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ABSTRACT 

A modal analysis procedure is used to 
model suspended compressors and their exci­
tation forces. The modal method evaluates 
the dynamic spring forces, modal spring 
forces, and modal forcing function to 
determine the effects of a change in 
suspension configuration on transmitted 
spring forces. Valuable design insight is 
gained since the modal parameters explain 
the behavior of suspension systems during 
steady state compressor motion concisely. 
Also, many suspension configuration~ can be 
analyzed due to the cost effectiveness of 
the modal procedure. A parameter study is 
done to illustrate an application of the 
procedure. 

NOMENCLATURE 

(C] 

D .. 
lJ 

= unknown coefficients determined by 
initial conditions 

= 6 x 6 damping matrix 

= absolute difference between max­
imum and minimum spring force in 
direction i during cycle j for new 
spring configuration 

= same as D .. for reference spring 
configuratibrt 

6 x l harmonic force vector 

3 x l spring force vector 

identity matrix 

[K) 6 x 6 stiffness matrix 

(M] 

N 

NC 

[P J 

(P'J 

(S] 

{X} 

n 

{p} 

{p} 

{q} 

{s} 

41. 
1. 

6 x 6 inertial matrix 

3 x 1 spring moment vector 

~ modal spring force 

number of springs 

number of cycles 

eigenvector matrix normalized with 
respect to [M) 

= eigenvector matrix 

~ 6 x 6 equivalent stiffness matrix 
for a spring 

6 x 1 displacement vector 

numbe~ of evaluation points 

= normalized eigenvector 

eigenvector 

~ 6 x l modal displacement vector 

stiffness vector, a column in the 
symmetric [S] matrix 

forcing function frequency 

ith natural frequency 

phase angle between the first and 
ith forcing function 

P = criteria function 

[I\] = 6 x 6 diagonal matrix containing 
the square of the natural frequen­
cies 

(f) - modal force vector 

rMs - modal criteria function 

* work was performed while a Graduate Research Assistant at Ray 
W. Herrick Laboratories, Purdue University. 
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INTRODUCTION 

The compressor suspension configura­
tion has a significant effect on transmit­
ted spring forces and compressor vibration 
as discussed by Kjeldsen and Madsen [1]. 
Time integration models, which accurately 
predict steady state compressor motion, can 
be used to redesign compressor suspension 
systems by a trial and error procedure 
[2,3]. However, the time integration 
models are expensive in terms of computer 
resources and offer little design insight. 
In this paper, a modal model is developed 
and then studied for its feasibility as a 
model of the forced suspended body problem. 

MODAL MODEL 

To develop the modal model, the equa­
tions of motion of the suspended compres­
sor, shown in Fig. 1, are first obtained 
and then decoupled by application of modal 
principles [4]. The equations of motion 
are derived from Hamilton's experimentally 
verified time integration model [2]. 
Assuming that the compressor behaves as a 
rigid body, the six equations of motion in 
matrix form are 

[M]{X } + [C]{X} + [K]{X} ~ {F} • ( 1) 

Although the damping matrix can be used, 
the modal model devloped in this paper 
assumes negligible damping such that Eq. 
(1) is simplified to 

[M]{X } + [K]{X} ~ {F} 

The system stiffness matrix [K] is 
written as 

N 
[K]- I: [S]i 

i~l 

(2) 

(3) 

where [S). is the equivalent spring stiff­
ness matrix for spring i at the 
compressor's center of gravity and N is the 
number of springs. The stiffness proper­
ties of the discharge tube are approximated 
as a spring by the finite element method 
[3). The spring forces and moments at the 
compressor's center of gravity due to each 
spring are 

[ 
{F } . ] 
{M:< = [S]i{X} i=l, ... ,N. (4) 

Complete methods for determining [M], [K], 
and {F} are given by Hamilton [2). 

To Qecouple Eq. (2), the eigenvector 
matrix [P) is first normalized with respect 
to [M] by normalizing each eigenvector {p}. 

l 

i=l, ... ,6. (5) 
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Next, the modal principles are applied to 
Eq. (2). Substituting 

{X} - [P) {q} , (6) 

where (q} is the modal displacement vector, 
produces the equation 

[M)[P]{q} + [K)[P){q} ~ {F}. (7) 

Multiplying Eq. (7) by [P]T yields 

[P]T[M][P){q.} + [P]T[K)[P){q} ~ [P]T{F}. 

(8) 

The identities 

(9) 

and 

[P)T[K][P] - [A] (10) 

are used to reduce Eq. (8) to 

[I){q } + [A]{q} ~ {f} (11) 

where 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 
[A] 

2 (12) 
0 0 w4 0 0 0 

0 0 0 0 w2 
5 0 

0 0 0 0 2 
w6 0 

and {f} is the modal force vector. The six 
decoupled governing equations of motion c~ 
now be solved individually. 

When the components of the forcing 
function are in phase sine functions as 
shown in Fig. 2, the general solution for 
Eq. (11) is 

fi(sinwDRt + Cfli) 

2 2 + Aisinwit + Bicoswit. 
wi-wDR 

A. and B,, which are dependent on the 
cOmpressBr's free response and initial con­
ditions, are assumed to be negligible com­
pared to fiat steady state. Also, this 
assumption simplifies the model if initial 
conditions are not known. Thus, Eq. (13) 
is reduced to 



r. 
l. 

i"'l, ... , 6 (14) 

When the forcing function is complex 
as shown in Figs. 3 and 4, Eq. (14) may be 
evaluate~ by setting ri as the summation of 
the FourJ.er components of the ith modal 
forcing function. A simpler and reasonably 
correct alternative is to evaluate the 
modal forcing function at various times 
during one cycle of the harmonic forcing 
function. With the simpler approach, 
enough points are used to insure that the 
combinations of forces and moments which 
result in the worst spring force case are 

~~;~!~~~~dsT~~ ~~~i!~i~er~fi~h!qit~1~~dal 
forcing function at the evaluation step j. 
This solution technique is written as 

q rij i=l, ... ,6 (lS) 
ij = w2 2 j"'l, ... ,n 

i - WDR 

where n equals the number of evaluation 
points in one cycle of the harmonic forcing 
function. The choice of n is arbitrary and 
the points need not be uniformly distri­
buted over one cycle. 

With {q} evaluated, the spring forces 
and moments for each spring are found by 
substituting Eq. (6) into Eq. (4) 

[
{Fs}iJ · 
{Ms}i = [S]i[P){q} i-l, ... ,N .(16) 

Only the spring forces, {Fs}i' are dis­
cussed in this paper. 

CRITERIA FUNCTION 

Because A and B. were assumed to be 
negligible in ~q. (13t, q will not be 
exact, and the spring for!es obtained with 
the modal model will not correspond exactly 
with the spring forces obtained with the 
time integration model. Hence, monitoring 
the maximum spring forces for various 
spring configurations will not produce 
exact correlation between the two models. 

However, the modal model does accu­
rately predict the average dynamic spring 
forces at steady state. A criteria func­
tion, Pi' which computes a statistical 
average of the ratios of the dynamic spring 
forces for two spring configurations can be 
developed such that 

~c' Dij 

j=l Eij 
NC 

i=l, ... , 3 
j"'l, ... ,NC (17) 

where NC equals the number of cycles. For 
the modal model, NC equals one. For the 
time integration model, the value of NC is 
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arbitrary. In Eq. (17), D .. is the abso­
lute difference between ma!imum and minimum 
spring force in direction i during cycle j 
for a new spring config.uration. E .. is the 
sam~ as Di 1 .evalu~ted for the refel~nce 
sprJ.ng cofitJ.guratJ.on. 

VERIFICATION OF MODAL MODEL 

To determine the accuracy of the modal 
model, the P values obtained with the'modal 
model are compared to those obtained with 
Hamilton's experimentally verified ttme 
integration model. Three spring configura­
tions, shown in Figs. 5 and 6, are used for 
the verification procedure. Spring 
configuration A, the original spring confi­
guration, is taken to be the reference con­
figuration for the P calculations in Eq. 
(17). In configuration B, the springs are 
located such that the compressor's center 
of gravity coincides with the center 1 of the 
area formed by the suspension springs in 
the x-y plane. configuration C is the same 
as B except that the spring mounting points 
are now on the compressor's center of grav­
ity plane. The position of the discharge 
tube is not changed for any of the confi­
gurations studied. 

To analyze the effects of different 
forcing functions on the accuracy of the 
modal model, two test cases are used. The 
first test case involves a simple forcing 
function as shown in Fig. 2, and the second 
test case consists of a complicated forcing 
function as shown in Figs. 3 and 4. 

Case l 

For case 1, the shaking forces are 
idealized such that 

(18) 

and F and M are as shown in Fig. 2. 
Tabley2 list~ the P values for spring con­
figurations B and C where the theoretical R 
values are obtained with the modal model 
and the actual P values are obtained with 
the time integration model. As sho~n in 
Table 2, the correlation between theoreti­
cal and actual R values is excellent. For 
configuration C, which is a significant 
change in the suspension system, the error 
between the theoretical and actual P values 
ranges from 0% to only 1.6%. 

Case 2 

For case 2, the force vector includes 
the shaking forces, shaking moments, and 
gyroscopic moments associated with the 
compressor. Fig. 3 shows the harmonic 
forces normalized with respect to the mag­
nitude of F , and Fig. 4 shows the harmonic 
moments nor~alized with respect to the mag­
nitude of Mx. 



The P values listed in Table 2 show that the correlation between theoretical 
and actual values is not as accurate as for 
case 1. However, the results are still 
acceptable as an indicator of the changes 
in spring forces. For example, the 
theoretical and actual P values for confi­guration C indicate thatYthe largest per­
centage of reduction in spring force occurs 
for the y spring force for all four 
springs. 

Tables 1 and 2 show the importance of 
an accurate forcing function. The S values obtained with the simple forcing function 
are not the same as the values evaluated 
with the complex forcing function. Thus, 
to correctly analyze a suspension confi­
guration, a reasonable approximation of the 
forcing function should be used. For the 
remaining analysis, only the complicated 
forcing function (case 2) is utilized. 

PARAMETER STUDY 

Parameter studies can be efficiently 
done with the modal model. To illustrate a 
parameter study, the effects of the spring 
mounting plane on the spring forces for 
spring 2 are analyzed. The S values in Fig. 7 indicate that the springs should be 
mounted at the compressor's center of grav­
ity plane to obtain the minimum value of Px 
and S for spring 2. As shown in Figs. 1 and 5r the original spring mounting plane 
is below the compressor's center of grav­
ity. The results in Fig. 7 agree with the 
work done by Kjeldsen and Madsen [1) on 
reduction of compressor vibrations. Kjeld­
sen and Madsen concluded that in order to 
minimize horizontal spring displacements 
the spring mounts and the cylinder axis 
should be on opposite sides of the 
compressor's center of gravity plane. 

Fig. 7 also reveals that a variation 
in the z location of the spring mounting 
plane has little or no effect on the 
transmitted spring force in the z direc­
tion. This result agrees with Kjeldsen and 
Madsen's findings that the vertical loca­
tion of the spring mounting plane does not effect the vertical displacements of the springs. 
DESIGN ANALYSIS 

The modal model is a simplif1ed simu­
lation of the compressor suspension and can 
be used to obtain insight for the design of 
compressor suspension systems. To deter­
mine how a suspension configuration effects 
transmitted spring forces, the following 
three terms are monitored; 

1. magnitude of the modal forcing 
function, r 

2. modal spring force, MS and 

3. modal criteria function, rMs. 

r shows the extent of excitation of a mode by the forcing function {F}. From Eqs. (8) 
and (11), (r) which is the absolute larg­est value of ~he jth modal forcing function 
can be expressed as 

(19) 

where {p}. is the jth eigenvector. MS 
indicatesJthe effect of a mode shape on a 
spring force. From Eq. (16), the spring 
forces for one spring are 

[ ~::~ ] = [S) [P) {q}. (20) 

In terms of the modal spring force matrix 
[MS), Eq. ( 20) becomes 

r {F s} 1 l {Ms} = [MS]{q} (21) 

where 

[MS] =- [S] [P] (22) 

and {q} is defined in Eq. (15). A modal 
spring force in force direction i due to 
mode j is 

i ... l, ... ,6 (23) 
j=l, ... ,6 

where {s}. is the ith column in the sym­
metric stiffness matrix [S]. The modal 
criteria function is the product of r and MS and is expressed as 

crMs)
1
.j = cr> (MS) .. i=l, ... , 6 . (24) j 1) j~l, ... ,6 

The modal criteria function indicates the 
combined effects of the driving force and mode shape on the spring force. 

For a typical design procedure, the 
direction of important spring force is 
determined first. Next, the critical modes 
for each configuration are determined and 
the rMs values corresponding to the criti­cal modes are compared. To illustrate this 
procedure, the spring force in the y direc­
tion for spring 2 is analyzed. Table 3 
lists the corresponding r, MS, and rMS 
values. Also, Table 4 lists the {s}. and 
{p}. vectors for a selected mode for 1each 
configuration. . 

The critical modes are the modes with 
the large rMs values. For configuration A, mode 6 is the critical mode as evident by 
the large rMs value. Mode 5 is the criti­cal mode for configuration B. Although 
there are no dominant modes for configura­
tion c, modes l, 2, 3, and 6 are considered 
to be the critical modes. 

Mode 5 for configuration B and mode 6 
for configuration A are suspected to have 
similar characteristics because the r, MS, 
and rMs values for the two modes are simi­lar. Table 4 shows that both {p} 6 for con-
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figuration A and {p} 5 for configuration B 
have the largest displacement in the y 
direction and the largest rotation in the x 
direction. Also, the stiffness vectors 
{s} 2 for both configurations are similar. 

The lack of reduction in fMS values of 
the critical modes between configuration A 
and configuration B indicates that the y 
spring force is not reduced with configura­
tion B. As shown in Figs. (3) and (4), the 
largest force is F and the largest moment 
is Mx. For config~ration B, the mode shape 
{~} 5 h~s the largest displacement in they 
d1rect1on and the largest rotation in the x 
direction. Thus, mode 5 is strongly 
e~cited by the forcing function {F) because 
the directions of the largest forces coin­
cide with the largest displacements of the 
mode shape. 

With configuration C, the effect of 
mode 4 on the spring force has been minim­
ized although r for mode 4 has not 
decreased significantly in comparison to r 
for mode 6 in configuration A. As shown in 
Table 4, mode 4 for configuration C, {p} 4 , 
has the largest displacement in the y 
direction and the largest rotation in the x 
direction. Thus, mode 4 is strongly 
excited by the forcing function {F} as dis­
cussed earlier. However, the large r is 
counteracted by a substantial reduction in 
MS. By moving the spring mounting plane up 
to the compressor's center of gravity, the 
stiffness term corresponding to a rotation 
around the x axis has been eliminated in 
{s}

2
. Hence, moments about the x axis do 

not result in a large transmitted spring 
force in the y direction for configuration 
c. 

For configuration C, the fMS values 
for the critical modes have decreased by at 
least 75% in comparison with the largest 
fMS value for configuration A. The large 
reduction indicates that configuration C 
improves the y spring force for spring 2. 
The modal analysis correlates with the 
theoretical Py of 0.303 evaluated for con­
figuration C. 

The modal analysis shows that in order 
to reduce spring forces fMS has to decrease 
by a reduction in either r and/or MS. To 
reducer, the suspension configuration 
should be designed such that the modes are 
not excited by the forcing function {F}. 
To reduce MS, the stiffness properties in 
the directions corresponding to large modal 
displacements should be minimized. 
Although it may not be possible to elim­
inate the effects of critical modes, it is 
possible to understand and possibly minim­
ize the effects of critical modes by appli­
cation of fundamental modal analysis prin­
ciples [5]. 
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CONCLUSIONS 

The studies done in this paper show 
that the modal model is an accurate method 
for steady state analysis of suspension 
configurations. The modal model also 
reduces the computer costs associated with 
the time integration model by 80%. With 
the modal information, insight is gained 
for the improvement of suspension confi­
gurations. Also, the modal model ie,more 
general than previous design models [1] 
because the modal model can include all of 
the excitation forces associated with the 
compressor. Thus, the modal model has pro­
ven to be an efficient design tool. 
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Table 1. /3 values for spring configurations B and C (case 1). 

Configuration B I Configuration C I 
Theoretical I Actual I Theoretical I Actual I 

Spring 11 
flx I 1. 375 1.400 4.760 4.836 

fly I 0.995 0.996 0.466 0.468 
I 

flz 

21 

0.923 0.920 0.900 0.898 

Spring 
px 1. 375 1.400 4.760 4.836 

fl I 0.995 0.996 0.472 0.474 y I 
pz I 0.923 0.922 0.901 0.899 

Spring 3 
flx 0.834 0.837 0.353 0.354 

fly 0.994 0.996 0.472 0.474 

flz 0.697 0.696 0.679 0.679 

Spring 
41 px 0.834 0.837 0.353 0.354 

fl I 0.995 0.997 0.466 0.469 y 
flz I 0.702 0.701 0.684 0.684 

Table 2. fl values for spring configurations Band C (case 2). 

I I Configuration B I Configuration C I 
I I Theoretical! Actual I Theoretical I Actual I 
I I I I 

I I 
I 

Spring 11 I I I 
I 

I I I flx I 0.955 I 0.940 0.454 0.576 
I fl 0.989 I 0.980 0.327 0.263 I 

I y I I I I flz I 0.935 0.917 I 0.921 0.872 I I I I I 
I Spring 2j I I I flx I 0.955 I 0.940 I 0.454 0.576 I I fly 0.99l 0.981 0.303 0.2l2 

I I I 
I I flz 0.934 I 0.922 0.920 0.881 I I 

31 I 
I 

I I spring I 
I px 1.013 1. 039 I 1. 747 1. 794 
I fly I 0.989 I 0.981 I 0.303 0.212 I 
I I I I I I flz I 0.746 

I 
0.723 I 0.735 0.688 I 

I 
41 I I I Spring I I flx I 1.013 

I 
1. 039 I 1. 747 1. 794 I 

I 
py I 

0.985 0.978 I 0.326 0.263 I 
flg 0.744 I 0.732 0.732 0.700 I 
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Table 3. Modal data and rMS values in y direction for spring 2 
(case 2) 

config. AI 
r I 
MS 

rMs 

Config. 
r 
MS 

rMs 

config. 
r 
MS 

rMs 

I 
I 

Bl 
I 

I 
I 

cl 
I 

I 

1 

I 

916.4 I' 

32.6 
I 

29,875 1 

I 
I 

931.9 1 

15.2 I 
14,165 1 

I 
646.4 1 

422.4 I 
273,039 

2 

228.5 I' 

382.6 

87,424 1 

I 
I 

365.9 1 

291.1 I 
106,7331 

613.3 

542.1 

332,470 

3 
Mode Number 

4 

223.0 1 
137.0 

I 
30,551 1 

I 
I 

122.1 1 

502.2 I 
362,9401 

I 
764.1 1 

262.5 I 
200,576 

755.1 

521.7 

393,936 

5.1 

5.8 

30 

1854.0 

0.8 

1,483 

5 

639.9 1 
186.4 

I 
119,277 1 

I 
1958.0 1 

968.6 I 
1,896,5191 

I 
127.6 1 

74.7 I 
9,532 

6 

1958.0 

919.5 

1,800,381 

656.5 

155.2 

101,889 

869.3 

497.5 

432,477 

Table 4. {s} and {p} for a selected mode for each configuration 
(spring 2 y~force) 

Configuration AI 
{s}2 I {p}6 I 

ol ~.oo5a I 
15791 -.1564 

ol -.0515 1 
69380 I -. 0939 I 

.oo37 I 
-56841 .0037 1 

configuration Bl 
{s}2 I {p}5 I 

0 I -. 0034 I 
15791 .2o25 1 

ol .oo11 I 
6938

0 
1 . 0898 

.0006 
-55271 -.oo46 1 

..... b 
....... 
X 

J 

X 
~ 

:z 
>, 

Configuration cl 

{s}~ I {p}4 I 
o I -.0045 

1
1 

1579 .0202 
ol -.0065 1 
00 I .1002 I 

-.0162 I 
~55271 . oo56 1 

20.00 

.00 

LJ...._ -20 .DO --+-~~~---..,,..--~~~--, 
.DODO .2500 .5000 
TIME CSECJ (XlD -1) 

Figure 1 Schematic of suspended compressor Figure 2 Fy and Mx for Case 1 
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(f) 
w 

1.000 

~ .000 
D 
LJ..._ 

-1 .000 -1---------.------, 

.o~~~E ( sE:t5~0 (X 1 o :.1~00 

1.000 

(f) 
f­
:z w .ooo 
~ 
D 
:E: 

-1.000 -+-----~------, 
.0000 .2500 .5000 

TIME (SEC) (XlO -lJ 

Figure 3 Normalized forces for Case 2 
Figure 4 Normalized moments for Case 2 

SPRING 3 SPRING 2 SPRING 3 SPRING 2 r 0.91 r 0.98 ,____ 1.29 1 0.91l 

0,82 0,85 0.80 0.80 

y I I 

I 
0.80 

+ 
0.80 0.82 0.85 

l 0.91 _j L _j 0.91 
0.98 r---- 1.29 SPRING 1 SPRING 4 SPRING 1 SPRING 4 

SPRING CONFIGURATION B: z - -1.0 SPRING CONFIGURATION A: z - -1.0 
SPRING CONFIGURATION C: z- 0.0 

Figure 5 Spring Configuration A Figure 6 Spring Configuration B 

C\J 

C!:l z ...... 

1.500 

g: 1.000 
(/) 

(/) 
LLJ 
:::J 
cE .500 
> 
a: 
1--
UJ 
CD 

---~-~----~~-------~--- ~---~-

.000 -+-----.-----.----.-----.. 
-1.000 -.500 .000 z ,500 1.000 

Figure 7 P values as functions of 2 for 
spring 2 
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