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Design of Capacity-Approaching Irregular
Low-Density Parity-Check Codes

Thomas J. Richardson, M. Amin Shokrollahi, Member, IEEE, and Rüdiger L. Urbanke

Abstract—We design low-density parity-check (LDPC) codes
that perform at rates extremely close to the Shannon capacity. The
codes are built from highly irregular bipartite graphs with care-
fully chosen degree patterns on both sides. Our theoretical analysis
of the codes is based on [1]. Assuming that the underlying commu-
nication channel is symmetric, we prove that the probability densi-
ties at the message nodes of the graph possess a certain symmetry.
Using this symmetry property we then show that, under the as-
sumption of no cycles, the message densities always converge as
the number of iterations tends to infinity. Furthermore, we prove
a stability condition which implies an upper bound on the fraction
of errors that a belief-propagation decoder can correct when ap-
plied to a code induced from a bipartite graph with a given degree
distribution.

Our codes are found by optimizing the degree structure of the
underlying graphs. We develop several strategies to perform this
optimization. We also present some simulation results for the codes
found which show that the performance of the codes is very close
to the asymptotic theoretical bounds.

Index Terms—Belief propagation, irregular low-density parity-
check codes, low-density parity-check codes, turbo codes.

I. INTRODUCTION

I N this paper we presentirregular low-density parity-check
(LDPC) codes which exhibit a performance extremely close

to the best possible as determined by the Shannon capacity for-
mula. For the binary-input additive white Gaussian noise (BI-
AWGN) channel, the best code of rate one-half presented in this
paper has a threshold within 0.06 dB from capacity, and simula-
tion results show that our best LDPC code of length one million
achieves a bit-error probability of less than 0.13 dB away
from capacity, surpassing the best (turbo) codes known so far.

LDPC codes possess several other distinct advantages over
turbo codes. First, (belief-propagation) decoding for LDPC
codes is fully parallelizable and can potentially be accom-
plished at significantly greater speeds. Second, as indicated in
an earlier paper [1], very low complexity decoders that closely
approximate belief propagation in performance may be (and
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Fig. 1. A(3; 6)-regular LDPC code of length10 and rate one-half. There are
10 variable nodes and five check nodes. For each check node check nodethe
sum (over GF(2)) of all adjacent variable nodes is equal to zero.

have been) designed for these codes. Third, LDPC decoding
is verifiable in the sense that decoding to a correct codeword
is a detectable event. One practical objection to LDPC codes
has been that their encoding complexity is high. One way to
get around this problem is to slightly modify the construction
of codes from bipartite graphs to a cascade of such graphs, see
[2], [24], [3]. An alternative solution for practical purposes,
which does not require cascades, is presented in [4].

Let us recall some basic notation. As originally suggested by
Tanner [5], LDPC codes are well represented by bipartite graphs
in which one set of nodes, thevariable nodes, corresponds to
elements of the codeword and the other set of nodes, thecheck
nodes, corresponds to the set of parity-check constraints which
define the code.RegularLDPC codes are those for which all
nodes of the same type have the same degree. For example,
a -regular LDPC code has a graphical representation in
which all variable nodes have degreeand all check nodes have
degree . The bipartite graph determining such a code is shown
in Fig. 1. Irregular LDPC codes were introduced in [2], [24]
and were further studied in [6]–[8]. For such an irregular LDPC
code, the degrees of each set of nodes are chosen according to
some distribution. Thus, an irregular LDPC code might have a
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graphical representation in which half the variable nodes have
degree and half have degree, while half the constraint nodes
have degree and half have degree.

For a given length and a given degree distribution, we define
anensembleof codes by choosing edges, i.e., the connections be-
tween variable and check nodes, randomly. More precisely, we
enumerate the edges emanating from the variable nodes in some
arbitrary order and proceed in the same way with the edges em-
anating from the check nodes. Assume that the number of edges
is . Then a code (a particular instance of this ensemble) can be
identified with a permutation on letters. By definition, all el-
ements in this ensemble are equiprobable. In practice, the edges
are not chosen entirely randomly since certain potentially unfor-
tunate events in the graph construction can be easily avoided.

In [1], an asymptotic analysis of LDPC codes under mes-
sage-passing decoding was presented. To briefly recall the main
results let us assume that we have the following setup.

[Channel] We are given an ordered family of binary-input
memoryless channels parameterized by a real parameter

such that if then the channel with parameter
is a physically degradedversion of the channel with

parameter , see [1]. Furthermore, each channel in this
family is output-symmetric,1 i.e.,

(1)

[Ensemble] We say that a polynomial of the form

is adegree distributionif has nonnegative coefficients
and . Note that we associate the coefficientto

rather than . We will see that this notation, which
was introduced in [2], leads to very elegant and compact
descriptions of the main results. Given a degree distribution
pair associate to it a sequence of codeensembles

, where is the length of the code and where

specifies the variable (check)
node degree distribution. More precisely, repre-
sents the fraction ofedgesemanating from variable (check)
nodes of degree. For example, for the -regular
code we have and . The maximum
variable degreeandcheck degreeis denoted by and ,
respectively. Assume that the code hasvariable nodes.
The number ofvariable nodes of degreeis then

and so , the total number of edges emanating from all
variable nodes, is equal to

1It is reassuring to note thatlinear binary codes are known to be capable of
achieving capacity on binary-input memoryless output-symmetric channels, see
[9].

In the same manner, assuming that the code hascheck
nodes, can also be expressed as

Equating these two expressions for, we conclude that

Generically, assuming that all these check equations are
linearly independent, we see that thedesign rateis equal to

as was first shown in [2].

[Message-Passing Decoder] Select amessage-passingde-
coder. By definition, messages only containextrinsicinfor-
mation, i.e., the message emitted along an edgedoes not
depend on the incoming message along the same edge. Fur-
ther, the decoder fulfills the followingsymmetry conditions.
Flipping thesignofall incomingmessagesatavariablenode
results inaflipof thesignofalloutgoingmessages.Thesym-
metry condition at a check node is slightly more involved.
Let be an edge emanating from a check node. Then flip-
ping the sign of incoming messages arriving at node, ex-
cluding the message along edge, results in a change of
the sign of the outgoing message along edgeby .
In all these cases, only the sign is changed, the reliability
remains unchanged. Finally, we generally require that the
decoder be asymptotically monotonic with respect to the
channel parameter. Roughly speaking, this means that in the
limit of infinitely long codes, the probability of error of the
decoder is nondecreasing in the channel parameter given a
fixed number of iterations. In the case of the belief-propa-
gation decoder, this property is a direct consequence of the
decoder’s asymptotic optimality and the fact that we con-
sider families of channels which can be ordered by phys-
ical degradation (see Section III). For many other decoders
of interest the monotonicity property can be proved directly,
and it seems to hold for virtually all decoders of interest. In
this paper, we are interestedalmost exclusively in the belief-
propagation decoder, so we shall implicitly assume mono-
tonicity throughout.

Under the above assumptions, with and the channel
family fixed, there exists a threshold , i.e., a maximum
channel parameter, with the following properties. For any
and , there exists a length and a number
such that almost every2 code in , , has
bit error probability smaller than assuming that transmission
takes place over the channel with parameterand that
iterations of message-passing decoding are performed. Con-
versely, for any fixed upper bound on the number of iterations,
if the transmission takes place over a channel with parameter

, then almost everycode in has bit-error

2More precisely, the fraction of codes for which the above statement is true
converges exponentially fast (inn) to one.
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probability larger than some constant , where does
not depend on the number of iterations performed.3

The main steps taken to arrive at these conclusions are the fol-
lowing. The first shows that if one fixes the number of iterations,
then the performance of the various realizations of the graph
and channel concentrate around their expected value, where this
concentration is exponential in the length of the code. (The ex-
ponent may in general depend on the degree distribution pair

, the chosen message-passing decoder, and the channel
parameter.)4 Therefore, in order to characterize the performance
of (almost all) sufficiently long codes it suffices to determine
their average performance. Unfortunately, it does not seem to
be an easy task to determine this average performance for fi-
nite-length ensembles. In the limit of very long codes, however,
the average performance can be determined as follows. One first
observes that with probability the decoding neighbor-
hood of a given variable node istree-like, i.e., it does not con-
tain any repetitions/cycles. When the decoding neighborhood is
a tree, the performance of the decoder is fairly straightforward
to determine because all involved random variables areindepen-
dent. Moreover, under the above mentioned symmetry assump-
tions of the channel and the decoder, one can assume that the
all-one codeword was transmitted, i.e., the conditional bit-error
probability is independent of the transmitted codeword. By con-
vention, we choose the messages in such a way that, under the
all-one codeword assumption,positivemessages signifycorrect
messages whereasnegativemessages indicate errors. This is,
e.g., the case for belief-propagation decoders where the mes-
sages are log-likelihood ratios of the form . The
distribution of the messages initially emitted is determined by
the channel and it has an associated probability of error. Under
the aboveindependence assumption, we now track the evolution
of the message distributions as they progress up the tree, i.e., to-
ward the root. In particular, one is interested in the evolution of
the error probability as a function of the iteration number. The
threshold is then defined as the “worst” channel parameter such
that the message distribution evolves in such a way that its as-
sociated probability of error converges to zero as the number of
iterations tends to infinity. This procedure of tracking the evo-
lution of the message distribution is termeddensity evolution.

In [1], an efficient numerical procedure was developed to im-
plement density evolution for the important case of belief-prop-
agation decoders and to therewith efficiently compute the asso-
ciated threshold to any desired degree of accuracy. Also in [1],
threshold values and simulation results were given for a variety
of noisy channel models but the class of LDPC codes consid-
ered was largely restricted toregular codes. In this paper, we
present results indicating the remarkable performance that can
be achieved by properly chosenirregular codes.

The idea underlying this paper is quite straightforward. As-
sume we are interested in transmission over a particular family of
binary-inputmemorylessoutput-symmetricchannelsusingapar-

3We conjecture that actually the following much stronger statement is
true—namely, thatall codes in a given LDPC ensemble have bit-error
probability of at least
 regardless of their lengthandregardless of how many
iterationsare performed.

4In our proofs, however, the obtained exponent depends only on the degree
distribution pair(�; �):

ticular message-passing decoder. Since any given pair of
degree distributions has an associated threshold, call it ,
it isnatural tosearch for thosepairs thatmaximize this threshold.5

This was accomplished, with great success, in the case of the
erasure channel [2], [24], [10], [11]. For most other memory-
less channels of interest the situation is much more complicated
and new methods must be brought to bear on the optimization
problem. Fig. 2 compares the performance of an instance of the

-regular LDPC ensemble (which is the best regular en-
semble) with the performance of an instance of the best irregular
LDPC ensemble we found in our search and with the perfor-
mance of an instance of the standard parallel concatenated en-
semble introducedbyBerrou,Glavieux,and Thitimajshima [12].
All three codes have rate one-half and their performance under
belief-propagation decoding over the BIAWGNC is shown for a
code word length of . Also shown is the Shannon limit and the
threshold value of our best LDPC ensemble . It is
evident from this figure that considerable benefit can be derived
from optimizing degree distribution pairs. For and a
bit-error probability of , our best LDPC code is only 0.13
dB away from capacity. This even surpasses the performance of
turbo codes. Even more impressive, the threshold, which indi-
cates the performance for infinite lengths, is a mere 0.06 dB away
from the Shannon capacity limit.

The empirical evidence presented in Fig. 2 together with
the results presented in Section II beg the question of whether
LDPC codes underbelief-propagationdecoding can achieve
capacity over a given binary-input memoryless output-sym-
metric channel.6 The only definitive results in this direction
are those of [2], [24], [15], which give explicit sequences of
degree distribution pairs whose thresholds over the binary
erasure channel (BEC) converge to the Shannon capacity limit.
The following theorem, due to Gallager, imposes, at least for
the binary symmetric channel (BSC), a necessary condition on
LDPC codes that would achieve capacity: their maximum check
degree must tend to infinity.7 Although this result bounds
the performance of LDPC codes away from capacity, the gap is
extremely small and the gap converges to zero exponentially
fast in . Hence, although of great theoretical interest, the
theorem does not impose a significant practical limitation.8

Theorem 1 [13, p. 37]:Let be an LDPC code
of rate . Let be used over a BSC with crossover probability
and assume that each codeword is used with equal probability. If

, where is the binary entropy function
and

5We may also optimize degree distribution pairs under various constraints.
For example, the larger the degrees used, the larger the code size needs to be
in order to approach the predicted asymptote. Therefore, it is highly desirable
to look for the best degree distribution pair with somea priori bound on the
size of the degrees.

6In the case ofmaximum-likelihooddecoding this was answered in the af-
firmative by Gallager and McKay, see [13], [14].

7We conjecture that a similar statement (and proof) can be given for continuous
channels.

8In fact, a similar theorem holds also for the erasure channel [15, Theorem
1], and yet, there are capacity-achieving sequences of degree distributions for
that channel.
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Fig. 2. Comparison of the error rates achieved by a(3; 6)-regular LDPC code, turbo code, the and optimized irregular LDPC code. All codes are of length10
and of rate one-half. The bit-error rate for the BIAWGNC is shown as a function ofE =N (in decibels), the standard deviation�, as well as the raw input bit-error
probabilityP .

then the (block or bit)-error probability is bounded away from
zero by a constant which is independent of.

Discussion: Note that the capacity of the BSC is equal to
. Since for any finite , we have

and, therefore, . A quick calcu-
lation shows that thegap to capacity is well approximated by

which decreases to zero exponentially fast in
. Gallager stated the above theorem for -regular codes.

An examination of the proof reveals, however, that it remains
valid for the case of irregular codes with interpreted as the
maximum check node degree. The key to the proof lies in the
realization that the entropy of the received word can be bounded
as follows: given a received word, describe it by specifying the
value of systematic bits (which is equivalent to specifying a
codeword) plus the value of the parities (which will
specify the coset). Since a parity is one with probability ,
which is strictly less than one-half, the entropy of the received
word is strictly less than bits, which gives rise to the stated
upper bound. Details of the proof can be found in [13, p. 39].9

The outline of this paper is as follows. We start by presenting
tables of some very good degree distribution pairs in Section II.
Although we focus mostly on the BIAWGNC and rate one-half,
we also give a few examples for different channels and rates. We
discuss some simulation results that show that the promised per-
formance can be closely achieved for reasonably long codes. In
Section III, we describe and study properties of density evolu-
tion. Under the assumption that the input distribution arises from
a symmetric channel, we show that the message distributions

9We note that a slightly sharper bound can be given if we replaced with the
average degree of the(1� r)-fraction of highest degree nodes. However, since
the improvement is usually only slight and since the exact size of the gap is not
significant in practice, we leave the details to the interested reader.

satisfy a certainsymmetrycondition which is invariant under
density evolution. Many simplifications arise in this symmetric
channel case and they afford us considerable insight into the na-
ture of density evolution. In particular, we will derive astability
conditionwhich gives rise to an upper bound on the threshold
for the case of general binary-input memoryless output-sym-
metric channels. We also show that the threshold can, at least
partially, be characterized by the (non)existence offixed points
of density evolution. Finally, in Section IV, we describe the nu-
merical optimization techniques which were used to generate
the tables in Section II. Throughout the paper we will motivate
many definitions and statements for general binary-input mem-
oryless output-symmetric channels with their counterpart for the
BEC channel. We will see that despite the simplicity of the BEC
model many of its iterative decoding properties are shared by the
general class of channels considered in this paper.

II. CAPACITY-APPROACHINGDEGREEDISTRIBUTION PARIS

A. Optimization Results

Using numerical optimization techniques described in some
detail in Section IV, we searched for good degree distribution
pairs of rate one-half with various upper bounds on the max-
imum variable degree . The result of our search for the BI-
AWGNC is summarized in Tables I and II. Table I contains those
degree distribution pairs with , whereas Table II
contains degree distribution pairs with and

. In each table, columns correspond to one particular degree
distribution pair. For each degree distribution pair, the coeffi-
cients of and are given as well as the threshold,10 the

10We assume standard pulse-amplitude modulation (PAM) signalingy = x+
z with x = �1 andz / N(0; � ).
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TABLE I
GOOD DEGREEDISTRIBUTION PAIRS OF RATE ONE-HALF FOR THE BIAWGNC WITH MAXIMUM VARIABLE NODE DEGREESd = 4; 5; 6; 7; 8; 9; 10; 11;

and12. FOR EACH DEGREE DISTRIBUTION PAIR THE THRESHOLD VALUE � , THE CORRESPONDING( ) IN DECIBELS, AND

p = Q(1=� ) (i.e., THE INPUT BIT-ERROR PROBABILITY OF A HARD-DECISION DECODER) ARE GIVEN. ALSO LISTED IS � , THE

MAXIMUM STABLE VALUE OF � FOR THEGIVEN � (1) AND FOR � = �

corresponding value of in decibels, and finally the raw
bit-error probability of the input if it were quantized to 1 bit,
i.e., , where is the well-known -func-
tion. In Section III-E, we will show that, given the channel and

, there is amaximum stablevalue of , call it . More
precisely, we will show that for any degree distribution pair with

strictly larger than the probability of bit error cannot con-
verge to zero, regardless of how many iterations are performed.
This value is also listed in the tables. As required, we can
see that for every listed degree distribution , and the
two values are fairly close.

The results are quite encouraging. Compared to regular
LDPC codes for which the highest achievable threshold for
the BIAWGNC is , irregular LDPC codes have sub-
stantially higher thresholds. The threshold increases initially
rapidly with and for the largest investigated degree ,
the threshold value is only 0.06 dB away from capacity!

It is quite tempting to conjecture that the threshold will con-
verge to the ultimate (Shannon) limit (which, up to the precision
given, is equal to for rate one-half codes) as
tends to infinity. Unfortunately, as of this moment, we only have
this empirical evidence to support this conjecture.

Although in this paper we focus mainly on the BIAWGNC
and binary codes of rate one-half, the following examples show
that the same techniques can be used to find very good degree
distribution pairs for other memoryless channels and different
rates. We note that, for a particular rate, degree distribution pairs
that were optimized for the BIAWGNC are usually very good
degree distribution pairs for a large class of channels, including
the binary-input Laplace channel (BILC) and the BSC. Nev-

ertheless, optimizing a degree distribution pair for a particular
channel will generally give even better results.

Example 1 [BIAWGNC; ]: In this example, we con-
sider codes of rate for the BIAWGNC channel. For this
rate, the Shannon bound foris . We found
the following degree distribution pair which has a theoretical
threshold of :

and

Allowing higher degrees would almost certainly result in degree
distribution pairs with larger thresholds.

Example 2 [BSC; ]: The ultimate threshold,
i.e., the Shannon limit, for the BSC and rate one-half is

. The best degree distribution pair we have
found so far has and is given by
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TABLE II
GOOD DEGREEDISTRIBUTION PAIRS OFRATE ONE-HALF FOR THEBIAWGNC

WITH MAXIMUM VARIABLE NODE DEGREESd = 15; 20; 30; AND 50.
FOR EACH DEGREEDISRRIBUTION PAIR THE THRESHOLD VALUE � ,
THE CORRESPONDING( ) IN dB AND p = Q(1=� ) (i.e., THE

INPUT BIT-ERRORPROBABILITY OF A HARD-DECISION DECODER) ARE

GIVEN. ALSO LISTED IS � , THE MAXIMUM STABLE VALUE OF �
FOR THEGIVEN � (1) AND FOR � = �

and . Here we allowed a maximum
variable node degree of and a maximum check node degree
of .

Example 3 [BILC; ]: Consider the binary-input La-
place channel (BILC) with continuous output alphabet and addi-
tive noise. More precisely, the channel is modeled by ,
where and where is a random variables with prob-
ability density

The ultimate threshold for the BILC of rate(as given by the
Shannon formula) is equal to . We found the
following degree distribution pair which has a threshold above

:

and . The maximum variable node
and check node degrees are againand , respectively.

B. Simulation Results

The concentration results proved in [1] guarantee that for
sufficiently large block lengths almost every code in the given
ensemble will have vanishing probability of bit error for
channels with parameters below the calculated threshold. Nev-
ertheless, the lengths required by the proofs are far beyond any
practical values and one might expect that medium-sized codes
will deviate significantly from the predicted performance.
Given that the maximum possible number of loop-free itera-
tions grows only logarithmically in the block length, it seems
a priori doubtful that simulation results for practical lengths
can closely match the predicted asymptotic performance. For
regular LDPC codes, however, it was demonstrated in [1] that
the actual convergence is much faster and that realistically sized
block codes already perform close to the asymptotic value.

For irregular codes, finite-length effects not only include the
deviation of the input variance from its mean and a nonzero
probability of small loops but also the deviation of a given sup-
port tree from its average, i.e., for a given node the fraction
of neighbors of this node with a given degree might deviate
from its expected value. This effect is expected to influence the
finite-length performance more severely for largerand
Also, when operating very close to a degree distribution pair’s
threshold, it will require a large number of iterations (one thou-
sand or more) to reach target bit-error probabilities of, say, .
(In the limit the number of iterations converges to.) Fortu-
nately, however, a small margin from a degree distribution pair’s
threshold is typically enough to drastically reduce the required
number of iterations.

Simulation results show that even in the irregular case the ac-
tual convergence of the performance of finite-length codes to
the asymptotic performance is much faster than predicted by
the bounds appearing in the analysis. Fig. 3 shows the perfor-
mance of particular LDPC codes. The chosen lengths start at one
thousand and go up to one million. More precisely, the lengths
presented are , , , and . The maximum variable
degrees appearing are and respectively. In each
case, we let the decoder run for enough iterations to get the
best possible performance. (The number of practically useful
iterations is a function of length and, since our interest here is
in the question of parameter design, we shall not address this
issue.) For length , the error rates are given for systematic
bits. (A specific encoder was constructed.) For length and
above, the error rate is given over all of the bits in the code-
word. These graphs were not chosen entirely randomly. The de-
gree-two nodes were made loop-free for lengths less than
and, in the length case, all of them correspond to nonsys-
tematic bits. The length graph was randomly constructed
except that double edges and loops with two variable nodes
were avoided. For shorter lengths some small loop removal was
performed. We note that, particularly for small lengths, better
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Fig. 3. Comparison between bit-error rates achieved by turbo codes (dashed curves) and LDPC codes (solid curves) of lengthsn = 10 ; 10 ; 10 ; and10 .
All codes are of rate one-half. Observe that longer LDPC codes outperform turbo codes and that the gap becomes the more significant the largern is chosen. For
short lengths, it appears that the structure of turbo codes gives them an edge over LDPC codes despite having a lower threshold.

performance can be achieved by using degree distribution pairs
with smaller values of even though such degree distribution
pairs have a smaller threshold.11 We see that for , the
actual performance is quite close to the predicted asymptotic
performance and that for longer lengths these codes handily
beat the best known turbo code of the same length. At one mil-
lion bits, the code is less than 0.13 dB away from capacity at
bit-error probabilities of . Given that LDPC codes have
slightly lower complexity, are fully parallelizable, and allow
many different decoding algorithms with a far ranging tradeoff
between performance and complexity, LDPC codes can be con-
sidered serious competitors to turbo codes.

Although we spent a considerable amount of computing time
on the optimization it is clear that any given degree distribution
pair can be further (slightly) improved given enough patience.12

III. A NALYTIC PROPERTIES OFDENSITY EVOLUTION

In this section, we will study and exhibit some analytic
properties of density evolution for belief-propagation de-
coders. Without loss of generality, we will assume that the
all-one codeword was transmitted and that the messages are
represented as log-likelihood ratios. Under theindependence
assumptionwe will then give a compact mathematical de-
scription of the evolution of the message densities as they
proceed up the tree. In doing so we largely follow [1]. We will
show that for output-symmetric channels the received message

11The degree distribution pairs presented here are those giving the highest
threshold under a maximum degree constraint. For small graphs it is not al-
ways best to pick the degree distribution pair with the highest threshold. When
designing degree distribution pairs for small graphs, it can be advantageous to
look for the highest possible threshold under an appropriate constraint on the
allowed number of iterations.

12Indeed this has been accomplished in [16].

distribution issymmetricand that this symmetry is preserved
under belief-propagation decoding. Further, we will discuss
a stability conditionof density evolution which stems from
analyzing the convergence behavior of density evolution under
the assumption that small error probabilities have already been
achieved in the evolution process. Finally, we will give a partial
characterization of the threshold in terms of the (non)existence
of fixed points of the density evolution recursion. For each
topic, we will motivate our definitions/statements by consid-
ering the equivalent definitions/statements for the simple case
of the BEC. Quite surprisingly, given the uncharacteristically
simple nature of the BEC, we will find that many results extend
to the general case.

A. Belief Propagation

The main result of this section, stated in Theorem 2, is an
explicit recursion which connects the distributions of messages
passed from variable nodes to check nodes at two consecutive
iterations ofbelief propagation. In the case of the BEC, this task
has been accomplished in [2], [24], [10] where it was shown that
the expected fraction of erasure messages which are passed in
the th iteration, call it , evolves as

For general binary-input memoryless output-symmetric chan-
nels, the situation is much more involved since one has to keep
track of the evolution of general distributions, which usually
cannot be parameterized by a single parameter.

Let us begin by recalling thebelief-propagationalgorithm.
We will use the standard binary PAM map ,
throughout. At each iteration, messages are passed along the
edges of the graph from variable nodes to their incident check
nodes and back. The messages are typically real-valued but they
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can also take on the values , reflecting the situation where
some bits are known with absolute certainty.

Generically, messages which are sent in theth iteration
will be denoted by . By we denote the message sent
from the variable node to its incident check node, while by

we denote the message passed from check nodeto its
incident variable node. Each message represents a quantity

, where , ,
is the random variable describing the codeword bit value

associated to the variable node, and is the random variable
describing all the information incorporated into this message.
By Bayes rule we have

since is equally likely . The message is the log-likeli-
hood ratio of the random variable (under theindependence
assumption).

As we will see shortly, to represent the updates performed
by check nodesan alternative representation of the messages is
appropriate. Let us define a map

GF

as follows. Given , , let

(2)

Several remarks are in order. We define .
Further, we make the following slightly unconventionalproba-
bilistic definition of the sign function:

if

with probability if

with probability if

if .
The sign assignment when does not effect the belief-
propagation algorithm but it is useful for certain definitions to
follow.

Let be the log-likelihood ratio of the codeword bit
associated to the variable nodeconditioned only on

the channel observation of this bit. The update equations for
the messages underbelief propagationare then the following:

if

if (3)

(4)

where is the set of check nodes incident to variable node,
and is the set of variable nodes incident to check node.13

It is easy to check that the belief-propagation decoder as
defined above fulfills the symmetry conditions discussed in
Section I. Therefore, if we restrict ourselves to output-sym-
metric channels, then we can assume that the all-one codeword
was transmitted without loss of generality since, under these

13The reader might wonder how((+1) + (�1)) is defined in (3), but it
is impossible under belief propagation for a node to receive both the message
+1 and the message�1: (Either message implies absolute certainty of the
value of the associated bit but with opposite signs.)

assumptions, the conditional error probability is independent
of the transmitted codeword, see [1]. In the sequel, we will
only be interested in output-symmetric channels and we
will therefore always assume that the all-one codeword was
transmitted. Note that in this case any actually observed
must fulfill . It follows that the log-likelihood
ratios take values in the range . A
short glance at the above update equations then shows thatall
messages sent during the course of belief propagation lie in this
range, i.e., that no message can ever take on the value.

B. Distributions

For some channels, e.g., the BEC and the BSC, the density
of received log-likelihood ratios is discrete. For others, e.g., the
BIAWGNC, the density is continuous. In the first case, the mes-
sage densities will themselves be discrete and in the second case,
the message densities will be continuous. In order to be able to
treat all these cases in a uniform manner we shall work with a
fairly general class of distributions. The reader only casually
interested in the technical aspects of this paper is advised to
think of smooth densities and their associated continuous dis-
tributions and to only skim the current section.

Let denote the space of right-continuous, nondecreasing
functions defined on satisfying and

. To each we associate a random
variable over . The random variable haslaw or
distribution , i.e.,

The reason we allow rather than
is to permit to have some probability

mass at , indeed

A random variable over is completely specified
by its distribution . Given an element we define

to be the left limit of at , i.e.,

Note that is left continuous.
We will work with “densities” over which, for-

mally, can be treated as (Radon–Nikodyn) derivatives of ele-
ments of . The derivative, when it exists, is the density of the
associated random variableover although there
may be an additional point mass at : recall

. We will use densities primarily in the following
way. The Lebesgue–Stieltjes integral is well-de-
fined for, e.g., nonnegative continuous functionsand .
If is the density corresponding to the distributionwe will
write as a proxy for .14

Consider the update equations of belief propagation given in
(3) and (4). Note that they consist of the following two com-

14If lim F (x) < 1 andlim h(x) exists then one could/should
include the term(1� lim F (x))(lim h(x)) in the definition of

h(x)f(x) dx. For our purposes, however, it will always be the case when
we use this notation that eitherlim F (x) = 1 or lim h(x) = 0,
so we need not be concerned with this issue.
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ponents: i) summation of messages, where these messages are
either in log-likelihood ratio representation or represented as
“sign-and-reliability” and ii) change of representation. We are
interested in the evolution of the message distributions under the
independence assumption. Therefore, we will now discuss how
distributions evolve when independent random variables (in ei-
ther representation) are summed and when the representation of
such variables is changed.

Given their convolution is defined
by15

This generalizes the notion of convolution of densities for if
and have corresponding densitiesand , respectively, then

is the distribution corresponding to the density .
We write for arbitrary densities to indicate the density as-
sociated to the distribution . It is easy to check that
if and are independent random variables over
with distributions and , respectively, then the distribu-
tion of is (as is the case for independent
random variables defined over ).

Now, suppose we have a random variableover
with distribution and we wish to describe the “distribution”
of the random variable , where
and are defined as in (2). We approach this problem by
assigning two connected distributions associated to under
the conditions and , respectively.

Any function over GF can be written as

where denotes the characteristic function of the set
, i.e., if and otherwise.

Let denote the space of functions over GF such
that and are nondecreasing and right continuous

and such that and . (The last two con-
ditions correspond to the conditions and

for functions in .)
Given a random variable with distribution
we define the “distribution” of as

(5)

where

and

Thus

and

15The integral is defined for almost allx and right continuity determines the
rest.

Note that , and, in particular

Let be an element of . We
speak of densities over GF

by substituting for and their associated densities. The
definition is analogous to that used for except that, here,

has a point mass at of magnitude and
both and have point masses at of magnitude

. For this corre-
sponds to assigning to equally likely. We shall
only be interested in densities over GF that sat-
isfy these conditions.

The function has a well-defined inverse. Given

we have

(6)

and

It is easy to check that and that
for all . Further, and are additive operators on the
spaces and , respectively.

For convenience, although it constitutes an abuse of notation,
we will apply and to densities. It is implicitly understood
that the notation is a representation of the appropriate operation
applied to distributions.

The space has a well-defined convolution. Here, the
convolution of two distributions and

is the distribution

where, here, denotes the (one-sided) convolution of standard
distributions. In other words, the new convolution is a convolu-
tion over the group GF . By abuse of notation,
we denote this new convolution by the same symbol. Again,
we shall allow the convolution operator to act on the densities
associated to elements ofwith the implicit understanding that
the above provides the rigorous definition.

If and are independent random variables over GF
with distributions , respectively, then the

distribution of is .

Example 4: Let us give a few examples of densities of in-
terest. By , we denote the density corresponding to
the distribution . In other words, ,
where denotes the Dirac delta function. A special case is
which corresponds to the distribution .

The density is given by
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Expressed using distributions, we have .
The density is given by .

Expressed using distributions, we have .

C. Description of Density Evolution

The symbols and will be shorthand notations for the
densities of the random variables and , respectively.
We will use the notation and to denote the associated
distributions.

By (4), we see that the random variable describing the mes-
sage passed from check nodeto variable node is the image
under of a sum of random variables from GF .
These random variables are independent by theindependence
assumption. So, the density of their sum is the convolution of
their densities.

Let the graph have degree distribution pair where

and

Recall that the fraction of edges connected to a variable node of
degree is , and the fraction of edges connected to a check
node of degree is . Thus, a randomly chosen edge in the
graph is connected to a check node of degreewith probability

. Therefore, with probability the sum in (4) has
terms, corresponding to the edges connectingto all its neigh-
borsother than . We conclude that, in this case, the density of

is equal to . Summing up over all the
possibilities for the degrees of the check node, we see that the
density of the message equals

(7)
This equation also explains the unusual definition
(rather than ) for .

A recursion for in terms of is derived similarly and is
quite straightforward. The density of the message passed from
check node to variable node at round is equal to . At the
incoming messages from all check nodes other thanare added
to , the received value for, and the result is sent back to
. Since, by theindependence assumptionthe random variables

describing these messages are independent, the density of this
message equals

(8)

where is the density of the random variable describing the
channel.

Combining (7) and (8) we obtain the desired recursion for
in terms of .

Theorem 2: For a given binary-input output-symmetric
memoryless channel let denote the initial message density
of log-likelihood ratios, assuming that the all-one codeword
was transmitted. If, for a fixed degree distribution pair ,

denotes the density of the messages passed from the

variable nodes to the check nodes at theth iteration of belief
propagation then, under theindependence assumption

(9)

where the operators and are defined in (5) and (6), re-
spectively.

Discussion: The result of the previous theorem is in com-
plete agreement with the result for the erasure channel obtained
previously in [2], [10]; in fact, it contains it as a special case.
Indeed, using distributions in this case, we have

. It is easily seen that

We then obtain

and

Finally

and we recover

which is the same as the formula proved in [2], [24], [10].

D. Symmetry

Definition 1 [Symmetry]: We call symmetric if

for any function for which the integral exists. For densities,
the equivalent statement is that the densityis symmetric if

for .

Example 5: and are symmetric.

Our aim in this section is to prove that the density functions
of messages passed from variable to check nodes during the
belief propagationare symmetric, provided that the channel is
output-symmetric.

Theorem 3: For a given binary-input memoryless output-
symmetric channel let denote the initial message density
of log-likelihood ratios, assuming that the all-one word was
transmitted. For a fixed degree distribution pair define

Then is symmetric.

First note the following immediate corollary. For a distribu-
tion with density we define theerror probability operator

.

Corollary 1: converges to zero iff converges16 to
.

16For a definition of convergence see Section III-F
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Before proceeding with the proof of Theorem 3, we exem-
plify the symmetry of some well-known noise densities.

Example 6 [BEC]: For the erasure channel the initial mes-
sage density is . Since linear combina-
tions of symmetric functions are symmetric, the result follows,
as and are symmetric.

Example 7 [BSC]: For the BSC with crossover probability
the initial message density is

For we have , so to show
symmetry we only need to prove that ,
which is straightforward.

Example 8 [BIAWGNC]:Here the initial message density is

The symmetry condition is then verified by

Example 9 [BILC]: As a final example, the initial message
density for the Laplace channel is given by

Again, it is easy to check that the symmetry condition is
fulfilled.

For the proof of Theorem 3, we proceed in several steps. We
will first establish the symmetry of the initial message density
under general conditions. Once this is done, we will prove that
symmetry is preserved under convolutions. Using Theorem 2, it
then remains to show that if is symmetric, then
is symmetric as well. To do this, we first characterize symmetry
in and prove that, also in this representation, symmetry is pre-
served under convolutions. We will present the proofs of the next
three results using densities. A rigorous proof can be obtained
by formally translating the subsequent proof into the language
of distributions.

Proposition 1: Consider a binary-input memoryless output-
symmetric channel and let be the initial message density in
log-likelihood ratio form under the all-one word assumption.
Then is symmetric.

Proof: From the channel symmetry condition we obtain

Therefore

Next we will show that symmetry is preserved under convo-
lutions.

Lemma 1: The convolution of symmetric distributions is
symmetric.

Proof: Let and be two symmetric densities. Then

Consider the iteration formula of Theorem 2

We already know that is symmetric. Hence, we can prove
by induction that is symmetric for all if we show that

is symmetric when is.

Definition 2: We say is symmetric if

for any nonnegative continuous function.

Proposition 2:

1) The function is symmetric if and only if
is symmetric.

2) If are symmetric distributions over GF
, then so is their convolution .

Proof:

1) Let be the density associated to, i.e.,
and . Then we have

Using the symmetry condition for, we see that

so is symmetric.
2) By definition, the convolution of and is the density

where

We need to show that . Since
is symmetric, we have , so

Also

We, therefore, have
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Since is the sum of the above two quantities andis
their difference we obtain

and we are done.
We are now able to prove our main theorem.

Proof of Theorem 3:As outlined above, we use induc-
tion and the density evolution formula of Theorem 2. The in-
duction is anchored by Proposition 1: is symmetric. As-
sume now that is symmetric. By Proposition 2 part 1),

is symmetric, and by part 2) of the same proposition
is also symmetric. Part 1) of that proposition implies

that is symmetric. Finally, Lemma 1 shows
that is symmetric as well.

E. Stability

Consider density evolution for the BEC. Recall that, for a
given degree distribution pair , the evolution of the ex-
pected fraction of erasure messages emitted in theth iteration,
call it , is given by

(10)

where , the initial fraction of erasures, is equal to the era-
sure probability of the channel. Recall further that the threshold

was defined as the supremum of all values, ,
such that converges to zero astends to infinity. It is easy
to derive an upper bound on by looking at the behavior of this
recursion for small values of . Expanding the right-hand side
of (10) into a Taylor series around zero we get

(11)

Clearly, for sufficiently small , the convergence behavior
will be determined by the term linear in . More precisely, the
convergence will depend on whether is smaller or
larger than one. The precise statement is given in the following.

Theorem 4 [Stability Condition for the BEC—[15]]17 : As-
sume we are given a degree distribution pair and a real
number , . For define

[Necessity] If then there exists a constant
, , such that for all , .

[Sufficiency] If then there exists a con-
stant , , such that if, for some ,

then converges to zero astends to in-
finity.

Discussion: Note that for any initial
erasure fraction , so that zero is afixed pointof the recursion
given in (10). Therefore, it is natural to think of the above con-
dition as astability condition of the fixed point at zero.

17The result proved in [15] does not follow the derivation as in the theorem.
Rather, it uses the condition that the decoding is successful ifand only if the
inequalityx �(1� �(1� x)) < x is valid on(0; x ).

This stability condition has far-reaching implications in the
case of the BEC. To name just the most important one, it imme-
diately gives rise to the bound

(12)

Further, it was shown in [17, Theorem 3.1] that for any sequence
of capacity achieving degree distribution pairs this inequality
becomes tight.

Given the important role that the stability condition plays in
the case of the BEC it is natural to ask whether an equivalent
condition can be formulated for general binary-input memory-
less output-symmetric channels. Fortunately, the answer is in the
affirmative and our main result along this line is summarized in
the following.

Theorem 5 [General Stability Condition]:Assume we are
given a degree distribution pair and a symmetric density

. For define

Let

and assume that for all in some neigh-
borhood of zero.

[Necessity] If then there exists a constant
, , such that for all , .

[Sufficiency] If then there exists a con-
stant , , such that if for some ,

then converges to zero astends
to infinity.

Discussion: As for the BEC, the stability condition gives rise
to an upper bound on the threshold. Assume that the channel
family is parameterized by the real parameterand assume fur-
ther that there exists a unique numbersuch that

where is the message density of the received values cor-
responding to the channel with parameter. Then .
We note that for some codes, e.g.,cycle codes, the stability con-
dition determines the threshold exactly, see [18], [19] for some
specific examples.

In this paper, we will only prove the necessity of the stated
stability condition. Demonstrating sufficiency is quite involved
and the proof can be found in [20]. Before venturing into the
proof of the necessity of the stability condition let us calculate
the stability condition explicitly for various channels.

Example 10 [BEC]: For the BEC (see Example 6) we have
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Therefore, the stability condition18 reads

as stated above and as previously obtained in [15].

Example 11 [BSC]:For the BSC (see Example 7) we have

It follows that the stability condition19 for the BSC is given by

Example 12 [BIAWGNC]:For the BIAWGNC (see Example
8) we have

Thus, the stability condition20 reduces to

Example 13 [BILC]: For the BILC (see Example 9) we have

The stability condition for the BILC can, therefore, be written
as

The reader might have noticed that for all of the above
examples is equal to the constant which appears in the
Bhattacharyya bound. This is no coincidence. The constant
is simply the exponent in the Chernoff bound when we ask for
the probability that the sum of independent samples with
common density is negative.

Proof of Theorem 5:Recall that in the case of the BEC
we observed that zero was a fixed point of the recursion and by
linearizing the recursion around this fixed point we were able to
analyze its stability. For the general case we will proceed along
the same lines. Recall further that we deal with distributions
of log-likelihood ratios. From Corollary 1 we know that a zero
probability of error corresponds to the density . Clearly, if

for some then for any , so
that is indeed a fixed point of density evolution. To analyze
local convergence to this fixed point we shall again consider a
linearization of density evolution about this fixed point.

18Equivalently, we get

� (�; �) �
which is nontrivial only if� (0)� (1) � 1.

19Formulated as an upper bound, this gives

� (�; �) � (1� 1� )

which is well-defined if� (0)� (1) � 1.
20This gives rise to

� (�; �) � p
which is well-defined if� (0)� (1) > 1.

To that effect, consider a density .
Note that this density is symmetric and that

After a complete iteration of density evolution this density will
evolve to

More generally, if we consider iterations of density evolution
we see that the density will evolve to

We are interested in the error probability associated to,
i.e., we are interested in . To this end note that if

for all in some neighborhood of zero
then

(13)

is well-defined, see [21]. Therefore, if we assume that
then there exists an integersuch that

It then follows that for this

if

where is a positive constant depending only on and .
Now assume that for some iterationwe have ,

. We claim that then

a contradiction, since as shown in [1], the error probability is
a nonincreasing function in the number of iterations. This will
show that if then for some suitable
positive constant for all .

To show that we argue as follows. Con-
sider a random tree of depth with variable nodes at the
leaves and a variable node at the root. Let the leaf nodes have
observations which correspond to samples from the density
and let the internal variable nodes have observations which cor-
respond to samples from the density. The density of the mes-
sage emitted at the root node is then. Now compare this
to the scenario where we use the same setup but where we let
the leaf nodes take observations which correspond to samples
from the density . In this case, the density of the message
emitted at the root node will be . Note that in both cases
the estimate of the root node message is a maximum-likelihood
(ML) estimate. In Appendix B we show in Lemma 4 that one
can think of the samples from the density asphysically de-
gradedsamples from the density . We claim that this implies

. To see this, assume to the contrary that

. In words, we can improve our estimate
emitted at the root nodes in the first scenario by adding noise
to the observations corresponding to the leaf nodes and then ap-
plying an ML estimate to these new observations rather than
by applying an ML estimate to the original observations. This
contradicts the well-known fact that for a uniform prior ML es-
timates have minimum probability of error.
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It remains to prove that

as stated. A general large-deviation principle (see, e.g., [21])
implies that , where .
Since is symmetric we have

We close this subsection by posing two fundamental open
questions.

• Is it generally true that for any sequence of ca-
pacity-achieving degree distribution pairs the stability
condition becomes tight as is the case for the BEC?

• Is it possible to formulate higher order stability conditions
and to show that each of them becomes tight for any se-
quence of capacity-achieving degree distribution pairs as
is again the case for the BEC, [17, Theorem 3.1].

F. Fixed Points of Density Evolution

The main result of this section states that density evolution
for belief propagation always converges to a fixed point.

Consider again the example of the BEC and its associated
density evolution recursion given in (10). In this case, we have
the following complete characterization of the threshold in
terms of fixed points of (10).

Theorem 6 [Fixed-Point Characterization of the Threshold
for the BEC—[2]]21: For a given degree distribution pair
let . For any and
define . Define

[Sufficiency] For any , converges to a
solution of with . Therefore, if

for all , then converges
to zero as tends to infinity.22

[Necessity] If there exists an, , such that
, then for all .23

[Fixed-Point Characterizations of the Threshold]

i) has no
solution in .

ii) has a
solution in .

Proof: First note that for any , is non-
increasing and therefore converges to a point, call it. Clearly,

21Although the exact statement differs from the one given in [15], the result
is nevertheless an easy consequence of the statements given there.

22Hence,x (�; �) � x .
23Therefore, ifx > 0 thenx (�; �) � x .

fulfills and . Therefore, if no fixed point
with exists then converges to zero astends
to infinity, which proves the first assertion. To prove the second
assertion, note that if is a fixed point with then

where we have used the fact that is a nondecreasing
function in its first argument for . By finite induc-
tion it then follows that

for all

It remains to discuss the characterization of the threshold in
terms of fixed points. First note that, as remarked earlier,
is a fixed point of the recursion for any and that

is a fixed point for . It follows that both charac-
terizations are well-defined. Finally, the equivalence of the two
characterizations follows from the fact that is strictly
increasing in for and .

At first it might appear that this behavior is special to the BEC
case since this is the only (known) belief-propagation decoder
for which density evolution has a one-dimensional description.
So it is quite surprising that at least the sufficiency part has a
complete analog in the general case.

In order to generalize the above results we must generalize
various notions used in the proof. One crucial ingredient in the
above argument is themonotonicityof . Since is
a sequence ofreal numbers, this monotonicity guarantees the
convergence of to some fixed point of the recursion. For
the general case of density evolution, we have to assert the con-
vergence of distributions. We will now show that there exists a
largefamilyof monotonicity conditions which we will later use
to prove convergence.

Theorem 7: Let and be symmetric densities on
and for a given degree distribution pair

define

Then is a nonincreasing function of.
Proof: The message of which is the density represents

a conditional probability of a particular bit value. Assume that
an independent observation of the same bit value is available
to the decoder and assume that this independent observation is
obtained by passing the bit through a channel which ful-
fills the symmetry condition and has . By
Lemma 3 and under the assumption that the all-one codeword
was transmitted, the conditional density of the bit log-likelihood
ratios, conditioned on all information incorporated inand the
independent observation, has density . Since the new den-
sity corresponds again to a maximuma posteriori(MAP) esti-
mate conditioned on information which is nondecreasing in,
the stated monotonicity condition follows.

In the above theorem we can useanysymmetric density for
. It will prove useful in the sequel to consider the family of

densities

(14)
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Clearly, is a symmetric density for any . If for
any symmetric density we define by

then we immediately have the following.

Corollary 2: For a given symmetric density and a given
degree distribution pair define

Then is a nonincreasing function offor every

We will now show that a symmetric density is uniquely
determined by the “basis” of functionals .

Lemma 2 [Basic Lemma]:A symmetric density is
uniquely determined by .

Proof: Let be the distribution associated to. Let
be a point of continuity of . Then

(15)

It is not too hard to check that is differentiable
at , and that the symmetry condition implies that the derivative
is . In particular, al-
most everywhere. Since , we recover

. Since is symmetric, the proof is now complete.

Finally, to generalize the above convergence results for the
BEC we must provide a precise definition of the notion of
“convergence” for general symmetric densities. In particular,
convergence to must be well-defined. Let denote
the set of all right-continuous nondecreasing functions
with and . Note that

. We say that a sequence , ,
converges to if the sequence converges pointwise at all
points of continuity of . Convergence in this sense implies
weak convergence of the associated Lebesgue–Stieltjes mea-
sure. That is, if then
for any suitable function . An important property of the
space is that it is sequentially compact. Given any infinite
sequence from , then, by the Helley selection principle,
see [22, Theorem 25.9], there exists a subsequence which
converges to some element of.

Let denote the subset of consisting of symmetric func-
tions. Note that is sequentially compact since, i.e., if
is a limit point of , with then ,
since from the definition of symmetry given in Definition 1 we
see that weak convergence immediately implies symmetry of
the limit. We say that a sequence of symmetric densitiescon-
verges to if the corresponding distributions converge, i.e., if

converges to .

Theorem 8 [Partial Fixed-Point Characterization of the
Threshold for General Channels]:For a given degree distribu-
tion pair and for a given symmetric density define

[Sufficiency] For any symmetric density , the se-
quence of densities converges to a symmetric density

which is a fixed-point solution to (9). Therefore,
if there does not exist a symmetric densitysuch that

for all and such that is
a fixed point of (9), then converges to zero as
tends to infinity, or, equivalently, .

Proof: Consider the sequence of message densities.
By sequential compactness of , some subsequence converges
to a symmetric limit density, call if . If the original sequence

does not converge to then there must exist another
subsequence which converges to a distinct symmetric limit

. It follows from the basis lemma that, for some,
. But this is a contradiction since

is a monotonic function for every by Theorem 7 and cannot,
therefore, possess two distinct limits. We now conclude that
converges to .

The density is a fixed point of (9) since the update
equations are continuous under our notion of convergence.
Furthermore, since the sequence is monotonically
nonincreasing for each , we have . If

for any and if is a symmetric density then
. We conclude that if there does not exist a fixed-point

of (9) satisfying then .

IV. OPTIMIZATION

In this section, we briefly describe the optimization tech-
niques that we used to obtain degree distribution pairs with large
thresholds.

The following general remarks apply to any numerical opti-
mization technique. First, formally, the threshold is defined as
the supremum of all channel parameters for which the prob-
ability of error under density evolution converges to zero. By
Corollary 1, this is equivalent to requiring that the message dis-
tribution converges to . In practice, we can verify at best
that the probability of error reaches a value below a prescribed
. From Theorem 5 we know that if we choosesmall enough

then this automatically implies convergence to zero probability
of error. In practice, the issue of convergence is not of great con-
cern since we always allow a finite (but small) probability of
error.

Secondly, in order to perform the computations we need to
quantize the quantities involved. This quantization leads to a
quantization error and this error might accumulate over the
course of many iterations, rendering the computations useless.
This problem can be circumvented in the following way. By
carefully performing the quantization one can ensure that the
quantized density evolution corresponds to the exact density
evolution of a quantized message-passing scheme. Since belief
propagation is optimal, such a quantized version is suboptimal
and, hence, the reported thresholds can be thought of as lower
bounds on the actual thresholds.

A. Local Optimization

To find good degree distribution pairs we started with the fol-
lowing simple hill-climbing approach. Fix a small target error
probability and a maximum number of iterations. Start with
a given degree distribution pair and determine the maximumad-
missiblechannel parameter, i.e., the maximum channel param-
eter such that the error probability after iterations is below
. Now apply a small change to the degree distribution pair and
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Fig. 4. Evolution of the bit-error probability under density evolution as a function of the iteration number.

Fig. 5. The decrease of the bit-error probability as a function of the current bit-error probability.

check if it has either a larger admissible channel parameter or
at least a smaller target error probability afteriterations. If
so, declare the new degree distribution pair to be the currently
best degree distribution pair, otherwise keep the original degree
distribution pair. The same basic step is then repeated a large
number of times.

The search for good degree distribution pairs can be substan-
tially accelerated by appropriately limiting the search space. We
found, for example, that very good degree distribution pairs exist
with only a few nonzero terms. In particular, it suffices to allow
two or three nonzero check node degrees (and these degrees can
be chosen consecutively) and to limit the nonzero variable node
degrees to the maximum such degree, and, possibly, a
few well-chosen degrees in-between.

A further substantial savings in running time can be achieved
as follows. For a particular degree distribution pair , Fig. 4
shows the evolution of the bit-error probability as a function
of the iteration number. An even clearer picture emerges if we
plot thedecreaseof the bit-error probability as a function of the
current bit error probability . This is shown in Fig. 5.

As can be seen in these figures, after an initial swift decrease
in the bit-error probability the procedure almost comes to a halt
at with decreases in bit-error probability of only

per iteration. The convergence then speeds up again
until it hits another low at and then later again at

. At these threecritical points, the outgoing mes-
sage distribution isalmosta fixed point of the equation system
corresponding to one iteration. Indeed, if the parameterwere
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slightly increased then the iteration could not overcome any of
those points and one can verify that there arise corresponding
fixed points of density evolution.

Provided that the fixed points are stable, the message distri-
butions at these points arecontinuousfunctions of the degree
distribution pair. Hence, a small change in the degree distribu-
tion pair causes only small changes in the associated fixed-point
distributions. Furthermore, if the fixed points are stable, then
this affords a certain memorylessness to the density evolution
process because they serve as local attractors. Small perturba-
tions to the path will not matter once the domain of convergence
of the fixed point is entered and, once the fixed point is found,
the path that leads to it is irrelevant.

In practice, we observe that the points at which the density
evolution gets stuck are indeed stable fixed points. The fixed
point theorem in Section III-F shows that fixed points which
are limits of density evolution must be at least marginally
stable. The above considerations suggest the following scheme.
Assume we determine the critical points (near fixed points,
or likely fixed points for a slightly worse initial distribution)
for a particular degree distribution pair and we would like
to determine the merit of a particular small change of the
degree distribution pair. Rather than starting with the initial
distribution and then checking if (and how fast) this initial
distribution converges to , one can memorize the distribu-
tions at the critical points of the original degree distribution
pair and then determine how the proposed change affects the
speed of convergence locally at these points. Once a promising
change has been found, the merit of this change can be verified
by starting with the initial degree distribution pair. Typically,
only a few iterations are necessary at each critical point to
determine if the change of the degree distribution pair improves
the convergence or not. This has to be compared to hundreds of
iterations or even thousands of iterations which are necessary
if one starts with the initial distribution.

In the optimization scheme we just described we made use
of the distributions at the “critical points” to find promising
changes of the degree distribution pair. The following schemes
extend this idea even further; the resulting algorithms are remi-
niscent of the algorithms used in the BEC case. For simplicity,
we will only describe the optimization of the variable node de-
gree distribution. The extension to the check node degree distri-
bution and to joint optimization should be quite apparent.

Assume that we are given a degree distribution pair , a
particular channel parameter, and a target probability of error
. Let be the sequence of error probabilities of the be-

lief-propagation algorithm. More precisely, is the initial error
probability, is the probability of error after theth iteration,
and . Assume that we want to find a new degree
distribution which achieves the target probability of error in
fewer iterations or achieves a lower target in the same number
of iterations.

Define a matrix , , . The entry is
the error probability which results if we run the belief-propaga-
tion decoder for steps assuming that the variable node de-
gree distribution is followed by one step in which we assume
that the variable node degree distribution is a singleton with all

its mass on the degree. Note that the actual error probability
after the th iteration, , can be expressed in terms of as

Let us define a function for by linearly inter-
polating the , setting . Define

We interpret as the number of iterations required to take the
initial probability of error down to . Using the expression
above, we can write down the gradient of with respect to

. In particular, for a perturbation we can compute

as

Returning to the discrete representation this is equivalent to

Thus, we observe that the gradient of is given by

There are two ways we can exploit this expression. One is to
use the (negative) gradient direction to do hill climbing, and the
other is to globally optimize the linearized approximation of
In either case, we must incorporate the constraints on.

Let be an alternative degree distribution. Clearly,has to
be a probability mass function, i.e.

(16)

and, further, it has to correspond to a code of equal rate, i.e.

(17)

Let be the negative gradient direction of. If we set
(for positive ) then the above constraints may not be sat-

isfied. However, among degree distributions satisfying the con-
straints the one closest to in Euclidean distance can be
easily computed by alternating projections. Two projections are
required: the first is orthogonal projection ofonto the sub-
space determined by (total probability constraint)
and (rate constraint), and the second projection
sets if, prior to the projection, . Note
that an alternative interpretation is to project the gradient direc-
tion onto the convex polytope of admissible directions. One
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can then compute the maximum step sizefor which the con-
straints remain satisfied and then recompute the projection at
that point. In this way, one can easily walk along the projected
gradient direction to look for an improved degree distribution.

Let us now consider the second way to exploit the gradient
expression for . Let

Then we have

(18)

This approximation is valid as long as does not differ too
much from , i.e., assuming that the message distributions cor-
responding to and are not too different, if

(19)

where , and if

(20)

Recall that we want to minimize . Since the right-hand side
of (18) is (up to a constant) a linear function in the degree dis-
tribution and since the constraints stated in (16), (17), (19), and
(20) are also linear, this can be (approximately) accomplished
by means of a linear program. The same procedure is then ap-
plied repeatedly in an attempt to converge to a good degree dis-
tribution. Since both approaches are local optimizations it is ap-
propriate to repeat the optimization with various initial condi-
tions.

B. Global Optimization

The code design problem as described above belongs to the
class of nonlinear constraint satisfaction problems with contin-
uous space parameters. Many general algorithms for solving
such problems have been developed. We experimented with an
algorithm called Differential Evolution (DE) [23] that has al-
ready been successfully applied to the design of good erasure
codes [11]. DE is a robust optimizer for multivariate functions.
We will not describe the details here, suffice it to say that the al-
gorithm is in part a hill climbing algorithm and in part a genetic
algorithm.

Our goal is to maximize the cost function which we define to
be the threshold value for the channel. Since such optimizers,
and DE in particular, operate best in a continuous parameter
space of not too large dimension, and since frequent function
evaluations are required in the optimization, we found it con-
venient to let the parameter space be a continuous space of
small dimension. To accomplish this, we introducedfractional
phantom distributions. Let the polynomials and take on the
general form (similarly for ), where now both the

and the degree could take any positive real value. The real
degree distribution is obtained from this phantom distribution

as , where and are uniquely
determined via the equations

and

This way, we are guaranteed to obtain a degree distribution
which respects the rate-constraints for the code.

By allowing fractional degrees we, in effect, force the pro-
gram to choose (close to) optimal degrees. This results in a sig-
nificant reduction of the dimensionality of the parameter space,
hence the running time, and also in the sparsity of the degree
distributions obtained.

APPENDIX A
CHANNEL EQUIVALENCE LEMMA

We say that two binary-input memoryless output-symmetric
channels areequivalentif they have the same density of log-
likelihood ratios. It is often convenient to pick one representative
from each equivalence class. This can be done as shown in the
following lemma.

Lemma 3 [Channel Equivalence Lemma]:Let be a
symmetric density. The binary-input memoryless output-sym-
metric channel with (and, hence, by
symmetry ) has an associated density of
log-likelihood ratios equal to .

Proof:

APPENDIX B
THE ERASUREDECOMPOSITIONLEMMA

Lemma 4 [Erasure Decomposition Lemma]:Let be
a binary-input memoryless output-symmetric channel. Let

denote its associated distribution of log-likelihood ratios
. Then the channel can be represented as the

concatenation of an erasure channel with erasure probability
and a ternary-input memoryless output-symmetric

channel , i.e., is a physical degraded version of an erasure
channel.

Proof: Recall from Lemma 3 that, without loss of gener-
ality, we may assume that and hence, by
symmetry, . Let denote an erasure and
let denote bit values. Let denote a channel whose input
alphabet is . Further, let have real output and set

and

It is easy to check that these quantities are well-defined densi-
ties. Let denote the concatenation of the erasure channel with
the channel , i.e., the output of the erasure channel is fed into.
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Note that for equally likely inputs the output of the erasure
channel, and hence the input to, have probabilities ,

, and , respectively. Then we have

and
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