 2
L(y) ;zlonglmw:_u_y). g(r)—g () =g (") wp
plylz = —1) p(-ylz =1) We, therefore, have
Therefore 1 0 . .
e"Po(—u) = eply € L H(—w)|z = 1) S(g" +g) @ (" +h)(y)
—c'p(-y € L wlz = 1) 1 o dr
=e'p(y € L7 (w)|z = —1) - /0 gy =) e+ 1

=p(y € L™ (w)|z = 1) 1.0 1 0_ 11
— Po(u). 0 Slg"—g) e = h))
Next we will show that symmetry is preserved under convo- dr

lutions. :/0 g (r)n°(y — ) (er +1)(ev—" + 1)
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Sinceu? is the sum of the above two quantities artdis This stability condition has far-reaching implications in the
their difference we obtain case of the BEC. To name just the most important one, it imme-
diately gives rise to the bound

ey -1
u'(y) = 7" (v) = tanh(y/2)u"(y) .
(A, p) € (12)
and we are done. O N(0)p'(1)
We are now able to prove our main theorem. _ Further, itwas shown in [17, Theorem 3.1] that for any sequence
_ Proof of Theorem 3:As outlined above, we use induc-of capacity achieving degree distribution pairs this inequality
tion and the density evolution formula of Theorem 2. The insacomes tight. o

duction is anchored by Proposition Py is symmetric. As-

sume now thaP,_; is symmetric. By Proposition 2 part 1), Given the important role that the stability condition plays in
['(P,) is symmetric, and by part 2) of the same propositioe case of the BEC it is natural to ask vv_hethe_r an equivalent
p(T(P;)) is also symmetric. Part 1) of that proposition implie§ondition can be formulated for general binary-input memory-

that =1 (p(I'(P,_1))) is symmetric. Finally, Lemma 1 showsless output-symmetric channels. Fortunately, the answer is in the
thatP, = Po ® A(I' "L (p(I'(P,_1)))) is symmetric as well.C] affirmative and our main result along this line is summarized in

the following.

E. Stability Theorem 5 [General Stability Condition]Assume we are
Consider density evolution for the BEC. Recall that, for given a degree distribution pdih, p) and a symmetric density

given degree distribution pair\, p), the evolution of the ex- P,. For¢ > 1 define

pected fraction of erasure messages emitted irttheeration,

call it z¢, is given by P, :=Po @ NI p(T'(Pe1)))).

xg = x¢(20) = woA(1 — p(1 — ze—1)), £>0 (10) Let

where zy, the initial fraction of erasures, is equal to the era- r——ln </ Po(a:)e—§ da:)
sure probability of the channel. Recall further that the threshold R

x5(A, p) was defined as the supremum of all valugszo < 1,
such thatz¢(xo) converges to zero #gends to infinity. It is easy
to derive an upper bound aff by looking at the behavior of this

and assume thd, ¢**d( [ Po)(z) < oo forall s in some neigh-
borhood of zero.

recursi(_)n for small valu_es af,. Expanding the right-hand side [Necessity] If\'(0)/(1) > ¢ then there exists a constant
of (10) into a Taylor series around zero we get E=¢(A, p, Pg), £>0, such that for alt e N, P.(P;) > €.
ze = 2N (0)p'(D)ze_1 + O(z2_)). (11) [Sufficiency] If X'(0)p'(1) < €” then there exists a con-

stanté = £(A, p, Po), € > 0, such that if for somé € N,
Clearly, for sufficiently smalls,, the convergence behavior  Pe(P¢(Po)) < ¢ thenP.(P,) converges to zero astends
will be determined by the term linear iy. More precisely, the to infinity.

. AL
convergence will depend on whethey\'(0),'(1) is smalleror sy ission: As for the BEC, the stability condition gives rise
larger than one. The precise statement is given in the following. | upper bound on the threshold. Assume that the channel

Theorem 4 [Stability Condition for the BEC—[18]} AS- ;i is parameterized by the real parametand assume fur-
sume we are given a degree distribution gair p) and a real ther that there exists a unique numBesuch that
numberzg, zg € [0, 1]. Foré > 1 define

xe(xo) := woA1 — p(1 — zo—1)). /ﬂng(x)Cig dr = W

[Necessity] If\(0)p'(1) > TL then there exists a constantvhereP3(z) is the message density of the received values cor-
E=£()\, p, o), £>0, such that for alt €N, z¢(xo)>¢.  responding to the channel with parametefhens™ (A, p) < 6.

o , , L ] We note that for some codes, egycle codegthe stability con-
[Sufficiency] If A(0)p/(1) < - then there exists a con-gjtion determines the threshold exactly, see [18], [19] for some

stanté = (A, p, zo), £ > 0, such that if, for somé N specific examples. o
x¢(xo) < & thenz,(xo) converges to zero d@tends to in-
finity. In this paper, we will only prove the necessity of the stated

. o L stability condition. Demonstrating sufficiency is quite involved
Discussion: Note thatzoA(1 — p(1 - 0)) = 0 forany initial - gnq the proof can be found in [20]. Before venturing into the
erasure fractiomo, so that zero is &ixed pointof the recursion ,rq6¢ of the necessity of the stability condition let us calculate
given in (10). Therefore, it is natural to think of the above conje stability condition explicitly for various channels.
dition as astability condition of the fixed point at zero.
Example 10 [BEC]: For the BEC (see Example 6) we have
17The result proved in [15] does not follow the derivation as in the theorem.
Rather, it uses the condition that the decoding is successéumdfonly ifthe —-r _ _ —x/2 _
inequalityzoA(1 — p(1 — x)) < x is valid on(0, ). ¢ = /R[GAO + (1 G)AOO]G dz = e.
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Therefore, the stability conditiéhreads To that effect, consider a densif§y = 2eAg + (1 — 2¢) A,
1 . - :
N(O) (1) < - Note that this density is symmetric and that

as stated above and as previously obtained in [15] Pe(2e80 4 (1 = 20)Aco) = c.
P y ' After a complete iteration of density evolution this density will

Example 11 [BSC]: For the BSC (see Example 7) we haveevolve to

= [ [0 e 10| Q1 = 26N (0)/(DPo + (1 — 26N (0)/ (1) A + O(e2).
R
=21/6(1 - 6). More generally, if we consider iterations of density evolution
It follows that the stability condition for the BSC is given by we see that the density, will evolve to
N0 (1) < S=—= (Slﬁ o Qu=2e(X(0)7'(1)"P5" +(1-2e(N (0)7'(1))") Ao +O(€%).
2v6(1-98) We are interested in the error probability associated)ig
Example 12 [BIAWGNC]:For the BIAWGNC (see Example i.e., we are interested i®.(Q,). To this end note that if
8) we have frn?e“d(f Po)(z) < oo for all s in some neighborhood of zero
[ 52 — 232 L then
¢ "= / g— exp <—($+2)0> e 2 dr =52, 1
R Y ST 7= — lim = logP.(P§™) (13)
Thus, the stability conditicd reduces to noeon
N(0)p'(1) < coT . o is well-defined, see [21]. Therefore, if we assume that
XN(0)p'(1) > ¢" then there exists an integersuch that
Example 13 [BILC]: For the‘ BZILC (see Example 9) we have (N(0)p/ (1))"Po(PE™) > 1.
e = / F XA _|_l GVTXM <2 +1 As }e—w/Q drz It then follows that for this:
2 X 4 TI=X T 9 TX B B
" Pe(Qn) =26(N (0)¢/(1))"Pe(P§"™) + O(e?)
=e T > 2¢ + O(e?)
The stability condition for the BILC can, therefore, be written > e, if e <&
as wheref is a positive constant depending only @ p) andP.
Lo 1A Now assume that for some iteratidrwe haveP.(P,) =: «,
MO ) <ex - ® ¢ < ¢ Weclaim that then

, , Pe(Pein) 2 Pe(Qn) > 2¢ + O(?) > ¢
The reader might have noticed that for all of the abovg contradiction, since as shown in [1], the error probability is

examplese™ is equal to .th? constgnt .WhiCh appears in thg nonincreasing function in the number of iterations. This will
Bhattacharyya bound. This is no coincidence. The constanf, o\ that itV (0)/ (1) > ¢ thenP.(P,) > £ for some suitable
is simply the exponent in the Chernoff bound when we ask f Dsitive constang for all £ € N

the probability that the sum of independent samples with To show thaPe(Pry,) > Pe(0,.) we argue as follows. Con-

common densityPo is negative. sider a random tree of dep#m + 1 with variable nodes at the
Proof of Theorem 5:Recall that in the case of the BECleaves and a variable node at the root. Let the leaf nodes have
we observed that zero was a fixed point of the recursion and @§servations which correspond to samples from the detkity
linearizing the recursion around this fixed point we were able &nd let the internal variable nodes have observations which cor-
analyze its stability. For the general case we will proceed alofgspond to samples from the dend?y. The density of the mes-
the same lines. Recall further that we deal with distributiorg@ige emitted at the root node is th@n. Now compare this
of log-likelihood ratios. From Corollary 1 we know that a zerdo the scenario where we use the same setup but where we let
probability of error corresponds to the density,. Clearly, if the leaf nodes take observations which correspond to samples
P, = A, for some/ > 0 thenP,,; = A, foranyi > 0,so from the densityP,. In this case, the density of the message
thatA, is indeed a fixed point of density evolution. To analyz€mitted at the root node will bB,,,,. Note that in both cases
local convergence to this fixed point we shall again considertie estimate of the root node message is a maximum-likelihood
linearization of density evolution about this fixed point. (ML) estimate. In Appendix B we show in Lemma 4 that one
e can think of the samples from the dendity asphysically de-
Equivalently, we get ) gradedsamples from the densit9,. We claim that this implies
o N ' ) S T P.(P/1n) > Po(Q,). To see this, assume to the contrary that
Whl'gh is nontrivial only ifA’(0)p’(1) 2 1. - Pc(Pryrn) < Pe(Q,). In words, we can improve our estimate
Formulated as an upper bound, this gives emitted at the root nodes in the first scenario by adding noise

87N ) < 50 = 1= @) to the observations corresponding to the leaf nodes and then ap-
which is well-defined ifA’(0)(1) > 1. plying an ML estimate to these new observations rather than
20This gives rise to by applying an ML estimate to the original observations. This
* 1 . . .
o' (A p) < NRYO )] contradicts the well-known fact that for a uniform prior ML es-

which is well-defined ifA’(0)p’(1) > 1. timates have minimum probability of error.
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It remains to prove that z fulfills © = f(z, zo) andz < zq. Therefore, if no fixed point
. with 0 < x < z exists them,(z() converges to zero dtends
ri=—1In </R Po(z)e™2 dﬂ?) to infinity, which proves the first assertion. To prove the second

as stated. A general large-deviation principle (see, e.g., [zfﬁsertmn, note thatif is a fixed point withz: < o then

implies thate” = inf, o g(s), whereg(s) = [ Po(z)e® d. z1(xo) = f(xo, o) > flz,20) =T

SincePy is symmetric we have where we have used the fact thétr, ¥) is a nondecreasing

;2% 9(s) function in its first argument fog, % € [0, 1]. By finite induc-
tion it then follows that

e "

= inf/ Po(z)e® dx

5<0 JR xe(xo) = fxi—1, o) 2 flz, 20) = 2, forall ¢ > 1.
= inf %/ Po(z)e™"/? [e""’(s*%) + e”f('**%)} da It remains to discuss the characterization of the threshold in
5<0? Jp terms of fixed points. First note that, as remarked eattiet, 0
= / Po(z)e™*/? da. [0 is a fixed point of the recursion for any < zo < 1 and that
R « = 1is a fixed point forz, = 1. It follows that both charac-
We close this subsection by posing two fundamental opestizations are well-defined. Finally, the equivalence of the two
questions. characterizations follows from the fact thAfz, y) is strictly
increasinginyfor0 < z < land0 <y < 1. O

e Is it generally true that for any sequence of cd
pacity-achieving degree distribution pairs the stability At firstit might appear that this behavior is special to the BEC
condition becomes tight as is the case for the BEC?  case since this is the only (known) belief-propagation decoder

« Isit possible to formulate higher order stability Conditiongor which density evolution has a one-dimensional description.

and to show that each of them becomes tight for any 5%9 it is quite surprising that at least the sufficiency part has a
mplete analog in the general case.

quence of capacity-achieving degree distribution pairs 58 ) )
is again the case for the BEC, [17, Theorem 3.1] In order to generalize the above results we must generalize
Y o various notions used in the proof. One crucial ingredient in the

F. Fixed Points of Density Evolution above argument is th@onotonicityof z,(xo). Sincexz,(zo) is
The main result of this section states that density evolutiGhSequence aieal numbersthis monotonicity guarantees the
for belief propagation always converges to a fixed point. convergence af,(xg) to some fixed point of the recursion. For

Consider again the example of the BEC and its associaf®§ general case of density evolution, we have to assert the con-
density evolution recursion given in (10). In this case, we haygrgence of distributions. We will now show that there exists a
the following complete characterization of the threshold iargefamily of monotonicity conditions which we will later use
terms of fixed points of (10). to prove convergence.

Theorem 6 [Fixed-Point Characterization of the Threshold Theorem 7:Let Po and g be symmetric densities on
for the BEC—[2]p: For a given degree distribution paix, p) (—00, +oc] and for a given degree distribution pair, p)
let f(z, y) := yA(1— p(1— z)). Foranyz, € [0, 1]and¢ > 1  define
definex((zo) := f(x¢—1, z0). Define B

’ o Pe =Py ® NI H(p(I(Pr-1))).

£—oo

z5(A, p) == sup{0 < o < 1: wy(wo) —= 0}.
o ThenP.(P, @ g) is a nonincreasing function &f
[Sufficiency] For anyzo € [0, 1], z(xo) converges to a Proof: The message of whidhy, is the density represents
solution ofx = f(z, wo) with = € [0, xo]. Therefore, if 5 conditional probability of a particular bit value. Assume that
@ # f(x, xo) forall z & (0, xo], thenz(xo) cONVerges 4, independent observation of the same bit value is available

to zero a¢ tends to infinity:? to the decoder and assume that this independent observation is
[Necessity] If there exists am, z € [0, zo], such that obtained by passing the bit through a charste- ) which ful-
& = f(x, zo), thenzy(z¢) > z forall £ > 1.23 fills the symmetry condition and hagy|z = 1) = ¢(y). By
) ) o Lemma 3 and under the assumption that the all-one codeword
[Fixed-Point Characterizations of the Threshold] was transmitted, the conditional density of the bit log-likelihood
i) zg(A, p) == sup{zo € [0, 1]: z = f(=, zo) has no ratios, conditioned on all information incorporatedinand the
solutionz in (0, o] }. independent observation, has dengity® g. Since the new den-
i) zg(X, p) = inf{zo € [0, 1]: + = f(z, xo) has a sity corresponds again to a maximunposteriori(MAP) esti-
solutionz in (0, o]} mate conditioned on information which is nondecreasing, in
the stated monotonicity condition follows. O

Proof: First note that for anyg € [0, 1], z¢(xo) is non-
increasing and therefore converges to a point, call €learly,  |n the above theorem we can usey symmetric density for

21although the exact statement differs from the one given in [15], the resdlt It \_N_IH prove useful in the sequel to consider the family of
is nevertheless an easy consequence of the statements given there. densities
22Hencex (A, p) > wo. 1 c*

23Therefore, ifr > 0 thenxj (X, p) < aq. g:(z) == 1+ A+ 1+ A (14)
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Clearly,g.(x) is a symmetric density for any < » < cc. If for 0 < P.(P) < P.(Pg) for all = > 0 and such thaP is

any symmetric density we defineP.(f) by a fixed point of (9), therP.(P,) converges to zero a&
P.f) :i=P(f @g.) tends to infinity, or, equivalenthp ., = A..

then we immediately have the following. Proof: Consider the sequend®, of message densities.

By sequential compactness®f, some subsequence converges
to a symmetric limit density, call iP ... If the original sequence
P, does not converge t®., then there must exist another

Corollary 2: For a given symmetric densily, and a given
degree distribution paifA, p) define

P¢:=Po @ AT (p(I(Pe-1))). subsequence which converges to a distinct symmetric limit
ThenP.(P) is a nonincreasing function dffor every0<z< p/_ - p__. It follows from the basis lemma that, for some
0. P.(PL,) # P.(P). But this is a contradiction since.(P;)
We will now show that a symmetric density is uniquely is @ monotonic function f_or_ever_g/ b_y Theorem 7 and cannot,
determined by the “basis” of functionafe. ( f): z > 0}. therefore, possess two distinct limits. We now concludefhat

) . . ~ converges t@ .
Lemma 2 [Basic Lemma]A symmetric density f iS  The densityP., is a fixed point of (9) since the update

uniquely determined byP.(f): z > 0}. _ equations are continuous under our notion of convergence.
Proof: Let /' 6.7:be the distribution aSSOCIatedfO Let Furthermore, since the Sequen@(PZ) is monotonica”y
z be a point of continuity of”. Then nonincreasing for each > 0, we haveP, (P..) < P.(Po). If
P.(f) == ~F(z)+ _ F(-2). (15) P.(P)=0foranyz >0 and_ if Pisa symmetric denglty ther_l
1+e 1+e P = A,.. We conclude that if there does not exist a fixed-point

Itis not too hard to check thdf(z) +¢* F'(—z) is differentiable p of (9) satisfyingd < P.(P) < P.(Po) thenP, = Ao,. O
at z, and that the symmetry condition implies that the derivative N

is ¢*F(—z). In partic_ular,%((l + &)P.Af)) = *F(—2) al- IV. OPTIMIZATION
most everywhere. Sindg( f)=1(F(0)+F(0)), we recover ) . ] . L
F(0). SinceF is symmetric, the proof is now complete. [ In this section, we briefly describe the optimization tech-

nigues that we used to obtain degree distribution pairs with large

Finally, to generalize the above convergence results for thgesholds.
BEC we must prOVide a preCise deﬁnition Of the nOtion Of The fo”owing genera' remarks app'y to any numerica| Opti_
“convergence” for general symmetric densities. In particulagization technique. First, formally, the threshold is defined as
convergence toA., must be well-defined. LetF” denote the supremum of all channel parameters for which the prob-
the set of all right-continuous nondecreasing functiéf(s)  apility of error under density evolution converges to zero. By
with lim, oo Fi(z) > 0 andlim,_..c F'(z) < 1. Note that cCorollary 1, this is equivalent to requiring that the message dis-
F C F'. We say that a sequendg, € 7', k = 1,2,..., (tribution converges ta\... In practice, we can verify at best
converges td” € 7 if the sequence converges pointwise at athat the probability of error reaches a value below a prescribed
points of continuity of#". Convergence in this sense implies. From Theorem 5 we know that if we choosemall enough
weak convergence of the associated Lebesgue—Stielties mgan this automatically implies convergence to zero probability
sure. That s, ity — F then [ h(z)dFi(z) — [h(z)dF(z) oferror. In practice, the issue of convergence is not of great con-
for any suitable functiorh. An important property of the cern since we always allow a finite (but small) probability of
spaceF’ is that it is sequentially compact. Given any infiniteyror.
sequence; from F7, then, by the Helley selection principle, secondly, in order to perform the computations we need to
see [22, Theorem 25.9], there exists a subsequence whiglntize the quantities involved. This quantization leads to a
converges to some elementf. quantization error and this error might accumulate over the

Let 7* denote the subset g’ consisting of symmetric func- course of many iterations, rendering the computations useless.
tions. Note that”” is sequentially compact since, i.e.fife 7' This problem can be circumvented in the following way. By
is alimitpointof £y, I =1, 2, ... with F; € F* thenF € 7, carefully performing the quantization one can ensure that the
since from the definition of symmetry given in Definition 1 wequantized density evolution corresponds to the exact density
see that weak convergence immediately implies symmetry &folution of a quantized message-passing scheme. Since belief
the limit. We say that a sequence of symmetric densitieson-  propagation is optimal, such a quantized version is suboptimal
verges taP if the corresponding distributions converge, i.e., iand, hence, the reported thresholds can be thought of as lower
Fi(z) = ["T Py(x)dz converges td"(z) := [*T P(z)dz.  pounds on the actual thresholds.

Theorem 8 [Partial Fixed-Point Characterization of theA Local Optimizati
Threshold for General Channels]For a given degree distribu-"" ocal Optimization
tion pair (A, p) and for a given symmetric densiB define To find good degree distribution pairs we started with the fol-
Py = Py @ D™ (p(D(Pe_1)))). lowing simple hill-climbing approach. Fix a small target error
probabilitye and a maximum number of iterations Start with
[Sufficiency] For any symmetric density?o, the se- agiven degree distribution pair and determine the maxiradm
quence of densitieB, converges to a symmetric densitymissiblechannel parameter, i.e., the maximum channel param-
P.. which is a fixed-point solution to (9). Therefore,eter such that the error probability after iterations is below
if there does not exist a symmetric densRysuch that <. Now apply a small change to the degree distribution pair and
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Fig. 4. Evolution of the bit-error probability under density evolution as a function of the iteration number.
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Fig. 5. The decrease of the bit-error probability as a function of the current bit-error probability.

check if it has either a larger admissible channel parameter oA further substantial savings in running time can be achieved
at least a smaller target error probability afteriterations. If as follows. For a particular degree distribution gair p), Fig. 4

so, declare the new degree distribution pair to be the currenslyows the evolution of the bit-error probability as a function
best degree distribution pair, otherwise keep the original degmfethe iteration number. An even clearer picture emerges if we
distribution pair. The same basic step is then repeated a lapjet thedecreasef the bit-error probability as a function of the
number of times. current bit error probability, . This is shown in Fig. 5.

The search for good degree distribution pairs can be substanAs can be seen in these figures, after an initial swift decrease
tially accelerated by appropriately limiting the search space. Wethe bit-error probability the procedure almost comes to a halt
found, for example, that very good degree distribution pairs exattp, = 0.111 with decreases in bit-error probability of only
with only a few nonzero terms. In particular, it suffices to allov2.6 x 10~> per iteration. The convergence then speeds up again
two or three nonzero check node degrees (and these degreesucdihit hits another low ap, = 0.056 and then later again at
be chosen consecutively) and to limit the nonzero variable nogie = 0.022. At these threeritical points the outgoing mes-
degrees t@, 3, the maximum such degreg, and, possibly, a sage distribution islmosta fixed point of the equation system
few well-chosen degrees in-between. corresponding to one iteration. Indeed, if the parameteere
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slightly increased then the iteration could not overcome any it§ mass on the degree Note that the actual error probability
those points and one can verify that there arise correspondafter thelth iteration,p,, can be expressed in terms.4f ; as
fixed points of density evolution.

d,
Provided that the fixed points are stable, the message distri- pe = zl: Ag A
butions at these points apentinuousfunctions of the degree =

distribution pair. Hence, a small change in the degree distribu- . ] ] .

tion pair causes only small changes in the associated fixed-point-€t us define a functiop(t) for ¢ € [0, m] by linearly inter-
distributions. Furthermore, if the fixed points are stable, thé¥plating thep,, settingp(£) = p,. Define

this affords a certain memorylessness to the density evolution 2o dp -1

process because they serve as local attractors. Small perturba- L(N) = / <—%(a:)> dx.

tions to the path will not matter once the domain of convergence p

of the fixed point is entered and, once the fixed point is foungve interpretL as the number of iterations required to take the

the path that leads to it is irrelevant. initial probability of errorp, down top,,. Using the expression
In practice, we observe that the points at which the densijpove, we can write down the gradient/ofA) with respect to

evolution gets stuck are indeed stable fixed points. The fixed In particular, for a perturbatioh we can compute

point theorem in Section llI-F shows that fixed points which d

are limits of density evolution must be at least marginally D LX) := d—L()\+nh)|n:0

stable. The above considerations suggest the following scheme. 77

Assume we determine the critical points (near fixed point83S

or likely fixed points for a slightly worse initial distribution) P/ dp -2 dp

for a particular degree distribution pair and we would like Dy L =/ <%($)> h <%($)> d

to determine the merit of a particular small change of the P

degree distribution pair. Rather than starting with the initiaeturning to the discrete representation this is equivalent to

distribution and then checking if (and how fast) this initial

distribution converges ta\.,, one can memorize the distribu- & " Arj—pe

tions at the critical points of the original degree distribution Dnl = Zhi Z pe—1—pe |

pair and then determine how the proposed change affects the

speed of convergence locally at these points. Once a promisifigus, we observe that the gradient/af)) is given by

change has been found, the merit of this change can be verified "

by starting with the initial degree distribution pair. Typically, i L) = Z Agj —pe .

only a few iterations are necessary at each critical point to dA; De—1 — Pe

determine if the change of the degree distribution pair improves

the convergence or not. This has to be compared to hundredd Bgre are two ways we can exploit this expression. One is to
iterations or even thousands of iterations which are necessdp§ the (negative) gradient direction to do hill climbing, and the
if one starts with the initial distribution. other is to globally optimize the linearized approximation’.of

In the optimization scheme we just described we made uls? either case, we must incorporate the constrainta.on
P J et A be an alternative degree distribution. Cleadyhas to

of the distributions at the “critical points” to find promisingbe a brobability mass function. i.e
changes of the degree distribution pair. The following schemes P y T

=2 =1

£=1

extend this idea even further; the resulting algorithms are remi- i
niscent of the algorithms used in the BEC case. For simplicity, Z)\j =1 (16)
we will only describe the optimization of the variable node de- j=2

gree distribution. The extension to the check node degree disgti]—d’ further, it has to correspond to a code of equal rate, i.e.
bution and to joint optimization should be quite apparent.
Assume that we are given a degree distribution p&irp), a A A 17
particular channel parameterand a target probability of error Z j Z ’ 17
e. Let{p;}7*, be the sequence of error probabilities of the be-
lief-propagation algorithm. More precisejy, is the initial error et ;, be the negative gradient direction 6f If we setA =
probability, p¢ is the probability of error after théh iteration, X+ (for positiver) then the above constraints may not be sat-
andp,, < € < pm-—1.Assume thatwe want to find a new degregsfied. However, among degree distributions satisfying the con-
distribution A which achieves the target probablllty of error instraints the one closest fo+ nh in Euclidean distance can be
fewer iterations or achieves a lower target in the same numkegysily computed by alternating projections. Two projections are
of iterations. required: the first is orthogonal projection bfonto the sub-
Define a matrix4, ;,1<¢<m,2<j<d,.. Theentry4, ;is space determined sz h; = 0 (total probability constraint)
the error probability which results if we run the belief-propagaand Zj %hj = 0 (rate constraint), and the second projection
tion decoder fof¢—1) steps assuming that the variable node dsetsph,; = —A; if, prior to the projectionph; + A; < 0. Note
gree distribution is\ followed by one step in which we assumehat an alternative interpretation is to project the gradient direc-
that the variable node degree distribution is a singleton with &ibn ~ onto the convex polytope of admissible directions. One

i=2
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can then compute the maximum step sjzer which the con- asy_,(Ai1zld =1 + X2 l1-1), where);; and);» are uniquely
straints remain satisfied and then recompute the projectiondatermined via the equations

that point. In this way, one can easily walk along the projected e A\
gradient direction to look for an improved degree distribution. Aitt Az =X, and 5+ =5 =—.
Let us now consider the second way to exploit the gradient e 1] '
expression fol.. Let This way, we are guaranteed to obtain a degree distribution

which respects the rate-constraints for the code.
. By allowing fractional degrees we, in effect, force the pro-
Pe = Z Ag Ay gram to choose (close to) optimal degrees. This results in a sig-
' nificant reduction of the dimensionality of the parameter space,
hence the running time, and also in the sparsity of the degree
distributions obtained.

De — Pe
Z — (18) APPENDIX A
Pé 1 pé
CHANNEL EQUIVALENCE LEMMA

Then we have

This approximation is valid as long asdoes not differ too ~ We say that two binary-input memoryless output-symmetric
much from), i.e., assuming that the message distributions cdthannels arequivalentif they have the same density of log-

responding to\ and\ are not too different, if likelihood ratios. Itis often convenient to pick one representative
from each equivalence class. This can be done as shown in the
iy 1PE— Pel <5 (19) following lemma.
¢ P Lemma 3 [Channel Equivalence Lemmad]et P(y) be a
wheres < 1, and if symmetric density. The binary-input memoryless output-sym-
metric channeb( -|-) with p(y|2z = 1) = P(y) (and, hence, by
Pe < Pe_i, 1<¢<m. (20) symmetryp(y|lz = —1) = P(—y)) has an associated density of

) log-likelihood ratios equal t& (y).
Recall that we want to minimizE( ). Since the right-hand side Proof:
of (18) is (up to a constant) a linear function in the degree dis-

tribution and since the constraints stated in (16), (17), (19), and log plylz=1) = log plylz=1) =log P(y)

(20) are also linear, this can be (approximately) accomplished plyle=-1) p(-yle=1) P(=y)

by means of a linear program. The same procedure is then ap- = log M — O
plied repeatedly in an attempt to converge to a good degree dis- P(y)ev

tribution. Since both approaches are local optimizations itis ap-

propriate to repeat the optimization with various initial condi- APPENDIX B

tions. THE ERASURE DECOMPOSITIONLEMMA

Lemma 4 [Erasure Decomposition Lemmdlet p be
a binary-input memoryless output-symmetric channel. Let

The code design problem as described above belongs to thejenote its associated distribution of log-likelihood ratios
class of nonlinear constraint satisfaction problems with contl[b % Then the channeb can be represented as the
uous space parameters. Many general algorithms for 30|V'(El§hcatenat|on of an erasure channel with erasure probability
such problems have been developed. We experimented W|th2@n( ) and a ternary-input memoryless output-symmetric
algorithm called Differential Evolution (DE) [23] that has al-channelg, i.e.,p is a physical degraded version of an erasure
ready been successfully applied to the design of good erasgrnnel.
codes [11]. DE is a robust optimizer for multivariate functions.  proof: Recall from Lemma 3 that, without loss of gener-
We will not describe the details here, suffice it to say that the egmy we may assume thaty|z = 1) = P(y) and hence, by
gorithm is in part a hill climbing algorithm and in part a genetlgymmetryp( l¢ = —1) = P(—y). Lete denote an erasure and
algorithm. let 1, —1 denote bit values. Let denote a channel whose input

Our goal is to maximize the cost function which we define tﬁlphabet isf—1, &, 1}. Further, letg have real outpu and set

B. Global Optimization

be the threshold value for the channel. Since such optimizers, 1

and DE in particular, operate best in a continuous parameter q(yle =€) = 2—667|y|P(|y|)

space of not too large dimension, and since frequent function 1 ,

evaluations are required in the optimization, we found it con- qyle=1) = m(l — ¢ )X qyz03 P(y)

venient to let the parameter space be a continuous spaceygd

small dimension. To accomplish this, we introdudestttional = 1w Pl

phantom distributionsl_et the polynomials\ andp take on the qyle =-1) = 1— 26( X ty<oy) P(=y).

general formy>_, \;2*~* (similarly for p), where now both the It is easy to check that these quantities are well-defined densi-
A; and the degree could take any positive real value. The redties. Letg denote the concatenation of the erasure channel with
degree distribution is obtained from this phantom distributicthe channet, i.e., the output of the erasure channel is fed into
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Note that for equally likely inputs the output of the erasure [7]
channel, and hence the inputgchave probabilitie$l — 2¢) /2,

2¢, and(1 — 2¢)/2, respectively. Then we have (8]
; Lot

q(ylz =1) =2c5_ ¥ L(y]) [9]

+ (1 =205 (1= xpzaPW) [0l

=P(y) = plylz = 1). [11]

and
[12]

i 1,
Q(ylz = —1) =2 P(ly))

[13]
=P(~y) = pylr = -1). O
[15]
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