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Abstract

A number of rate adaptation protocols have been proposed using instantaneous channel quality to select the

physical layer data rate. However, the indication of channel quality varies widely across platforms from simply a

received signal strength level to a measurement of signal-to-noise ratio (SNR) across sub-carriers, with each channel

quality indicator having differing levels of measurement error. Moreover, due to fast channel variations, even

aggressive channel probing fails to offer an up-to-date notion of channel quality. In this paper, we propose a

coherence-aware Channel Indication and Prediction algorithm for Rate Adaptation (CIPRA) and evaluate it analytically

and experimentally, considering both the effects of measurement errors and the staleness of channel quality

indicators. CIPRA uses the minimummean square error (MMSE) method and first-order prediction. Our evaluation

shows that CIPRA jointly considers the time interval over which the prediction will occur and the coherence time of

the channel to determine the optimal window size for previous channel quality indicator measurements. Also, we

demonstrate that CIPRA outperforms existing methods in terms of prediction fidelity and throughput via

experimental results. By combining a strong channel indicator with the coherence-aware MMSE first-order channel

prediction algorithm, CIPRA nearly doubles the throughput achieved in the field from the indication and prediction

method currently used by off-the-shelf WiFi interfaces.
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1 Introduction
Channel fluctuations often exist in wireless communi-

cation systems and present great challenges in selecting

the best data rate or modulation coding scheme (MCS)

for communication. When there is a change in direc-

tion of the transmitter/receiver, antenna elevation and

polarization, interference from nearby devices, or scat-

ter distributions, the channel quality can vary, resulting

in fluctuations in signal reception, even within the same

environment. Depending on the magnitude of the vari-

ation, the received signal strength (RSS) can drastically

change the link performance [1–4]. Rate adaptation pro-

tocols can be implemented to combat the fading chan-

nels and achieve high spectrum efficiency by dynamically

changing the data rate according to the channel quality.

Rate adaptation protocols that depend upon packet

success/failure information have been implemented in
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commercial equipment and widely discussed [5–10].

However, these loss-based protocols usually require tens

of data frames to develop a reasonable estimate of the

channel conditions. Other factors such as hidden ter-

minals and interference can lead to inappropriate con-

clusions about the causes for the losses [11]. Thus, for

fast-fading channels (e.g., in vehicular networks), these

protocols cannot accurately track the changing channels,

resulting in wrong selections of MCS. Moreover, packet-

level estimation is too coarse to achieve an accurate esti-

mation of the instantaneous channel conditions. With

interfering sources, the transmitter can not distinguish the

reason for packet loss and jitter (i.e., whether it is from

a poor channel or interference). These factors contribute

to frequent under-selection of the transmission rate by

loss-based protocols [11].

To enable fast-fading channel tracking, various channel-

indicator-based rate adaptation protocols have been pro-

posed [12–15]. It is well known that for a certain MCS,

there is a theoretical bit error rate (BER) versus signal-

to-noise ratio (SNR) relationship [16]. SNR values can be
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reported to the transmitter at the physical layer (PHY)-

frame level to enable selection of the optimal rate in fast-

fading channels. Some of the SNR-based rate adaptation

protocols leverage the received signal strength indica-

tor (RSSI) to calculate the SNR. However, for different

commercial wireless network devices, the RSSI varies sig-

nificantly for the same received signal strength. Moreover,

in the presence of interference and noise, the estimates

of the signal power reported from RSSI measurements

can be highly distorted [17]. In [13], the authors propose

a SoftRate metric to indicate channel quality and select

the optimal rate for transmission. However, this scheme

requires a soft-in, soft-out decoder to calculate the Sof-

tRate indicator, which is not available for most of the

existing network transceivers and may also be resource-

intensive for the design of future transceivers. AccuRate,

a constellation-quality based indicator is provided in [15].

Nevertheless, the hardware cost and complexity of Accu-

Rate is also high, often precluding the calculation of the

channel indicator in the implementation. The Effective

SNRmetric [14] leverages the channel response in the fre-

quency domain and the noise variance on each sub-carrier

to predict the best rate to transmit a packet. The infor-

mation required is already available in several wireless

network interfaces.

In our previous work [12], we consider RSSI as

the unique channel indicator under limited comparison

matrices, which has been shown to be inaccurate and

inconsistent across vendors [13]. In this work, in addi-

tion to the original channel indicator of RSSI, we study

and analyze two more advanced channel indicators: SNR

and Effective SNR. We implement channel prediction

and rate adaptation based on these two advanced met-

rics to evaluate their performance in combination with

traditional channel prediction methods and our proposed

channel prediction method, showing significant through-

put improvement. We additionally analyze the prediction

error performance for our proposed algorithm at vari-

ous time intervals, predicting the importance of our work

on next-generation protocol design with higher frequency

bands and tighter timing parameters. At last, we imple-

ment the Minstrel rate adaptation and compare our pro-

posed rate adaptation method with it, showing that our

proposed rate adaptation method outperforms Minstrel

significantly.

Typically, in SNR-based rate adaptation, the receiver

decides the rate of the next transmitted packet accord-

ing to the measured SNR of the current packet, whether

the measurement originates from the RTS/CTS or

DATA/ACK exchange [11]. Several potential problems

exist with this mechanism. First, if the channel changes

quickly or there is a large time interval between two adja-

cent packets, the SNR reported by the last transmission

may not accurately represent the instantaneous channel

quality. Second, the SNR reported during the last trans-

mission may not be accurate due to measurement errors.

Even for slowly varying channels, there might be rate

over-selection or under-selection due to channel quality

estimation errors.
The rate selection problems caused by channel qual-

ity estimation errors have been studied [16, 18]. In order

to increase the accuracy of rate selection, both works

as leverage-filtering techniques to reduce channel quality

estimation errors. However, the delay incurred in filter-

ing can make rate selection even more stale to track with

ongoing channel quality changes. To address the chan-

nel quality staleness problem, channel prediction has been

extensively studied [19–23]. However, most work assumes

perfectly accurate channel measurements to predict the

future channel state, which may not be possible in hard-

ware.Moreover, the estimation error canmake the predic-

tion highly erroneous if using the reported value from the

last transmission.
In this paper, we propose a coherence-aware MMSE

first-order prediction algorithm that takes into account

both the measurement inaccuracy and measurement stal-

eness. Prediction intervals and channel coherence time

are jointly considered to select the optimal size of pre-

diction window. We perform simulation studies as well as

in-field experimentation on emulated and in-field chan-

nels, respectively. For our analysis, we implement an IEEE

802.11 PHY system on WARP (Wireless Open-Access

Research Platform), an field programmable gate array

(FPGA)-based platform [11]. We also implement and

compare three different channel indicators, RSSI, SNR,

and Effective SNR, and combine each with the proposed

prediction algorithm to investigate the indicator’s impact

on the performance of channel prediction. To generate

repeatable channel effects, we test our design on a chan-

nel emulator and compare the three indicators in diverse

channel conditions. In addition to lab experiments, we

also conduct field tests to show the in situ throughput

improvements provided by our algorithm.

The main contributions of our work are as follows:

1 We propose a coherence-aware MMSE first-order

channel quality prediction algorithm, which takes

into account both the measurement errors and

staleness of the channel quality. This scheme adapts

the measurement processing parameters to the

Doppler shift to achieve good performance under

various mobility scenarios.

2 We implement and evaluate a family of the most

commonly used channel quality indicators for rate

adaptation, including RSSI, SNR, and Effective SNR.

3 We analyze different channel prediction approaches

and compare them in terms of prediction errors as

well as over-selection and under-selection

probabilities for rate adaptation.
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4 We present and implement a Doppler shift

estimation method based on LCR (level-crossing

rate) with a homogeneous window to remove the

effect of channel quality measurement errors,

achieving a good balance of complexity and accuracy.
5 We implement the existing channel prediction

algorithm and the proposed algorithm onWARP and

experimentally compare them in terms of system

throughput through both repeatable channel

emulator tests and in-field experiments. By

combining Effective SNR with the coherence-aware

MMSE first-order channel prediction algorithm,

channel indication and prediction for rate adaptation

(CIPRA) achieves up to a 98% throughput

improvement in the field over the indication and

prediction method currently used in off-the-shelf

cards.

The rest of this paper is organized as follows. Section 2

introduces the online Doppler shift estimation method

and discusses various channel quality indicators. Then, we

describe the framework of our proposed CIPRA algorithm

and compare its performance with conventional predic-

tion algorithms in Section 3. In Section 4, we introduce the

hardware setup for CIPRA evaluation and provide numer-

ical results in Section 5. Finally, we conclude our work in

Section 6.

2 Background and related work for channel

indication and prediction
In this section, we first introduce the channel fading

model used in this work. Then, we describe a Doppler

shift estimation method for our platform implementation.

Finally, in addition to the typical performance metrics

developed to indicate the channel quality, such as RSSI

and SNR, we study and analyze a more advanced channel

quality indicator: Effective SNR.

2.1 Channel characteristics

Wireless channel quality is often affected by changing

environments and interference. With the transmit sig-

nal power fixed, channel quality can be quantified by the

received signal quality. We use a Rayleigh fading chan-

nel model in the following analysis and simulation. The

normalized auto-correlation function, R(τ ), of a Rayleigh

fading channel with motion at a constant velocity is a

zeroth-order Bessel function of the first kind [24, 25]:

R(τ ) = J0(2π fdτ) (1)

Here, τ is the time delay, and fd is the maximum Doppler

shift. The auto-correlation functions of a Rayleigh fad-

ing channel with a maximum Doppler shift of 10 Hz and

20 Hz are shown in Fig. 1. This auto-correlation reflects

the statistical dependence between the channel gains at

different times, which is leveraged in the prediction.

2.2 Online doppler shift estimation

In this work, we introduce a Doppler shift estimation

method that we implement and evaluate on our hard-

ware platform. This method can be applied to our channel

prediction algorithm discussed in Section 3. In general,

Doppler shift estimation can leverage channel estimates,

LCR, a maximum likelihood function, or correlation func-

tion [26]. LCR-based Doppler shift estimation achieves

Fig. 1 Auto-correlation function of a Rayleigh fading channel with a maximum Doppler shift of 10 Hz
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a good balance between complexity and accuracy. For

Rayleigh fading channels, LCR is expressed as [27]:

LCR =
√
2π fdρe

−ρ2
(2)

Here, ρ is the threshold normalized to the root mean

square (RMS) signal level [27]. For a fixed Doppler shift,

the LCR achieves its maximum value, LCRmax, when ρ =√
0.5, and is given by

LCRmax =
√

πe−0.5fd (3)

In hardware, the received signal is also corrupted by

additive noise. The LCR resulting from the noise usu-

ally leads to over-estimation of the channel level-crossing

rate. In [28], an fast Fourier transform (FFT)-based

Doppler-adaptive noise suppression method is proposed

to remove the effect of additive noise on LCR-based

Doppler shift estimation. However, the FFT/IFFT pro-

cessing is computationally expensive, requiring approxi-

mately 34
9 N log2N real multiplications and additions for

an N-point FFT/IFFT [29]. In this paper, we create a

homogeneous-window method to avoid over-estimation

caused by the additive noise. The main steps to this

method are the following:

1 Pick a threshold value from a pre-defined threshold

set and compare the RSSI samples with this

threshold. If the RSSI value of sample i is greater
than the selected threshold for each indicator, ci = 1.

Otherwise, ci = 0, meaning that the RSSI is below

the selected threshold.

2 Apply a sliding time window τ to the results in step 1.

If ci == 1 for all the samples in window τ , we denote

the system state Si = 1. If ci == 0 for all the samples

in window τ , we denote the system state Si = −1.

Otherwise, Si = 0. For multiple adjacent system state

samples with the same value, only record one sample.

3 Calculate the derivative of the state vector recorded

in step 2 and count the number of transitions of the

derivative from negative to positive in one second,

denoted by n.
4 Repeat step 1 to step 3 for all the values in the

pre-defined threshold set, and finally, find the

maximum value of n.

To decide the time window τ , we jointly consider the

RSSI sample period and the Doppler shift range we want

to estimate. In the IEEE 802.11 standard, the RSSI is

reported every packet. For the maximum Doppler shift

range of 10 to 100 Hz, τ of 3 ms achieves a normalized

square error of 0.003 in our experiments using the chan-

nel emulator. Figure 2 shows the Doppler shift estimation

by using theWARP board and the channel emulator (both

are described in Section 5).

2.3 Channel quality indicators

2.3.1 RSSI: a poor channel indicator

Wireless channel quality is often affected by changing

environments and interference. With the transmit sig-

nal power fixed, channel quality can be evaluated by the

Fig. 2 Doppler shift estimation on WARP
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received signal quality. The most accessible channel qual-

ity indicator is RSSI [17]. RSSI is a relative value with

off-the-shelf devices in which vendors usually use arbi-

trary scales from 0 to maximum-RSSI, where maximum-

RSSI is vendor-specific. RSSI is often not associated with

any particular power scale and not required to be of any

particular accuracy or precision [30]. Hence, the received

signal strength numbers reported by a network inter-

face are inconsistent across vendors and should not be

assumed to be representative of a particular channel state.

We now carry out experiments to evaluate the reliabil-

ity of using RSSI as the channel indicator. We use one

WARP as the transmitter to send a signal with 10 MHz

bandwidth and - 62 dBm power and directly connect

it to another WARP receiver with a coaxial cable. The

reported RSSI values from our WARP receiver are shown

in Fig. 3. We can see that, even with the same transmit

power and channel state, the reported RSSI values can

vary as much as 14 dB. Even if we use a filter to reduce

the variance of the reported RSSI, other factors may also

greatly affect the RSSI-based channel quality prediction

accuracy. The general system architecture for the signal

path is shown in Fig. 4. Any error or interference gener-

ated by the components in group 1 may vastly affect the

received BER, but may not affect the RSSI value. Any error

or interference generated by the components in group 2

may affect the RSSI value, but may not significantly affect

the BER. Therefore, for different transmitter and receiver

pairs, system components internally have different perfor-

mances. The factors that might affect the channel quality

estimation accuracy using RSSI include the following:

1 Phase noise. With the same RSSI, there might be

different phase noises caused by the jitter of the

clocks on both the transmitter and the receiver,

leading to different values of BER. However, the phase

noise may not affect the received signal power level.

2 Amplifier non-linearity. For orthogonal

frequency-division (OFDM) systems, the

non-linearity of both the transmit amplifier and the

receive amplifier often cause inter-carrier

interference (ICI) [31]. ICI may not affect the RSSI,

but often affects the received BER performance.

3 RSSI signal noise. RSSI is measured in the transceiver

and output in the form of an analog signal, which

often suffers from noise and interference on the

board.

4 RSSI analog to digital converter (ADC) performance.

In a system, an ADC is typically used to convert the

RSSI signal from the analog to digital domain. The

noise on the board, the resolution of the ADC, and

the reference voltage stability of the ADC may all

affect the digitized RSSI value.

5 RSSI sample duration. In the IEEE 802.11 standard,

RSSI is calculated during the preamble of a PHY

frame. The limited duration of the preamble can not

guarantee an accurate RSSI estimate.

Considering all the effects listed above, with the same

received BER, the receivers often report different RSSI

values for different transmitter and receiver pairs. We

compare the RSSI values reported (shown in Fig. 5) from

two different receivers but with the same signal source

Fig. 3 Raw RSS values reported with the same transmit power and channel gain
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Fig. 4 Signal path from the transmitter to the receiver

and emulated channel. Even with the same received signal,

there is about 1.5-dB difference of reported RSSI between

receivers on average. As a result, the RSSI inconsistency

may severely handicap an optimal rate selection decision.

2.3.2 SNR: amore reliable channel indicator

Most of the soft decoders need the SNR or noise variance

to calculate the decision probabilities of the demodulated

signals. There are diverse SNR estimation methods for

OFDM systems. In [32], the author proposes iterative SNR

estimation based on pilot sub-carriers in an 802.11n sys-

tem. In [33], an algorithm based on finding the difference

between a noisy received sample in the frequency domain

and the best hypothesis of the noiseless sample is pro-

posed to estimate the SNR. In this work, we implement

an SNR estimation method based on the Schmidl-Cox

algorithm [34] because of its high accuracy and low com-

plexity. In addition, we use the IEEE 802.11 PHY frame

as the frame structure in this work, as shown in Fig. 6.

One frame is composed of a preamble, a header symbol,

and the number of OFDM symbols forming the data pay-

load. One preamble consists of one short preamble and

one long preamble [35]. In our design, we take advantage

of the known training symbols (two identical OFDM sym-

bols with a 1/2 symbol prefix) in the long preamble to

calculate the SNR of the received packet. A detailed calcu-

lation can be found in the Appendix 1. We show the SNR

distribution plotted in Fig. 7. The SNR has a mean value

of 16 dB, with a standard deviation of 0.91 dB. Compar-

ing the RSSI distribution which has a standard deviation

of 1.5 dB, we can show that SNR is more accurate than the

RSSI as the channel quality indicator.

Fig. 5 RSS values reported by different receivers (one shown above the other) with the same level of achieved BER
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Fig. 6 IEEE 802.11 PHY frame structure

2.3.3 Effective SNR: a robust channel indicator

Although the SNR estimation is more tightly bounded

and consistent with the channel state than the RSSI, a

frequency-selective fading channel may disturb the map-

ping from SNR to BER. However, in a multi-path chan-

nel, the frequency-selective characteristics may result in

a higher BER than a flat-fading channel with the same

SNR, which corresponds to a lower Effective SNR than

the actual SNR (demonstrated in Fig. 8). To solve this

problem, Halperin [14] proposed the Effective SNR met-

ric to improve the rate selection accuracy in multi-path

fading channels. Instead of averaging the SNR on all the

sub-carriers for SNR-based rate adaptation algorithms,

systems implementing the Effective SNR not only average

the BER on all the sub-carriers but also obtain an equiva-

lent SNRwith the same BER as narrow-band systems. This

process can be represented by [14, Eqs. (1) and (2)]:

BERe f f , k = 1

52

S
∑

s=1

BERk(ρs) (4)

ρe f f , k = BER−1
k

(BERe f f , k) (5)

Here, ρs is the SNR on sub-carrier s. Assuming the average

SNR is ρ and the channel gain on sub-carrier s is Hs, then

ρs can be calculated as ρs = ρ
|Hs|2

¯|H|2
, where ¯|H|2 is the mean

square of the channel gain across all the sub-carriers.

In an additive white Gaussian noise (AWGN) channel,

the relationship between SNR and BER varies among dif-

ferent modulations [14, 36], as shown in Table 1. In the

following discussion and experimental evaluation, we see

that Effective SNR outperforms the other channel indica-

tors due to its ability to capture both time-selective and

frequency-selective fading effects.

3 Design of CIPRA
In this section, we analyze different channel prediction

algorithms and propose an advanced algorithm to keep

the transmitter in step with the fluctuating channel qual-

ity. In order to improve prediction accuracy, we take into

account both the measurement error of the channel indi-

cator and the staleness of the channel quality reported by

the receiver.

3.1 Existing prediction methods

The wireless channel usually changes continuously and

randomly with time, which makes the implementa-

tion of accurate closed-form characterization challenging.

Nevertheless, a Rayleigh fading channel model is a good

Fig. 7 Distribution of estimated SNR
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Fig. 8 Different frequency-selective patterns with the same SNR value

approximation and agrees well with empirical observa-

tions for mobile communications [25]. In order to select

the optimal rate, the transmitter constantly needs the

channel quality measurement from the receiver. Prior

SNR-based protocols have frequently used the channel

quality measured from the last packet transmission to

the pertinent receiver [18]. Whether the last packet is a

probe packet from the RTS/CTS exchange or simply the

last data packet, these channel indicator measurements

are stale in fast-fading channels. There are several mech-

anisms to make full use of the previous channel quality

measurements for rate adaptation.

3.1.1 Follower

For this mechanism, the transmitter simply copies the

channel measurements from the last packet transmission

as the predicted value of the ongoing channel quality

[18]. In particular, Follower can simply be denoted as

γ̂n,follower = γn−1, where γ̂n,follower is the estimate of the

ongoing channel quality and γn−1 is the channel quality

measurement reported during the last packet transmis-

sion. This estimate has minimal complexity but suffers

Table 1 BER function with different modulations

Modulation BERk(ρ)

BPSK Q
(√

2ρ
)

QPSK Q
(√

ρ
)

16-QAM 3
4Q

(√

ρ
5

)

64-QAM 7
12Q

(√

ρ
21

)

from both measurement errors and staleness of the past

channel indicator values.

3.1.2 Moving Average

There are three main kinds of moving average methods:

simple moving average, linear weighted moving aver-

age (LWMA), and exponential weighted moving average

(EWMA) [23]. Simple moving average is the unweighted

mean of the previous points in a window size of w. The

estimated channel quality γ̂n,MA, is denoted as

γ̂n,MA = γn−1 + γn−2 + · · · + γn−w

w
(6)

Simple moving average method reduces the effect of

the measurement errors, while making the staleness effect

more serious than the Follower method.

For LWMA, weight factors are assigned to the past mea-

surements in a linear progression with a window size of w.

The estimated value γ̂n,LWMA, can be expressed as

γ̂n,LWMA = wγn−1 + (w − 1)γn−2 + · · · + γn−w

(w + 1)w/2
(7)

LWMA puts greater weight on more recent measure-

ments, which results in a balance between the prediction

staleness and the measurement errors.

For EWMA, the weight of the measurements decreases

by a factor of δ.

γ̂n,EWMA = δγn−1 + (1 − δ)γ̂n−1 (8)

EWMA reduces the number of previous measurements

to one and has less computational complexity.
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Each of the moving average methods reduces the effect

of the measurement errors but introduces more severe

staleness effect than the Follower method.

3.1.3 Linear prediction

By assuming that the channel quality indicator has a

constant first-order derivative across three adjacent trans-

missions [23], we can predict the ongoing channel quality

from the last two channel measurements.

γ̂n,linear = γn−1+�γ (tn−tn−1), �γ = γn−1 − γn−2

tn−1 − tn−2

(9)

Here, γn−1 and γn−2 are the channel measurements at

time tn−1 and tn−2, respectively. This method is more

robust to the prediction staleness. However, the errors of

the past measurements maymake�γ twice as noisy, lead-

ing to a prediction with an intolerable noise level in some

cases.

3.2 Coherence-aware MMSE first-order prediction

Our previous discussion reveals that some of the meth-

ods are more robust to the measurement errors, while

others are more robust to the prediction staleness. For a

good prediction, both the measurement errors and stale-

ness should be considered. In this section, we propose a

coherence-aware MMSE first-order prediction.

In Section 2.1, we introduced the Rayleigh fading model

and its auto-correlation.When conducting the prediction,

we need the previous measurements within a time win-

dow T. From Fig. 1, we see differing dependence between

measurements with the samemaximumDoppler shift and

differing time delay, or with the same time delay and dif-

fering maximum Doppler shift. Thus, when selecting the

time window T, we should take the Doppler shift into

account. We can denote T as T = β
fd
, where fd is the

Doppler shift that can be estimated by themethod we pro-

posed in Section 2. β is a constant factor. In our simulation

and experiments, we select β = 0.064, which empirically

achieves the highest prediction fidelity.

Assuming that within the time window T, there are

w channel measurements γn−1, γn−2, · · · , γn−w at time

tn−1, tn−2, · · · , tn−w, respectively. From all the measure-

ments within the window, we perform a linear regres-

sion first-order curve fit with the constraint of minimum

square errors. To do so, we first assume the objective first

order curve is f (t) = at+b, where a and b are parameters

to be calculated. Then, we have

γ ′n−i = f (tn−i) = atn−i + b i = 1, 2, · · · ,w (10)

The detailed process of computing a and b in (10) can be

found in the Appendix 2.

We know that the fading channel does not strictly main-

tain a constant first-order derivative, especially for long

intervals between packets. In a more extreme case, if the

interval between the last packet and the ongoing packet

exceeds a certain value, the prediction may be uncor-

related with the real channel quality. Considering this

interval, we use a weighting factor δ to weight the pre-

prediction and the channel quality with the maximum

probability. Consequently, the estimated channel quality

γ̂n is:

γ̂n = δ(tn − tn−1) · γ̂n′ + (1 − δ(tn − tn−1)) · γ̄ (11)

where

δ(t) =
{

1 − t · fd if t < 1
fd

0 otherwise
(12)

In (12), fd is the maximum Doppler shift, and γ̄ is the

channel quality that has the greatest statistical proba-

bility of occurrence. For computational simplicity, we

approximate γ̄ as the mean value of the channel quality

measurements during the last 10 s.

Note that within the time window T, there is the prob-

ability of w ≤ 2. When w = 2, our algorithm turns out to

be the Linear prediction. Similarly, ifw = 1, our algorithm

matches the Follower mechanism. For the case of w = 0,

we choose the maximum probability channel quality γ̄ as

our prediction.

In Fig. 9, we show the result of the MMSE first-order

channel quality prediction. There is a -15 dBmeasurement

error compared to the channel quality. The reconstructed

channel response approaches the theoretical curve well.

The square errors of the prediction is about -38 dB com-

pared to the theoretical one, which means a -23 dB

accuracy gain.

In order to evaluate the prediction performance of our

proposed algorithm under various time intervals between

packets, we control the delay between the data packets

decoded for channel estimation and the channel feedback

packets received by the transmitter. We use a Rayleigh

fading channel model to compare our proposed algo-

rithm with three other mechanisms (Follower, EWMA,

and Linear prediction), as shown in Fig. 10. We set a

Doppler shift of 10 Hz and set the channel measurement

error to -20 dB compared to the average channel qual-

ity. We can see that the prediction performances based

on the time interval seem to follow the same pattern for

all prediction algorithms: the prediction error increases

as the time interval increases, as shown in Fig. 10a. Our

evaluation shows that CIPRA presents the least predic-

tion error of all prediction algorithms. Although similar

patterns can be found at both over-selection probability,

under-selection probability, and wrong selection proba-

bility, as shown in Fig. 10b, c, and d, it is interesting to

note that the performance of CIPRA becomes identical to

that of Linear prediction at a time interval above 3.6 ms.

Considering that the MAC layer design in current and
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Fig. 9 Channel quality reconstruction using MMSE first-order prediction

Fig. 10 a–d Channel quality prediction performances comparison
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Fig. 11 Channel emulator based evaluation system

future IEEE 802.11 standards requires only smaller time

interval between packets, we predict that the impact of

CIPRA will only increase with the development of higher

frequency band protocols such as those with millimeter

wavelengths and smaller timing parameters. For exam-

ple, a minimum interval between transmission packets,

called Short Inter Frame Space (SIFS), has shortened from

28 µs in IEEE 802.11-1997 to 16 µs in IEEE 802.11n to

3 µs in WiGig/IEEE 802.11ad. Moreover, many timing

parameters of the backoff process for the carrier sense and

channel access are also reduced.

Table 2 Throughput with different combinations of channel

indicator and prediction methods

Doppler Channel Throughput (Mbps)

shift indicator Follower EWMA Linear CIPRA

1 Hz RSSI 12.59 13.41 10.88 13.88

SNR 13.34 13.91 11.83 14.41

Eff. SNR 14.19 14.55 14.05 15.06

2 Hz RSSI 11.87 12.53 10.84 13.65

SNR 12.98 13.28 11.89 14.26

Eff. SNR 14.16 14.41 14.18 14.95

5 Hz RSSI 11.05 11.47 10.62 13.12

SNR 11.91 12.55 11.85 13.80

Eff. SNR 13.76 13.85 13.68 14.52

10 Hz RSSI 10.83 11.19 10.10 12.75

SNR 11.87 12.46 11.20 13.31

Eff. SNR 13.56 13.66 13.75 14.39

The computational complexity of the proposed algo-

rithm is higher than the other algorithms discussed above.

However, it takes less than 1 µs on the PowerPC embed-

ded onWARP (we use an 80-MHz clock frequency for the

PowerPC), which is much less than the DIFS/SIFS time of

the transmission. As a result, it does not affect the system

throughput.

4 Hardware setup
In this section, we describe the implementation of

our CIPRA algorithm on the WARP board, a fully-

customized, cross-layer software-defined radio (SDR)

platform. Moreover, we use the Azimuth ACE-MX chan-

nel emulator to generate controllable channel effects,

which allows repeatability of wireless channels over which

to test diverse protocols.

4.1 WARP

The experiments are carried out using the WARP board,

a useful wireless communication system supporting a

fully-customized, cross-layer design [11]. We conduct our

experimental evaluation based on a full OFDM physical

layer design per the IEEE 802.11 PHY frame structure.

The design operates in real-time, transmitting and receiv-

ing wide-band signals. We implement complete real-time

signal processing, synchronization, and control systems in

the fabric of the FPGA onWARP.1

1While existing OFDM-based models have existed on the WARP repository
(http://warp.rice.edu), they use System Generator to create the design,
whereas our design is completely based upon Verilog HDL for system control
and efficiency of compilation and real-time operation.

http://warp.rice.edu
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Fig. 12 The eighth floor layout of SMU Expressway Tower

4.2 Channel emulator

In addition to the practical in-field wireless channels, we

use the Azimuth ACE-MX channel emulator to generate

repeatable and controllable channel effects, which iso-

lates the impact of interference and approximates well

complex over-the-air channels. Figure 11 illustrates our

experimental setup. We use one WARP as the transmitter

and another WARP as the receiver. We connect the trans-
mitter and the receiver with RF cabling to the channel

emulator. The transmitter sends data packets periodically
to the receiver. The receiver measures the channel and
feeds the channel indicator back to the transmitter with
ACK packets following controllable time interval.

In our evaluation with the channel emulator, we set the

packet size to 1536 bytes. We use a two-tap Rayleigh fad-

ing channel with an average SNR of 15 dB. Both taps have

a 0-dB relative attenuation, and the time delay between

the taps is 0.5 µs. The resulting throughput is shown in

Table 2 and indicates that Effective SNR performs best

among all three channel indicators. The EWMA method

performs better with less of a Doppler shift because there

is less staleness when the Doppler shift is low. With

an increasing Doppler shift, the linear method becomes

comparatively better because of the increasing staleness of

Follower and EWMA. SNR-based rate adaptation mech-

anisms on off-the-shelf devices use the RSSI metric and

Follower prediction. Thus, with a Doppler shift of 10 Hz,

CIPRA achieves a throughput improvement of 18% over

the off-the-shelf configuration. If further combined with

the advanced effective SNR, a total improvement of 33%

could be achieved over the off-the-shelf method. Later, we

show that in-field experimental results exceed these gains

as the channels become more complex.

5 Experimental evaluation and discussion
In this section, we implement the existing channel pre-

diction algorithm and the proposed algorithm on WARP

and experimentally compare them in terms of system

Fig. 13 The indoor experiment result
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Fig. 14 The experimental environment outside of SMU Expressway Tower

throughput through both indoor pedestrian experiments

and outdoor vehicular experiments.

5.1 Indoor pedestrian test

We conduct our indoor experiment on the eighth floor of

the SMU Expressway Tower (floor plan shown in Fig. 12).

Before evaluating the performance of our proposed algo-

rithm with other mechanisms, we take actions to reduce

the ambient interference power in our selected measure-

ment locations by disabling or shielding interfering WiFi

access points. Yet, the interference cannot be fully elim-

inated due to the existence of institutional WiFi access

points that are beyond our control. We set up two

transmitter/receiver pairs, which are operating indepen-

dently, but simultaneously. Two transceivers use orthogo-

nal channels: 2484 MHz (Ch. 14) and 2462 MHz (Ch. 11),

respectively. For each experiment, we run CIPRA on a

tx/rx pair, and one of the other three methods on the

other tx/rx pair. We use RSSI with all four prediction

methods to measure the throughput. We also provide

additional experiments combining CIPRA and effective

SNR to obtain the throughput. We co-locate the transmit

antennas and co-locate the receive antennas to ensure the

two links have very similar channels. For each compari-

son, we flip the links back and forth for each experimental

trial to remove any unfair advantage between the two

channels. The transmitters are located on the table in the

lab, and we select four office rooms to put the mobile

receivers, as shown in Fig. 12. We randomly move the

receiver nodes in each office to create time-varying chan-

nels.We show the average throughput of the fourmethods

on the four different locations in Fig. 13. CIPRA greatly

outperforms other methods at all four locations with up

to a 66% throughput improvement, with an improved pre-

diction algorithm from the currently one used in practice.

When further combined with the advanced Effective SNR,

a maximum improvement of 98% could be achieved over

the off-the-shelf method, nearly doubling the achieved

throughput. In addition, compared with the experimental

results using channel emulator, our evaluation demon-

strates the performance improvement of CIPRA in real

environments even with the impact of interference.

5.2 Outdoor vehicular test

In addition to lab experiments, we also conduct in-field

experiments to show the throughput improvement pro-

vided by our algorithm for in situ highly mobile scenarios.

We perform outdoor experiments in the parking lot of the

SMU Expressway Tower (shown in Fig. 14). The transmit-

ter and receiver settings are the same as with the indoor

experiments. We place the transmitters in the entrance

of the tower and the receivers in a car with the anten-

nas mounted on the roof. We drive the car along the path

shown in Fig. 14, with an average speed of 32 km/h. We

also switch the channels of the two tx/rx pairs to remove

the unfairness of different channels for each comparison.

We show the average throughput of the four methods in

Table 3. Due to a higher Doppler shift in the vehicular

environment, the Linear method has improved perfor-

mance. CIPRA also outperforms the three other methods

with up to 50% of the throughput improvement. When

Table 3 Throughput result for outdoor experiment

Follower EWMA Linear CIPRA CIPRA & eSNR

3.07 Mbps 3.52 Mbps 3.95 Mbps 4.83 Mbps 5.12 Mbps
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Fig. 15 Throughput comparison between CIPRA and Minstrel

further combined with Effective SNR, a total improve-

ment of 67% could be achieved over the off-the-shelf

method.

5.3 Throughput comparison between CIPRA andMinstrel

Minstrel is reported to be one of the best rate adaptation

methods based on packet loss/success [37]. We imple-

mented Minstrel according to the specifications in [37]

and evaluated the throughput ofMinstrel and CIPRAwith

the same experimental settings as in Section 4.2. We use

SNR as the channel indicator for CIPRA and train the

CIPRA rate adaptation threshold with a Doppler shift

of 10 Hz, corresponding to a walking velocity for WiFi

2.4 GHz band. The Doppler shift can be approximately by

fd = vfc

c
(13)

Here, v is velocity and c is the light speed. Then, we apply

the same SNR threshold in all the different Doppler shift

cases for CIPRA. We show the throughput of CIPRA and

Minstrel in Fig. 15. We can see that, with a very low

Doppler shift, CIPRA and Minstrel have similar through-

put. However, as the Doppler shift increases, Minstrel

degrades faster than CIPRA. This is explained by the long

statistical time that composes rate decisions in Minstrel

that prevent it from adapting as quickly to fast-fading

channels.

6 Conclusion
In this paper, we proposed a coherence-aware MMSE

first-order prediction algorithm (CIPRA), which consid-

ered both the measurement inaccuracy and staleness.

Prediction intervals and channel coherence time were

jointly considered to select the optimal prediction win-

dow. We also implemented a Doppler shift estimation

method to assist our prediction algorithm. We compared

CIPRA to the traditional channel quality prediction for

rate adaptation protocols, performing experiments on an

FPGA-based platform over emulated and in-field wire-

less channels. We showed that our proposed algorithm

can provide better prediction fidelity and results in nearly

double the throughput versus the current configuration in

off-the-shelf devices in the field. Lastly, we estimated that

the benefits brought by CIPRA will only increase with the

development of next-generation protocols such as those

with higher frequencies and higher packet rate.

Appendix 1
This appendix presents the SNR computation for IEEE

802.11 OFDM systems. As shown in Fig. 6, the long

preamble is composed of two identical OFDM symbols

with a 1/2 symbol prefix. Denote the OFDM symbol in

the long preamble as X(k), k = 0, 1, ...,K − 1, where k

is the sample index in the time domain of one symbol.
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According to the frame structure specified in [35], the

long preamble S(n) can be expressed as

S(n) = X

((

n + K

2

)

mod(K)

)

, n = 0, 1, ...,
5

2
K −1

(14)

where n is the sample index in the long preamble.

We assume this signal passes through a multi-path

channel with a time spread of L, 0 ≤ L ≤ K
4 . Moreover, we

make the assumption that the channel remains constant

during one frame slot. Then, the received signal Y (n) with

additive white Gaussian noise is

Y (n) =
L−1
∑

l=0

S(n − l)h(l) + Z(n)

=
L−1
∑

l=0

X

((

n − l + K

2

)

mod(K)

)

h(l) + Z(n)

(15)

where n = 0, 1, ..., 52K+l−2. It is then straightforward that

Y (n + K) =
L−1
∑

l=0

X

((

n − l + 3K

2

)

mod(K))h(l

)

+ Z(n + K)

=
L−1
∑

l=0

X

((

n − l + K

2

)

mod(K)

)

h(l)

+ Z(n + K)

= Y (n) + Z(n + K) − Z(n) (16)

We then compute the cross-correlation between the last

symbol and the first symbol as

Ps = 1

K

3
2K−1
∑

n= K
2

Y ∗(n)Y (n + K)

= 1

K

3
2K−1
∑

n= K
2

(

|Y (n)|2 + Y ∗(n)(Z(n + K) − Z(n))
)

(17)

Because Y (n) and Z(n) are uncorrelated, we have

E(Ps) = E

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3
2K−1
∑

n= K
2

(Y ∗(n)(Z(n + K) − Z(n))

K

+|Y (n)|2
)

⎤

⎥

⎦

= 1

K

3
2K−1
∑

n= K
2

E
(

|Y (n)|2
)

(18)

We then compute the auto-correlation on the first

symbol as

Pt = 1

K

3
2K−1
∑

n= K
2

Y ∗(n)Y (n)

= 1

K

3
2K−1
∑

n= K
2

(|Y (n)|2 + 2Y ∗(n)Z(n) + |Z(n)|2) (19)

Since Y (n) and Z(n) are uncorrelated, we have

E(Pt) = E

⎡

⎢

⎣

1

K

3
2K−1
∑

n= K
2

(

|Y (n)|2 + 2Y ∗(n)Z(n)

+ |Z(n)|2
)

]

= 1

K

3
2K−1
∑

n= K
2

E
(

|Y (n)|2 + |Z(n)|2
)

(20)

Then, Ps is the estimated signal power, and Pt is the esti-

mated total power. The noise variance will be Pt−Ps. Also,

we can calculate the SNR as SNR= Ps
Pt−Ps

.

Appendix 2
We provide the parameter computation for the first-order

SNR prediction. The sum of the square errors between the

samples on the curve γ ′n−i and the actual measurements

γn−i are

E =
w

∑

i=1

(γ ′n−i − γn−i)
2 (21)
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Our objective is to find the value of a and b when E

achieves its minimum value. We can expand (21) as

E =
w

∑

i=1

(

a2t2n−i + 2a(b − γn−i)tn−i + (b − γn−i)
2
)

= a2
w

∑

i=1

t2n−i + 2ab

w
∑

i=1

tn−i − 2a

w
∑

i=1

γn−itn−i

− 2b

w
∑

i=1

γn−i +
w

∑

i=1

γ 2
n−i +

w
∑

i=1

b2

(22)

Let us use the following notation for ease of expres-

sion: α1 =
∑w

i=1 t
2
n−i,α2 =

∑w
i=1 tn−i,α3 =

∑w
i=1 γn−itn−i,α4 =

∑w
i=1 γn−i,α5 = γ 2

n−i,α6 = w. Then,

we can simply express (22) as

E = α1a
2 + 2α2ab − 2α3a − 2α4b + α5 + α6b

2 (23)

To find the minimum value of E, we take its derivative

in terms of a and b, respectively. Then, we force both the

derivatives to 0 to obtain the following pair of equations:

{

α1a + α2b − α3 = 0

α2a + α6b − α4 = 0
(24)

From (22), we know that E ≥ 0 for all a and b, which

means that there exists a minimum value of E. From (22),

we can see that E is a convex function of a or b. As a

result, the solution of a and b in the above equation pairs

will enable E to achieve its minimum value. With a and b

obtained, we can obtain our pre-estimate of γ̂n′ as

γ̂n′ = f (tn) = atn + b (25)
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