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Abstract: We describe the strong optomechanical dynamical interactions in 
ultrahigh-Q/V slot-type photonic crystal cavities. The dispersive coupling is 
based on mode-gap photonic crystal cavities with light localization in an air 
mode with 0.02(λ/n)3 modal volumes while preserving optical cavity Q up 
to 5 × 106. The mechanical mode is modeled to have fundamental resonance 
Ωm/2π of 460 MHz and a quality factor Qm estimated at 12,000. For this 
slot-type optomechanical cavity, the dispersive coupling gom is numerically 
computed at up to 940 GHz/nm (Lom of 202 nm) for the fundamental 
optomechanical mode. Dynamical parametric oscillations for both cooling 
and amplification, in the resolved and unresolved sideband limit, are 
examined numerically, along with the displacement spectral density and 
cooling rates for various operating parameters. 
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1. Introduction 

It is well-known that light has mechanical effects [1] and its radiation forces can be used to 
manipulate small atoms and particles [2]. Nowadays, the effects of optical forces in various 
mechanical and optical structures and systems have attracted intense and increasing interest 
for investigation [3]. Especially, the field of cavity optomechanics develops very fast [4–7], 
with recent studies covering a vast span of fundamental physics and derived applications  
[8–28]. In this field, the optomechanical coupling between the supported mechanical and 
optical cavity modes are of key importance due to its direct relevance to the generated optical 
forces, and one main goal of the developed techniques is to cool the targeted mechanical 
mode to its quantum mechanical ground state [10,20,24,27]. Several classes of cavity 
optomechanical systems have been explored. One of the initial efforts examines macroscopic 
movable mirrors in the Laser Interferometer Gravitational Wave Observatory (LIGO) project 
[29,30]. Based on the micro- and nano-fabrication techniques, optomechanical resonators such 
as mirror coated AFM-cantilevers [14], movable micromirrors [15,16], vibrating microtoroids 
[11,31], and nano-membranes [21,32] have been examined recently. Radiation-pressure 
dynamic backaction could be observed in these geometries. In addition, another class of 
optomechanical devices utilizes optical gradient forces [33–38] based on near-field effects. 
Compared to radiation-pressure based optomechanical cavities, these devices can achieve 
wavelength-scale effective optomechanical coupling lengths due to the strong transverse 
evanescent-field coupling between the adjacent cavity elements [25,26,33–35,18,38]. 
Photonic crystal membranes can be very good candidate platform with great design flexibility 
[39–44], with photonic crystal cavities offering an ultrahigh optical quality factor with a small 
volume [45–47]. The internal optical intensity is very high and sensitive to the geometrical 
changes. However, to make these cavities support mechanical cavity modes with strong 
coupling with the optical modes, special design considerations are needed. Current reported 
geometries are either in-plane in side-by-side configuration [48,49] or vertically superimposed 
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in face-to-face configuration [50]. Both configurations are recently examined experimentally. 
to be promising for cavity optomechanical operations. 

In this paper, we theoretically investigate the large dispersive optomechanical coupling 
between the mechanical and optical modes of a tuned air-slot mode-gap photonic crystal 
cavity [51,38]. First, the optical modes are shown to exhibit high optical quality factor (Q) 
with ultra-small modal volumes (V) [52–56], from three-dimensional finite-difference time-
domain numerical simulations. The mechanical modes and properties are then modeled using 
finite element methods. Based on first-order perturbation theory [57,58] and parity 
considerations, the respective optomechanical modes are then examined numerically. The 
dynamical backaction of slot-type photonic crystal cavities are studied, including the 
optically-induced stiffening, optical cooling and amplification, and radio-frequency spectral 
densities, for various laser-cavity detuning, pump powers and other operating parameters. We 
also note that the slot-type photonic crystal cavity can operate in the resolved-sideband limit, 
which makes it possible to cool the mechanical motion to its quantum mechanical ground 
state. 

2. Optomechanical slot-type cavity design 

2.1 Ultrahigh-Q/V cavity optical modes 

The slot-type optomechanical cavity is based on the air-slot mode-gap optical cavities recently 
demonstrated experimentally for gradual width-modulated mode-gap cavities [38,51] or 
heterostructure lattices [54], and theoretical proposed earlier in Ref [47]. A non-terminated 
air-slot [55] is added to width-modulate line-defect photonic crystal cavities to create 
ultrasmall mode volume cavities. To better understand the various modes existing in the air-
slot mode-gap cavities, the modes in the slotted photonic crystal waveguide with W1 line-
defect width and their dispersion properties are first investigated and shown in Fig. 1(a) for 
the three localized waveguide modes. Mode I and II can be traced back to the W1 waveguide 
fundamental even mode and high-order odd mode respectively inside the photonic band gap, 
while mode III can be understood as arising from the second index-guided mode (as shown in 
Ref [59].) below the projected bulk modes. We produce the cavities by locally shifting the air 
holes away from the center of waveguide – thus the cavity mode resonances are created below 
the transmission band of the slotted waveguide. Two of the possible modes in the cavities are 
shown in Fig. 1(b). Confirmed from the mode frequency and symmetry, cavity mode I is due 
to the mode gap of slotted waveguide mode I [Fig. 1(b)] and is expected to have both high Q 
and sub-wavelength V. Cavity mode II [Fig. 1(c)] represents the mode with the same odd 
symmetry as mode II in slotted waveguide. 
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Fig. 1. (a) Photonic band structure of slotted PhCWG with s = 80nm. The blue dashed lines 
show the three modes in the slotted PhCWG. (b) H-field and energy distribution of waveguide 
modes I, II and III. (c) E-field and energy distribution of the first (above) and the second 
(below) cavity modes. 

The cavity is illustrated in Fig. 2 with a = 490nm, r = 0.34a, t = 0.449a, nsi = 3.48, s = 
80nm, dA = 0.0286a, dB = 0.019a and dC = 0.0095a. FDTD simulation is performed to 
numerically evaluate the properties of the cavity mode. For s = 80 nm, the air-slot mode-gap 
confined PCS photonic crystal nanocavity supports a high Q localized even mode [Fig. 1(c)] 
with Q factor up to 5 × 106 and a mode volume V of 0.02 (λ/nair)

3 from numerical simulations 
[47,51]. 2D Fourier transform of the electric field shows few leaky components inside the 
light cone, supporting the high Q character of this air-confined mode. From Fig. 1(c), the 
optical field is mainly distributed in cavity region, and the simulation results also show that 
the minimum number of lateral lattice rows next to the cavity to maintain the high Q is ~three 
lateral lattice rows. We therefore designed each beam into three lines with eight holes in each 
line, l = 8a. 

 

  

Fig. 2. Illustration of air-slot mode-gap optomechanical silicon cavity, fabricated with electron-
beam lithography [60,61]. The holes shifts are shown with dA = 0.0286a (red), dB = 0.019a 
(blue) and dC = 0.0095a (green), where a is the crystal lattice constant, for increasing the 
intrinsic cavity Q. 

2.2 Cavity mechanical modes 

The mechanical modes are examined numerically via finite-element-method (FEM) 
simulations (COMSOL Multiphysics) for the dynamical motion of the suspended beams. The 
cavity mechanical modes can be categorized into common and differential modes of in-plane 
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and out-of-plane motion [48] as well as compression and twisting modes of the two beams. 
The displacement fields Q(r) of the first eight mechanical modes are shown in Fig. 3. In the 
numerical simulations, the beams are clamped at both ends using fixed boundary conditions at 
the two ends (x =  ± 1.96um) of the beam, meanwhile limiting motion in the x-y plane (the 
boundary condition constraint of z =  ± 110nm has Rz = 0nm and Rx = 0nm, where Rz (Rx) is 
the deformation along z(x) axis), with silicon material properties: Young’s modulus E of 
130GPa normal to [110] silicon crystallographic in-plane direction, thermal expansion 
coefficient α of 4.15 × 106K, specific heat capacity c of 703J/(kgK), thermal conductivity κ 
of 156W/(mK) and density ρ of 2330kg/m3. We choose the triangular mesh configuration, 
with an average mesh element volume of ~9 × 104μm3, with the eigenfrequency and modal 
analysis for the first eight mechanical modes [Fig. 3], with eigenfrequencies ranging from 460 
MHz to 2.16 GHz.  

Only mechanical modes with parity px, = py = pz = + 1 can coupled to the optical slot 
cavity modes due to the symmetry of the optical field, as described in Ref [43]. Among the 
first eight mechanical modes, five of them (illustrated in grayscale in Fig. 3) do not couple to 
the optical modes due to parity considerations – b, e and f do not have the right parity in the x 
direction while d, e and g modes cannot be excited because of asymmetry of the optical 
gradient force along the y direction. In this slot cavity, therefore, only the first, third and 
eighth mechanical modes (depicted in color) have strong dispersive coupling to the localized 
optical modes. These are in-plane differential modes with modal frequencies Ωm/2πat 
459MHz, 1.36GHz and 2.16GHz respectively for a suspended beam length L of 3.92um. The 

effective mass of each mode is computed from
2

0

2
0

( )

( )
eff

m

r r
m dV

r r





 , integrated over the 

computational space with ρ defined as the mass density, r the position from a fixed origin r0 
and 0( )

m
r r defined as the maximum displacement. The effective mass of the first, third, and 

eighth mechanical modes are computed to be 200fg, 100fg, and 30fg respectively in our 
specific implementation with 3.92um beam length, width of 1.7um, and membrane thickness 
of 220nm. 

#133205 - $15.00 USD Received 10 Aug 2010; revised 10 Oct 2010; accepted 14 Oct 2010; published 28 Oct 2010

(C) 2010 OSA 8 November 2010 / Vol. 18,  No. 23 / OPTICS EXPRESS  23849



 

Fig. 3. Mechanical displacement profile of the first eight mechanical modes. Modes in color (a, 
c, h) are allowed by parity considerations to couple to the optical modes; modes in grayscale (b, 
d, e, f, g) are forbidden by parity for sizable optomechanical coupling. 

There are a number of possible dissipative processes where mechanical vibrational energy 
is dissipated into heat, either inside the structure or via interaction with its surroundings. 
These processes include squeezed film damping due to air viscosity [62], clamping losses, 
internal viscous damping in the silicon structure, and thermoelastic damping. Thermoelastic 
losses often set a lower ballpark estimate of the attainable Qm in a vibrating beam element, 
where Qm,Zener of the fundamental mechanical mode is expressed by [63,64]: 

 2

2,

1
z

z

m Zener

R

Q
c

E T









  where TR is the ambient reservoir temperature,τz is the thermal 

relaxation time defined by 
2

2

b

 
, 

c





 , and b is the width of the beam. With silicon 

material properties, TR at 300K, and b at 1.7 μm, Qm is found to be in the range of 12,000 for 
the fundamental mode, and 40,000 and 60,000 for the third and eighth mechanical modes 
respectively. 

3. Coupling factor and symmetry considerations 

Cavity optomechanics involves the mutual coupling of two modes in the same spatially co-
located oscillator: one optical (characterized by its optical eigenfrequency and 
electromagnetic fields) and one mechanical (characterized by its mechanical eigenfrequency 
and displacement fields) degrees-of freedom. The perturbed cavity optical resonance, 
modified by small displacement about equilibrium displacement α, can be given by its Taylor 
expansion around ωo(α). If we consider the first-order expansion, and also set 
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 
0

|
o o      as the equilibrium resonance of the optical mode, then the first order gom = 

dωo/dα can be defined as optomechanical coupling rate. gom also represents the differential 
frequency shift of the cavity resonance (ωo ) with mechanical displacement (α) of the slot 
cavity beams. One can parameterize the interaction strength between optical and mechanical 

degrees-of-freedom by an effective coupling length Lom [42] described by: 1 1
om

d
L

d


 

  , with 

a corresponding optomechanical coupling frequency gom defined by gomωo/Lom. 

3.1 Perturbation theory 

Perturbation theory for Maxwell’s equations with shifting material boundaries was used to 
calculate the coupling length Lom [57,58]. With the parameter  characterizing the 
perturbation, the Hellman-Feynman theorem [65] provides an exact expression for the 

derivative of ω in the limit of infinitesimal Δα, 
(0) (0)

(0)

(0) (0)2

d
E E

d d
d E E


  
 
  , where the 

terms with the (0) superscripts denote the unperturbed terms. With shifting material 
boundaries, the discontinuities in the E-field or the eigenoperator are overcome with 
anisotropic smoothening which gives the following expression for the integral in the 

numerator [57], 
2 2

( 0 ) ( 0 ) ( 0 ) 1 ( 0 )

12 || 12
( )

d dh
E E dA E D

d d


 

 



    

  , for first-order perturbation of 

the cavity resonance. The integral is performed across the entire boundary surfaces of the 
optomechanical cavity, with h the displacement perpendicular to the unperturbed boundary 

surface, 12 defined as (ε1 - ε2) and 1
12( )  defined as ( 1

1
  - 1

2
 ). 

2(0)
||E is the unperturbed 

E-field parallel to the boundary surface while 
2(0)

D is the unperturbed electric displacement 

D normal to the boundary surface. From Ref [43], one defines Q(r) = αq(r), where α is the 
largest displacement amplitude that occurs anywhere for the displacement field Q(r). From the 
perturbative formulation, one then obtains: 

 
   

 

2 2(0) 1 (0)
12 || 12

1

2

ˆ( ) ( ) ( ) ( ) ( )
1

,
2 ( )

OM

dA q r n r E r r D r

L
dV r E r

 








     



 (1) 

where n̂  is the unit normal vector at the surface of the unperturbed cavity and the spatial r-
dependence explicitly shown here. 

3.2 Optomechanical coupling in slot-type optical cavities 

Figure 4 shows the computed optomechanical coupling in the slot-type mode gap cavities, 
from first-order perturbation theory. As noted from parity consideration, here we show the 
optomechanical coupling strengths for the first optical mode to the allowed first (Ωm,1) and 
second (Ωm,3) mechanical modes, denoted as gom(O1-M1) and gom(O1-M2)respectively. We 
illustrate the coupling strengths for different slot gaps s of cavity, ranging from 40nm to 
200nm. The electromagnetic field used is within a slot length l = 8a, since the cavity is 
confined by the PhCWG mode gap to a spatial localization of only several lattice constants a. 
As shown in Fig. 4, when the first optical mode is coupled with the second mechanical mode, 
the gom is lower than that with the fundamental mechanical mode, which means the 
fundamental optical and mechanical modes provide the strongest dispersive coupling. The 
negative values depict as a decrease in optical resonance frequency for increasing slot widths 
s. For the fundamental mode, the dispersive coupling can go up to 940GHz/nm (or a coupling 
length of 202nm) for a slot width of 40nm. This strong optomechanical coupling is more than 
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an order of magnitude larger than in earlier optomechanical implementations [21,25,48]. We 
also note that, since the electromagnetic field is negligible outside the cavity region of l = 8a, 
the coupling length does not change much when l is longer than 8a. 
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Fig. 4. (a) Computed optomechanical coupling rates of the fundamental optical mode with first 
(black solid squares) and second (red open circles) allowed mechanical modes, computed for 
the different slot gaps s. The inset panel is the corresponding coupling length. (b) Computed 
optomechanical coupling rates of the second optical mode coupled with first (black solid 
squares) and second (red open circles) allowed mechanical modes. 

4. Coupled mode theory 

The coupled equations of motion for the optical and mechanical modes can be derived from a 
single Hamiltonian [66,8]: 

 

 

     
0

22
2

2
0

1 1 1
,

2 2

,
2

ex ex

OM L Lm OM

m

m eff eff eff eff

da
i x a a i s

dt

aF t F t F tgd x dx
x

Q dt m m m mdt

  



 
     

 


      

 (2) 

where 
2

a is the stored cavity energy, 
2

s  the launched input power into the cavity, with a 

cavity decay rate κ of 
0

1 1 1

2 2 2
ex

  
  , with intrinsic rate 1/τo and coupling rate 1/τex. 

   
0

x x     is the pump laser frequency ω detuning with respect to the cavity resonance 

ωo(x) with explicitly displacement x shown. In this case, we have  
OM

x g x   . FL(t) is the 

thermal Langevin force. We illustrate the time-domain displacement x(t) and the normalized 
cavity amplitude of the first optical and first mechanical modes in Fig. 5(a). The cavity 
amplitude oscillates in-phase with the displacement within the mechanical frequency cycle as 
shown. In Fig. 5(b) we show the optical cavity amplitude transduction for different 
normalized detunings (Δτ = 1, 0.25, 0, 0.25, 1). At zero detuning and with a launched 

power 
2

s into the cavity, the cavity amplitude oscillates with a single-period cycle at the 

fundamental mechanical mode frequency, as indicative of mixing of the optomechanical 
domains. At detunings Δτ = ± 0.25, a two-period cycle with a second amplitude maxima is 
distinctly observed, with inverted transmission between the blue and red detunings. At larger 
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detunings (such as Δτ = ± 1), a two-period cycle is still observed, although the second 
amplitude maxima is suppressed. 
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Fig. 5. (a) Time-domain cavity amplitude a (solid blue line) and displacement x (dashed green 
line) of the first optical and first mechanical modes, with gom of 940 GHz/nm, Ωm/2π of 470 
MHz, Qm of 12,400, κ/2π of 425 GHz, and (1/τex)/2π of 38 MHz. (b) Time-domain cavity 
amplitude for normalized detunings Δτ at 1, 0.25, 0, 0.25 and 1 (top to bottom). 

5. Displacement spectral density 

5.1 Optically-induced stiffening and effective damping rate 

From the coupled equations, the x-dependent contribution to this adiabatic response provides 
an optical contribution to the stiffness of the spring-mass system. The corresponding change 
in spring constant leads to a frequency shift relative to the unperturbed mechanical oscillator 
eigenfrequency, or termed as optically-induced stiffening [4,48]. The non-adiabatic 
contribution in coupled equations is proportional to the velocity of the spring-mass system. 
The optical gradient force induced damping rate modifies the intrinsic mechanical resonator 
loss rate Γm, yielding an effective damping rate: eff m

   where 

       
0

2 2 2 2 2 2 2

2 / 2 / 2

2 4 / 2 / 2

ex

m om eff m m

P
L m

   

  
   

          

  
      

. We note that this is valid 

only in the weak retardation regime in which
m

   . We illustrate in Fig. 6 the 

corresponding frequency shifts and effective damping rate of the slot-type mode-gap cavity, 
for different input powers and normalized detuning (Δτ). With this classical model, the laser 
introduces a damping without introducing a modified Langevin force. This is a key feature 
and allows the enhanced damping to reduce the mechanical oscillator temperature, yielding as 

a final effective temperature Teff for the mechanical mode under consideration: m

eff R

eff

T T





. 

As shown in Fig. 6, as optical Q increases, at certain detuning the frequency shift becomes 
larger and the effective temperature is lowered, denoting the increased cooling rate. For a 
fixed optical Q in the unresolved sideband limit, there will be an optimal detuning where the 
linewidth reaches its largest value and the effective temperature is the lowest. In our case this 
optimal detuning Δτ is around 0.25 with an input power of 50pW and the effective 
temperature can be lower than 50K. 
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Fig. 6. (a-c) Two-dimensional surface plots of the first optical – first mechanical mode 
linewidth (a) mechanical frequency (b) and effective temperature (c), for varying detunings and 
optical Q factors. A fixed pump power of 1pW is used, along with an effective mass of 200fg 
and a 300K bath temperature. The dashed white line denotes the condition for Ωm = κ. (d-f) 
Example first optical – first mechanical mode linewidths (d), frequency shift (e) and effective 
temperature (f) with two input powers (P) and varying laser-cavity detuning. Otherwise 
indicated, the conditions are identical to panel (a), and with optical Q chosen at 5 × 105. 

The spectral density of purely mechanical displacement in the oscillator is described as: 

   2 22 2

2 /
( ) m B x

x

m m

k T m
S


 

   
 without the optical stiffening and damping. Since the 

coupling will shift the oscillator frequency and damping, we can modify 
m

 and 
m

 in the 

expression into '

m m m
     and '

m m
     . Figure 7(a) shows the resulting displacement 

spectral density when the input power P changes from 0 to 6.9uW, and normalized detuning 
Δτ = 0.25 where the linewidth has the maximum value and the frequency shift is positive. 
With increasing input power, the peak value of the displacement spectral density goes down 
and the full-width at half-maximum becomes larger, which demonstrates an effective cooled 
temperature of the slot-type optomechanical oscillator. In Fig. 7(b) we show the optical 
stiffing and linewidth damping of the first two mechanical modes, for a span of detunings 
while maintaining a fixed input power. Note that the optical stiffening is not monotonic with 
increasing detuning. For a cavity decay κ/2π of 387 MHz, the optimal detuning is at Δτ of 
0.43, for the largest optical gradient force stiffening. For the second allowed mode, in the 
region of normalized detuning from zero to 4, this stiffening is large which leads to a 
significantly suppressed spectral density. Moreover, note that in both Fig. 7(a) and 7(b), a 
large optical stiffening can be observed in the slot-type optomechanical cavity, where the 
optical stiffening can result in a modified mechanical frequency more than 1.86 × the bare 
mechanical frequency. 
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Fig. 7. (a) Displacement spectral density of the first mechanical mode, with optical detuning 
from the first optical mode. With the input power increasing from 0 to 9.5uW, in addition to an 
observed optical stiffening, the amplitude decreases with a larger linewidth for a decrease in 
the effective temperature. The detuning Δτ is fixed at 0.25, for an optical Q of 5 × 105, meff of 
200fg, at 300K bath temperature. (b) Displacement spectral density of the first and second 
allowed mechanical modes with different detunings. The scale bar is in dB with units of m2/Hz 
(pump powers P1 of 0.1uW and P2 of 50uW used respectively in the modeling). 

As shown above, both cooling and amplification can be realized in the optomechanical 
cavity through the red- and blue-detuning to the cavity resonance. An important question is 
what limiting temperature is achievable with the optical gradient force backaction cooling 
technique as described above. Two theoretical papers [22,26] have extended the classical 
theory of radiation-pressure backaction cooling to the quantum regime and shown the close 
relationship that cavity backaction cooling has with the laser cooling of harmonically bound 
atoms and ions. The result can be simply divided by two conditions. In the unresolved side-

band regime, 
m

   , the ground state cooling is limited as: 1
4

f

m

n


 


, where nf is the 

minimum phonon number. On the other hand, in the resolved side-band regime, 
m

  , 

occupancies well below unity can be attained yielding: 
2

2
1

16
f

m

n


 


. Most of the present 

optomechanical cavities are in the unresolved sideband regime, either because low optical 
quality factor or low mechanical frequency, which limit the minimum phonon number higher 
than unity. However, since our ultrahigh-Q/V slot-type photonic crystal cavity has a high 
optical Q factor and higher mechanical frequency due to its small volume, it has significant 
potential to operate into the resolved sideband region. For example, for the first mechanical 
mode (Ωm/2π of 460 MHz), an optical Q of more than 5 × 105 will bring the optomechanical 
oscillator within the resolved sideband limit with a nf of 1 × 103, allowing the potential to 
cool the mechanical mode to its ground state. 

6. Conclusion 

We illustrate numerically the slot-type mode-gap photonic crystal cavities for strong optical 
gradient force interactions. With the simultaneous strong optical field localization in 
0.02(λ/n)3 modal volumes and cavity Qs up to 5 × 106, we examined the optomechanical 
transduction of the various mechanical and optical modes for a dispersive coupling gom up to 
940 GHz/nm for the fundamental modes. Temporal coupled oscillations between the optical 
and mechanical fields are examined, along with effects of large optically-induced stiffening, 
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cooling and resulting displacement spectral densities, for the various operating regimes in the 
slot-type optomechanical cavities. 
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