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Abstract

Input Shaping/Time Delay Prefilter are techniques for
robust vibration control of slewing flexible structures.
These are open-loop schemes and cannot handle un-
certain initial conditions and effects of disturbances.
In this paper, we develop a technique for the design of
closed loop input shapers and illustrate it on a simple
benchmark problem. Range of uncertainties over which
the system remains stable is determined and is used as
a design tool. It should be noted that the structure of
the controller is similar to the Internal Model Control
(IMC).

1 Introduction

The seminal paper of Singer and Seering [1] proposed
a technique to desensitize the Posicast controller pro-
posed by Tallman and Smith [2]. Since then, numerous
papers have appeared which deal with the design of
robust input shaper. Singh and Vadali [3] have demon-
strated that time-delay prefilters result in the same per-
formance as input shapers. They pose the problem as
the design of a time-delay filter whose zeros cancel the
underdamped poles of the plant. To achieve robust-
ness, they demonstrate that by locating multiple ze-
ros of the time-delay filter at the expected location of
the uncertain underdamped poles of the system, the
shaped input profile is desensitized to errors in system
frequency and damping. Singh and Vadali [4] also pro-
pose a simple design technique where the delay-time of
the time-delay filter are specified by the user. These
time-delay filters will be used in this work for the de-
sign of closed loop input shapers.

Earlier closed loop shaped-input controllers add the in-
put shaper to a closed loop system and adjust or de-
rive the parameters of the controller according to the
modified response. Kapila et al. [5] used a standard
input shaper in conjunction with a full-state feedback
controller which encloses the prefilter and plant. The
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feedback matrix has been derived using an LMI ap-
proach. Zuo and Wang [6] placed an input shaper in a
closed loop consisting of a PD controller and an inverse
dynamics linearization.

In this paper a structure also used in Internal Model
Control (IMC) will be taken to transform the feedfor-
ward controller to a feedback controller.

The proposed technique begins with a motivation for
the selection of the form of the feedback controller in
Section 2. This is followed by a stability analysis in
Section 3. Section 4 presents a simple approach for
synthesizing the controller followed by illustrating the
controller on a simple system in Section 5.

2 Design of the Controller

The motivation for the proposed controller is a simple
technique described by Trächtler [7] for the design of
deadbeat controllers. This approach describes a tech-
nique to design a control profile ū(t) to achieve a de-
sired performance which results in an open loop sys-
tem. This control profile is then used to synthesize a
feedback controller to achieve the same performance.

For our derivation we assume that the system is re-
quired to perform a rest-to-rest maneuver and the cor-
responding input is w(t) = w01(t), where 1(t) is the
Heaviside step function. For the reference input w(t),
we need to determine a feedback controller which will
result in ū(t). With the knowledge of the system re-
sponse, the tracking error e(t) will be used in conjunc-
tion with ū(t) to derive the feedback controller. This
controller is given by

GC(s) =
Ū(s)
E(s)

(1)

where Ū(s) and E(s) are the Laplace transforms of ū(t)
and e(t) respectively. Since we know our control profile
ū(t), the error is given by

e(t) = w(t) − y(t) = w(t) − ū(t) ∗ h(t) (2)



where h(t) is the impulse response of the plant. This
is illustrated in Figure 1 where GP,A(s) is the assumed
transfer function for the plant and GFF (s) is the cor-
responding transfer function of the feedforward con-
troller.

GFF (s) GP,A(s)
y(t)

w(t) e(t)
ū(t)

Figure 1: System showing the derivation of the error

Equation (1) can be rewritten using Equation (2) as

GC(s) =
Ū(s)
E(s)

=
Ū(s)

W (s) − Ū(s )H(s)

The transfer function GC(s) represents a positive feed-
back loop with the feedforward controller in the for-
ward path and a model of the plant in the feedback
path. With Ū(s) = W (s)GFF (s) and H(s) = GP,A(s)
this leads to

GC(s) =
W (s)GFF (s)

W (s) − W (s)GFF (s)GP,A(s)

=
GFF (s)

1 − GFF (s)GP,A(s)
.

(3)

For this derivation we have not constrained ourselves to
any specific form of ū(t). It could represent the output
of a feedback controller, a feedforward controller, or it
could be arbitrarily chosen or derived to get a desired
response (like for the deadbeat controller). Since we
already have time-delay prefilters designed for robust
vibration control, we exploit them to generate ū(t).
Figure 2 shows a block diagram of the final feedback
system with the controller highlighted.

                                                              

GFF (s)

GP,A(s)

GP,R(s)

GC(s)

y(t)w(t)
e(t) ū(t)

Figure 2: Feedback loop using a feedforward controller

The structure of the feedback controller shown in fig-
ure 2 is also used in Internal Model Control (IMC) (see
for example [8]). The main difference is that for IMC
the controller labeled GFF (s) is not known and IMC is
used to determine it. In our case, we use this structure
to go from a feedfoward to a feedback controller, with
complete knowledge of all the parts of the controller.

Assuming the general form of a time-delay filter as:

GFF (s) =
m∑

i=0

Ai e−i sT (4)

where m is the number of delays, T is the delay time
and Ai are the gains for the different delays. The feed-
back controller reduces to

GC(s) =
GFF (s)

1 − GFF (s)GP,A(s)

=
∑m

i=0 Ai e−i sT

1 − GP,A(s)
∑m

i=0 Ai e−i sT

(5)

which will be used for stability analysis.

One drawback of this proposed method is that one has
to know the plant exactly since it is used to calculate
the denominator of the transfer function of the con-
troller (Equation (3)).

3 Stability Analysis

For the stability analysis only undamped system will
be considered. Therefore the transfer functions of the
assumed and real plant are

GP,A(s) =
ω2

A

s2 + ω2
A

(6)

GP,R(s) =
ω2

R

s2 + ω2
R

(7)

respectively. Here ωR is the real natural frequency
and ωA is the assumed natural frequency. Giving
the designer the greatest flexibility to influence the
performance of the system, the transfer function of
the Proportional Plus User Selected Multiple Delay
(PPUSMD) controller is selected which is,

GFF (s) = A0 + A1e
−sT + A2e

−2sT (8)

with

A0 =
1

2 · (1 − cos (ωAT ))
(9)

A1 =
−2 cos (ωAT )

2 · (1 − cos (ωAT ))
(10)

A2 =
1

2 · (1 − cos (ωAT ))
= A0 (11)

and T chosen by the designer. This leads to the con-
troller’s transfer function

GC(s) =

(
A0 + A1e

−sT + A2e
−2sT

)
(s2 + ω2

A)
(s2 + ω2

A) − ω2
A (A0 + A1e−sT + A2e−2sT )

(12)

In order to narrow down the possible region of stability,
the characteristic equation

1 +

(
A0 + A1e

−sT + A2e
−2sT

)
(s2 + ω2

A)
(s2 + ω2

A) − ω2
A (A0 + A1e−sT + A2e−2sT )

ω2
R

s2 + ω2
R

= 0
(13)



has to be solved for s = jφ, resulting in the points
where the system changes from an unstable to a stable
region and vice-versa. This leads to

φ = ±k
π

T
(14a)

ω2
R = k2 π2

T 2
· k2 π2

T 2 + ω2
A

(
A0 + A1(−1)k + A2 − 1

)
k2 π2

T 2 (1 + A0 + A1(−1)k + A2) − ω2
A

(14b)

k ∈ N k �= ωAT

π
if

ωAT

π
is an integer

or, after plugging in A0, A1 and A2 and rearranging
the Equation (14) results in

φ = ±k
π

T
(15a)

ω2
R = k2 π2

T 2×
k2 π2

T2 (cos (ωAT )−1)+ω2
A cos (ωAT )((−1)k−1)

k2 π2

T2 (cos (ωAT )+(−1)k cos (ωAT )−2)+ω2
A(1−cos (ωAT ))

(15b)

k ∈ N k �= ωAT

π

Another solution of equation (13) is

φ = ± ωA (16)

ωR = ωA. (17)

For ωR corresponding to k = ωAT
π , both the numerator

and the denominator of the characteristic equation (13)
are 0. Taking the limit shows, that the characteristic
equation is satisfied for this point, resulting in ωR =
ωA, which is already a solution (see equation (17)).

Figure 3 shows the possible points of stability changes
corresponding to k = 1 . . . 6 for T = 0 . . . 6 seconds
and ωA = 3 rad

sec . In addition, the delay time for the so
called PPD (single delay) and PPMD (multiple delay)
controllers (which correspond to prefilters defined by
Equation (8) where the delay times are T = π

ωA
) is

marked to give some orientation (see [4] for more details
on these controllers).

We will look at the slope of the root locus at the cross-
ing points with the imaginary axis (see equations (15)
and (17)) to find the regions of stability. The equation
for the root locus we use here is derived by rewriting
equation (13)

FRL,ω2
R
(s) =

s2
(
s2 + ω2

A(1 − A0 − A1e
−sT − A2e

−2sT )
)
+

ω2
R

(
ω2

A + s2(1 + A0 + A1e
−sT + A2e

−2sT )
)

= 0 (18)
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Figure 3: Points of possible changes of stability for ωA =
3 rad

sec
. Only the important curves are plotted.

To be able to look at the real and imaginary part sep-
arately we will substitute s, the complex variable in
equation (18), by s = σ + jφ. This leads to the two
slopes

dσ

dωR
= �

{
ds

dωR

}
(19)

dφ

dωR
= �

{
ds

dωR

}
(20)

with

ds

dωR
= −

∂F
RL,ω2

R

∂ωR

∂F
RL,ω2

R

∂s

(21)

First we will look at the crossing at ωR = ωA, also
meaning φ = ±ωA. Calculating the slope (using
L’Hospital’s rule) leads to

dσ

dωR

∣∣∣∣∣ σ=0
φ=ωA

ωR=ωA

=
1
4

(cos (ωAT ) − 1) (22)

As can easy be seen, this slope is always less than 0,
except for T = 2nπ

ωA
, n ∈ N. This implies, at this cross-

ing the system is always going from an unstable to a
possibly stable region, except at the specified T . For
ωR = ωA, the closed loop system is asymptotically sta-
ble, meaning there are no unstable poles at this point,
since this corresponds to perfect knowledge of the sys-
tem model and the structure of the controller results
in a classic time-delay feedforward controller which is
asymptotically stable. Since there are no other cross-
ings of the imaginary axis for ωR = ωA, there can not
be any new unstable poles for ωR slightly larger than
ωA. Therefore the crossing at this point goes from an
unstable to a stable region.



Substituting T in equation (15) by 2nπ
ωA

, the only con-
figurations where equation (22) is not less than zero,
leads to ω2

R = ω2
A. That means, that the only crossing

of the imaginary axis is at ωR = ωA. For ωR = 0, there
are 3 poles at s = 0. From root locus theory we know,
that this means that 3 branches of the root locus start
at s = 0 and the angle between them is 120◦. One of
these branches is going towards s = −∞, the others are
going towards the unstable area. Therefore the system
has to be unstable for 0 ≤ ωR < ωA, since there are no
crossings of the imaginary axis before. The stability of
the system for ωR ≥ ωA will be studied later.

First we consider k = 2n with n ∈ N, which corre-
sponds to k being even. The slope simplifies for even k
to

dσ

dωR

∣∣∣∣∣
σ=0

= 2

(
8π2n2 − ω2

AT 2
)2

4π2n2 − ω2
AT 2

×

�
{√

1
8π2n2−ω2

AT 2

(
4π2n2 − ω2

AT 2 + 8jπn
)}

(4π2n2 − ω2
AT 2)2 + 64n2π2

(23)

This leads to three cases

dσ

dωR

∣∣∣∣∣
σ=0

= 2

(
8π2n2 − ω2

AT 2
)2

4π2n2 − ω2
AT 2

×

√
1

|8π2n2−ω2
AT 2|

(4π2n2 − ω2
AT 2)2 + 64n2π2

×




4π2n2 − ω2
AT 2 T <

√
8 nπ

ωA

0 T =
√

8 nπ
ωA

−8πn T >
√

8 nπ
ωA

(24)

For T �= √
8 nπ

ωA
, the slope is always > 0. That means,

increasing ωR leads to increasing σ. Since σ = 0 at the
crossing points, the system is unstable for ωR greater
than the corresponding ωR(k) (equation (15)). For
T =

√
8 nπ

ωA
, the slope is zero. Looking at a plot of

the possible changes of stability (like figure 3) we can
see, that the only region we are interested in is the one
for (k−1)π

ωA
< T < kπ

ωA
. For a T not in this region an

ωR for a different k defines the bounds of the stability
region. Therefore, we don’t have to care about the case
where the slope is 0, since this corresponds to

T =
√

2kπ

ωA
(25)

which is outside the bounds we are currently consider-
ing. Hence, a different k defines the stability boundary.

For k = 2n + 1 with n ∈ N, the odd case, the slope is
given by

dσ

dωR

∣∣∣∣∣
σ=0

= �
{

2
√

Sslope
Nslope

Dslope

}
(26a)

with

Sslope =
2ω2

AT 2 cos (ωAT )
ω2

AT 2 (cos (ωAT ) − 1) + 2π2 (2n + 1)2

− π2 (2n + 1)2 (cos (ωAT ) − 1)
ω2

AT 2 (cos (ωAT ) − 1) + 2π2 (2n + 1)2

(26b)

Nslope =
(
(cos (ωAT ) − 1) ω2

AT 2 + 2(2n + 1)2π2
)2

(26c)

Dslope = π(2n + 1)
(
1 − cos2 (ωAT )

)×(
π2(2n + 1)2 − ω2

AT 2
)2

+ 4j (cos (ωAT ) − 1)×(
π2(2n + 1)2 − ω2

AT 2
)×(

(2n + 1)2π2 + ω2
AT 2 cos (ωAT )

)
(26d)

It can be seen, that Sslope > 0 for T < (2n+1)π
ωA

, Nslope

is always > 0 and �{Dslope} is also always ≥ 0. As
stated before, the only region we are interested in is
(k−1)π

ωA
< T < kπ

ωA
. For a T not in this region an ωR for

a different k defines the bounds of the stability region.
In this region of interest, we see, that the slope is always
positive, meaning the system is again going unstable for
an ωR greater than the one at the crossing point.

Now we can also say, that for T = 2nπ
ωA

the system is
only stable for ωR = ωA, since all the crossings are at
that point and we just showed that the system turns
unstable for any point above one of these crossings.

Summing that up we can say, the the system is stable
for

ωA ≤ ωR ≤ min (ωR(k) > ωA) (27)

Figure 4 shows this region of stability for ωA = 3 rad
sec .
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Figure 4: Region of stability for ωA = 3 rad
sec



4 Selecting ωA for fixed ωR and T

From the stability analysis we know, that the lower sta-
bility bound is always ωA = ωR. The upper bound is
given by equation (15), with (k−1)π

ωA
≤ T ≤ kπ

ωA
. Rear-

ranging these equations we are able to find

ωRT

π
≤k ≤ ωRT

π
+ 1

k ∈ N

(28)

Using this k, ωA can be freely chosen in the bounds

(k − 1)π
T

≤ ωA ≤ kπ

T
(29)

ωR ≥ ωA (30)

After choosing ωA, the upper stability bound ωR should
be calculated using equation (15) to find out if there is
enough stability margin. If not, ωA should be changed
and the bound checked until the requirements are met.
Figure 5 shows a flowchart of the entire tuning process.
Plotting the upper bound of ωR versus ωA helps in
choosing a good ωA. Figure 6 shows such a plot for
T = 0.5 with ωR = 3 rad

sec marked to give some guidance.

ωR, T given

select k ∈ N such that
ωRT

π ≤ k ≤ ωRT
π + 1

select ωA such that
(k−1)π

T ≤ ωA ≤ kπ
T

and ωA ≤ ωR

calculate the bound on ωR

using eqn. (15) and check if it
meets the requirements

ωR O.K.?
No

Yes

Finished

Figure 5: Parameter Tuning Process
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Figure 6: Stability region for T = 0.5sec. ωR = 3 rad
sec

is
marked for guidance

5 Simulations

The system for the simulations consists of the derived
controller and a second order plant with no damping
(see equation (7)) in a feedback setting. The time scales
of the following plots are different from each other to
show the interesting parts in more detail. At time t = 0
there was always a step from 0 to 1 applied to all of
the systems.

For the simulation ωA, the assumed natural frequency
is chosen to be 3 rad

sec . Figure 7 shows the step response
of a system with T = π

3ωA
for matching assumed and

real natural frequency. It can clearly be seen, that the
steady state value is reached without overshoot in twice
the delay time. This is also the response you would get
using the feedforward version of the controller with the
same delay time and the same real plant.
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Figure 7: Simulation for ωR = ωA = 3 rad
sec

with T = π
3ωA



Figure 8 shows the step response using the same con-
troller, but this time the real natural frequency is
ωR = 4 rad

sec , which means 33% error. Even for this con-
figuration the system reaches the steady state value in
a reasonably short time and the overshoot stays within
20%.
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Figure 8: Simulation for ωA = 3 rad
sec

and ωR = 4 rad
sec

with
T = π

3ωA

For validation purposes only, figure 9 shows, that the
system goes unstable for the real natural frequency ωR

being less than the assumed natural frequency ωA. The
upper bounds for ωR as illustrated in figure 4 were
corroborated by simulations.
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Figure 9: Simulation for ωA = 3 rad
sec

and ωR = 2.9 rad
sec

with T = π
3ωA

6 Conclusion

Transforming the Time Delay feedforward controllers
using a structure already known from IMC led to the
Time Delay Feedback Controller. Due to the easy and
well known structure the design is fast and simple. The
stability region was shown for a two delay controller
with user selectable time delay, the most general case.
Simulations showed the behavior of the controller in
the case of under- and overestimation of the natural
frequency of the plant.
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