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7.1 Introduction

A computer code or simulator is a mathematical representation of a physical
system, for example a set of differential equations. Such a simulator takes
a set of input values or conditions, x, and from them produces an output
value, y(x), or several such outputs. For instance, one application we use for
illustration simulates the average tidal power, y, generated as a function of a
turbine location, x = (x1, x2), in the Bay of Fundy, Nova Scotia (Ranjan et al.,
2011). Performing scientific or engineering experiments via such a computer
code (i.e., a computer experiment) is often more time and cost effective than
running a physical experiment or collecting data directly.

A computer experiment may have objectives similar to those of a physical
experiment. For example, computer experiments are often used in manufac-
turing or process development. If y is a quality measure for a product or
process, an experiment could aim to optimize y with respect to x. Similarly,
an experiment might aim to find sets or contours of x values that make y
equal a specified target value — a type of inverse problem. Such scientific
and engineering objectives are naturally and efficiently achieved via so-called
data-adaptive sequential design, which we describe below. Essentially, each
new run (i.e., new set of input values) is chosen based on the analysis of the
data so far, to make the best expected improvement in the objective. In a
computer experiment, choosing new experimental runs, restarting the exper-
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iment, etc. pose only minor logistical challenges if these decisions are also
computer-controlled, a distinct advantage relative to a physical experiment.

Choosing new runs sequentially for optimization, moving y to a target, etc.
has been formalized using the concept of expected improvement (Jones et al.,
1998). The next experimental run is made where the expected improvement
in the function of interest is largest. This expectation is with respect to the
predictive distribution of y from a statistical model relating y to x. By con-
sidering a set of possible inputs x for the new run, we can choose that which
gives the largest expectation.

We illustrate this idea with two examples in Section 7.2. Then we describe
formulations of improvement functions and their expectations in Section 7.3.
Expectation implies a statistical model, and in Section 7.4 we outline the use of
Gaussian process models for fast emulation of computer codes. In Section 7.5
we describe some extensions to other, more complex scientific objectives.

7.2 Expected Improvement and Sequential Design: Basic

Ideas

The ideas behind expected improvement and data-adaptive sequential design
are illustrated via two examples. The first, a tidal-power application, shows
the use of expected improvement in sequential optimization. In the second
example, we use a simulator of volcanic pyroclastic flow to illustrate how to
map out a contour of a function.

7.2.1 Optimization

Ranjan et al. (2011) described output from a 2D computer-model simulation
of the power produced by a tidal turbine in the Minas Passage of the Bay of
Fundy, Nova Scotia. In this simplified version of the problem there are just two
inputs for the location of a turbine. Originally, the input space was defined by
latitude-longitude coordinates for a rectangular region in the Minas Passage
(see Figure 5 of Ranjan et al., 2011). The coordinates were transformed so
that x1 is in the direction of the flow and x2 is perpendicular to the flow.
Furthermore, only an interesting part of the Minas Passage was considered,
with x1 ∈ [.75, .95] and x2 ∈ [.2, .8]. The computational model generates an
output, y, the extractable power in MW, averaged over a tidal cycle for inputs
(x1, x2). For the simplified demonstration here, y was computed for 533 runs
on a 13 × 41 grid of x1 and x2 values, which produced the contour plot of
Figure 7.1(a).

We now demonstrate how the turbine location optimizing the power (i.e.,
max y(x1, x2)) can be found with far fewer than 533 runs of the computer
code. Such an approach would be essential for the computer experiment of
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(a) True y
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(b) Predicted y
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(c) Standard error
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(d) Expected improvement

FIGURE 7.1: Initial 20-run design and analysis for the tidal-power application:
(a) true power, y, in MW; (b) predicted power, ŷ(x); (c) standard error of
prediction, s(x); and (d) expected improvement, E{I(x)}. The design points
from an initial 20-run maximin Latin hypercube are shown as filled circles. All
plots are functions of the two input variables, x1 and x2, which are transformed
longitude and latitude.

ultimate interest. A more realistic computer model has a grid resolution 10
times finer in each coordinate and introduces vertical layers in a 3D code. The
running time would be increased by several orders of magnitude. Moreover,
the final aim is to position several turbines, which would interfere with each
other, and so the optimization space (or input space) is larger than two or three
dimensions. Thus, the ultimate goal is to optimize a high-dimensional function
with a limited number of expensive computer model runs. Inevitably, much
of the input space cannot be explicitly explored, and a statistical approach
to predict outcomes (extractable power) along with an uncertainty measure
is required to decide where to make runs and when to stop. The expected
improvement criterion addresses these two requirements.
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Consider a more limited computer experiment with just 20 runs, as shown
by the points in Figure 7.1. The experimental design (i.e., the locations of the
20 points) is a maximin Latin hypercube (Morris and Mitchell, 1995), a strat-
ified scheme that is “space-filling” even in higher dimensions. The choice of
20 runs is based on the heuristic rule that an initial computer experiment has
n = 10d observations (Loeppky et al., 2009), where d is the input dimension;
here d = 2. Among the 20 initial runs, the largest y observed, denoted by

y
(20)
max, is 109.7 MW at (x1, x2) = (.755, .4). The expected improvement algo-
rithm tries to improve on the best value found so far, as new runs are added.

At each iteration of the computer experiment we obtain a predictive dis-
tribution for y(x) conditional on the runs so far. This allows prediction of
the function at input vectors x where the code has not been run. A Gaussian
process (GP) statistical model is commonly used for prediction, as outlined in
Section 7.4, though this is not essential. A GP model was fit here to the data
from the first 20 runs, giving the point-wise predictions, ŷ(x), of y(x) in Fig-
ure 7.1(b) along with standard errors of prediction, s(x), in Figure 7.1(c). The
standard error is a statistical measure of uncertainty concerning the closeness
of the predicted value to the actual true value of y(x). We show the predicted
values and standard errors through contours in Figures 7.1(b) and 7.1(c).

Figures 7.1(b) and (c) are informative about regions in the input space
that are promising versus unpromising for further runs of the code. While
the ŷ(x) prediction surface is nonlinear, it suggests there is a single, global
optimum. Moreover, the s(x) surface is uniformly below about 15 MW: For

much of the input space, ŷ(x) is so much smaller than y
(20)
max relative to s(x)

that a new run is expected to make virtually zero improvement.
The expected improvement (EI) for a candidate new run at any x is com-

puted from the predictive distribution of y(x); see Section 7.3.1 for the formal
definition of EI. Figure 7.1(d) shows the EI surface based on predictive dis-
tributions from a GP that was fit to the data from the initial 20 runs of the
tidal-power code. By the definition in Section 7.3.1, the improvement can never
be negative (if the output from the new run does beat the current optimum,
the current optimum stands). Consequently, the EI is always non-negative
too. Figure 7.1(d) indicates that for most of the input space EI is near zero
and a new run would be wasted, but there is a sub-region where EI is more
than 12 MW. Evaluating EI over the 13 × 41 grid shows that the maximum
EI is 13.9 MW at x = (.785, .45). In other words, a new code run to evaluate

y(.785, .45) is expected to beat y
(20)
max = 109.7 MW by 13.9 MW.

Thus, run 21 of the sequential design for the computer experiment is at
x(21) = (.785, .45). The actual power obtained from the simulator is y = 159.7

MW, so the best y found after 21 runs is y
(21)
max = 159.7 MW, and this is the

value to beat at the next iteration. Note that the actual improvement in the
optimum from the new run is 159.7 − 109.7 = 50.0 MW, compared with an
expectation of about 13.9 MW.
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The new run raises concerns about the statistical model. Before making
the new run, the predictive distribution of y(x(21)) is approximately Normal,
specifically N (123.5, 5.672), an implausible distribution given the large value
of the standardized residual

y(x(21))− ŷ(x(21))

s(x(21))
=

159.7− 123.5

5.67
= 6.4.

One deficiency is that s(x) may not reflect all sources of uncertainty in estima-
tion of the parameters of the GP (see Section 7.4). A more important reason
here, however, is that the new observation successfully finds a peak in the
input space, a sub-region where the output function is growing rapidly and
uncertainty is larger. In contrast, the first 20 runs were at locations where the
function is flatter and easier to model. The GP model fit to the initial runs
underestimated the uncertainty of prediction in a more difficult part of the
input space.

Careful consideration of the properties of a GP model and the possible
need for transformations is particularly relevant for sequential methods based
on predictive distributions. Uncertainty of prediction is a key component of
the EI methodology, so checking that a model has plausible standard errors
of prediction is critical.

One way of improving the statistical emulator of the tidal-power code is
to consider transformation of the output. This is described in the context of
the volcano example of Section 7.2.2, where transformation is essential. For
the tidal-power example, persisting with the original model will show that it
adapts to give more plausible standard errors with a few more runs.

The GP model and predictive distributions are next updated to use the
data from all 21 runs now available. Figure 7.2(a) shows the location of the
new run as a “+” and the updated ŷ(x). Similarly, Figure 7.2(b) gives the
updated s(x). A property of the GP fit is that s(x) must be zero at any
point x, where y(x) is in the dataset for the fit; see Jones et al. (1998) for a
derivation of this result. Thus, s(x) is zero at the new run, and Figure 7.2(b)
shows it is less than 5 MW near the new run. Comparing with Figure 7.1(c),
it is seen that s(x) was 5 MW or more in this neighborhood for the GP fit
before the new run.

On the other hand, comparison of Figures 7.1(c) and 7.2(b) shows that
s(x) has increased outside the neighborhood of the new run. For example,
at the right edge of Figure 7.1(c), s(x) barely reaches 15 MW, yet s(x) often
exceeds 15 MW or even 20 MW at the same locations in Figure 7.2(b). The 21-
run GP fit has adapted to reflect the observed greater sensitivity of the output
to x1 and x2. (For instance, the estimate of the GP variance parameter σ2,
defined in Section 7.4, increased.) Thus, the model has at least partially self
corrected and we continue with it.

The EI contour plot in Figure 7.2(c) suggests that there is little further
improvement to be had from a further run anywhere. If a run number 22 is
made, however, it is not located where ŷ(x) is maximized; that location co-
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(a) Predicted y
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(b) Standard error
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(c) Expected improvement

FIGURE 7.2: Analysis of the tidal-power application after 21 runs: (a) pre-
dicted power, ŷ; (b) standard error of prediction, s(x); and (c) expected im-
provement, E{I(x)}. The new design point is shown as a “+.”

incides with run 21 and there would be no gain. Rather, the maximum EI
of about 1.3 MW occurs at a moderate distance from the location providing
maximum ŷ(x). As we move away from run 21, the standard error of predic-
tion increases from zero until it is large enough to allow a modest expected
improvement. Thus, this iteration illustrates that EI trades off local search
(evaluate where ŷ(x) is optimized) and global search (evaluate where uncer-
tainty concerning fitted versus actual output values, characterized by s(x), is
optimized).

With this approach, EI typically indicates smaller potential gains as the
number of iterations increases. Eventually, the best EI is deemed small enough
to stop. It turns out that run 21 found the global maximum for extractable
power on the 13× 41 grid of locations.

7.2.2 Contour Estimation

We illustrate sequential design for mapping out a specified contour of a
computer-model function using TITAN2D computer model runs provided by
Elaine Spiller. They relate to the Colima volcano in Mexico. Again for ease
of illustration, there are two input variables: x1 is the pyroclastic flow volume
(log base 10 of m3) of fluidized gas and rock fragments from the eruption; and
x2 is the basal friction angle in degrees, defined as the minimum slope for the
volcanic material to slide. The output z is the maximum flow height (m) at
a single, critical location. As is often the case, the code produces functional
output, here flow heights over a 2D grid on the earth’s surface, but the out-
put for each run is reduced to a scalar quantity of interest, the height at the
critical location.

Following Bayarri et al. (2009), the scientific objective is to find the values
of x1 and x2 where z = 1, a contour delimiting a “catastrophic” region. Bayarri
et al. (2009) used the same TITAN2D code but for a different volcano. They
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(b) Standard error
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(c) Expected improvement

FIGURE 7.3: Analysis of the initial 32-run design for the volcano application:
(a) predicted height, ŷ(x), where y =

√
z; (b) standard error of prediction,

s(x); and (c) expected improvement, E{I(x)}. The design points of the initial
32-run design are shown as filled circles. The new design point chosen by the
EI criterion is shown as a “+” in the lower left corner of (c).

also conducted their sequential experiment in a less formal way than in our
illustration of the use of EI.

There are 32 initial runs of the TITAN2D code. They are located at the
points shown in Figure 7.3(a). The predicted flow height surface also shown in
Figure 7.3(a) relates to a GP model fit to the transformed simulator output
y =

√
z. This choice was made by trying GP models on three different scales:

the z untransformed height; log(z + 1), as chosen by Bayarri et al. (2009);
and

√
z. Our final choice of y =

√
z results from inspection of standard cross-

validation diagnostics for GP models (Jones et al., 1998).
The dashed curve in Figure 7.3(a) shows the contour where ŷ(x) = 1.

This maps out the contour of interest in the (x1, x2) input space, but it is
based on predictions subject to error. The standard errors in Figure 7.3(b)
are substantial, and sequential design via EI aims to improve the accuracy of
the estimate of the true y(x) = 1 contour.

The EI criterion adapted for the contouring objective is defined in Sec-
tion 7.3.2. It is computed for the initial design of the volcano example in
Figure 7.3(c). EI suggests improving the accuracy of the contour by taking
the next run at (x1, x2) = (8.2, 11.1). Inspection of Figures 7.3(a) and 7.3(b)
show that this location is intuitively reasonable. It is in the vicinity of the
predicted ŷ(x) = 1 contour and has a relatively large predictive standard er-
ror. Reducing substantial uncertainty in the vicinity of the estimated contour
is the dominant aspect of the EI measure of Equation (7.4).

The tidal-flow and volcano applications both have a 2D input space for
ease of exposition, but the same approaches apply to higher dimensions, where
choosing runs in a sequential design would be more problematic with ad hoc
methods.



116 Design of Computer Experiments

7.3 Expected Improvement Criteria

In this section, we briefly define the improvement and EI in general. We then
review two implementations, specific to global optimization and contour esti-
mation, respectively.

Let I(x) be an improvement function defined for any x in the input space,
χ. The form of the improvement depends on the scientific objective, such as
improving the largest y found so far in maximization. In general, it is formu-
lated for efficient estimation of a pre-specified computer-model output feature,
ψ(y). Typically, before taking another run, I(x) is an unobserved function of
x, the unknown computer-model output y(x), the predictive distribution of
y(x), and the best estimate so far of ψ(y).

Given a definition of I(x), as its name suggests, the corresponding EI
criterion is given by the expectation of I(x), viz.

E{I(x)} =

∫

I(x)f(y|x) dy.

Here expectation is with respect to the predictive distribution of y(x) con-
ditional on all runs so far, f(y|x). Assuming the sequential design scheme
selects one new input point at a time, the location of the new point, xnew, is
the global maximizer of E{I(x)} over x ∈ χ.

7.3.1 EI for Global Optimization

Finding the global minimum, ψ(y) = min{y(x) : x ∈ χ}, of a function which
is expensive to evaluate is an extensively investigated optimization problem.
(Finding the maximum is reformulated as min−y(x), and the following results
apply.) Jones et al. (1998) proposed an efficient sequential solution via the
improvement function to assess the gain if a new evaluation is made at x. The
improvement function is

I(x) = max{y(n)min − y(x), 0},

where y
(n)
min is the minimum value of y found so far with n runs. The objective

is improved by y
(n)
min− y(x) if y

(n)
min > y(x), otherwise there is no improvement.

The GP statistical model outlined in Section 7.4 leads to a Gaussian pre-
dictive distribution for f(y|x), i.e., y(x) ∼ N [ŷ(x), s2(x)]. The Gaussian pre-
dictive model leads to a simple, closed form for the expected improvement,

E{I(x)} = s(x)φ(u) + {y(n)min − ŷ(x)}Φ(u), (7.1)

where

u =
y
(n)
min − ŷ(x)

s(x)
,
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while φ and Φ denote the standard Normal probability density function (pdf)
and cumulative distribution function (cdf), respectively.

Large values of the first term in (7.1) support global exploration in regions
of the input space sparsely sampled so far, where s(x) is large. The second term
favors search where ŷ(x) is small, which is often close to the location giving

y
(n)
min, i.e., local search. This trade-off between local and global search makes
EI-based sequential design very efficient, and it often requires relatively few
computer-model evaluations to achieve a desired accuracy in estimating min y.

For instance, in the tidal-power application, the EI surface displayed in
Figure 7.1(d) indicates that the first follow-up run is at the location giving
the maximum predicted power; see Figure 7.2(a). Thus, the local-search com-
ponent dominates. Conversely, the suggested location for the second follow-up
run is in an unsampled region near the maximum predicted power; see Fig-
ure 7.2(c).

Attempts have been made to control this local versus global trade-off for
faster convergence (i.e., using as few runs as possible) to the true global min-
imum. For instance, Schonlau et al. (1998) proposed an exponentiated im-
provement function, Ig(x), for g ≥ 1. With g > 1, there is more weight on
larger improvements when expectation is taken to compute EI. Such large im-
provements will have a non-trivial probability even if ŷ(x) is unfavorable, pro-
vided s(x) is sufficiently large. Hence, global exploration of high-uncertainty
regions can receive more attention with this adaptation. Similarly, Sóbester
et al. (2005) developed a weighted expected improvement function (WEIF)
by introducing a user-defined weight parameter w ∈ [0, 1] in the EI criterion
of Jones et al. (1998), and Ponweiser et al. (2008) proposed clustered multiple
generalized expected improvement.

7.3.2 EI for Contour Estimation

Ranjan et al. (2008) developed an EI criterion specific to estimating a thresh-
old (or contour) of y. They applied it to a 2-queue 1-server computer network
simulator that models the average delay in a queue for service.

Let the feature of interest ψ(y) be the set of input vectors x defining the
contour at level a, viz.

S(a) = {x : y(x) = a}. (7.2)

The improvement function proposed by Ranjan et al. (2008) is

I(x) = ǫ2(x)−min[{y(x)− a}2, ǫ2(x)], (7.3)

where ǫ(x) = αs(x) for a positive constant α (e.g., α = 1.96, corresponding to
95% confidence/credibility under approximate Normality). This improvement
function defines a limited region of interest around S(a) for further experi-
mentation. Point-wise, the extent of the region depends on the uncertainty
s(x) and hence the tolerance ǫ(x).
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Under a Normal predictive distribution, y(x) ∼ N [ŷ(x), s2(x)], the expec-
tation of I(x) can again be written in closed form, namely

E{I(x)} = [ǫ2(x)− {ŷ(x)− a}2] {Φ(u2)− Φ(u1)}
+ s2(x) [{u2φ(u2)− u1φ(u1)} − {Φ(u2)− Φ(u1)}]

+ 2{ŷ(x)− a}s(x) {φ(u2)− φ(u1)} , (7.4)

where

u1 =
a− ŷ(x)− ǫ(x)

s(x)
and u2 =

a− ŷ(x) + ǫ(x)

s(x)
.

Like EI for optimization, the EI criterion in (7.4) trades off the twin aims of
local search near the predicted contour of interest and global exploration. The
first term on the right of (7.4) recommends an input location with a large s(x)
in the vicinity of the predicted contour. When it dominates, the follow-up point
is often essentially the maximizer of ǫ2(x)−{ŷ(x)−a}2. This consideration led
to the new point in Figure 7.3(c) of the volcano application, for instance. The
last term in (7.4) gives weight to points far away from the predicted contour
with large uncertainties. The second term is often dominated by the other two
terms in the EI criterion.

The EI criterion in (7.4) can easily be extended to related aims. For simul-
taneous estimation of k contours S(a1), . . . , S(ak), with S(·) defined in (7.2),
the improvement function becomes

I(x) = ǫ2(x)−min
[

{y(x)− a1}2, . . . , {y(x)− ak}2, ǫ2(x)
]

,

and the corresponding EI can also be written in a closed form. Roy (2008)
considered estimation of the contour defining a given percentile of the output
distribution when inputs to the computer model are random (described further
in Section 7.5).

7.4 Gaussian Process Models and Predictive Distribu-

tions

Evaluation of an EI criterion requires the computation of the expectation
of I(x) with respect to the predictive distribution of y(x). In principle, any
predictive distribution can be used, but for the method to be useful, it should
faithfully reflect the data obtained up to the run in question. In practice,
treating the data from the computer-model runs as a realization of a GP is
nearly ubiquitous in computer experiments. A GP model leads to a Gaussian
predictive distribution, which in turn leads to the closed form expressions
in (7.1) and (7.4) and easy interpretation of the trade-off between local and
global search.
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A GP model is a computationally inexpensive statistical emulator of a
computer code. A key feature of many codes is that they are deterministic:
rerunning the computer model with the same values for all input variables will
give the same output values. Such a deterministic function is placed within
a statistical framework by considering a given computer-model input-output
relationship as the realization of a stochastic process, Z(x), indexed by the
input vector. A single realization of the process is non-random, hence the
relevance for a deterministic computer code. For a continuous function, the
process is usually assumed to be Gaussian, possibly after transformation, as
was done for the volcano application.

This GP or Gaussian Stochastic Process (GaSP) paradigm for modeling a
computer code dates back to Sacks et al. (1989a,b), Currin et al. (1991), and
O’Hagan (1992). Specifically, the code output function, y(x), is treated as a
realization of Y (x) = µ(x)+Z(x), where µ(x) is a mean (regression) function
in x, and Z(x) is a Gaussian process with mean 0 and variance σ2.

Crucial to this approach is the assumed correlation structure of Z(x).
For two configurations of the d-dimensional input vector, x = (x1, . . . , xd)
and x′ = (x′1, . . . , x

′

d), the correlation between Z(x) and Z(x′) is denoted by
R(x,x′). Here, R(·, ·) is usually a parametric family of functions, for which
there are many choices (e.g., Santner et al., 2003, Section 2.3). The computa-
tions for the applications in Section 7.2 were based on a constant (intercept)
regression and a stationary power-exponential correlation function,

R(x,x′) = exp



−
d

∑

j=1

θj |xj − x′j |pj



 .

Here, θj (with θj ≥ 0) and pj (with 1 ≤ pj ≤ 2) control the properties of the
effect of input variable j on the output. A larger value of θj implies greater
sensitivity (activity) of y with respect to xj , whereas a larger value of pj
implies smoother behavior of y as a function of xj .

Under this model the output values from n runs of the code, Y1, . . . , Yn,
have a joint multivariate Normal distribution. If the parameters in the statis-
tical model — in the mean function, in the correlation function, and σ2 — are
treated as known, the predictive distribution of Y at a new x has a Normal
distribution, N [ŷ(x), s2(x)], where ŷ(x) is the conditional mean of Y (x) given
Y1, . . . , Yn, and s

2(x) is the conditional variance. Without assuming Normality,
ŷ(x) can also be interpreted as the best linear unbiased predictor, and s2(x) is
the associated mean squared error. In practice, the unknown parameters have
to be estimated, usually by maximum likelihood or Bayesian methods. The
predictive distribution is then only approximately Normal, and ŷ(x) and s(x)
are computed from estimated parameter values. Moreover, Bayesian estima-
tion of the correlation parameters may be necessary to capture all sources of
uncertainty in the predictive distribution.

As mentioned already, neither a GP model nor a Normal predictive distri-
bution are essential for sequential design with an EI criterion. For instance,
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Chipman et al. (2012) used the optimization improvement function of Jones
et al. (1998) with Bayesian additive regression trees (BART). Thus, the em-
ulator was a non-parametric ensemble of tree models.

7.5 Other EI-Based Criteria

Over the last two decades, a plethora of EI-based criteria have been proposed
for other scientific and engineering objectives.

Applications can involve several outputs of interest. For instance, con-
strained optimization problems arise where the code generating the objective
function y(x) or another code gives values for a constraint function, c(x), (or
several functions). For a feasible solution, c(x) must lie in [a, b]. If c(x) is
also expensive to compute, one can build an emulator, ĉ(x), for it too. The
predictive distribution for c(x) leads to an estimate of the probability that
a < c(x) < b for any new run x under consideration. EI in (7.1) is multiplied
by this probability of feasibility to steer the search to locations where EI for
the objective y(x) is large and c(x) is likely to be feasible (Schonlau et al.,
1998). For a code with multivariate output, Henkenjohann and Kunert (2007)
proposed an EI criterion for estimating the global maximum of the desirability
scores of simulator outputs.

In a computer experiment, each simulator run requires a fixed, “known” set
of values for the x input vector, but in the real world the input variables may
vary randomly, say due to different environmental conditions. Thus, there is an
induced output distribution, and its properties can be of interest. Roy (2008)
estimated the contour in the input space defining the pth percentile, νp, of
the output distribution for given 0 < p < 1. At any iteration of the sequential
search based on a limited number of simulator runs, the distribution of the
inputs, x, is propagated through the predictive model, giving a distribution
of the output variable. In practice, this is achieved by taking a large random
sample from the known distribution of the inputs and evaluating ŷ(x) for
each sampled value. This Monte Carlo sample gives an estimate of the output
distribution and hence an estimate ν̂p of νp. The improvement function for
the next point is

Ig(x) = ǫg(x)−min[{y(x)− ν̂p}g, ǫg(x)].

For g = 2 this is the improvement function in (7.3) with a = ν̂p. Hence, the
contour of interest, a, is not fixed throughout the sequential design procedure
of Ranjan et al. (2008) but adapts as ν̂p changes. Bichon et al. (2009) adapted
this criterion to estimate the probability of rare events and system failure in
reliability-based design optimization.

Sometimes the simulator input variables partition into those that are con-
trollable in reality and those that are uncontrollable. In a manufacturing pro-
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cess context, for instance, these two types of input could be nominal engineer-
ing dimensions and random environmental conditions, respectively. Lehman
et al. (2004) developed improvement functions for finding M - and V -robust
designs for optimization for such a process. For a given configuration of the
control variables, xc, let µ(xc) and σ

2(xc) be the unknown mean and variance
of the simulator output y with respect to the distribution of the uncontrol-
lable variables. AnM -robust engineering design minimizes µ(xc) with respect
to xc subject to a constraint on σ2(xc), whereas V -robust engineering design
minimizes σ2(xc) subject to a constraint on µ(xc).

The inclusion of measurement error (or equivalently, considering a non-
deterministic simulator) is becoming more popular in computer experiments,
often due to unavoidable simulator biases and inaccurate modeling assump-
tions. It is undesirable to ignore the measurement error when minimizing a
noisy output response, and Ranjan (2013) recommended minimizing a lower
quantile, q(x), via an estimate q̂(x) from the predictive distribution, e.g.,
q̂(x) = ŷ(x)− 1.96s(x) under a Normal predictive distribution. The proposed
improvement function is

I(x) = max{0, q̂(n)min − q(x)},

where q̂
(n)
min is the minimum q̂(x) from n runs so far, and q(x) = y(x) −

1.96s(x) is an unobservable random quantity. Treating s(x) as non-stochastic
and assuming y(x) ∼ N [ŷ(x), s2(x)], the corresponding EI criterion is

E{I(x)} = s(x)φ(u) + {q̂(n)min − ŷ(x) + 1.96s(x)}Φ(u), (7.5)

where

u =
q̂
(n)
min − ŷ(x) + 1.96s(x)

s(x)
.

Like the EI criterion in (7.1), EI in (7.5) facilitates the trade-off between
local and global search. One can easily generalize this EI criterion to E{Ig(x)}
(as in Schonlau et al., 1998) or introduce a user specified weight (as in Sóbester
et al., 2005).

For complex physical phenomena like climate and tidal power, multiple
computer simulators with different computational demands are often available
for experimentation. For instance, there are 2D and 3D codes for the tidal-
power application; the 3D version is a higher-fidelity representation of reality
but is much more expensive to run. They can be combined to obtain more
informed prediction, and Huang et al. (2006) proposed augmented expected
improvement for finding the global minimum of the highest-fidelity process,
subject to noise.
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7.6 Summary

The essence of these approaches for sequential computer experiments is to
formulate the scientific objective through an improvement function. Following
some initial runs, the next run is chosen to maximize the expected improve-
ment. In contrast to physical experiments, sequential design is convenient,
with the computer handling the logistics of iterating analysis of the data so
far, choice of the next run, and making the new run.

With objectives like optimization and contouring in high-dimensional ap-
plications, sequential strategies are efficient in terms of solving the problem
with a relatively small number of runs. For these reasons, we expect this area
of the design of computer experiments will continue to receive considerable
research attention from methodologists and users.

Of course, the usefulness of this strategy depends on having a computer
model that provides a satisfactory description of the physical process of inter-
est. Such models have to be checked by reference to real data from the physical
process (Bayarri et al., 2007). However, once a model has been validated it
provides an efficient route to achieving the goals discussed here.
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