

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 25, 2022

Design of delay insensitive circuits using multi-ring structures

Sparsø, Jens; Staunstrup, Jørgen; Dantzer-Sørensen, Michael

Published in:
Proceedings of European Design Automation Conference

Link to article, DOI:
10.1109/EURDAC.1992.246271

Publication date:
1992

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Sparsø, J., Staunstrup, J., & Dantzer-Sørensen, M. (1992). Design of delay insensitive circuits using multi-ring
structures. In Proceedings of European Design Automation Conference (pp. 15-20). IEEE.
https://doi.org/10.1109/EURDAC.1992.246271

https://doi.org/10.1109/EURDAC.1992.246271
https://orbit.dtu.dk/en/publications/4cff48d4-65ae-40c5-b807-c933e1ed81e1
https://doi.org/10.1109/EURDAC.1992.246271

Design of delay insensitive circuits
using multi-ring structures

Jens Spars# JBrgen Staunstrup Michael Dantzer-S~rensen

Department of Computer Science, Building 344,
Technical University of Denmark, DK-2800 Lyngby, Denmark.

E-mail: jsp@id.dth.dk, jst@id.dth.dk

Abstract
This paper describes the design and VLSI imple-

mentation of a delay insensitive circuit that computes
the inner product of two vectors. The circuit is based
on an iterative serial-parallel multiplication algorithm.
A test chip has been fabricated via EUROCHIP.

The circuit is the result of a design ezperiment that
we have conducted as part of our ongoing work to con-
struct CAD tools supporting our design approach.

The design is based on a data flow approach us-
ing pipelines and rings that are composed into larger
multi-ring structures by joining and forking of signals.
The implementation i s based on a small set of building
blocks (latches, combinational circuits and switches)
that are composed of C-elements and simple gates.

By following this approach we have not found it dif-
ficult to design delay insensitive circuits with nontriv-
ial functionality and reasonable performance.

1 Introduction
Design of delay insensitive circuits is an active area

of research [l, 2, 3, 41. Because design of delay insen-
sitive circuits is different from design of synchronous
systems, and because delay insensitive circuits are dif-
ficult to verify by simulation, most research is devoted
to the development of formal design methods. A num-
ber of specific circuits designed by research groups
have been published, but only a limited number of
these have been fabricated and characterized in terms
of silicon area (in mm2), speed (in nano seconds) and
power (in watts).

The work reported in this paper represents a non-
trivial delay insensitive circuit design experiment that
we have conducted in order to gain practical design
experience and to stimulate our work on design meth-
ods.

The goal is to design a circuit that computes the
inner product of two vectors. Inputs to the circuit are
two streams of integers along with a tag indicating
the last pair of operands, and output from the cir-
cuit is the accumulated sum of products. The circuit
has been optimized for use in an environment where
many of the operands are small numbers whose binary
representations contain many leading zeros. The cir-
cuit will skip the corresponding multiplication steps.
The intended application for this circuit is a delay in-

sensitive implementation of a digital artificial neural
network based on a matrix-vector multiplication ar-
chitecture.

A test chip has been fabricated via EUROCHIP.
This chip muhiplies 4 bit vector elements and it pro-
duces a 10-bit result.

The paper is organized in two parts as follows: Part
I, consisting of sections 2 and 3, describes the design
technique, and Part 11, consisting of sections 4 to 7,
describes the design experiment.

Part I : Design principles
2 Delay insensitive multi-rings

Delay insensitive circuits are asynchronous and the
sequencing of their computations is determined by
the data flow rather than by clock signals or other
global control signals. When inputs to a sub-circuit
are ready, the computation can start and as soon as
the result is computed, the next computation can be
initiated. In this section we describe a class of circuits,
called delay insensitive multi-rings, using such a data
driven approach [5].
2.1 Data representation

In a delay insensitive circuit there is no clock sig-
nal to determine when a computation can start and
when it is complete. Instead, it must be possible to
detect the arrival of a new input from the data them-
selves. To be able to do this, a protocol is used where
empty (or spacer) values are inserted between proper
values. The empty value is denoted E and all val-
ues representing proper data ready for computation
are called valid (denoted V). To distinguish between
empty and valid values, data is encoded. It is essen-
tial that the encoding of valid values ensures that no
partial result is interpreted as a valid value, otherwise
a computation can start prematurely. There are many
ways of encoding data for delay insensitive computa-
tions [7]; in section 3.1 we describe a particular and
very commonly used encoding called dual rail. Alter-
nating empty and valid values are used in a four cycle
handshaking protocol.

Consider a simple computation consisting of the
composition of three functions F, G and H. When a
valid input is given to F, it can start its computation,
and as soon as the result from F is ready, G can begin,
immediately followed by H. When all three functions

0-81862780-8/92 $3.00 a 1992 IEEE
IS

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 07:58 from IEEE Xplore. Restrictions apply.

have completed their computations, the valid values
must be flushed out, before a new computation can
be initiated. This is done by giving an empty value
on the input of F. This empty value must now ripple
through, and when the output of H has changed to
empty, the next computation can start. Hence, each
sub-circuit corresponding to F, G, or H must be capa-
ble of propagating empty values in addition to com-
puting their respective functions. Such an element is
called a (delay insensitive) functional block.
2.2 Pipelines

The composition of F, G and H described above
can be realized as a pipeline, where latches are placed
between the functional blocks. This is illustrated in
figure l (a) together with a behavioural description of
a latch and a functional block (using the language Syn-
chronized Dansittons [4).
- a c k i n n a c k o u t

Figure 1: Delay insensitive pipeline.

A delay insensitive latch holds back input data un-
til the successor circuits are ready to receive them.
The latch is controlled by acknowledge signals from
succeeding latches. A latch may load and hold a valid
value when its successor latch in the pipeline holds the
empty value (indicated by ackout being false). Simi-
larly a latch may load and hold an empty value when
its successor latch in the pipeline holds a valid value
(indicated by ackout being true).

We often simplify the schematics by representing
data signals and their associated acknowledge signal
(going backwards), by a single bus-symbol as shown
in figure l(b). This descriptional simplification is used
throughout the rest of the paper. It must be kept in
mind that the functional blocks in general just pass
the acknowledge signals backwards.
2.3 Delay insensitive rings

In this section we describe a number of generaliza-
tions of the latched pipeline leading to a general char-
acterization of the delay insensitive circuit structures
used in this work.

In a latched pipeline with at least three latches,
it is possible to connect the output of the last stage
to the input of the first, forming a delay insensitive
ring. Such a ring is capable of performing an iterative
computation [8]. In [9] it is described how such a ring
is used to perform floating point division. The data in
the ring represents a partial remainder, and each stage
computes one bit of the final result and forms a new
partial remainder which is sent to the next stage etc.
Consider a delay insensitive ring with three latches.
These latches will always contain one of two patterns:

either two valid and one empty element or two empty
and one valid. A sequence of computations is shown
in figure 2.

Figure 2: Sequence of computations in a delay insen-
sitive ring.

It is quite simple to build rings with more than
three latches and as many pipeline stages as one
wishes. The choice is mainly governed by performance
considerations. In a large ring with many latches and
pipeline stages many computations can be overlapped
yielding a high throughput.

Independent rings and pipelines can be connected
in different ways using fork and/or join elements. In a
simple join element both inputs are propagated when
either they are both empty or they are both valid.
There are many possible variations and combinations
of join and fork elements. The switch described in
section 3.2 is an example such an element: It has two
data inputs and two data outputs and a control signal
selects how inputs and outputs are connected.

Combining the various building blocks such as
pipeline stages, latches, fork elements, join elements
and switches, it is possible to construct a class of de-
lay insensitive circuits consisting of interacting rings
and pipelines called multi-ring structures.

3 Realization of building blocks -
In this section we describe the realization of

the building blocks (functional blocks, latches and
switches) that are needed for constructing the delay in-
sensitive multi-ring structures introduced in section 2.
3.1 Functional blocks

A functional block computes a specific (combina-
tional) function, F, and it can propagate empty values
as required by the delay insensitive protocol.

To synthesize a delay insensitive circuit for a func-
tional block we use a technique called delay insensitive
min-term synthesis (DIMS). This technique resembles
the traditional sum of products approach, but there
are also a few important differences:

o the min-terms are formed using C-elements (in-
stead of AND-gates),

o reduction of the boolean equations by combining
min-terms into simpler terms is (in general) not
allowed.

Together, these requirements assure that our com-
binational circuits do not produce any valid output
signals until all input signals are valid, and that none
of the output signals change back to the empty value
until all inputs are empty. A similar technique has
been used by others [6]

Data is represented in a dual rail code where two
wires, x . t , x.f, are used to represent a single bit x.
The value empty (E) is represented with the signals
on both wires low, true (T) is represented by x . t high
and x . f low, and false (F) by x. f high and x . t low.

16

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 07:58 from IEEE Xplore. Restrictions apply.

AND-gate J
0ut.t 0ut.f

F T
T F
T T 0

a.t

b.t
out. t

!EL- out. f
a.f

b.f

Full Adder
a b c I sum.f sum.t
E E El 0 0

F T F
F T T
T F F
T F T 0

0
1

cy.f cy.t
0 0
1 0
1 0
1 0
0 1
1 0
0 1
0 1
0 1

sm.t

sm.f
a . t

a.f
b.t cy.t

cy.f
b . f

C.t

C . f U

Figure 3: DIMS function blocks: Dual rail AND-gate and full adder.

The DIMS technique can be illustrated with the
circuit for a delay insensitive dual rail AND-gate, see
figure 3. As can be seen from the truth table, the sum
of product representation of out. f is:

out3 = a.f b.f + a.f b.t + a.t - b.f
The products are realised by C-elements as shown

in figure 3.
The DIMS technique does not in general allow re-

duction of boolean equations. If, however, multiple
logic functions depend on the same input, they can
share the C-elements and thus achieve a reasonably
effective circuit. As an example, we mention a full
adder where both the sum and the carry depend on
the two input operands and the incoming carry. The
full adder can thus be built using 8 C-elements and 4
OR-gates as shown in figure 3.

The DIMS technique has been automated in a tool
which can synthesize delay insensitive circuits from
high-level descriptions [lo].
3.2 Switches

Switches are used as data flow control elements. In
the general case two data signals are either crossed
or just passed through, determined by a control sig-
nal. For the design discussed in this paper we need
an asymmetric switch where either both data signals
are passed through or only one of them is crossed over
and the other waits, see figure 4.

Ctl=F Ctl=T

Figure 4: Asymmetric switch.

The switch consist of three sets of combinational
circuitry: one for generating the data on the output
ports, one for generating the acknowledge signals on
the input ports and one for generating the acknowl-
edge signal on the control port. It should be noted
that the control input also follows the four cycle pro-
tocol alternating between empty and valid values.

The asymmetric switch makes it possible to have
rings with different data rates, e.g. one which supplies
one value every time the other supplies ten.
3.3 Latches

A latch for a single dual rail encoded bit is built
from two C-elements an OR-gate and an inverter, see
figure 5 . The OR-gate generates the acknowledge
signal, indicating whether the latch holds a valid or
empty value. The corresponding acknowledge from
the succeeding register, ackout , determines whether
the register should hold its current value or load a
new.

Figure 5: Latch, (a) implementation and (b) symbol.

Two degenerated forms of the latch are also needed,
one for consuming values (and generating acknowl-
edgements) and one for producing constant values
(and consuming acknowledgements). These are quite
simple variations of the fundamental latch shown in
figure 5 . They are for example used to “terminate”
unused inputs and outputs at the boundary of bit slice
structures.
3.4 Fork and Join elements

The fork and the join elements shown in figure 6
complete the set of building blocks. Forks are used
when the same signal is input to more circuits and
joins are used when signals from more sources are in-
put to a single circuit.

Dah rr< Ack

(a) Data (b)

Figure 6: (a) Fork element. (b) Join element.

5 -]UT Data Ack

Ack Dam

17

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 07:58 from IEEE Xplore. Restrictions apply.

3.6 Initialization
The initialization of a delay insensitive circuit plays

a major role. Because the circuit is data driven, it
is important to insert valid data values in strategic
places to make the circuit run. In a synchronous cir-
cuit it is very often the case that only a subset of the
registers are reset. The remaining registers will then
assume well defined values during the first clock cycles
of normal operation. This is not a feasible scheme in
delay insensitive circuits because all latches depend,
not only on their input, but also on the output of the
succeeding state holding element (via the acknowledge
signal). This bidirectional flow of information (data
forward and acknowledge backward) makes it neces-
sary to explicitly initialize all C-elements including
those used in combinational logic.

Part I1 : The design experiment
4 Algorithm

An iterative serial-parallel multiplication algorithm
is used for our design experiment. Its implementation
requires some interesting and nontrivial circuit struc-
tures, and it represents a good compromise between
area and speed. As our main interest is design of de-
lay insensitive circuits we restrict our considerations
to multiplication of positive integers in order to sim-
plify the design. It should however be noted that the
circuit structure which we develop can be modified to
support multiplication of signed numbers using for ex-
ample the algorithm described in [ll]. The algorithm
is based on the paper and pencil approach shown in
figure 7.

q.0 I Yo , q.0 7
w;o wio w2z3 w 2 z 2 w2z1 w2zo wjo wjo

wjo w3z3 w3z2 W 3 Z I w3zo wjo wjo

pr ps p5 4 p3 p2 PI Po

Figure 7: Example of inner product calculation, P =
X x Y + 2 x W where P = p7p6p5p4p3p2p1pO is an 8
bit unsigned integer, and where X, Y, 2 and W are 4
bit unsigned integers.

It is well known that in a fully combinational “pa-
per and pencil multiplier”, only one row of circuitry
is active at a time. Therefore, almost the same multi-
plication speed can be obtained by implementing only
one row of circuitry which is used in an iterative fash-
ion. This serialization along the vertical a x i s requires
(1) an accumulator in which the result is gradually
formed, (2) a shift register that converts one of the
operands into serial representation (called the serial
operand or simply the S-operand), and (3) a shift reg-
ister shifting the other operand (extended with zeros
at both ends) one place to the left in each iteration.
This operand is called the parallel operand or simply
the P-operand. The carry signals produced in one row

are passed to the the row below in order to avoid ripple
carry propagation in the rows. In an iterative imple-
mentation this corresponds to using carry save rep-
resentation for the (temporary) results stored in the
accumulator.

Conversion from carry save representation into bi-
nary representation is postponed until after the last
two integers (of the vectors) have been multiplied. The
conversion is done by extending the last S-operand
with leading zeroes and making this multiplication
take as many steps as there are bits in the final re-
sult. To facilitate this the environment supplies along
with the P-operand a tag (called Last) that indicates
the last pair of operands.

In the intended neural network application the con-
nectivity matrix is usually sparse, and the nonzero ele-
ments are often small numbers meaning that they will
have a significant number of leading zeros. If these
two characteristics are taken into account the compu-
tation time can be reduced significantly. We therefore
assume the existence of some external zero-detection
circuitry that along with the serial operand supplies a
bit pattern indicating leading zeros. This is called the
zero-pattern or simply the 2-pattern.

5 Design
5.1 Overall structure

The structure of the inner product circuit is shown
in figure 8. It consists of three blocks: (1) a parallel to
serial converter called PIS0 (Parallel In Serial Out),
that converts the serial operand and the zero-pattern
into bit serial data streams, S and Z, (2) an iterative
multiply and accumulate ring called RING, and (3)
a small control block called CONTROL, that delivers
control signals for the switches in the circuit.

Last, P-operand

S-operand Z-pattem Re&

Figure 8: Structure of the inner product element.

The RING consists of three latches with combina-
tional circuitry in between. Two variables are circu-
lating in the RING: the temporary result in carry save
representation and the parallel operand that is shifted
one place to the left for each iteration cycle. The fol-
lowing subsections describe the three blocks in more
detail.
5.2 The RING

The ring is built from identical bit slices, figure 9.
In every iteration step each bit slice consumes the two

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 07:58 from IEEE Xplore. Restrictions apply.

bits to be multiplied (called Par and Ser), and the
relevant sum and carry bits from the previous iteration
step (Sum and Cy Ci-11). The serial operand bit, S, is
broadcast (i.e. forked) to all bit slices and these copies
are denoted S e r i n the figure. Par and Ser are ANDed
using a dual rail AND-gate (see section 3.1). This bit
product is added to CyCi-il and Sum using a dual
rail full adder (see section 3.1). The resulting carry is
passed to the i+ l th bit slice. The resulting sum bit
stays inside the bit slice.

Figure 9: Circuit diagram of the i th bit slice

The switches SW1 and SW2 steer the data flow in
the circuit and the control signals C t l i and Ct12 for
these switches are broadcast (i.e. forked) to all bit
slices. In each iteration the ring consumes a set of
control signals.

SW1 controls the Par input to the iteration. It
can either be the P C i - i l bit from the i- l th bit slice
(corresponding to a normal iteration step in which the
parallel operand is shifted), or it can be an externally
supplied value (corresponding to loading of a new P-
operand). SW2 controls the Sum input to an iteration
step. It can either be the sum bit from the previous
iteration step (corresponding to another normal iter-
ation step) or it can be “0” when the result of the
computation is output.

5.3 The PISO
The PISO is a double shift register that loads the

S-operand and the Z-pattern as described in section
4. Both are shifted out of the PISO with the least sig-
nificant bit first. The operand bit, S, is input to the
RING and Z-pattern bit, 2, is input to the CONTROL
block. When the S-operand is shifted out to the right,
zeros are shifted in from the left. These zeros enable
the final conversion to binary representation to be im-
plemented by taking the RING through a number of
additional iterations during which the PISO delivers
the necessary zeros. The PISO is build from latches
and asymmetric switches.

5.4 The CONTROL block
A diagram of the CONTROL block is shown in fig-

ure 10. The control block generates the signals C t l i
and Ct12 which control the switches in the RING, the
PISO and the CONTROL unit itself. C t l i and Ct12
goes through one four phase cycle per iteration step,
and the input signals InO, In1 and In2 to the combi-
national circuit that generate the control signals must
also follow this protocol.

NI

Figure 10: The control block

Input to the control unit is the Z-pattern in bit se-
rial form (one four phase cycle per iteration step) and
the last-operand tag, Last, associated with the par-
allel operand (going through a four phase cycle only
when a pair of operands is loaded). From these two
signals the signals InO, Ini and In2 are derived:
In0 is a delayed copy of the last-operand tag. It is

used to terminate the inner product computa-
tion. The shift register is used as a counter and its
length corresponds to the number of bit slices in
the RING (i.e. the number of bits in the result).

Ini is a copy of the last-operand tag (one four phase
cycle in each iteration step). If the circuit is in the
process of multiplying the last pair of operands
(In1 = T) it must continue to iterate until In0
becomes true. In any other case the circuit may
stop iterating as soon as the Z-pattern indicates
that the remaining bits in the serial operand are
leading zeros (In2 = T).

In2 is simply the Z bit from the zero-pattern from the
PISO.

It should be noted that the CONTROL unit is
based on the same circuit elements that are used in the
PISO and in the RING (switches, latches and combi-
national circuits) and that its structure is also based
on pipelines and rings. In addition to the small ring
from which the signal In i is derived, the CONTROL
unit contains some additional rings by virtue of the
switch control signal C t l i .

6 Performance analysis
The updating of storage elements (latches) in a de-

lay insensitive circuit is controlled by local handshak-
ing (rather than by global clock), and an analysis of
the performance of a delay insensitive circuit involves
not only the structure of the circuit but also the initial-
ization of the circuit and the way in which the circuit
is used by the environment.

19

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 07:58 from IEEE Xplore. Restrictions apply.

An understanding of this dynamic behaviour is es-
sential to the design of efficient delay insensitive cir-
cuits. This im ortant topic has recently been ad-
dressed in [9, 12f: It is beyond the scope of this paper
to o into details. The interrested reader is referred
to 7131 in which we give a detailed introduction to
the topic and in which we analyze and optimize the
performance of the vector multiplier design (using the
techniques and results of [g]).

The result of the analysis is that the cycle time
of the RING is 15.8 ns. This is the minimum possible
time for an iteration step. Unfortunately broadcasting
(i.e. forking) of the switch control signals constitute a
bottleneck and the design performs an iteration step
in 24.6 ns. These figures are computed from the de-
lays in C-elements and gates. The effects of wiring
capacitance has not been taken into account and the
figure therefore conforms nicely with the result of a
post layout simulation that showing a 30 ns. iteration
step time [13].

7 Physical implementation
A test chip has been fabricated on EUROCHIP’s

October 1991 run at ES2 (European Silicon Struc-
tures Inc.) in a 1.5 micron CMOS technology. This
chip multiplies vectors with 4-bit elements, and it has
a 10-bit accumulator for the result. The test of the
fabricated chips showed that they are fully functional.

The physical implementation is a standard cell lay-
out. The AutoCells tool (part of the GDT design sys-
tem from Mentor Graphics Inc.) has been used for the
physical implementation. As C-elements are used ex-
tensively in the design, we have developed a C-element
standard cell generator for the GDT design system.
The chip contains 12.450 transistors, and the area of
the core of the chip is 7.3 mm2. The area including
pad-cells is 18 mm2.

8 Conclusion
We have described a data flow based approach to

the design of delay insensitive circuits. The underly-
ing structural concept is simple: pipelines and rings.
These can be combined into more complex structures
- called multi-rings - by joining and forking of sig-
nals. Such multi-rings can be implemented from a
small set of building blocks, consisting of latches and
a variety of combinational circuits: functional blocks,
switches etc. A technique for the design of delay
insensitive building blocks (including combinational
circuits) called “DIMS” (Delay Insensitive Min-term
Synthesis) has also been presented.

This design technique has been successfully applied
to the design of a nontrivial delay insensitive circuit.
This circuit computes the inner product of two vectors
whose elements are unsigned integers, and it is based
on an iterative serial-parallel multiplication algorithm.
The design has been fabricated through EUROCHIP.
The chip is a standard cell design containing 12.450
transistors, and it is fully functional.

The experiment described in the paper is part of
our ongoing work to construct CAD tools supporting
our design approach. This includes a synthesis tool

which uses the DIMS technique and tools for formal
verification.

Acknowledgement
We are grateful to Mark Greenstreet and Ted

Williams who have both strongly influenced our de-
sign approach. This has work has been supported by
The Danish Technical Research Council. The CAD
tools from Mentor Graphics Inc. have been provided
via EUROCHIP.

References
A. Martin et al., “The Design of an Asynchronous
Microprocessor,” Decennial Caltech Conference on
VLSI, Ed. C.L. Seitz, MIT Press 1989, pp. 351-357.
I. E. Sutherland, “Micropipelines,” Communication
of the ACM, Vol. 32, no. 6, 1989, pp. 720-738.
C.H. van Berkel, C. Niessen, M. Rem, and R. Sajs,
“VLSI Programming and Silicon Compilation: A
Novel Approach from Philips Research,” Proc. of
ICCD 88, IEEE Computer Science Press, 1988, pp.

J. Staunstrup and M. R. Greenstreet, “Designing de-
lay insensitive circuits using ’Synchronized Transi-
tions’ ,” In Claesen (ed.), Formal VLSI Specification
and Synthesis. VLSI Design Methods - vol. I , North-
Holland/Elsevier, 1990, pp. 209-226.
P. C. Treleaven, D. R. Brownbridge, R. P. Hopkins,
“Data-Driven and Demand-Driven Computer Archi-
tecture,” AGM Computing Surveys, Vol. 14, No. l,

N. P. Singh, “A Design Methodology for Self-Timed
Systems,” M.Sc. thesis, MIT/LCS/TR-258, Labora-
tory for Computer Science, Massachucetts Institute
of Technology, February 1981.
T. Verhoeff, “Delay Insensitive codes - an overview,”
Distributed Computing, Vol. 3 , no. 1, 1988. pp. 1-8.
M. R. Greenstreet, T. E. Williams and J. Staunstrup,
“Self-Timed Iteration,” Proceedings of VLSI-87,
North- Holland, Amsterdam, 1 987.

150-166.

March1982, pp. 93-143.

[9] T. E. Williams, “Self-Timed Rings and their Applica-
tion to Division”, Ph.D. thesis, Department of Elec-
trical Engineering and Computer Science, Stanford
University, May 1991.

[lo] H. Hulgaard and P. H. Christensen, “Automated Syn-
thesis of Delay Insensitive Circuits,” M.Sc. thesis (ID-
E 511), Dept. of Computer Science, Tech. Univ. of
Denmark, Lyngby, 1990.

[ll] C. J. Majithia and R. Kita, “An Iterative Array
for Multiplication of Signed Binary Numbers,” IEEE
Trans. Comput., Vol. C-26, Feb. 1971, pp. 214-216.

[12] M. R. Greenstreet and K. Steiglitz, “Bubbles Can
Make Self-Timed Pipelines Fast,” Journal of VLSI
Signal Processing, 2, 1990. pp. 139-148.

[13] J. Spars@, J. Staunstrup, and M. Dantzer-Wensen,
“Design and performance analysis of delay insensitive
multi-ring structures,” Technical report, Department
of Computer Science, Technical University of Den-
mark, May 1992.

20

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 07:58 from IEEE Xplore. Restrictions apply.

