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Design of Doubly-Complementary IIR Digital 
Filters Using- a Single Complex Allpass 

Filter, With Multirate Applications 
P. P. VAIDYANATHAN, MEMBER, IEEE, PHILLIP A. REGALIA, STUDENT MEMBER, IEEE, 

AND SkNJIT K. MITRA, FELLOW, IEEE 3 

Abslraci --It is shown that a large class of real-coefficient doubly-com- 

plementary IIR transfer function pairs can be implemented by means of a 

single complex allpass filter. For a real input sequence, the real part of the 

output sequence corresponds to the output of one of the transfer functions 

G(z) (foi example, lowpass), whereas the imaginary part of the output 
sequence corresponds to its “complementary” filter H(‘z) (for example, 

highpass). The resulting implementation is structurally lossless, and hence 

the implementations of G(z) and H(z) have very low passband sensitivity. 

Numerical design examples are included, and a typical numerical example 

shows that the new implementation with 4 bits per multiplier is consider- 

ably better than a direct form implementation with 9 bits per multiplier. 

Multirate filter bank applications (quadrature mirror filtering) are out- 

lined. 

I. INTRODUCTION 

T HERE EXIST a number of digital filter structures 
with low .passband sensitivity. These include wave-dig- 

ital filters [l]-[5], orthogonal filters [6]-[8], and other 
structures based on second-order sections [9], [lo]. Some of 
these structures have an inherent passivity [l]-[8] and, as a 
result, can be clesigned to be free from parasitic oscilla- 
tions (limit cycles) [ll], [12]. 

A unified viewpoint, of several low-sensitivity structures 
can be ‘obtained in terms of the concept of “structural 
boundedness” [13]. Thus, let G(z) be a stable digital filter 
transfer function that is real-valued for real z and satisfy- 
ing IG( ejw) 1 Q 1 for all w. Such transfer functions are said 
to be “bounded real” (BR). When the BR function has 
IG( ej”) I= 1 for all L, it is called a “lossless bounded real” 
(LBR) transfer function. Thus, a stable .allpass function 
with real coefficients.is LBR. An implementation of a BR 
transfer function is said to be “.structur&y bounded” or 
“structurally passive” if the transfer function continues to 
be BR in spite of parameter quantizations. Such imple- 
mentations are known td exhibit very low passband sensi: 
tivity [13]-[15], for the same reason that the structures in 
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Fig. 1. Parallel connection of two allpass sections. 

[l]-[8] have low sensitivity. In addition, structurally p 
sive implementations can be tailored to be such that th 
are no limit cycles [16], [17]. 

There exists a certain class of BR transfer funct 
which can be implemented in the form .of a par 
interconnection of two allpass filters (Fig. 1) with 
coefficients. This observation has been made in connect 
with wave filters by Fettweis [4], and by other author 
the recent past’ [15], [18], [28]. Such realizations satisfy 
structural-boundedness propertjr and hence exhibit 
low passband sensitivity [15]. In addition, the allpass 
tions can be implemented as a cascade of lossless 1 
structures [19], [20], thereby suppressing zero-input 
cycles [12]. The key point concerning the sum-of- 
implementation is that each allpass function can be 
mented such that it continues to remain allpass (i.e., 
in spite of coefficient quantization. Such allpass imp1 
tations are called s@ucturully lossless. Accordingly 
overall, transfer function G(z) remains passive in spi 
coefficient quantization. This leads to low coeffi 
sensitivity; details can be found in [15]. 

There are certain conditions which a BR transfer 
tion G(z) has to satisfy, so that it can be implement 
in Fig. 1. In particular, let G(z) be an Nth-order lo 
transfer function of the form 

p(z) 
G(z) = - 

D(z) 
@I 

where 

P(z) =po+plz-l+ *** +pNZcN 

D(z) =l+d,z-‘+ ... +d,z+. 

Here p,, d, are real and P(z) is a 
image) polynomial, i.e., 

P(zf1) = z”P(z): 

0098-4094/87/0400-378$01.00 01987 IEEE 
I 
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Fig. 2. Implementation of G(z) by means of a single complex allpass 
function. Solid lines indicate real parts and broken lines indicate 
imaginary parts. 

It can be shown that N has to be odd so that an imple- 
mentation in the form of Fig. 1 is feasible. For example, 
odd-ordered low-pass digital Butterworth, Chebyshev, and 
elliptic filters can be implemented as in Fig. 1. One pur- 
pose of this paper is to propose a modification to the 
structure of Fig. 1 for the case of an even-order low-pass 
function G(z). In Section II, we outline the decomposition 
of G(z) into a sum of allpass functions z?~(z) and d*(z) 
with complex coefficients. The decomposition is such that 
the coefficients of dZ(z) are complex conjugates of the 
coefficients of .z?~(z). Accordingly, for real inputs, it is 
only required to implement a complex filter x?~(z) and 
retain the real part y,(n) of the output sequence y(n) in 
order to obtain an implementation of G(z), as illustrated 
in Fig. 2. Moreover, it can be shown that the imaginary 
part y,(n) of the output sequence y(n) corresponds to a 
“complementary” filter, i.e., if we define 

then the following relation holds: 

IG(ej“)I’+ IH(ej”)l* =l. (4) 
In other words, G(z) and H(z) constitute a power-com- 
plementary pair. In particular, if G(z) has a low-pass 
response, then H(z) is highpass. 

Section II presents the details of such an allpass decom- 
position. Section III includes a design example and com- 
puter-aided simulation results that verify the low passband 
sensitivity property. Structures for implementing the com- 
plex allpass functions are included in Section IV. Finally, 
Section V outlines an application of the complementary 

pair {G(z), H(z)} in multirate signal processing, viz., 
quadrature-mirror filtering (QMF banks); we show how 
the bomplementary pair of Section II is ideally suited for 
splitting a signal into two bands, decimating, and then 
recombining, with no aliasing error and no amplitude 
distortion error. These results are presented for both the 
schemes of Figs. 1 and 2. Efficient low-sensitivity poly- 
phase structures based on allpass filters are also indicated 
in Section V for some of the QMF banks. 

II. DECOMPOSITION OF A BR FUNCTION INTO A 

SUM OF Two COMPLEX ALLPASS SECTIONS 

Let G(z) = P( z)/D( z) be an Nth-order BR function as 
in (1) given in minimal form (i.e., no common factors 
between P(z) and D(z)). Let P(z) be a symmetric poly- 
nomial satisfying (2). Consider a BR function H(z) with 
the same denominator D(z) 

l+d,z-‘+ ... +d,TN (5) 
I 1” 

Notice that all the poles of Al(z) and A*(z) are strictly 
inside the unit circle, and in turn are the zeros of D(z). 

I G H 

Ll#lxl 
N=5 

OO 
w 

7r 0 lr 

Fig. 3. Typical complementary pairs (the squares of the magnitude are 
being plotted). 

such that { G(z), H(z)} form a power-complementary pair, 
i.e., satisfy (4). Such H(z) can always be constructed by 
finding a spectral factor Q(ej“) of the positive function 

lD(ejw)12 - IP(ejw)12. 

In many filtering applications, it is possible to find a 
spectral factor Q(z) such that Q(z) is symmetric or anti- 
symmetric. This happens, in particular, if H(z) has all its 
transmission zeros on the unit circle. Fig. 3 depicts typical 
response curves for N = 5 and 6. Notice that for even N, 
there is no transmission zero for H(z) at z = 1, whereas for 
odd N, there is such a transmission zero. Accordingly, 
Q(z) is symmetric for the case of even N, and antisymmet- 
ric when N is odd. 

When P(z) is symmetric and Q(z) antisymmetric, it can 
be shown [15] that G(z) and H(z) can be written in terms 
of stable allpass functions A,(z) and A*(z) with real 
coefficients as follows: 

G(z) = fk(z)+ -4(z)] (7) 

where A,(z) and A*(z) are given by 

(94 

The quantities zk in (9a) are the zeros (possibly complex) 
of P(z) + Q(z). Of these, { zl, z2; . a, zI} lie inside the 
unit circle of the z-plane, whereas z,+~, z,+*, . . *, zN lie 
outside the unit circle. These zeros (and hence r) are found 
as described in [15]. It can also be shown [15] that, 

{ Zl, Z*,’ . *, Z,,l/Zr+l,‘. . ,l/zN} are precisely the zeros of 
D(z) (which is the denominator common to both G(z) and 
H(z)). Since we have assumed that p, and qn are real, the 
zeros zk of P(z) + Q(z) are real or occur in complex 
conjugate pairs. Accordingly, (9a) can be re-expressed as 

Pb) 
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In view of (7) and (8), it follows that G(z)+ H(z) = which can be decomposed as 
A,(z) and G(z)- H(z) = AZ(z). Thus, G(z) and H(z) are 
“complementary” with respect to A,(z) which is allpass. In [P(z)+jQ(z)][P(z)-jQ(z)] =z-%(z-‘)D(z). 

addition, since the power-complementary property is (14 

satisfied, G(z) and H(z) form a “doubly-complementary” 
pair. 

Let {z1,z2;.*, zN} denote the zeros of D(z). None of 

The transfer functions G(z) and H(z) can be imple- 
these can be real for the following reason: If z, were a real 

mented simply by implementing A,(z) and A,(z). Notice 
zero of D(z), then it would certainly be a zero of P(z) + 

that any allpass function -4(z) of order M can be imple- 
jQ( z) or P(z) - jQ( z). Assume, for example, that P( z,) + 

mented with only M (rather than2M+l as in conven- 
jQ(z,) = 0. Since z, is real and P(z) has real coefficients, 

tional direct-form) multipliers [19]-[22]. Moreover, such an 
P( zr) is real, and so is Q(z,). Accordingly, we must have 

implementation of A(z) can be made such that, in spite of 
P( z,) = Q( zr) = 0. In particular, this implies a common 

multiplier quantization, A(z) remains stable allpass [15] 
factor (1 - z-lz,) between P(z) and D(z), which has been 
ruled out earlier. 

(i.e., a structurally lossless implementation [13]). Accord- 
ingly, ]G( e j”) 1 and ]H( ej”)l remain bounded above by 

All zk’s above being complex occur in conjugate pairs 

unity for all w, even when the multipliers are quantized 
(D(z) being a polynomial with real coefficients). Hence 

[15]. In other words, Fig. 1 represents a structurally passive 
implementation [13], and has low passband sensitivity. 

D(z) = k~l(l-z-lz,)(l-z-lz:). I+;. (15) 

Moreover, the total number of multipliers required is 
N - r + r = N. But the implementation gives rise to two 

As a result, (14) can be rewritten as 

filters, G(z) and H(z); hence, we require ]N/2] multi- [P(z) + jQ(z>l [P(z) - jQ(z>l 

pliers per transfer function. Recall that conventional 
direct-form implementation of G(z) would require about =z 

3]N/2] multipliers. The number of delays in the allpass- 

-Nk~l(l-z-lzk)(l-z-lz~)(l-zz,)(l-zz~). 

based implementation of Fig. 1 can be kept at the mini- (16) 

mum level ( = N), while at the same time using a total of Since P(z) and Q(z) are symmetric polynomials with real 
only N multipliers, simply by implementing A,(z) and coefficients, the zeros of P(z) + jQ( z) occur in reciprocal 
A*(z) in the form of the one-multiplier Gray and Markel pairs, as do the zeros of P(z) - jQ( z). Moreover, if zk is a 
cascaded lattice structures [19]. Accordingly, the structure zero of P(z) + jQ(z), then its conjugate z$ is a zero of 
is dramatically efficient, and in addition has low passband P(z) - jQ( z). In conclusion, the zeros shown on the 
sensitivity. right-hand side of (16) can be assigned as follows: 

Now, if P(z) and Q(z) are both symmetric, the above 
allpass decomposition ((7)-(9)) does not hold, and hence (17) 
the above efficient structure does not exist ‘as such. How- 

P(z)+iQ(z)=BIM-k~l(l-z-~z*)(l--ZI*) 

ever, there is a simple means of overcoming this problem 
when complex-arithmetic is permitted in the filter imple- P(z)- jQ(z) =P*T”. fj (1- z-~z:)(~ - zz,*) (18) 

mentati0n.l 
In order to see this, first recall that, by analytic con- where p is a complex constant (to be identified soon). 

tinuation, (4) implies* Dividing both sides of (17) and (18) by D(z) in (15), we 

G”(z)G(z)+fi(z)H(z) =l (10) 
get 

except at the poles. In terms of the polynomials P(z), 
Q(z), and D(z), this implies 

~(z)P(z)+~(z)Q(z) =&z)D(z). (10 

Next, with P(z) and Q(z) symmetric, we can write 
Thus, G(z) and H(z) can be written as linear combina- 
tions of stable allpass functions 

p(z) = zNP(z) o(z) = z”Q(z) (12) G(z) = ; [4(z) + ~9’2(41 (21) 

whence (11) becomes 

P*(z)+Q*(z) =z-%(z+)D(z) 

where 

‘Notice that Fig. 1 involves only real multipliers, since A,(z) and 
A,(z) in (9) have real coefficients. 

*The tilde notation in eneral means that z should be replaced with 
z-l, and all complex coef lclents conjugated. 0~ the unit circle, the tilde F.~.. .__ 
notation is equivalent to complex conjugation of the entlre function. (23) 
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Fig. 4. Implementing the complementary pair. 

Conversely 

-pp,(z) =G(z)+jH(z) (24) 

d*(z) ‘G(z)- jH(z). (25) 

Note that .&i(z) and d*(z) have complex coefficients, 
and that the coefficients of J&*(Z) are the conjugates of the 
coefficients of .&i(z). G(z) and H(z) given by (21) and 
(22), however, have real coefficients. In view of (24), we 
say that G(z) and jH(z) form an “allpass-complemen- 
tary” pair. Since they also form a power-complementary 
pair (lo), G(z) and jH(z) are said to form a doubly-com- 
plementary pair. 

Fig. 4 represents the allpass decomposition scheme. Since 
the coefficients of .&z(z) are complex conjugates of those 
in .&i(z), it is only required to implement .&i(z). The real 
part of the filtered output sequence is the output corre- 
sponding to G(z), whereas the imaginary part of the 
output sequence of &‘i( z) corresponds to H(z) as depicted 
in Fig. 2. Note that given any BR function G(z) = 
P( z)/D( z) with symmetric numerator P(z), we can al- 
ways obtain the implementation of Fig. 2 if there exists a 
BR function H(z) = Q(z)/D(z) with symmetric numera- 
tor Q(z), and such that (4), or equivalently, (11) holds. If 
the above conditions are all satisfied except that Q(z) is 
antisymmetric, then the implementation of Fig. 4 can be 
obtained where the.allpass functions now have real coeffi- 
cients (and the factor j is not required to obtain H(z)). 
The above-mentioned conditions on G(z) and H(z) are 
mild in the sense that a wide class of selective filters fall 
under this category. For example, Butterworth, Chebyshev, 
and elliptic digital IIR transfer functions satisfy the above 
requirements for all orders. 

A. On Computational Complexity of the Implementation 

With N denoting the orders of G(z) and H(z), the 
allpass function J&‘~( z) in (23) has N/2 first-order complex 
sections of the form 

(26) 

where the poles zk are complex and of the form 

‘k = ‘k,r + .izk,i (27) 

with zk r , and zk,i real. A schematic implementation of 
(26) is shown in Fig. S(a). Since w(n) is in general complex 
(even if x(n) might be real), the circuit of Fig. 5(a) 
involves four real multiplications, which is equivalent to 
one complex multiplication. The function &i(z) can thus 
be realized as a cascade of A4 such sections, requiring a 
total of M complex multipliers. In addition, if /3 in (23) 

(b) 
Fig. 5. (a) A first-order complex allpass section. (b) A direcf-form 

implementation with N delays and 2N + 2 multipliers. (N = 4 m the 
figure); G(z) = YI(z)/X(z) and H(r) = Y*(z)/X(z). 

operates on real input, this corresponds to two real multi- 
plications. Thus, in Fig. 2, the number of real multipliers 
per transfer function is N + 1. Each delay element in Fig. 
5(a) stores both the real and imaginary parts; hence, a 
total of 4M( = 2N) real storage elements is required (i.e., 
N per transfer function). 

A direct-form implementation of G(z) and H(z) (which 
share a common denominator) can be obtained with. a 
total of N delays and 2 N + 2 multipliers (i.e., N/2 delays 
and N + 1 multipliers per transfer function) as shown in 
Fig. 5(b). Thus, the number of multipliers is the same as 
for the new implementation, but there are fewer delays in 
the direct form. But the new implementation has excep- 
tionally low passband sensitivity due to structural passiv- 
ity, as we shall demonstrate. 

B. Comments on Pipelineability 

It is well known that a cascaded lattice implementation 
of a digital allpass function is very suitable for a high 
degree of pipelineability [31]. This comes about because of 
the unit delay element that isolates adjacent sections of a 
cascaded lattice structure. For details in this regard, we 
refer the reader to [31]. 

III. THE DESIGN PROCEDURE AND A DESIGN 

EXAMPLE 

Given a BR function G(z) = P(z)/D(z) as in (1) with 
symmetric P(z), assume that there exists a BR function 
H(z) = Q(z)/D(z) satisfying (4) and such that Q(Z) is a 
symmetric polynomial. Then the necessary conditions for 
the allpass decomposition of (21) and (22) are satisfied and 
the pair {G(z), H(z)} can be realized as in Fig. 2. 

Since only P(z) and D(z) are known to begin with, 
Q(z) remains to be found. This can be accomplished by 
computing an appropriate spectral factor of D( z)D( z) - 
p(z)P(z) by explicit root-finding, but such an elaborate 
procedure is not necessary. Since Q(z) and P(z) are 
symmetric, (12) and (13) hold and hence 

Q’(z) = z-ND(z-‘)D(z)- P’(z). (28) 
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Denote the right-hand side of (28), which is known, by 
R(z) = C-&rkZ -k. Then the coefficients of Q(z) can be 
easily computed recursively based on (28) as follows: 

(29) 
n-1 

‘n - c qkqn-k 
k=l 

4, = 
2qo ’ 

(30) 

N. 
4, = qN-n, 

-if 
<ngN. 

Once Q(Z) is found, we have to identify those zeros zk 
of D(z) which should be associated with (17). This can be 
done by explicitly evaluating the roots of P(z) + jQ(z) 
and thus identifying those that are inside the unit circle. 
The allpass function &i(z) can now be implemented, 
provided the complex constant p is identified. For this, 
notice that for z =l, (19) yields 

Pkfil s = G(1) + jH(1). 

Since all quantities in (32) are known except /3, we can 
identify the latter uniquely. 

Example 1: As an example, consider the design of an 
8th-order low-pass elliptic BR digital transfer function3 

TABLE1 
THE FILTER~OEFFICIENTSIN EXAMPLES 

n Prl 4” d* 

0 0.025913507 
1 -0.020763702 
2 0.074164524 
3 -0.041691969 
4 0.064194289 
5 -0.041691969 
6 0.074164524 
7 -0.020763702 
8 0.025913507 

0.321023225 1.000000000 
-1.901491193 -3.982269600 

5.455303983 a. 496003759 
-9.724205240 -11.466223632 
11.705785106 10.707331654 
-9.724285248 -6.906407027 

5.455303983 3.010707576 
-1.901491193 -0.609265853 

0.321023225 0.103727421 

response ]G(ej“‘)] for the 4-&t allpass-based implementa- 
tion of Fig. 4. The low passband sensitivity is evident from 
the plot of passband details, which are included in Fig. 7. 
Next, the same transfer function G(z) was implemented in 
direct form with 9 bits per multiplier (i.e., nine nonzero 
binary digits in sign-digit code). The corresponding re- 
sponses are shown in Fig. 8, which reveals a very poor 
passband sensitivity. Thus, a 4-bit allpass based implemen- 
tation (Fig. 2) has a much better passband response than a 
9-bit direct-form implementation. It should be noticed that 
the direct-form (rather than the standard. cascade-form 
[21]) structure is being used for comparison purposes be- 
cause the allpass function .&i(z) in the current example is 
being implemented in direct form. 

P(z) 
G(z)=-= 

0.026-O.O29z-‘+O.O74z-* -0.042~-~ +0.084~-~ -O.O42z-’ +0.074z-6-‘0.029z-7+0.026z-8 

D(z) 1-3.982z-‘+8.498z-2-11.486z-3+10.707z-4-6.906z-5+3.019z-6-0.809z-7+0.104z-8 ’ 

Once Q(Z) is computed as outlined above, we have the complementary high-pass function 
(33) 

Q(z) O.321-1.9O1z-1+5.455z-2-9.724z-3~11.7O6z-4-9.724z-5+5.455z-6-1.9O1z-7+O.321z-8 
H(Z)=D(r)= 1-3.982z-‘+8.498z-2-11.486z-3+1O.7O7z-4-6.9O6z-5+3.O19z-6-O.8O9z-7+O.1O4z-8 . 

We then compute the zeros of P(z) + jQ( z), and thus 
identify &i(z) as 

where 

p = 0.4698 + j0.8828 (36) 
z1 = 0.4344- j0.2253 z2 = 0.4831+ j0.5675 

z3 = 0.5244- j0.7367 z4 = 0.5492+ jO.8075. (37) 

In order to demonstrate the low passband sensitivity prop- 
erties, the structure of Fig. 2 was simulated on a digital 
computer with quantized multipliers. The allpass function 
@‘i(z) was implemented in direct form rather than by 
cascading the first-order sections of the form in Fig. 5; 
each multiplier zkr and zki was quantized to four nonzero 
binary digits in sign-digit code. 

Fig. 6 shows the magnitude responses of H(z) and G(z) 
in the ideal (i.e., unquantized) case. Fig. 7 shows ,the 

3 Note that the coefficients displayed in (33) and (34) are heavily 
quantized for convenience. Table I displays a more accurate version of 
these coefficients. 

(34) 

Comment on Stopband Sensitivity 

As such, with structurally passive implementations, good 
passband sensitivity does not necessarily imply good 
stopband sensitivity. This has been observed earlier [15]. In 
particular, a parallel combination of two allpass structures 
(which is the overall form of the new structures we have 
reported) does not necessarily have low stopband sensitiv- 
ity. This situation is also true with wave lattice digital 
filters [4]. However, one can perform a discrete-space 
optimization on the finite-wordlength coefficients in order 
to maximize the stopband attenuation. Since the passband 
sensitivity is low, this optimization hardly affects the 
passband. 

IV. LATTICESTRUCTURESFOR~MPLEMENTATIONOF 

COMPLEXALLPASSFUNCTIONS 

For digital allpass functions with real coefficients, a 
number of cascaded lattice structures are available for 
implementatiqn [12], [19], [20]. Such structures are known 
to have low noise, and can be designed to be free of limit 
cycle oscillations under zero input [12]. In addition, some 
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le 1. The 9-bit direct-form implementation. (b) Exam- 
details for direct-form implementation with 9 bits. 

of these structures have automatic internal scaling proper- 
ties (normalized structures [ZO]). 

Most of these lattice structures can be generalized for 
the case where the allpass functions have complex coeffi- 
cients. In order to see how a lattice structure can be 
generated for the complex allpass furrction 

%W = 
d,*,, + dm*,,-lz-l+ *. . + cm 

1 +‘&,z-~ + ... + d, m~-m (38) 

consider the recursive relation 

z-‘G,,-,(z) = 
G,(z) - k; 

l- W,(z) 
(394 

with k, chosen as 

k,=G,*(ao) =d,,,. 

Assuming that G,(z) is a stable allpass function (of order 
m), it can be verified that lk,l<l and that G,-,(z) is a 
stable allpass function of order m - 1. Once the order 
reduction implied by (39) is accomplished, we can con- 
struct G,,,(z) from G,-,(z) as shown in Fig. 9. 
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Fig. 9. Implementation of G,(z) in terms of G,-,(z) 

G,“(z) G,.,(z) 

Fig. 10. The cascaded complex lattice for G,(z). 

,/I - 1k.l’ 

Fig. 11. The normalized complex lattice. 

w,(n) 

Fig. 12. The quadrature mirror filter bank. 

If the above order-reduction process is now repeated, we 
obtain a cascaded lattice realization of G,(z) as shown in 
Fig. 10 where each building block is a lattice section as in 

Fig. 9. The multiplier G, is in general complex, but has 
unit magnitude. 

A normalized lattice structure can be obtained by notic- 
ing that the relation between G,(z) and G,-,(z) in Fig. 9 
remains unaltered by rearranging the lattice as shown in 
Fig. 11. 

V. MULTIRATE (QUADRATURE MIRROR) 

FILTERING APPLICATIONS 

A well-known bank of filters used in signal-coding and 
communications applications is the quadrature-mirror filter 
bank [23]-[25] shown in Fig. 12. Here x(n) is an input 
signal with spectral occupancy 0 < w < rr. H,(z) and Hi(z) 
are low-pass and high-pass filters, respectively, operating 
on x(n). The filtered signals w,(n) and wi(n) are deci- 
mated in time, and then transmitted after possible coding. 
The received signals are decoded, interpolated, and passed 
through filters F,(z) and F,(z), and then recombined to 
form a(n). The set of filters {E&,(z), H,(z)} is called the 
analysis bank, whereas the pair { FO(z), F,(z)} forms the 
synthesis bank. 

One of the main requirements in the scheme of Fig. 12 is 
to be able to make J(n) “as close” to x(n) as possible. In 
general, Z(n) suffers from three types of errors: aliasing 
(due to undersampling after nonideal filtering), amplitude 

Ho(z) L-l 
-Al 

2-pt. ” 

I I IDFT 

H,(z) 

Fig. 13. Implementing H,(z) and H,(z). 

distortion, and phase distortion. It is well known [23]-[25], 
[30] that aliasing effects can be completely eliminated if 
the transfer functions H,,(z), HI(z), FO(z), and F,(z) are 
related as follows: 

F,(z)=H()(z) F,(z)=-H,(z) H,(z)=H,(-z). 

(40) 

With aliasing-effects removed, the system of Fig. 12 is a 
shift-invariant (and of course, linear) system with transfer 
function [24] 

T(z) 6 L ;;;; =;[H;(z)-H:(z)]. (41) 

If H,,(z) and H,(z) are linear-phase FIR filters, there is 
no phase distortion; thus, the goal is to make T(z) resem- 
ble a delay as closely as possible so as to minimize the 
amplitude distortion. 

If, on the other hand, H,(z) and Hi(z) are IIR func- 
tions, the amplitude distortion can be completely 
eliminated, provided T(z) is forced to be allpass. (Phase 
distortion, however, remains in this case, but can be 
equalized by allpass cascade equalizers.) In this section, we 
consider only IIR QMF banks. Accordingly, our goal is to 
force the distortion transfer function 7’(z) in (41) to be 
allpass, so that there is no amplitude distortion. 

Since the allpass-based structures of Figs. 1 and 2 re- 
quire a much smaller number of multipliers (particularly 
for odd N) compared to other implementations, and since 
they exhibit low passband sensitivity, we wish to design 
the analysis bank {H,,(z), H,(z)} in this form. Thus, refer- 
ring to Fig. 13, we wish to have4 

4(z) + AZ(Z) 

Ho(z)= 2 HA4 = 

4y42(4 . (42) 

Recall from Section II that if N is odd, and if the 
numerators of H,,(z) and H,(z) are symmetric and anti- 
symmetric, respectively, then the implementation of Fig. 
13 is possible, provided 

IH,(ej”)l’+ IH,(ej“‘)12 =l. (43) 

For such an implementation, we thus have 

4(z) = HOW + fw (44 

AZ(Z) = Ho(Z) - fw (45) 

where A,(z) and AZ(z) are allpass functions with real 
coefficients. It is clear from (44) and (45) that 

Htttz) - 4%) = AI(z)Az(z) (46) 

41n Figs. 13-16, we have used the IDFT building blocks to represent 
the operations in (42) because this reveals the relation to the general form 
of polyphase uniform DFT filter banks [23]. 
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Fig. 14. The complete QMF bank implementation. Fig. 16. The polyphase implementation. 

Fig. 15. The simplified struciure 

which is allpass. In other words, the distortion function 
T(z) in (41) is automatically allpass, and there is no 
amplitude distortion. Thus, the allpass-based implementa- 
tion of Fig. 13 is a natural and ideal candidate for the 
QMF application. 

In summary, we have the following important result: let 
H,,(z) = P( z)/D( z) and ZYi( z) = Q(z)/D( z) be odd-order 
BR transfer functions such that P(z) is symmetric and 
Q(z) antisymmetric, and such that (43) holds. Then the 
filter bank { Ho(z), H,(z)} can be implemented as in Fig. 
13. Moreover, if it is employed in the QMF structure of 
Fig. 12 with (40) holding, then not only is aliasing per- 
fectly cancelled, but also the amplitude distortion is com- 
pletely eliminated. 

Recall from Section II that A*(z) has order r and A,(z) 
has order N - r. Next, in view of the relation H,(z) = 
HO( - z) in (40), we have from (44) and (45) 

A,(z) =2ho+2h,z-2+ -.* =q(z2) (47) 

A*(z) =~z-~[/z~+~~z-~+ --I =z%~(z~) (48) 

where { h k } represents the impulse response corresponding 
to H,(z). As a result of this form, A,(z) and A2(z) can be 
written as 

(4% 
(N- rv2 ak* + z-2 

4(z) = kvl l+a z-2 
k 

(r-1)/2 pj + z-2 

A2(4=+ ,ITI, 1+p z-2’ 
k 

(50) 

Such allpass sections have also been used in the context of 
transmultiplexer design by Constaritinides and Valenzuela 
[27], [28]. Thus, the implementation of Fig. 13 actually 
requires only (N - 1)/2 multiplications, i.e., [(N - 1)/4] 
per transfer function of order N. 

Since F,,(z) and F,(z) in Fig. 12 are related to the 
analysis-bank filters H,,(z) and H,(z) as in (40), the 
synthesis bank can be obtained by transposing the analysis 
bank. Fig. 14 shows the complete implementation. In view 
of the fact that a1(z2) and a2(z2) are functions of zP2, we 
can move the decimators and interpolators [23] and obtain 
the implementation of Fig. 15, which immediately leads to 
the polyphase structure [23], [29] of Fig. 16. 

Before proceeding to the complex case (i.e., N = even), 
we summarize the salient features of the implementation of 
?ig. 16. This figure represents a QMF analysis-synthesis 

Fig. 17. The modified QMF bank. 

system, and is free from aliasing and amplitude distor- 
tions. The overall distortion-transfer function T(z) is al- 
lpass, and given by 

T(z) = $41(Z)A2(Z) = +z-1u1(z2)u2(z2). (51) 

There are four transfer functions of order N involved in 
the entire filter bank, and we require [(N - 1)/4] multipli- 
cations per transfer function. The coefficients of a1(z2) 
and a2(z2) are all real. Finally, the transfer functions 
Ho(z), H,(z) exhibit very low passband sensitivity with 
respect to the multiplier coefficients. 

Next consider the case where H,(z) and H,(z) in Fig. 
12 have even-order N. For such cases, we cannot obtain 
the allpass-based implementation represented by Fig. 13. 
Instead, we can use complex allpass sections, as discussed 
in Section II. If H,,( z j and Hi(z) satisfy all the require- 
ments of Section II so that they can be implemented as in 
Fig. 2, then the condition analogous to (24) and (25) holds 
in particular. In other words 

Jaz) = f5J(z)+ m4 &2(z) = m4- m(z) 

(52) 

whence 

H;(z)+ H:(z) = dl(Z)d2(Z). (53) 

Thus, in place of (46), which is satisfied for odd N, we 
have (53) holding true for even N. However, the QMF 
bank of Fig. 12 requires (46) rather than (53) to hold, so 
the implementation of the bank {H,,(z), H,(z)} in the 
form of Fig. 2 is not compatible with the requirements of 
Fig. 12. 

This difficulty can be overcome by employing the mod- 
ified QMF bank proposed in [25] by Galand and Nuss- 
baumer. Fig. 17 shows the modified scheme, which incor- 
porates two additional delays. In the circuit of Fig. 17, 
aliasing effects are cancelled by the choice 

G(z) = f&d 4 F,(z)=H,(z) H,(z)=H,(-z). 

(54 

Once aliasing is thus cancelled, we have [25] 

T(z) A $+~z-‘[fz~(z)+fz~(z)]. (55) 

In other words, in order to eliminate amplitude distortion, 
it is required to force H,(z) and H,(z) to be such that 



386 IEEE TRANSACTIONS ON CIRCUITS A’ND SYSTEMS, VOL. CAS-34, NO. 4. APRIL 1987 

T(z) in (55) is allpass. But this is precisely what the 
complex-allpass-based implementation of Fig. 2 accom- 
plishes, as shown by (53). In summary, for even N, the 
allpass-based implementation of Fig. 2 automatically 
satisfies the condition required by the QMF bank of Fig. 
17, for eliminating amplitude distortion. 

Since H,(z) is equal to H,( - z), we have, by (52) 

Jzqz)=H()(z)+jH,(-2) .d*(z)=Ho(z)-jH,(-z) 

(56) 

where .zz’(z) denotes &i(z), and J%‘*(Z) is obtained from 
J&‘(Z) by conjugating the coefficients of L&‘(Z). From (56), 
it can be verified that 

d(- z) = jd*(z) (57) 

which shows that if (Y is a pole of J%‘(Z), then - LX* is also 
a pole of d(z). Consequently, J&‘(Z) can be expressed as5 

where N/2 = 2n, + n2. In (58), p, are real numbers, 
whereas (Ye are complex. The quantity 9 is a complex 
constant with 1171 = 1. Each first-order allpass-section in- 
volving /?, can be implemented with one real multiplier. 
Each second-order section involving (Ye can be imple- 
mented with only two real multipliers, as can be seen by 
writing the section transfer function as 

-~ak~2+z-yak-a(yk*)+z-2 c,+jz~‘c,+2-2 

l-((Yk-ak*)z-l-]~k]*z-* = l--jz-‘cl+cOz-* 

(59) 
where C, and C, are real constants. 

By using the constraint (57) in the general expression 
(58), it can be verified that 11 satisfies the relation 

argq=*7r/4. (60) 

Accordingly 

If the scale factor l/fi in (61) is ignored, 17 can be 
implemented in a multiplierless form. Accordingly, the 
only significant multiplications in the implementation of 
J&‘(Z) are due to CX~‘s and PI’s in (58). In summary, the 
analysis bank, which can be realized by implementing 
JZ?( z), requires a total of N/2 real multipliers; these multi- 
pliers, in general, operate on complex internal signals. 

The synthesis filters FO(z), F,(z) are related to the anal- 
ysis filters as in (54). It can therefore be verified that r;b( z) 
and F,(z) can be implemented as shown in Fig. 18. The 
real signals y,(n - 1) and y,(n) (which are inputs to &(z) 

‘See Appendix for more discussions in this connection. 

Fig. 18. The synthesis-bank im lementation; the signal ye(n - 1) is the 
real part of the input to 44, and yt( n) is the corresponding 
imaginary part. The real part of the output of d*(z) is the recon- 
structed signal 2(n). 

(a) 

0 
Fig. 19. (a) The complete QMF bank, with complex allpass filters in the 

analysis and synthesis sections. Solid lines represent real parts of signals 
and broken lines represent imaginary parts. (b) A commutator-switch 
model for Fig. 19(a). The switches are out of phase, so that the effects of 
the delay unit (z-l) in Fig. 19(a) are accounted for. 

and Fi(z), respectively) are combined into a complex 
signal yO( n - 1) + jyi( n) and this complex signal is taken 
as the input to d*(z). The real part of the output is then 
equal to Z(n). The complete QMF bank, implemented in 
terms of d(z) and z?‘*(z) is shown in Fig. 19(a), and can 
be redrawn as in Fig. 19(b). Notice that Fig. 19(b) im- 
plicitly incorporates the delay z: 1 (which precedes Hi(z) 
and F,(z)), and the decimation/interpolation operations. 
The entire QMF bank can be implemented using N real 
multipliers (Le., [N/4] per transfer function), where each 
multiplier, in general, operates on a complex signal. 

A. Relation to Earlier Work 

The recursive digital filters H,(z) and H,(z) in (42) 
take on the form H,(z) = P(z)/D,( z2), H,(z) = 
Q(z)/D,( z2), in view of the special forms of A,(z) and 
A2(z) in (49) and (50). The problem of approximating a 
desired magnitude response, with a rational function whose 
denominator is a function of ze2, has been handled in the 
past [32]. 

The idea of splitting a signal into two bands based on 
two Rower-complementary transfer functions (i.e., satisfy- 
ing (43)) has been considered earlier in [33]. Next, Bamwell 
[34] has indicated how IIR QMF banks,can be constructed 
so as to cancel aliasing and at the same time eliminate 
amplitude distortion (i.e., force T(z) to be allpass). How- 
ever, to the best of our knowledge, the double complemen- 
tarity of two IIR transfer functions has not hitherto been 
exploited to obtain the alias-free structure of Figs. 13-16. 
Notice that double complementarity implies (43) and in 
addition (44) and (45), and this is what ensures that T(z) 
is allpass. The use of wave digital filters in the QMF bank 
is discussed in [26], where it is shown that aliasing and 
amplitude distortion can be eliminated. Such results can 
also be explained based on the results presented above. 
Finally, we believe that the splitting of a band into two 
signals based on a complex allpass function, ‘and subse- 
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quent recombination without aliasing and with no ampli- 
tude distortion, has not been o,bserved earlier. 

VI. CONCLUDING REMARKS 

A new class of IIR digital filter structures has been 
presented, which can be used for efficient and low-sensi- 
tive implementation of several useful transfer Junctions. 
The conditions required to be satisfied by the transfer 
functions, so as to be implemented in the proposed form, 
are mild. Thus, Butterworth, Chebyshev, and elliptic dig- 
ital filters belong to the class of transfer functions that can 
be implemented in this manner. In addition to their low 
sensitivity, the structures are ideally suited for quadrature 
mirror filter applications. 

For the case of even N, the allpass function involved in 
the implementation is complex. Fig. 5 represents an imple- 
mentation of a first-order section with one complex multi- 
plier but with two (complex) delay units. It remains to be 
explored whether first-order complex allpass sections can 
be implemented with one complex multiply’ and one com- 
plex delay. Finally, in connection with the lattice sections 
of Figs. 9-11, it is worth exploring whether each section 
can be rearranged to have one multiplier (complex) and 
one delay. (For allpass functions with real coefficients, 
such lattice structures with one multiplier and one delay 
per section are well known [12], [19].) 

APPENDIX 

For most IIR filters, the transfer function G(z) has the 
property that G(z)G(z-‘) can be expressed as 

1 
G(z)G(z-‘) = 

1-t &(z)R(z-1) (Al) 

where R(z) is, in general, a rational function. An ap- 
propriate choice of R(z) gives rise to Butterworth, 
Chebyshev, and elliptic filters as special cases [21]. For 
elliptic low-pass filters, R(z) has the form 

l-z-l ’ m 

R(z)= l+ 
i i 

(l- ,-le’b)(l - z-le-jek) 

p1 (l- z-lei%)(l - z-le-j%) 

W) 
where the quantity I is zero for even-order filters and unity 
for odd-order filters.6 Here, 8, and wk are the reflection 
and transmission zeros, respectively [35], of G(z). Two 
elliptic low-pass filters having the same order and same 
band edges wP and ws have the same set of reflection and 
transmission zeros; they differ only in terms of e, which 
controls the ripples. 

It can be verified that R(z) satisfies 

R(z-‘) = (-1)/R(z). (A31 

Now, if the passband and stopband edges wP and ws are 

6Notice that, according to our definitions of c and R(r), the quantity 

l/m d oes not necessarily correspond to maximum passband at- 
tenuation. 

IG 

Fig. 20. Plot of the magnitude-squared function of a low-pass elliptic 
filter exhibiting symmetry with respect to r/2. 

symmetric with respect to 7r/2, we have 

op+ws=T. (A4) 

If we define K(z) to be such that 

K(z)K(z-‘.) =l-G(-z)G(-z-‘) (A5) 

then K(z) has reflection zeros r - ok and transmission 
zeros ?T - 8,. Moreover, in view of (A4), K(z) is a low-pass 
elliptic filter with same band edges as G(z); hence, we 
have the relation 

8, + wk = T. (A6) 

As a result, it can be verified that R(z) satisfies 

R(z)=l/R(-i). (A7) 

Now, if the plot of ]G(ej”)12 exhibits a symmetry about 
77/2 (as in Fig. 20), then we can see that K(z) is precisely 
the same as G(z). By using (Al) and (AS), we can then 
show that t: is unity. Accordingly, at a pole of G(z), we 
have the relation 

1-t R(z)R(z-‘) =O. C-48) 

In view of the relations (A3) and (A7), we thus have, at a 
pole of G(z) 

R(z) 
-1+(-l)‘-= 

R(-z) ” 
(A9) 

Since G(z) is lowpass with passband edge wP < r/2, we 
have 8, < 77/2; hence, the zeros of R(z) are strictly in the 
right half of the z-plane, and the poles are strictly in the 
left half plane. So r(z) = R(z)/R( - z) has all poles 
strictly in the left half plane, and satisfies ]T( jy)] = 1 for 
all real y. Thus, by employing the maximum modulus 
theorem, we arrive at 

l 
=l, for z = jy 

Ie>I <l, for Re(z) >O (AlO) 

>l, for Re(z) < 0. 

It immediately follows that all solutions of (A9) lie on the 
imaginary axis of the z-plane. In summary, if G(z) is a 
low-pass elliptic filter whose magnitude-squared ‘response 
has symmetry with respect to 7r/2 as in Fig. 20, then all 
the poles of G(z) are on the imaginary axis. 
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The main point here is that, in the QMF application, 
since H,,(z) and H,(z) are related by (43), where H,(z) = 
H,( - z), the response IiYo(ej”)12 does satisfy the symme- 
try displayed in Fig. 20. Accordingly, (58) gets simplified 
because n, = 0. The factors involving p, can be imple- 
mented using one complex delay and one real multiplier 
only. The real multiplier, in general, operates upon com- 
plex signals. 
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