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Abstract— Small element spacing in compact arrays results in 

strong mutual coupling between array elements. Performance 
degradation associated with the strong coupling can be avoided 
through the introduction of a decoupling network consisting of 
interconnected reactive elements. We present a systematic design 
procedure for decoupling networks of symmetrical arrays with 
more than three elements and characterized by circulant 
scattering parameter matrices. The elements of the decoupling 
network are obtained through repeated decoupling of the 
characteristic eigenmodes of the array, which allows the 
calculation of element values using closed-form expressions. 
 

Index Terms— antenna arrays, antenna array feeds, adaptive 
arrays, mutual coupling 
 

I. INTRODUCTION 

N wireless systems such as mobile, personal 
communications, and wireless PBX/LAN networks, the use 

of multiple antennas can result in a significant increase in 
system capacity. With 2 or 3 antennas, the capacity of a mobile 
radio system can be doubled, while a 7-fold capacity increase 
can be achieved with 5 antennas [1]. Antenna diversity and 
MIMO can also provide improvements in quality and coverage. 
Multiport antennas usually have the design goal of isolated 
ports and uncorrelated radiation patterns. The effects of mutual 
coupling are usually contained by allowing for sufficient 
inter-element spacing. For spatial diversity on small platforms 
(e.g. mobile applications), employing an element spacing 
considerably smaller than the conventional half-wavelength 
spacing becomes inevitable. The increased mutual coupling 
apparently does not affect the capacity of a MIMO system [2], 
but it will decrease the antenna gain considerably and thus 
cause significant system performance degradation [3, 4].  

A potential remedy is to introduce passive and lossless 
decoupling and matching networks. The decoupling network 
comprises of interconnected reactive elements and/or 
transmission line sections and stubs. It provides an additional 
signal path between the array elements, which effectively 
cancels the external coupling between them. The decoupling 
network for an N-port array is a 2N-port network with N ports 
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connected to the array elements, while the remaining N ports 
represent the isolated input ports. Various implementations of 
decoupling networks have been described in the literature 
[5]-[10]. An alternative approach to achieve port decoupling 
involves the use of a modal feed network, where isolation 
between the new input ports is achieved by exploiting the 
inherent orthogonality of the eigenmodes of the array [11]-[14]. 
Although this approach is theoretically applicable to larger 
arrays, reported implementations of decoupling networks have 
been limited to a maximum of three or four radiators. 

For maximum versatility, the number of elements in an 
adaptive array needs to be as large as possible. In this paper, the 
design of decoupling networks for symmetrical arrays with 
more than three elements and characterized by circulant 
scattering parameter matrices is explored. A systematic design 
approach which involves the repeated decoupling of the 
characteristic eigenmodes of the array is described. The 
procedure is illustrated by considering the example of a 
6-element monopole array. 

II. BASIC CIRCUIT MODEL 

The circuit topologies to be used for the decoupling of two 
distinct eigenmodes will reduce to equivalent circuits 
resembling those shown in Fig. 1, where n1 and n2 are 
parameters which depend on the topology and the eigenmodes 
under consideration. The circuits in Fig. 1 are terminated in 
impedances 1 1 1Z R j X    and 2 2 2Z R j X  . A series 

element of impedance of jX  and parallel elements with 

admittances of 1jn B  and 2jn B  are used to transform 1Z  and 

2Z  to produce input admittances of 1Y   and 2Y  . The input 

admittances are given by 
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Given n1 and n2, the aim is calculate values for X and B which 
will match the input admittances. Setting 1 2Y Y   and 
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where 1 2a R R  ,  1 2 2 12b R X R X    and  

   2 2 2 2
1 2 2 2 1 1c R R X R R X    . These expressions can be 

used to design a decoupling network for a larger array. 
 

Z1 jn B1

jX

Z2

jX

Z'1

jn B2

Z'2  
Fig. 1.  General circuit model for matching two distinct terminating 
impedances. 

III.  DECOUPLING OF LARGER ARRAYS 

Decoupling of an array involves a process of modifying its 
impedance matrix to reduce all the off-diagonal elements to 
zero. For arrays characterized by circulant scattering parameter 
matices, decoupling can also be regarded as a process of 
equalizing the eigenmode impedances (i.e. the eigenvalues of 
the impedance matrix). The corresponding orthogonal 
eigenvectors can be viewed as the port voltages under the 
conditions when a specific mode is excited.  

Using our approach, an N-element array characterized by a 
circulant impedance matrix with k distinct eigenvalues would 
require a decoupling network with 2(k1) independent 
parameters. Decoupling of the array can be accomplished in 
k1 stages by using a ladder of circulant symmetric network 
configurations (henceforth referred to as stage networks) which 
each consist of N identical series reactive elements followed by 
N identical parallel reactive elements. The parallel elements can 
be arranged in the shape of polygons (a single N-sided polygon 
or a set of smaller polygons rotated with respect to one another) 
or in the shape of a star (with or without a common node at the 
centre). We need to identify k1 suitable stage networks. The 
stage networks will reduce to equivalent circuits resembling 
those in Fig. 1 for every eigenmode. We can determine the 
parameter n of a stage network for each mode by assuming port 
voltages corresponding to the appropriate eigenvector and 
using circuit analysis to obtain the equivalent network. Two 
modes with distinct eigenmode impedances can then be 
decoupled during each stage. After identifying the terminating 
impedance and the value of n for each of the two modes, the 
relations provided in (2) and (3) are used to determine the 
values of the series and parallel elements of the stage network. 
Note that the order in which the stage networks are employed is 
important. Once two modes have been decoupled, their 
equivalent networks should be identical for all subsequent 
stages in order to preserve the equality of their eigenmode 
impedances. 

This principle is best illustrated by considering an example 
of a circulant symmetric 6-element array with elements 
regularly spaced on the circumference of a circle. For such an 
array, mutual coupling is only a function of the distance 
between elements, and therefore the scattering parameters of 
the array are given by 
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The corresponding impedance matrix can be computed from 

 1
0 ( )( )Z   a a aZ I S I S , (5) 

where Z0 is the characteristic impedance of the system. The 
eigenvalues of the impedance matrix (viz. the eigenmode 

impedances) are given by 11 12 13 142 2a a a a
aZ Z Z Z Z    , 

11 12 13 142 2a a a a
bZ Z Z Z Z    , 11 12 13 14

a a a a
c dZ Z Z Z Z Z      

and 11 12 13 14
a a a a

e fZ Z Z Z Z Z     . The corresponding 

orthogonal eigenvectors are [1, 1, 1, 1, 1, 1]T
a e , 

[1, 1, 1, 1, 1, 1]T
b    e , [1, 0, 1, 1, 0, 1]T

c   e , 

[1, 1, 0 , 1, 1, 0]T
d   e , [1, 0, 1, 1, 0, 1]T

e   e  and 

[1, 1, 0, 1, 1, 0]T
f   e   .  

In order to decouple the array, we use a combination of the 
stage networks shown in Table I to equalize the eigenmode 
impedances. The equivalent circuit for each mode is defined in 
Fig. 2, while parameter n is specified in the second column of 
Table I. From Table I, it is clear that we can use the first 
network to decouple mode groups (c , d) and (e , f), the second 
network to decouple mode groups b and (c , d , e ,  f) and finally 
the third network for decoupling mode groups a and ( b , c , d , 
e , f). The complete decoupling network is shown in Fig. 3. 

Comparing the relevant equivalent circuits for mode groups 
(c , d) and (e , f) with those shown in Fig. 1, it follows that 

1 ( , )c eX g Z Z  and 1 1( ,3, ,1, )c eB h Z Z X , with g and h as 

defined in (2) and (3). The new impedance parameters as seen 
from ports 1', 2', 3', 4', 5' and 6' in Fig. 3 are given by 

 1 1
1 1(( ) )    aZ Z Z Y . (6) 

The terms Z1 and Y1 in (6) are defined by 
 diag[ , , , , , ]i i i i i i ijX jX jX jX jX jXZ , (7) 

and 
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The eigenvalues for Z  are then obtained as 

11 12 13 142 2aZ Z Z Z Z        , 11 12 13 142 2bZ Z Z Z Z         and 

11 12 13 14c d e fZ Z Z Z Z Z Z Z              . Note that modes c, 

d, e and f are now decoupled. 
Subsequently, we decouple mode groups b and (c , d , e ,  f) 

using circuit elements X2 and B2. Comparing the equivalent 



PAPER IDENTIFICATION NUMBER:  
 

circuits with those shown in Fig. 1 gives 2 ( , )b cX g Z Z  and 

2 2( ,0, ,3, )b cB h Z Z X  .  The impedance parameters as seen 

from ports 1'', 2'', 3'', 4'', 5'' and 6'' in Fig. 3 are given by 

 1 1
2 2(( ) )    Z Z Z Y , (9) 

where 2Z  is defined by (7), and 
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The eigenvalues of Z  are found as 

11 12 13 142 2aZ Z Z Z Z         and 

11 12 13 142 2b c d e fZ Z Z Z Z Z Z Z Z                .  

 
TABLE I 

STAGE NETWORKS FOR MODE DECOUPLING. 

Stage network Parameter n in Fig. 2 
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Fig. 2.  Equivalent network of the stage networks shown in Table I when mode 
m is excited. 
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Fig. 3.  Complete decoupling network for a symmetrical 6-element array. 

 
Finally, mode groups a and ( b , c , d , e , f) are decoupled. 

From the equivalent circuits for these modes, it follows that 

3 ( , )a bX g Z Z   and 3 3( ,0, ,1, )a bB h Z Z X  . The impedance 

parameters as seen from ports 1''', 2''', 3''', 4''', 5''' and 6''' are then 
given by 

 1 1(( ) )    3 3Z Z Z Y , (11) 

where 3Z  is defined by (7) and 
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  (12) 
All the modal impedances are then matched, since 

11 , , ,...mZ Z m a b f   .  The new input ports will also be 

decoupled and will have the same input impedance. The ports 
can be matched to the system impedance Z0 using L-section 
impedance matching networks [15]. 

To verify the theory, a decoupling network for a specific 
6-element monopole array was designed and analyzed. The six 
elements of the array were evenly distributed on a circle with 
radius of 15mm (0.125λ at a center frequency of 
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0 2.5 GHzf  ). Each monopole had a length of 28mm (0.23λ) 

and a diameter of 1mm (0.0083λ). With a system impedance of 

0 50Z   , the array’s S-parameters were computed using 

IE3D [16] and converted into impedance parameters using (4). 
The scattering parameters of the array at 0f  and the computed 

decoupling network elements are specified in Table II.  The 
elements of the L-section impedance matching networks are 
also shown, with 4B  being the susceptance of a parallel 

element to ground and 4X  the reactance of a series element. 

The scattering parameters were calculated over a frequency 
range of 00.98 f   to  01.02 f  . The results shown in Fig. 4 

clearly illustrate the validity of the theory.  
 

TABLE II 
SCATTERING PARAMETERS AND DECOUPLING NETWORK ELEMENTS FOR THE 

6-ELEMENT ARRAY. 

Array scattering 
parameters 
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Fig. 4.  Scattering parameters of the decoupled and matched 6-element array. 

IV. CONCLUSION 

We successfully demonstrated the design of a decoupling 
network for a circulant symmetric array with more than three 
elements. The bandwidth of the decoupled array is determined 
by the level of mutual coupling between array elements. 
Wideband impedance matching techniques cannot overcome 
this inherent limitation. It can only be alleviated by increasing 

the element spacing or using fewer elements. 
When all input ports are decoupled and matched, no power 

fed into the system is reflected. Ideally, all this power should be 
radiated. In practice, significant power loss may occur in the 
decoupling and matching networks. These effects can be 
quantified by applying the procedure described in [13]. 

The principles presented in this paper provide a framework 
for the systematic design of decoupling networks for circulant 
symmetric arrays. The procedure is theoretically applicable to 
arrays of various sizes and has successfully been tested on 
arrays with up to 8 elements. However, due to the complexity 
of the circuit configuration, implementation of the decoupling 
network for a 6-element array would require the use of a 
multilayer circuit with at least three layers. Implementation 
would therefore be even more challenging for larger arrays. 
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