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Abstract

Design of Earthquake Resistant Bridges Using Rocking Columns

by

Clément Benjamin Barthès

Doctor of Philosophy in Engineering- Civil and Environmental Engineering

University of California, Berkeley

Professor Bozidar Stojadinovic, Chair

The California Department of Transportation (CalTrans) is urging researchers and con-
tractors to develop the next generation highway bridge design. New design solutions should
favor the use of modular construction techniques over conventional cast-in-place reinforced
concrete in order to reduce the cost of the projects and the amount of constructions on site.
Earthquake resistant bridges are designed such that the columns are monolithically con-
nected to the girder and the foundations. Hence, despite the great improvements recently
made in modular bridge construction, a large amount of concrete is still cast in place to
properly splice the reinforcements between the segments.

Instead of designing earthquake resistant bridges with monolithic joints, it is proposed
to use discontinuous connections in this thesis. The segments may rock at their interface
during a severe earthquake and, if rocking rotation is too large, the structure may collapse.
However, if a bridge is allowed to rock moderately, it may modify the earthquake response
and drastically reduce the resisting forces within the structure.

The research presented in this dissertation focuses on the modeling of rocking connec-
tions. First, the behavior of rocking rigid blocks under earthquake excitation is studied. It
is proposed to restrain the rigid blocks with an unbonded post-tensioning cable in order to
allow rocking but prevent overturning. The findings made on rigid blocks, however, cannot
be applied to deformable structures because of the limitations of the model. Therefore, a
completely different approach is proposed. Instead of modeling the behavior of an entire
block, it is proposed to model only the rocking surface. A zero-length finite element is de-
veloped, allowing to represent the in-plane rocking rotation between two frame elements. It
allows to investigate the behavior of a deformable column rocking freely on its base as well as
the stability of a rocking column restrained with a cable and subjected to a large earthquake
excitation. The consequences of a post-tensioning cable failure and yielding of the column
are also investigated. It is proposed to add a dissipative fuse between the base of the column
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and its footing in order to enhance the stability of the structure. Finally, the behavior of
a conventional monolithic bridge is compared with a bridge allowed to rock at the columns
joints.

The results obtained with the rigid block model show that, when columns are allowed to
rock under earthquake excitation, it is possible to adjust the response and preserve stability
with a Post-Tensioning (PT) cable. The implementation of the zero-length rocking element
permits to study the behavior of deformable structures that are allowed to rock. At first, this
element is used in combination with a very stiff elastic element and the results are consistent
with the response of a rigid block. This element shows that the free rocking response of
an elastic column may stop rocking and start to oscillate in flexure. The dissipative fuse in
combination with a long unbonded PT cable proves to be effective. However, it is shown
that, if the dissipative fuse is too large, it may prevent the column from returning to its
initial position. At last, it is shown that a bridge structure allowed to rock and restrained
with cables can sustain a large earthquake. The resisting moments within the columns are
greatly reduced when compared with a conventional bridge while the drift ratio remains
moderate.

Several subjects are left for further research. First, the zero-length rocking element rep-
resents rocking only in the plane of the frame. The development of a 3D rocking element
is challenging because the column may rock and roll and may also twist around one corner.
The design of the rocking surface is not investigated; a bridge prototype should be designed
and tested experimentally to validate the feasibility of the solution proposed in this study.
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1 INTRODUCTION

1 Introduction

New construction or repair of bridges in a traffic network causes disturbances that increase
the risks to traveling public and often have a major detrimental impact on the economic
activity supported by the traffic network. Hence, there is a growing demand for Accelerated
Bridge Construction (ABC). ABC entails deployment of engineering and construction tech-
niques with the goal to minimize construction-induced disturbances (closures and/or traffic
lane or speed restrictions). Throughout the entire United States Departments of Trans-
portations (DoTs) are using innovative techniques that result in faster construction. Some
roadways are so vital to local economies that public administrations are ready to pay the
high cost to avoid long time closures. A present example is the construction of the new
East Bay Bridge (2013), where the traffic closure is restricted to less than 72 hours per year
[1]. The ABC techniques developed for these type of projects are very efficient when used
in conventional bridge construction. The Federal Highway Administration (FHWA) highly
recommends states administrations to use ABC technologies [15]. On one hand, the indus-
trial processes and equipments developed by the precast industry significantly reduce costs:
reinforcement cages can be built quickly by machines despite significant complexity, concrete
mixes can cure quickly and attain excellent short-term and long-term mechanical properties,
and concrete placement techniques have improved to yield very low rates of poorly executed
members. On the other hand, transportation and site preparation costs could be substantial,
since large precast elements often require oversized vehicles and cranes. Nevertheless ABC
projects are becoming more competitive since prompt constructions are greatly appreciated
by the traveling public.

Current philosophy in earthquake engineering of reinforced concrete bridges is to ensure
the continuity between the different parts of the structure as shown in Figure 1 and Figure
2. Reinforced concrete columns are strongly tied to the foundations and to the superstruc-
ture in order to resist to the large moments induced by earthquakes. Therefore, the latest
modular construction techniques are rarely used in seismic areas. Typical modern bridge
columns have large amounts of longitudinal and transverse reinforcement, requiring complex
splices even if no cold joint or precast segments are used in construction.

The principal hypothesis behind the research presented herein is that a breakthrough in
design of segmental earthquake-resistant bridges is needed to enable implementation of ABC
in seismic regions. The segmental column design investigated herein comprises of precast
segments joined using cold, non-monolithic joints tied together using an axial force produced
by a concentric post-tensioning cable. Such column design allows rocking to occur between
the column as well as its foundation and between the column and the deck bent-cap. Rocking

Clément B. Barthès 1



1 INTRODUCTION

Figure 1: Typical multi-span California standard ordinary bridge

may even occur between the column segments along the column height. Close attention is
given to rocking behavior; instead of preventing or limiting it, it is proposed to use rocking
behavior as an energy dissipation and seismic isolation mechanism in bridge columns. Such
seismic response modification technique is expected to enable ABC as well as to enhance
the seismic performance of bridges, ushering in the next generation of earthquake-resistant
bridge design.

In Chapter 2, modular construction techniques for seismic resistant bridges are presented.
In particular, design solutions allowing monolithic connections between precast elements are
discussed. Currently, large parts of the structure are often cast in place in order to ensure
the continuity of the concrete reinforcements. So it is propoosed to consider a new design
approach, allowing discontinuity between precast elements.

In Chapter 3, a literature review for the behavior of rigid blocks subjected to rocking is
presented. It is then proposed to restrain a rigid block with an unbonded post-tensioning
cable in order to allow rocking but prevent overturning.

Clément B. Barthès 2



1 INTRODUCTION

Figure 2: Monolithic design of a standard ordinary bridge

In Chapter 4, the implementation of a finite element capable of representing rocking is
presented. This element can be used in combination with existing prismatic elements, allow-
ing it to model very complex deformable structures with multiple rocking surfaces. Specific
issues concerning the handling of the discontinuous constraints by the computational algo-
rithm are discussed.

In Chapter 5, the rocking element developed in the previous chapter is used to investigate
the interaction between rocking and elastic deformation. Issues concerning the implementa-
tion of the viscous damping are discussed and the rocking termination due to column bending
is also investigated.

In Chapter 6, the stability of a deformable rocking column subjected to an earthquake
ground motion is studied. For a severe earthquake, the restraining cable may fail and lead
to collapse. Therefore, it is proposed to use a mild-steel fuse at the base of the column in
order to dissipate energy during the earthquake excitation.

In Chapter 7, it is proposed to compare the seismic response of a conventional monolithic
bridge with the response of a bridge with columns allowed to rock at both ends. Several
bridge configurations are investigated. Notably, the rocking behavior of a multi-span bridge
whose columns have a different aspect ratio is investigated. The benefits of a dissipative fuse
are also investigated.

At last in Chapter 8, the findings made during this Ph.D. are summarized. Several rec-
ommendations for further research, including the implementation of a 3D rocking element,
are presented.

Clément B. Barthès 3



2 MODULAR BRIDGE CONSTRUCTION

2 Modular Bridge Construction

2.1 Introduction

Nearly eighty percent of Californian highway bridges are cast-in-place post-tensioned con-
crete bridges designed and developed using engineering techniques of the 1980’s and 1990’s.
Great effort has been made in the last few decades to increase safety concerning earthquake
hazards, in particular. Today, Californian highway bridges are safe. They fulfill strict seismic
safety standards prescribed in Caltrans Seismic Design Criteria [3].

Meanwhile, modular bridge construction techniques have greatly improved over the last
decades. Many departments of transportation tend to avoid cast-in-place (CIP) concrete as
much as possible for several reasons. First of all, it induces larger environmental impact on
the construction site and a large quantity of concrete may be wasted due to late delivery
or over production. Second, the quality of the precast concrete has greatly improved over
the last few decades. A compressive strength 50% higher than CIP concrete can easily be
obtained with modern curing process. Modular construction also allows faster and cheaper
constructions. Costs can be greatly reduced when segments are built with modern industrial
processes during both module construction and module on-site assembly.

The principal advantage is that the modular construction accelerates construction for de-
sign and building of the next generation highway overpass bridges. However, ABC is rarely
used in seismic areas because of the perceived weakness of the connections between the el-
ements. Typically, a column of a bridge designed to provide high seismic resistance and
satisfactory seismic performance is designed with substantial continuous longitudinal and
transversal reinforcement. It is strongly anchored in the footing and the bridge deck and
particular attention is given to the reinforcement splices. Such reinforcement continuity is
not achievable with precast concrete elements unless large amounts of cast-in-place concrete
are used. In some cases, these prefabricated elements simply consist of reinforced concrete,
steel, glass, carbon fiber, or even polymer shells and are capable of resisting the hydraulic
forces of the cast-in-place concrete. However, the DoTs use more and more entirely precast
elements and only the connections are cast-in-place.

The purpose of this chapter is to present the review of column construction and connection
techniques with respect to their use in ABC and their capability to meet seismic safety
standards.
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2.2 Existing Precast Elements Connections

Conventional design of segmental bridges comprised of prefabricated elements (steel or con-
crete) is predicated on the rigidity (ability to transfer moments, shears and axial forces
without deformation) or semi-rigidity of column connections to the foundation and the super-
structure. The heavy mass of the superstructure generates a lateral force at the top of the
column. If the connection between the column and the superstructure behaves as a pin,
the column is loaded as a cantilever; as a result, a substantial demand on the foundations.
Therefore, it is preferred to clamp the column and the bent-cap together, preventing the top
of the column to rotate and reducing the moment at the base, as shown in Figure 3.

Moment Moment

Figure 3: The moment at the base of the column is reduced when the rotation is locked at
the top

This rule is easy to apply to cast-in-place structures but specific joints are required for
applying it to prefabricated structures. It is difficult to drastically reduce the cast-in-place
concrete volume and ensure monolithic junctions. The columns can be delivered with stand-
by reinforcements on both ends, allowing for monolithic connection with the footing and the
superstructure. Figure 4 shows an example of the installation of a precast bent-cap over a
precast column in Texas. But if the columns exceed 100ft, it is inconceivable to use full
precast columns.

If the column has to be segmented, then the splices between the longitudinal reinforce-
ments become too complicated; therefore, it is more reasonable to go for a permanent form-
work system to ensure a correct shear resistance. A new design is now used in Japan called
Sumitumo Precast form for Resisting Earthquake and for Rapid construction (SPER) [29],
shown in figures 5 and 6. This system is made to use the precast element as both permanent
formworks and structural elements. There are two versions of the product, for piers up to
40ft the square sections are delivered with cross ties already installed. They are stacked on
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Figure 4: Precast Bent-Cap Installed on Site (Texas DOT)

top of each other using epoxy glue along the vertical reinforcements. The concrete is then
cast inside the pier to give a solid section. The cross-ties inside the forms give enough lateral
resistance to the panels to resist to the pressure while pouring the concrete, so it does not
require any temporary shoulder during the construction. The time saved with this technique
compared to an entirely cast-in-place system is 50%.

Figure 5: SPER System for Solid Section Columns [29]

The second version of the product is designed for higher piers, up to 160 ft. It is a hollow
section where both inner and outer formworks are permanent structural elements. They are
segmented in half-sections to reduce size for hauling. They are placed around the vertical
reinforcements and then connected using couplers. The cross ties also have to be installed on
site, then the concrete is poured. The time saved compared to a traditional technique is 30%.
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Figure 6: SPER System for Hollow Section Columns [29]
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2 MODULAR BRIDGE CONSTRUCTION

2.2.1 Grouted Pockets

The bent-caps are designed to remain elastic during a large earthquake. The plastic hinges
are supposed to form at each end of the column, and the bent-cap should resist that de-
mand. Therefore, the behavior of the connections between the prefabricated elements plays
a key role in the seismic behavior of the bridge structure. A couple of connection examples
between a column and a bent-cap are given in Figure 7.

Figure 7: Grouted pocket connections between a precast column and a precast bent-cap [36]

These examples of connections were tested by E. Matsumoto et al. [24]. One connection
has through holes with corrugated ducts and the other one has tapered holes. The longitu-
dinal reinforcing bars of the columns are driven into these ducts and then high performance
grout is cast in place. Such connections should provide sufficient bond to allow the rein-
forcements to yield in tension. If the bridge substructure is composed of a single column,
instead of a trestle as shown in Figure 8, the longitudinal reinforcing bars will have a larger
diameter and grouted pockets will not withstand their yielding strength.
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Figure 8: Trestle Type Prefabricated Concrete Columns [36]
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2.2.2 Self-Compacting Concrete

The mechanical properties of Self-Compacting Concrete (SCC) are the same as conventional
concrete. However, SCC is less sensitive to the casting process, so if the concrete is correctly
tested when it is delivered, its strength and its compaction are almost insensitive to human
errors such as over vibration. For conventional concrete, the flowing ability is increased by
adding water, but this reduces the mechanical properties. But for SCC, the flowing ability is
given by superplasticisers. The cohesiveness is usually insured by high powder contents such
as ground granulated blast furnace slag, fly ash and other fine inert materials. At similar wa-
ter/cement ratios, the strength of SCC is equal or slightly better than conventional concrete.
Compressive strength between 5 and 10 ksi can easily be achieved. When delivered, the SCC
requires more tests than a conventional concrete, so the foremen need to be trained to use
this new material. Since the SCC can be pumped to the formworks and simply poured, little
or no vibration is required, so the task for the workers is easier. SCC is used to reduce costs
in various projects. It is because the process is faster but also because the surface does not
need any other treatment or finish. Because it is mainly constituted of fine granulates, it
is easy, for example to incorporate an esthetic pattern in the formworks. SCC is used for
urban construction to reduce noises. It is a key element to run a quiet construction and
allows night work. For example, it is now common to prepare formworks during daytime,
and then schedule most of the casting during night time. In addition to saving time, it also
avoids concrete trucks blocking the area near the construction site.

Figure 9: Self-Compacting Concrete being cast

The principal use of SCC in ABC is to implement the monolithic (pocket-type or other
types) connections between pre-cast segments. Since all the reinforcements have to be spliced,
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it requires a high density of reinforcements at the connection as shown in Figure 10. Due to
its flowing ability, SCC allows to cast in place integral connections between two prefabricated
elements.

Figure 10: Congested Reinforcements
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2.3 Bridge Columns With Unbonded Segments

Segmental construction of bridge columns in seismic areas constituted the main incentive
for the research presented below. Current practice consists of bonding the different elements
with adequate reinforcement splicing. But these splices limit the use of precast elements.
The column reinforcements can be bonded to the bent-cap with grouted pockets as shown in
Figure 7 but, even with properly designed corrugated grouted pockets, slipping is observed
at ultimate capacity.

Figure 11: Monolithic Bridge Substructure Assembly Subjected to Earthquake Motion

Figure 11 shows the behavior of a Californian bridge substructure subjected to earth-
quake motion. It consists of a continuous structure with column connections capable of
transferring shear and moment to the footing and the superstructure. On the contrary, seg-
mental bridge construction technique simply consists of stacking the column elements with
a cold, grouted or ungrouted, joint. Such simple design would lead to rocking and slipping
between the elements when subjected to a severe earthquake. However, it is believed that
a post-tensioning cable may be able to prevent slipping and limit rocking to reasonable ro-
tations. Furthermore, the rocking between the different elements may be beneficial for the
bridge. Rocking dissipates energy through shock wave radiation and it also modifies the
response of the structure, making it less sensitive to earthquake excitations in some cases.
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Figure 12 shows the expected behavior of an unbonded segmented column.

Figure 12: Unbonded Segmented Bridge Substructure Subjected to Earthquake Motion

The behavior of rigid blocks rocking on their base is inherently unstable, so designers
have been trying to prevent it. It was only after Housner [16], who observed that some water
tanks resisted a major earthquake in Chile, likely due to their rocking behavior, that research
was led on this subject. Recently, a lot of studies were done on rocking shear walls. M.R.
Eatherton et al. [8] tested a rocking shear wall with a special fuse on the E-Defense shake
table in Japan. Some structures allowing a frame to rock were even recently built, such as
the Orinda City Hall [23].

Figure 13: Cylinder Rocking

In order to use rocking in earthquake resistant bridge design, the fundamentals of rocking
rigid body have to be well understood. The dynamic behavior of rocking blocks induces shock
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waves, so the quasi-static approach often used in civil engineering may not be sufficient.
Chapter 3 covers the dynamics of rocking rigid blocks, required to assess the integrity of
segmented columns. A particular attention will be given to the instability issue and a
solution will be proposed using post-tensioning cable.
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2.4 Repairability of Modular Bridges

During a severe earthquake, structural damage cannot be avoided. The formation of plastic
hinges plays a key role in energy dissipation. However, it will induce large concrete cracks,
the reinforcements will yield and will have to be replaced. Even though existing bridges
will guarantee life safety if an earthquake occurs, they may not be repairable. But the next
generation bridge design should anticipate the cost and the feasibility of the repairs. Mod-
ular bridge construction seems to meet this requirement. Most of the bridge elements are
designed to remain elastic using capacity design principles. However, it is possible to re-
place prefabricated elements only if their connections with the neighboring elements are not
permanent. For instance the connections presented in Section 2.2 are not designed to allow
repair. Current design philosophy consist of assembling prefabricated elements on site such
that the structure built is monolithic. But efforts should be made to preserve modularity,
even after their construction.

The bridge elements are designed to be repaired or replaced. The replace option requires
non-permanent connections between the prefabricated elements. If the prefabricated mod-
ules are made out of steel, then bolted connections will be preferred to welded ones. However
if the elements are made out of reinforced concrete, they have to be bonded with cast-in-place
concrete, according to conventional design philosophy. The elements become permanently
connected, hence the repair option will be preferred. One solution proposed by Cheng and
al. [4] is to use bolted fuse elements instead of conventional longitudinal reinforcements, as
shown in Figure 14. After a severe earthquake, the cracked concrete can be removed, then
the fuses are replaced by new ones and concrete is cast-in-place. The column can be repaired
locally, without being replaced.
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Figure 14: Bolted Longitudinal Reinforcements [4]

The prefabricated column elements studied in this thesis have discontinuous reinforce-
ments. They are assembled on site with a simple joint of grout and the flexural resistance of
the column comes from the post-tensioning cables. Such design may allow DoTs to replace
damaged elements after a severe earthquake if the post-tensioning cable remains unbonded.
But such structure will behave differently than current standard ordinary bridges under
earthquake loading. The grouted joints will fail, allowing rocking between the elements.
New design guidelines have to be made, and the cables must allow the substructure to re-
main stable.

Clément B. Barthès 16



3 RIGID BLOCKS SUBJECTED TO ROCKING

3 Rigid Blocks Subjected to Rocking

In this chapter, it is proposed to focus on the rocking behavior of rigid blocks (RB). This
subject was first discussed by Housner in 1963 [16]. He showed that the rocking oscillations
of a RB are dissipative and non-linear. So a RB must be inelastic in order to rock; other-
wise, it will bounce. The rocking behavior of two stacked rigid blocks is also discussed. The
analytical solution of such system is extremely complex due to the large amount of rocking
modes and impact modes. This challenging problem was solved by Psycharis [28].
Secondly, the behavior of a rocking RB allowed to rock in 3D (in-plane and out-of-plane) is
discussed. The shape of the rocking surface is essential. A new mode of instability can occur
for rectangular surfaces, and circular surfaces may not rock at all but simply roll.
At last, it is proposed to model the behavior of a rocking RB restrained with an unbonded
post-tensioning cable. The intent is to allow rocking but prevent overturning.

3.1 Single Block Rocking Behavior

A rigid block under rocking motion acts as a non-linear dissipative oscillating system. This
dissipation mechanism can be used to attenuate earthquake response, but there is a risk of
instability that is hard to predict. During impact, a shock wave will radiate in the RB and
dissipate, but it may overturn under certain excitations.

3.1.1 Assumptions

The dynamic behavior of a RB has been studied by several researchers. Equation 1 describes
the free vibration of a RB. It was first presented by Housner [16]. The system is shown in
Figure 15. It is assumed that the RB is not rocking out of plane. The friction between the
RB and the base is considered sufficient to prevent sliding.

I0θ̈ = −mgR sin(αsgn(θ) − θ) (1)

In equation (1), θ(t) is the rotation angle, I0 the moment of inertia with respect to the point
of rotation, m the mass, R the block dimension and α the slenderness angle, as shown in
15. Housner linearized the system for slender blocks subjected to small angle of rotations
assuming that sin(α − θ) ≈ α − θ.
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Figure 15: Description of the Rocking Block

The RB behavior can be described with only two parameters p and α, leading to equation
(2), where p[1/sec] represents the frequency parameter of the system. This parameter can
be compared to the natural frequency parameter describing harmonic oscillator, ωn. As p
gets larger, the free rocking oscillations frequency of a RB will be higher. Free harmonic
oscillations periods can be quickly computed with ωn , but there is no simple interpretation
of p to determinate the behavior of a rocking RB. For the case of a rectangular block, the

frequency parameter is p =
√

3g/4R.

θ̈ = −p2{sin(αsgn(θ(t)) − θ(t)) +
üg(t)

g
cos(αsgn(θ(t)) − θ(t))} (2)

α plays a major role in the energy dissipation of the system as described below. To
incorporate the energy dissipation at the impact, Housner [16] assumed that the rotation
continues smoothly from point O to O′ (no sliding) and that the angular momentum during
the impact is conserved (see Figure 15). The relationship between the angular velocities is
obtained by applying the conservation of angular momentum. The coefficient of restitution
r of the impact can be computed as shown in equation (3). A confusion sometimes occurs
concerning the balance of angular momentum. During an impact, the angular momentum
is not conserved for the RB but for the RB-footing system. Similarly, the linear momentum
of the RB is not conserved but the linear momentum of the RB-footing system is conserved.
Since the footing has an infinite mass, the conservation of momentum at impact of the RB-
footing system can not be computed. However, the impact between the RB and the footing
is assumed to be a point impact. Therefore, the RB is subjected to a rolling constraint and
can not have a reaction moment at the point of impact. Hence the angular momentum is
conserved for the RB alone. If a RB is rocking on an isolated base with a finite mass, then
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Figure 16: Moment vs. rotation of a RB

the conservation of linear momentum and angular momentum must be conserved for the
RB-base system, as explained by Vassiliou and Makris [35].

r =

(

θ̇2

θ̇1

)2

=
(

1 − 3

2
sin2 α

)2

(3)

Figure 16 represents the moment versus the rotation of a RB. Once the excitation reaches
the required magnitude to initiate rocking, the RB becomes unstable since the resisting mo-
ment due to the RB weight decreases as θ increases.

Equation (3) implies that a slender RB looses less energy than squat ones; therefore, the
damping ratio depends on the RB slenderness α. Due to dissipation of angular momentum
during impact (radiation damping into the RB and the base), the vibration period of sub-
sequent cycles decreases. The horizontal acceleration required to initiate rocking is defined
by equation (4).

ügmin

g
≥ tan(α) (4)

Housner [16] also studied the overturning of a RB subjected to constant horizontal ac-
celeration, to sine pulse, and to earthquake type of excitation. He concluded that for two
geometrically similar blocks the scale effect makes the larger (i:e. with a smaller p) more
stable than the smaller. This scale effect is shown in Figure 17. Since the rocking initiation
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only depends on α, it is important to notice that RBs of identical slenderness but with
different sizes will start to rock under the same excitation magnitude. However, the larger
ones will be more stable.

Finally, Shenton [32] studied the initiation of rocking and sliding for a RB subjected to
base excitation. He showed that a slide-rock mode may exist when the friction coefficient
of a rocking RB is smaller than its friction coefficient at rest. However, this mode can only
occur for α ≤ π/4.
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Figure 17: Response of RBs with α = 25◦ to a Half-Cosine Ground Acceleration Pulse of
Amplitude 0.61g and Period T = 2sec
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3.1.2 SDOF Vibration Analogy

Priestley et al. [27] proposed a design methodology to estimate RB rotations when sub-
jected to earthquake horizontal excitation. The method consists of transforming the RB to
an equivalent single-degree-of-freedom (SDOF) system with a period and viscous damping.
The maximum rotation angle is computed from δ = θR cos(α), where δ is the displacement
of the centroid of the block, which is obtained from a response spectrum of a SDOF sys-
tem. To define the equivalent viscous damping of a RB system, the relationship between the
rotation amplitude in subsequent cycles is used. The equivalent period of the RB depends
on the maximum rotation angle θ; therefore, this methodology requires an iteration process.
The idea presented by Priestley is used by FEMA 356 [10], but it uses conservatively a lower
damping ratio.

From their study, Makris and Konstantinidis [22] concluded that the SDOF oscillator
and the RB are two fundamentally different systems. For example, the free vibration of a
RB is characterized by an increase of the frequency and a decrease of amplitude. On the
contrary, a SDOF oscillator vibrates with constant frequency. Therefore, the response of one
of these two systems should not be used to predict the behavior of the other. Additionally,
they concluded that the approximate design methodology to estimate block rotations imple-
mented in FEMA 356 is conceptually wrong and should be abandoned.

Makris and Konstantinidis [22] focused their attention in solving the nonlinear dynamic
equation of a RB subjected to horizontal ground acceleration. The equation of motion of a
rigid block subjected to ground acceleration üg(t) is written in equation (2). J. Zhang and
N. Makris [37] focused on the effect of cyclic loadings on rocking structures.
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3.1.3 Rocking termination

It is often assumed that rocking oscillations vanish but do not stop, similar to a harmonic
oscillator with viscous damping. But, unlike a damped harmonic oscillator, when the ampli-
tude of a rocking RB decreases, the period of rocking oscillations also decreases. Therefore,
the rapid decay of the period may cause rocking interruption at a finite time.

Housner [16] did not elude this question. Instead, he stated that after a few impacts the
rocking amplitude becomes so small that other phenomenon such as elastic bouncing will
cause rocking to stop. It is proposed in this section to prove that rocking will stop at a finite
time, even for a perfectly rigid block.

In order to compute the time of the free rocking response, the equation of motion (2) is
linearized. Housner [16] linearized this equation for α − θ but in this section, the equation
of motion is linearized only for θ, while the slenderness angle α is still considered large. The
linearized equation is presented in Equations (5a) and (5b).

θ̈ − p2 cos(α) · θ + o(θ2) = −p2 sin(α) for θ > 0 (5a)

θ̈ − p2 cos(α) · θ + o(θ2) = p2 sin(α) for θ < 0 (5b)

Equations (6a) and (6b) represent the solution of Equation (5a) for θ(0) = θ0 (with

θ0 > 0) and θ̇(0) = 0. A new frequency parameter is defined as p̃ = p
√

cos(α).

θ(t) = tan(α) − (tan(α) − θ0) · cosh(p̃t) (6a)

θ̇(t) = −(tan(α) − θ0) · p̃ · sinh(p̃t) (6b)

After the n-th impact, the maximum rotation is defined as θn. The angular velocity at
impact n is defined as θ̇n. At the time of the n-th impact defined as tn, Equation (6a) can
be expressed as Equation (7).

0 = tan(α) − (tan(α) − θn−1) · cosh(p̃tn) (7)
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Using the hyperbolic function identity cosh2 x + sinh2 x = 1, Equation (7) leads to Equa-
tion (8).

cosh(p̃tn) =
tan(α)

tan(α) − θn−1
=⇒ sinh(p̃tn) =

√

√

√

√

(

tan(α)

tan(α) − θn−1

)2

− 1 (8)

Therefore, the angular velocity at impact n is:

θ̇n = p̃ ·
√

tan2(α) − (tan(α) − θn−1)2 (9)

The coefficient of restitution r defined in Equation (3) leads to the recursive Equation
10 between the angular velocity at impact n and the angular velocity at impact n − 1.

p̃ ·
√

tan2(α) − (tan(α) − θn)2 = p̃ ·
√

r ·
√

tan2(α) − (tan(α) − θn−1)2 (10)

Hence the maximum rotation after impact n can be expressed as:

θn = tan(α) −
√

tan2(α) − rn (tan2(α) − (tan(α) − θ0)2) (11)

The quarter period Tn/4 is defined as the duration between the time t̃n at which the
rotation reaches its maximumn after impact n and the time at impact tn+1. Equation (7) is
expressed as a function of t̃n + Tn

4
in Equation (12).

0 = tan(α) − (tan(α) − θn) · cosh(p̃(t̃n +
Tn

4
)) (12)

Combining Equation (10) and Equation (12), the time at impact n + 1 is expressed in
Equation (13) with respect to the time at impact n. Note that there are two quarter periods
Tn/4 between two impacts.

tn+1 = tn +
2

p̃

√

√

√

√

√rn

⎡

⎣1 −
(

tan(α) − θ0

tan(α)

)2
⎤

⎦ (13)
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Due to the recursivity of Equation (13), the total time of the free rocking motion can be
expressed in Equation (14).

t∞ =
2

p̃

√

√

√

√1 −
(

tan(α) − θ0

tan(α)

)2

·
∞
∑

n=0

(√
r
)n

(14)

Based on the definition of the reduction factor, for any α, r < 1. Hence Equation (14)
converges and leads to Equation (15).

t∞ =
2

p̃

√

√

√

√1 −
(

tan(α) − θ0

tan(α)

)2

· 1

1 − √
r

(15)

The equation of motion was linearized with respect to θ and, since the initial angle θ0

is finite, the time of rocking interruption t∞ is approximate. However, this demonstration
proves that the free rocking response of a rigid block will lead to an infinite number of im-
pacts but it will stop at a finite time for any slenderness angle α.
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3.2 3D Rocking Block

In this section, the RB is allowed to rock on a flat surface in any direction, as described in
Figure 18. It is still assumed that the RB does not slide and always remains in contact with
the base. The rocking behavior in 3D is largely dependent of the shape of its base. It can
be subdivided into two categories: the RB with a polygonal base and the RB with a circular
base.

Figure 18: Rolling of a Cylinder on Its Edge (From [33])

After Sanriku-Haruka-Oki earthquake in 1994, Tobita and Sawada [34] noticed that slen-
der granite tombstones were rotated. A sliding block subjected to earthquake excitation may
translate but should not rotate so noticeably. Hence it was concluded that the tombstones
rotated because of rocking. The multi-directional excitation of an earthquake caused the
tombstone to rock in its two transverse directions. Incidentally, the RB was not rocking on
its edge but on its corner, allowing it to rotate.

Tobita and Sawada conducted experiments on a shaking table with rigid blocks subjected
to skewed earthquake excitations as shown in Figure 20. Once the block uplifts on its corner,
it tends to twist around one corner until the center of rotation and the center of gravity are
aligned with the excitation, leading to the curious disposition of the tombstone after the
earthquake.

The rocking behavior of a cylinder was studied by Srinivasan and Ruina [33]. The cylin-
der is considered rigid, and its bottom edge is constrained to remain in contact with the
supporting surface, as shown in Figure 18. The friction is considered sufficient to prevent
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Figure 19: Tombstone Rotated After Sanriku-Haruka-Oki Earthquake (1994)

sliding. It is shown that the cylinder will not rock but will instead roll. Unlike the 2D case,
there is no impact between the cylinder and the support. If the cylinder is initially tilted
and no angular velocity is applied along its longitudinal axis, it will bifurcate to the left or
to the right and roll on its edge. Hence a rocking cylinder is, in fact, only rolling.

In conclusion, 3D rocking motions have two properties unobserved in 2D. One is that they
tend to rotate when they have a polygonal base and the other is that they no longer rock but
simply roll when they have a circular base. If only rolling occurs, there is no dissipation due
to the absence of impacts. A compromise may be found by using a polygonal base with tan-
gent rounded edges; if the block is rocking on one edge then impacts can occur, if it is rocking
on a corner, then it rolls until it reaches an edge. This configuration has not yet been studied.

Clément B. Barthès 27



3 RIGID BLOCKS SUBJECTED TO ROCKING

Figure 20: Rotation of a Rigid Block Subjected to a Skewed Earthquake Excitation (from
[34])
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3.3 Two-block Rocking Assemblies

Psycharis [28] derived the equations of motions for two-block assemblies. It is assumed that
the blocks are rigid and that no sliding occurs. As shown in Figure 21, the upper block
can rock on top of the lower block. The system is inherently less stable than a single block.
For instance, if only the lower block is rocking, the upper block may overturn before it even
starts to rock if it is more slender than the lower block.

Figure 21: 2 Rigid Blocks Assembly (from [28])

Four different rocking motion modes may occur, as shown in Figure 22. These modes
can be described by eight systems of linear dynamic equations, each mode being governed
by two different systems of equations, whether the rocking rotations are positive or negative.
Furthermore, six equations govern the transition from one mode to the other to conserve
the angular momentum, and eight equations govern the initiation of the rocking modes. In
order to solve these sets of ODEs, the algorithm must detect each event and then converge
to it. Transition equations are solved for the solution of the previous ODE and applied to
the new ODE system as initial values, as explained in 3.4.1.

Psycharis computed the solution for a free rocking assembly and for an assembly sub-
jected to an earthquake excitation. It shows that, if the structure does not overturn, the
energy is redistributed to the upper block which is therefore subjected to larger rotations.
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Figure 22: Rocking Modes for 2 Blocks Assemblies (from [28])

As shown in Figure 23, the rotations of the lower block vanish very quickly and the system
quickly turns into a single block rocking response of the upper block.

In order to study the behavior of multiple stacked rigid blocks, a numerical method called
the distinct element method was used by Konstantinidis and Makris [19].
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Figure 23: Free Rocking Response of a Two Rigid Blocks Assembly (from [28])
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3.4 Single Rocking Block Restrained With a Cable

Rocking behavior may be an efficient way to dissipate energy through the impacts when a
structure is subjected to an earthquake excitation. However, the inherent instability shown
in 16 limits its use. An unbonded post-tensioning (PT) cable is expected to add stiffness to
the system, and therefore improve its stability.

Figure 24 describes the setup studied. Since the cable is unbonded, the post-tension force
depends of the strain of the cable, P (θ) = P0 + kε(θ), where P0 is the initial post-tension
force (at θ = 0) and k the cable stiffness. The rotation between the axis of the block and
the axis of the cable is considered negligible consequently, the post-tension force is modeled
as a follower force. The strain of the cable is computed in Equation (16). Using Taylor
expansion, the strain can be linearized as shown in Equation (17).

Figure 24: Rocking Block with PT Cables

ε(θ) =
[4h2 + 2b2 − 2b(b cos(θ) − 2h sin(|θ|))]1/2 − 2h

2h
(16)

ε(θ) ≈ tan α

2
θ + o(θ3/2) (17)
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Figure 25: Strain in the Post-Tensioning Cable for θ = α
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Figure 25 shows that the strain can be considered linear, especially for slender blocks.
Based on this assumption, the post-tension force can be represented by two dimensionless
parameters, η0 and ηα as shown in equation (18). η0 represents the initial post-tension force
at θ = 0 (divided by the weight) and ηα represents the post-tension force when the PT-RB
reaches angle θ = α. Hence, if a cable is very soft, the post-tension force remain constant
during motion and η0 = ηα. The balance of angular moment with respect to O and O′ leads
to Equations (19a) and (19b).

P (θ) = mg(η0 + (ηα − η0)
θ

α
) (18)

I0θ̈ = −P (θ)R sin(α) − mügR cos(α − θ) − mgR sin(α − θ)for θ > 0 (19a)

I0θ̈ = P (θ)R sin(α) − mügR cos(α − θ) − mgR sin(−α − θ)for θ < 0 (19b)

Combining equations (18) and (19) leads to equation (20).

θ̈ = −p2{sin(αsign(θ)−θ)+
üg(t)

g
cos(αsign(θ)−θ)+(η0sign(θ)+(ηα −η0)

θ

α
) sin(α)} (20)

The energy dissipation is incorporated at each impact using the conservation of angular
momentum given by equation (3). Therefore, the post-tension cable is assumed to remain
elastic and it does not dissipate energy. For a PT-RB, the minimum ground acceleration
required to initiate rocking depends only on η0. The required acceleration to initiate rocking
is defined in equation (21). Compared to Equation (4), the effect of the PT cable is evident;
it increases the stability of the RB.

ügmin

g
≥ (1 + η0) tan α (21)

The restoring moment versus the rotation angle of a RB for different post-tension values
η0 is shown in Figure 26. The cable’s stiffness is assumed to be negligible, hence ηα = η0. It
is observed that the restoring moment has a negative slope, and its value is still positive for
θ > α. Therefore, a RB with post-tension force will overturn for a larger rotation than the
case without post-tension force.
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Figure 26: Restoring Moment Versus Rotation for α = 10◦

Moreover, if the cable’s stiffness is large, the RB becomes stable. In fact, the tension
increases when the RB rotates and the stiffness of the system becomes positive as shown in
Figure 26. Stability is achieved when ηα ≥ 1 + η0. In practice, this criterion may not be
achieved because the steel cables cannot undergo such a large strain. Figure 25 shows that
the cable may fail for squat blocks in an extreme case where θ = α.
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3.4.1 Implementation of the PT-RB Model

The dynamic behavior of a RB with a post-tension cable is examined under different types
of excitations in this section. The response is calculated by numerical integration of equa-
tion (20), expressed as a 2-DOF first order ODE, using a fourth order explicit Runge-Kutta
method (Dormand-Prince pair). The system becomes stiff when θ becomes very large (be-
yond overturning angle); therefore, an implicit scheme is more efficient to detect overturning.

{

y(t)
}

=

{

θ(t)

θ̇(t)

}

with
{

f(t)
}

=
{

d
dt

y(t)
}

{

f+(t)
}

=

{

θ̇(t)

−p2[sin(αθ(t)) + üg

g
cos(α − θ(t))]

}

for θ > 0

{

f−(t)
}

=

{

θ̇(t)

−p2[sin(−αθ(t)) + üg

g
cos(−α − θ(t))]

}

for θ < 0

Note that not only the restoring moment but also the velocity are discontinuous for θ = 0
because of Equation (3). The ODE solver has to stop when the rocking event occurs, com-
putes the angular velocity after impact, and restarts with the updated initial conditions.
This category of solvers was studied by Shampine and al. [31].

In the papers presented in this chapter, a conventional ODE solver is used to solve the
discontinuous equation (20). But the discontinuity occurs at the same time as the rocking
event. Therefore, it is much more efficient to solve the continuous function f+ when θ ≥ 0
and f− when θ ≤ 0. Figure 27 represents the continuous functions used by the ODE solver.
For instance, if the algorithm tries to converge from θ < 0 to θ = 0 but overshoots, instead
of computing the ’true’ system response, it is more effective to keep computing the continu-
ous function f−(t). Once the convergence is achieved, the updated boundary conditions are
applied and the algorithm solves for f+(t). Hence the solver never encounters discontinuities
while it is iterating.
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Figure 27: Continuous Functions f+ and f− Used By the ODE Solver
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Figure 28: Free Vibration Response With an Initial Rotation θ0 = α/2. RB Properties Are
p = 2.0(1/sec),α = 10◦

3.4.2 Free Vibration Response

Figure 28 shows the free vibration response of a free-standing and PT-RBs. The initial ro-
tation of the RB is θ0 = α/2. It is observed that the period decreases as the rotation angle
decreases. The post-tension cable does not add any damping but, since the post-tensioned
RB oscillates faster than the free-standing RB, the amplitude of rotation decreases faster.
Otherwise, the behavior of the two RBs is very similar. Since no overturning will occur for
the given initial conditions, both RBs remain stable.

3.4.3 Response to a Ground Acceleration Pulse

When an unprestressed RB is subjected to a constant ground acceleration sufficient to initiate
rocking, it overturns. Therefore, the push-over analysis is not suitable to study the earth-
quake stability of rocking structures. It was shown in this section that a prestressing cable
can stabilize a RB, but their dynamic response remain highly non-linear. It is proposed in
this section to study the behavior of a PT-RB to a half cosine ground acceleration pulse. This
type of loading was already studied by Konstantinidis and Makris [19] for unprestressed RBs.

Figure 29 shows the response of an unprestressed RB to a ground acceleration pulse. For
üg ≤ 0.25g, the RB does not rock, but for üg ≥ 0.45g the RB overturns. It was shown that
the initial prestressing force of a PT cable allows rocking initiation to be controlled. The
rocking motion should occur during a large earthquake to dissipate energy. Therefore, the
cable has to be tuned to allow rocking but to limit it such that the amount of rotation is
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acceptable. Figure 30 shows that it is possible to limit the maximum rotation of the RB and
prevent overturning by increasing ηα, even if there is no initial prestressing force (i.e. η0 = 0).
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Figure 29: Response of an Unprestressed RB to a Half-Cosine Pulse for Several Amplitudes
(p = 2[1/sec], α = 15◦)
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3.5 Rocking Spectra

As proposed by Makris and Konstantinidis [22], it is possible to compute rocking spectra,
comparable to oscillation spectra widely used nowadays. An oscillation spectrum shows the
maximum acceleration of a single DOF system for a given natural frequency, a damping
ratio, and an earthquake excitation. Similarly, the rocking spectra represent the maximum
rotation of a rigid block for a given frequency parameter p, a slenderness angle α, and an
earthquake excitation.

Rocking spectra for PT-RBs are presented in this section. Similarly to spectra computed
by Makris and Konstantinidis [22], it gives the maximum rotation of a PT-RB for different
parameters. In some cases, the post-tensioning cable has an amplifying effect. For instance,
in Figure 31, for α = 10◦, 2π/p = 6sec and ηα = η0 = 0.5, the PT-RB undergoes a rota-
tion approximately 30% higher than the unprestressed RB. This observation still holds for
ηα = 5η0 and ηα = 10η0. Since the frequency of rocking will increase with the use of the PT
cable, resonance may occur for some specific earthquakes. The time history acceleration of
an earthquake is very random, and since the RB response is highly non-linear, some frequen-
cies may be excited when a PT cable is added. The resonance of PT-RB is usually balanced
by the added stability, and for large prestressing forces (η0 ≥ 1), observations show that the
cable is always beneficial.

The complex resonance phenomenon may lead to surprising results. Thus, the results of
the rocking spectra cannot be extrapolated as easily as the results given by oscillation spectra.
Two major differences must be noted. For oscillation spectra, it is possible to scale the re-
sponse to simulate an earthquake excitation of a larger amplitude. Furthermore, multi-DOF
elastic oscillators can be decomposed into orthogonal modes, hence the spectra can be used
to design multi-DOF structures. This is not the case with multiple blocks rocking structures.

Unlike free rocking blocks, the PT-RB can rotate beyond α and return, rather than over-
turn. Since the resisting moment has a positive slope as described in Figure 16, it can in
theory rotates beyond the angle α. However, the spectra presented here do not show the
maximum angle when it exceeds the overturning angle of an unprestressed RB. It is consid-
ered that at such large rotations, it will experience very large strains (see Figure 25).
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Figure 31: Rocking Spectra of PT-RBs, Subjected to Kobe Earthquake (Japan,1995, Taka-
tori Station, Longitudinal), α is Equal to Respectively 5◦, 10◦, and 15◦
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3.6 Design Strategy Using a Rocking Base

The rocking mechanism can be used as a dissipative system for large structures subjected
to earthquake excitation. Chen et al. [4] studied the rocking dissipation of slender viaduct
columns. In their study, the rocking mechanism is rarely used because it is hard to predict
overturning and also because it is hard to adjust the initiation of rocking. Namely, if the
rocking behavior is used as a seismic isolation, the structure must start to uplift before it un-
dergoes major damages. It was shown that the rocking impacts dissipate energy. But, if the
column is slender, this dissipation will be minimal. However, when the base of the column
is uplifted, it limits the resisting moment within the column. Furthermore, the non-linear
oscillations of the rocking structure, the earthquake excitation is unlikely to resonate.

The use of post-tensioned rocking system for seismic response modification for a standard
ordinary California bridge is presented here. The bridge section presented in Figure 32 was
first studied by Ketchum et al. [18].

The column is considered rigid and the girder is modeled as a lumped mass, equal to the
mass of the two adjacent mid-spans. The stiffness of the girder is neglected, so the bridge
column can be modeled as a single degree of freedom. Rocking is allowed only between the
pile cap and the column and at the foot of the column. For a typical 100′ span, the rocking
parameters become p = 1.1225[1/sec] and α = 4◦. Note that the lumped mass on top of
the column increases the block slenderness (αcolumn = 7.1◦). In order to get a stable rocking
column, the post-tension force parameters η0 and ηα can be adjusted. Also, the foot of the
column may be widened in order to increase α.

In order to tune the rocking parameters properly, several design objectives have to be
considered. The rocking mechanism is used in order to reduce the demand on the column.
It helps to reduce the moment and shear in the column. In addition, the forces transferred
to the footing and the deck are also lowered. Another design objective is to ensure that the
bridge deformations remain acceptable. If the rocking rotations are too large, the structure
may overturn. Therefore, the rocking parameters must be chosen adequately in order to
limit the column’s demand as well as to limit the bridge deformation. Since the response of
the structure is highly non-linear, a trial and error strategy is used.

The unprestressed column will start rocking for üg = 0.07g. Given that rocking has to
occur for üg ≥ 0.2g in order to limit the moment the foot of the column, η0 = 1.86 based on
Equation (21).

The cable is first assumed to be very soft (i.e. small diameter), hence η0 = ηα. The bridge

Clément B. Barthès 42



3 RIGID BLOCKS SUBJECTED TO ROCKING

Figure 32: Typical Section of a Multi-Span Bridge
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is subjected to Tabas earthquake record motion (1978). Figure 34 shows the rotation of the
column during the excitation. η0 = 0 represents the case with no post-tensioning cable the
structure overturns almost immediately. For η0 = ηα = 1.86, the structure can withstand
the earthquake. But the rotation of the column exceeds 80% of α. Furthermore, there is
almost no dissipation. The structure is still largely oscillating 20 seconds after the end of
the excitation.

Figure 33: Bridge Column subjected to Tabas EQ With η0 = 0 and η0 = 1.86

In order to reduce the amplitude of the rotation, the cable stiffness EA
L

can be increased.
Hence, a cable with a larger diameter can be used. However, it is also possible to partially
bond the cable to reduce the length allowed to elongate. As a consequence, ηα will increase.
But the small dissipation comes from the slenderness of the column. Even though the foot
of the column could be widened to increase α, the dissipation would remain small. Other
dissipation devices can be added to slender structure such as this one.

A new run is performed with ηalpha = 10η0. Figure 35 shows that the rotation is signifi-
cantly reduced. Its maximum is 24% of α.

The maximum force in the post-tension cable is FpMax = 5.9Weight. For the bridge
column studied here, this capacity can be obtained using a 5in2 steel cable with a yielding
strength of 270ksi. But such cable would be too soft. In order to obtain the parameter ηα,
the cable can be partially bonded as shown in Figure 33. The cable has to be unbonded over
a length of about 30ft to satisfy the mechanical properties used above.
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Figure 34: PT-RB with a partially bonded cable

Figure 35: Bridge column subjected to Tabas EQ With η0 = 1.86 and ηα = 18.6
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This simplified model shows the potential benefits of rocking behaviour in large struc-
tures. The moment at the base of the column will be considerably reduced, allowing the
designers to reduce the moment capacity of the column and the footing. It also shows that
the damping due to rocking is very small for slender structures such as bridges. Figures 34
and 35 show that the oscillations are still very large, 20sec after the end of the excitation;
thus, an extra damping device may be required at the base.

In conclusion, a PT-RB is an effective seismic response modification mechanism. Its
principal benefits are:

• Effective control of rocking initiation

• Limitation of the rocking amplitude

• Vibration period shift, making it difficult for the structure to enter resonance

This makes the structure less sensitive to earthquake excitation. But the dissipative
property observed on squat blocks is negligible for very slender structures. Hence rocking
connections should be coupled with external damping devices to control the attenuation of
motion.

3.7 Conclusion

A PT-RB is an effective seismic response modification mechanism. Its principal benefits are:

• Effective control of rocking initiation

• Limitation of the rocking amplitude

• Vibration period shift, making it difficult for the structure to enter resonance

This makes the structure less sensitive to earthquake excitation. But the dissipative
property observed on squat blocks is negligible for very slender structures. Hence rocking
connections should be coupled with external damping devices to control the attenuation of
motion.

The equations governing a rigid block subjected to rocking are fairly simple but they
cannot be represented by an oscillating system. Hence the spectral analysis widely used in

Clément B. Barthès 46



3 RIGID BLOCKS SUBJECTED TO ROCKING

earthquake engineering cannot be applied here. Makris and Konstantinidis [22] have devel-
oped rocking spectra, allowing the designers to know the maximum rotation that a rigid
structure may experience for a given earthquake. However, the oscillation spectra are conve-
nient because they can be used for multi DOF systems using modal analysis with a statistical
approach. Furthermore, oscillation spectra can be blended together in order to represent the
likelihood of an earthquake event for a given region. They can be scaled since the oscillation
systems behave linearly. None of these properties applies to the rocking spectra, hence their
use is much more limited.

The double RB assemblies were presented in section 3.3. The complexity of the im-
plementation is due to the very large number of events. In fact, a single RB has a rocking
initiation defined by one equation, versus 8 equations for a double RB. A single RB in motion
may be subjected to only one impact event, versus 6 for a double RB. If a three rigid blocks
assembly was to be implemented, the amount of events would be so large that it would be
almost impossible to define them all. Furthermore, such a vast amount of events would be
extremely hard to solve for conventional ODE solvers because of the likelihood that several
events happen during the same time step. Hence we can conclude that analytical rigid body
models are not suitable for multi-DOF rocking assemblies.

At last, the purpose of the research presented in this thesis is to study the behavior
of bridges subjected to rocking. But the rigid block assumption cannot hold for slender
structures because the structural elements of a bridge are not rigid but deformable. The
material deformations may interact with the rocking rotation. Furthermore, it is likely that
a bridge structure will require several rocking surfaces (between the deck and the column,
for instance). These problems were an incentive to address the mechanics of rocking in
a different manner. It has been already shown that the finite element method allows to
represent complex material deformations, it is proposed to design a connection element
capable of modeling the rocking rotation. Such element could be used in combination with
existing finite elements to represent the behavior of a deformable rocking structure.
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4 Rocking Element

4.1 Introduction

The rocking rigid body model is very convenient to analyze the response of single degree of
freedom systems. It only has a few non-dimensional parameters. However, for systems with
multiple rocking surfaces, the complexity rises tremendously. Different rocking modes may
appear; thus, the algorithm has to detect when each rocking event is triggered as explained
in [31] and it also has to detect the transition between two different rocking modes. Two
superimposed rigid blocks lead to ten different rocking modes transitions [28], so three su-
perimposed rigid blocks analysis is merely intractable. Therefore, the analytical equations
of staggered rigid blocks is not conceivable to study large structures. A finite element model
may be more suitable.

Furthermore, a flexible block may have a significantly different rocking behavior. In or-
der to use rocking devices on slender structures such as bridges, the deformations of the
structural elements must be taken into account as they may alter the rocking behavior when
deformed elastically, inducing or precluding overturning, compared to a rigid body. This
leads to the conclusion that the rocking surface cannot be modeled independently from the
rest of the structure.

The goal in this chapter is to develop a finite element model representing rocking at the
interface between two prismatic (frame) finite elements. Rocking is assumed to occur in the
plane of the frame (2-dimensional rocking) and the frame elements are assumed to have no
thickness; i.e., the shape of the cross-sections at the rocking interface is irrelevant; only the
thickness dimension of the frame element matters. The width of the rocking surface is defined
as a parameter of the rocking element and it is independent of the width of the adjacent
frame elements. In addition, it will allow the consideration of the large displacements and
deformations of the frame elements in the structure.
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Figure 36: Description of the Rocking Element

4.2 Description of the Element

The rocking element is a point element. It has two independent nodes overlapping at rest.
Each node can be connected to another element such as a beam. The kinematics of the
element are limited to the plane of the frame (2D modeling), so each node has three degrees
of freedom, two translations and, one rotation. It is considered that no sliding will occur
at the rocking interface. The two parameters p and α used in Chapter 3 cannot be applied
in this case since they both depend on the geometry of the block. The new element will
have a rocking radius R and a rotational stiffness k

r
. The rocking radius defines the distance

between the nodes and their center of rotation. The rotational spring k
r

shall be set to zero
when modeling a free rocking behavior. Even a post-tensioning cable restraining rocking
shall not be modeled using this rotational spring, a bar element connecting the anchoring
points will be far more realistic and the added computational cost will be negligible. How-
ever, this spring can be useful when representing a deformable footing.

Note that the element does not have a constitutive law, except for the rotational stiffness
kr, which is usually equal to zero (free rocking configuration). Therefore, if the element is not
subjected to any external force and a rotation is imposed at one end, the resisting moment
will be zero. However, when the element is subjected to an axial force, the rocking rotation
θ will generate a resisting moment. In fact, the element may be free to rotate (i.e., no rota-
tional stiffness), but the center of rotation does not correspond to the center of the element
because of the kinematic constraints. Hence the resisting forces of the element depend on
the forces applied to the element of the rest of the structure.
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The displacements and the rotations of the nodes expressed in the global coordinate sys-
tem are stored in the vector u. The forces and the moments at the nodes are stored in the
vector p. The two nodes can translate and rotate separately but, in order to model rocking
without sliding, these translations and rotations are dependent. Hence only one internal
degree of freedom, the angle, remains.

The element has an orientation, so there is an initial angle θ0 that defines the angle
between the rocking surface and the ex-axis as shown in Figure 36. When rocking occurs,
the kinematic equations are the following:

Δx = −sign (θ) R (1 − cos θ) (22a)

Δy = R| sin θ| (22b)
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Figure 37: Kinematics of the Rocking Element

The kinematic constraints are imposed using the Lagrange multiplier method. Before
rocking occurs, the two nodes must overlap. Therefore, the algorithm applies the following
three constraints.
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g1(u) = u4 − u1 = 0 (23a)

g2(u) = u5 − u2 = 0 (23b)

g3(u) = u6 − u3 = 0 (23c)

Once rocking is initiated, then the three constraint functions defined in Equations (23a),
(23b), and (23c) are replaced by the two constraint functions (24a) and (24b). These two
constraints impose the vertical and horizontal displacements consistent with the radius R
for a rotation θ. The center of rotation is located at a distance R from the nodes. The initial
angle θ0 defines the initial orientation of the rocking surface. These constraints also prevent
sliding. The relative displacements between the nodes are represented in Figure 37. Note
that the horizontal displacement is smooth; however, the vertical displacement has no first
derivative for θ = 0.

g1(u) = (u4 − u1) cos(u3 + θ0) + (u5 − u2) sin(u3 + θ0) + sign(u6 − u3)R(1 − cos(u6 − u3))
(24a)

g2(u) = −(u4 − u1) sin(u3 + θ0) + (u5 − u2) cos(u3 + θ0) − R| sin(u6 − u3)| (24b)

4.3 Initiation of Rocking

A block uplifts when one end of its rocking base is no longer subjected to compression so
the element will initiate rocking when the axial compression multiplied by the radius of the
base is less than the moment applied at the node . It is important to note that the element
can be subjected to a rigid body motion; so, in general, the direction of the axial force is not
aligned with the vertical axis.

In equation (25) the forces and moments pi are associated with the displacements and
rotations ui and the internal rotation θ is equal to zero since rocking has not occured. When
rocking is initiated, the constraints are changed. The three constraint functions (23) are
replaced by the two constraint functions (24). A Lagrange multiplier will disappear, so the
structure of the global stiffness matrix will change. This event has to be handled with great
care by the algorithm. It corresponds to a sudden change in the boundary conditions of
the structure, hence the transition should occur when the system respect the constraints

Clément B. Barthès 51



4 ROCKING ELEMENT

associated with the non-rocking state (23) and the constraints associated with the rocking
state (24). This transition should occur when the rocking initiation event is satisfied and
when the internal rotation in the rocking element is θ = 0.

p3 > −R
(

− sin(u3 + θ0) cos(u3 + θ0)
)

(

p4 − p1

p5 − p2

)

(25)

If the algorithm overshoots when the rocking is initiated, the moment in the element will
far exceed the moment defined by equation (25). The release of a constraint will then lead to
a sudden drop of the moment and generate noise while, in fact, the resisting moment should
be continuous when rocking is initiated. Therefore, when the event occurs, the algorithm has
to step back and reduce the time step in order to converge to the rocking initiation event.
This issue was discussed in chapter 3.4.1, for the rocking event detection (at each impact)
and not for the rocking initiation event.

As a structure undergoes free rocking, the amplitude is reduced and the oscillations
become shorter after each impact. Eventually, the rocking rotations are too small and the
algorithm should interrupt rocking to minimize computational cost.
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4.4 Implementation of the Constraints

In order to represent the rocking motion properly, the rest of the structure has to be mod-
eled with elements accounting for large displacements. The location of the center of masses
with respect to the center of rotation of rocking will play a central role in the rocking be-
havior and in the loss of stability of the structure. The beam elements used in this thesis
are elastic corotational beam elements [6], embedded in FEDEASLab [11]. This program
allows the user to call any existing routine in Matlab as well as a robust linear algebra solver.

The rocking elements are associated with constraints. Therefore, an energy potential for
the entire structure (rocking and elastic elements) has to be minimized and to satisfy the
constraint functions gi(u), using the Lagrange multiplier method.

Πtot(u, λ) = Π(u) + λg(u) (26)

=⇒
⎧

⎨

⎩

∂Πtot

∂u
= R(u) + ( ∂g

∂u
)Tλ − F

∂Πtot

∂λ
= g(u)

(27)

Equations (26) and (27) describe the governing equations of the structure with the con-
straints. u represents the displacements at the free degrees of freedom (DOF) , R(u) rep-
resents the resisting force associated with the free DOFs, F represents the applied force,
including the inertia forces, and g(u) represents the constraint functions associated with the
free DOFs connected to a rocking element.

Since these equations are non-linear, this potential will be minimized using an incremen-
tal and iterative algorithm. Equation (28) shows that the total stiffness matrix is symmetric
but not positive definite. Hence the Cholesky solving algorithm cannot work because the
pivots are equal to the diagonal terms and cannot be zero. The matrix can still be inverted
with a permutation algorithm, but the computational cost increases. In such cases, it is
usually preferred to enforce the constraints with approximate methods [17].

K =
∂R

∂u
, L =

∂g

∂u
=⇒

[

K LT

L 0

](

Δu

Δλ

)

=

(

ΔF

Δḡ

)

(28)

The penalty method consists of multiplying the constraint functions by a very large
penalty number such that, when the potential is minimized ,the constraint function has to
remain small.

Πκ(u) = Π(u) +
1

2
κg(u)2 with κ ≫ 1 (29)
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In order to set the constraints to zero, κ must be very large. This may compromise the
condition number of the stiffness matrix but the penalty factor can be reduced without com-
promising the constraint if it is combined with an iterative algorithm, using the Augmented
Lagrangian method. This iterative method is presented in Figure 38.

Figure 38: Augmented Lagrangian Method

For each Augmented Lagrangian iteration, the algorithm has to perform a Newton-
Raphson iteration until convergence occurs. In order to optimize the computational cost, the
algorithm was implemented such that the Augmented Lagrangian iterations will occur very
rarely. If the penalty parameter κ is very large, then the Augmented Lagrangian iteration
may be satisfied within one step.

As shown in Figure 39, the constrained vertical displacement in the rocking element has
a discontinuous gradient, hence Newton-Raphson iteration may fail to converge and since
this gradient is infinitely steep for θ = 0 it is not Lipschitz continuous, so more enhanced
iterative method such as BFGS may also fail to converge [6].
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Figure 39: Vertical Constraint of the Rocking Element Versus Rotation

Therefore, a different approach was used. Instead of trying to find an algorithm that
converges, despite the discontinuity, the vertical constraint function was ’smoothed.’ When
θ is within an interval ε near zero, Equation (22b) is interpolated with an order 4 poly-
nomial. Hence its derivative is continuous at zero. This method makes the element more
robust because it allows the user to use any iterative algorithm, suitable for the rest of the
structure. In order to enforce the continuity at the edge of the interval ε , the function is
made so that it is no longer equal to zero for θ = 0. In Figure 40, a very large interval ε was
chosen for clarity. Equation (31) represents the smoothed constraint functions used when
|θ| < ε, with the polynomial coefficients expressed in Equation (30)

⎛

⎜

⎝

a1

a2

a3

⎞

⎟

⎠ =

⎛

⎜

⎝

− 1
8ε2 sin(ε) − 1

8ε3 cos(ε)
−1

2
sin(ε) − 6αε2

sin(ε) − αε4 − βε2

⎞

⎟

⎠ (30)

g1ε = (u4 − u1) cos(u3 + θ0) + (u5 − u2) sin(u3 + θ0) + sign(u6 − u3)R(1 − cos(u6 − u3))
(31a)

g2ε = −(u4 − u1) sin(u3 + θ0) + (u5 − u2) cos(u3 + θ0) − R(a1(u6 − u3)
4 + a2(u6 − u3)

2 + a3)
(31b)

Inevitably, the ’softening’ parameter ε will reduce the intensity of the impact, so it will
affect restitution. Figure 42 represents the rotation of a rocking element for a column sub-
jected to free rocking behavior. The initial angle of the column is equal to its slenderness
angle (i.e. θini = α). It shows that for ε ≥ θini, the rocking element does not dissipate any
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Figure 40: Vertical Constraint of the Rocking Element With a Polynomial Interpolation

energy (dashed blue plot). However, for ε ≤ θini/100, the dissipation during each impact
is represented with sufficient accuracy (solid red plot). A fraction of the slenderness angle
of the column can give a good calibration parameter for ε. Unfortunately, this angle is not
inherent to the rocking element; it depends on rest of the structure. Unlike the rigid block
model studied above, a rocking element contains very few intrinsic properties. Leaving aside
the rotational stiffness (often set to zero), the rocking element property is only a radius R
and an initial angle θ0. However, in order to be implemented in a finite element code, the
approximation parameter ε should have a default value.
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Corotational Beam Element

Rocking Element

Figure 41: Column With a Rocking Base
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4.5 Integration Scheme

In order to solve the dynamic equation in a time step analysis, the time integration scheme
is usually explicit for ’fast dynamic problems’ and implicit for ’slow dynamic problems’.
Dynamic problems are considered fast when the time scale allows to track shock wave prop-
agation. It usually refers to structures subjected to impact. Conversely, dynamic problems
are considered slow when the frequencies of the excitation are of the same order as the nat-
ural frequencies of the structure.

un+1 K un un+1 K−1 un
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

×
×
×
0
...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

× × 0 0 · · · 0
× × × 0 · · · 0
0 × × × · · · 0
0 0 × × · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · ×

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
×
0
0
...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

×
×
×
×
...
×

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

× × × × · · · ×
× × × × · · · ×
× × × × · · · ×
× × × × · · · ×
...

...
...

...
. . .

...
× × × × · · · ×

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
×
0
0
...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Explicit scheme Implicit scheme

Figure 43: Structures of the Integration Schemes

As shown in Figure 4.5, the displacement of a degree of freedom at time tn can only
affect the neighboring degrees of freedom at time tn+1 when the time integration is explicit.
On the contrary, an implicit scheme has the capacity to modify all the degrees of freedom
within one time step.

In order to remain stable, an explicit scheme such as the central difference method uses
time steps shorter than Tn/π, where Tn is the shortest natural period of the system. The
column in the model presented in Figure 41 is very stiff so as to compare the results with the
solution given by the rigid block model in Chapter 3. So for the rocking systems studied here,
the required time step has to be less than 10−8sec. However, analytical solutions of rocking
equation of motion (Chapter 3) indicate that oscillations occur at periods of approximately
1sec for rocking blocks representing typical bridge structures. Therefore, despite the impact
caused by the rocking element, an implicit scheme is preferred for solving rocking problems
in typical structures.

Figure 41 represents the structure used to calibrate the time integration scheme. It is a
20 feet tall reinforced concrete column with a rocking radius of 1m. In order to represent a
column rocking on its base, the rocking radius should be equal to half the width of the rock-
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ing column (i.e. R = b/2). The geometric and material parameters are chosen to represent
a realistic bridge column with a hollow section. An initial rotation of 0.1rad is applied to
the column and the free oscillation response is computed using a Newmark implicit scheme
(β = 1/4 and γ = 1/2). The initial time step is 1e − 2sec, but the integration algorithm is
able to perform time-step division when the Newton-Raphson iterations fail to converge.

Figure 44 represents the rotation and the angular velocity response of the rocking element
for the initial conditions shown in Figure 41. Based on the results presented in Chapter 3, the
column is expected to rock freely and to radiate the energy released during impact through
the column. Hence, the rotation at the base should only decrease; however,the solid blue plot
in Figure 44 shows that the rotation being amplified, which leads to the instability of the
structure. It is due to the numerical noise of the angular velocity θ̇. After each impact, the
noise worsens. The velocity at the first impact should be the upper bound but, after a few
impacts, the noise generated exceeds this limit in amplitude. This numerical noise is often
observed in structures subjected to impact [14]. High frequency noise in the displacement
response can easily be solved by adding viscous damping but, in this case, the high frequency
noise is in the velocity response . The Newmark scheme used here is energy conservative;
therefore, only a different integration scheme with a numerical dissipation can solve this issue.

The HHT method [14], also known as the α-method, is a modified Newmark scheme.
Equation (32) represents the implementation with the Augmented Lagrangian contribution.
The added parameter α controls high-frequency damping. It can then be used to filter out
the high frequency noise observed in the angular velocity.

Mün+1 + Cu̇n+1 + (1 + α)(R(un+1) + λn+1
∂g

∂u
(un+1)) − α(R(un) + λn

∂g

∂u
(un)) = Fn+1

(32a)

un+1 = un + Δtu̇n + Δt2((1/2 − β)ün + βün+1)
(32b)

u̇n+1 = u̇n + Δt((1 − γ)ün + γün+1)
(32c)

The spectral radius defines the change of the displacement norm between steps n and n+1,
so ρ = ||un+1||

||un|| . It is computed using the response of a linear system Mün+1+Cu̇n+1+Kun+1 =
Fn+1. If the spectral radius ρ = 1, then the integration scheme does not dissipate energy. If
ρ > 1, the scheme is unstable. Figure 45 represents the spectral radius of the HHT integra-
tion scheme versus the time-steps/natural-period ratio. It shows that the Newmark method
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Figure 44: Rocking Element Response to a Free Oscillation (Newmark Scheme β = 1/4 and
γ = 1/2)

is not dissipative for β = 1/4 and γ = 1/2. Since the solution is not exact, the conservation
of energy leads to numerical noise generation. It is observed that this noise occur in the
high frequency range and should be filtered. The spectral radius for the HHT method is
equal to 1 for low frequencies (i.e. ∆t

T
<< 1), but it filters the high frequencies. Hence it

is very suitable to solve the issue presented in Figure 44. The dashed plot shows that the
HHT integration scheme represents a reasonable solution without the noise observed in the
angular velocity.

The implementation of the HHT integration algorithm is summarized in Figure 46.
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Figure 46: Summary of the HHT Algorithm Implementation
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4.6 Comparison with Rigid Block Solutions

In order to compare the rocking behavior of a beam with a rocking element to that of a
rocking rigid block, a free rocking test was performed. A squat block with the properties
presented in Table 1 was modeled. The formulation of the geometry is corotational when
elastic beam and rocking elements are used in FedeasLab.

Geometric parameters
Height = 6m
Width = 2m

Material parameters
EI = 4.64e10 N · m2

EA = 1.02e11 N
ρ = 6400 kg/m

Equivalent rigid p = 1.525rad/sec
rocking block parameters α = 18.4◦

Table 1: Column Properties

In the rigid block model introduced by Housner [16] , energy dissipation is observed. In
fact, the balance of angular momentum leads to a loss of angular velocity after each impact,
defined in Equation 3. If the column studied in this example is considered rigid, then the
angular velocity loss should be equal to 25% per impact. The equations governing the rigid
block rocking motion do not satisfy the conservation of energy, but the equation of dynamics
governing the model presented in this section does conserve energy. Therefore, after each
impact, this energy is expected to appear as a shock wave propagating in the beam. Vis-
cous damping can be added to dissipate energy, but the HHT integration scheme will also
dissipate energy for very high frequencies. It is expected that the rocking element solution
will tend to the rigid block solution if the beam is very stiff.

Furthermore, the beam will be subjected to large rigid body motions so, if the damping
matrix is proportional to the mass matrix, the dissipation will be unrealistic. The rotation
of the base is a rigid motion so it should not lead to any dissipation. Instead, the energy
released during impact should generate a vanishing shock wave in the beam. Hence viscous
damping should be proportional to the beam stiffness matrix only. This issue is discussed
in details in Section 5.3. In the present example, the shock wave propagation vanishes only
due to the HHT integration scheme.
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Figure 47: Free Rocking Response of a Rigid Block and a Stiff Beam With a Rocking Element

Figure 47 compares the rotation of a stiff beam and a rocking element with a rigid block
in free rocking. The beam model developed herein is very suitable to represent the rocking
behavior of a rigid block. To exaggerate the comparison, the geometric parameters chosen
here are very penalizing for the rocking element model. The slenderness ratio is 3. It leads
to very large impacts that dissipates a significant amount of energy, leading to very large
shock wave radiations. When the rigid block modeled was more slender, the computation
would be at least as accurate as the one represented herein. This example shows that the
rocking element approach fulfills the expectations in describing the motion of single degree
of freedom rocking objects.
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4.7 Rocking Termination

It was shown in Section 3.1.3 that even though the number of rocking impacts is infinite,
the free rocking response will stop at a finite time but, due to the ’softening’ parameter ε
described in Section 4.4, the rocking element will act as a very stiff rotational spring when
θ ≃ 0 and the rotation will continue indefinitely with a very small amplitude.

There are two options to handle termination of rocking motion:

• The rocking rotation can be locked under a certain value

• The element can be allowed to rock even for very small rotations

A criterion, intrinsic to the element, must be chosen to stop the rocking but a rocking
rotation is considered to be small when compared to the rest of the structure. Here, the
option to do nothing about stopping the small magnitude rocking motions is examined. A
rigid block is excited in free rocking, followed by a ground acceleration pulse equal to 75% of
the required ground acceleration to initiate rocking. Figure 48 shows that, once the rocking
motion vanishes, the system behaves like a column at rest. Despite this large excitation, the
block does not rock; its rotation does not increase. This is consistent since the structure can
be considered at rest. Therefore, small magnitude rocking can be allowed to remain in the
model without affecting the solution. However, as the rocking rotations become smaller, the
frequency of impacts increase. Hence the time steps shorten and the computational time of
monitoring just minor motions becomes extremely large.

The properties of the rocking elements are not sufficient to be determined when the tip
displacement of the column or some controlling point of the structure becomes negligible.
An ’autonomous’ strategy should be preferred to simplify the use of this element. In order
to avoid an ill-conditioned stiffness matrix, the user should use units such that the stiffness
matrix and the mass matrix of each element remain close to one. If the HHT integration
scheme is used, then the condition number of the matrix Keff = Kt + 1

∆t2 · 1
β(1+α)

M should
be considered. It can be assumed that if rocking rotations are less than 1e − 10rad and
rocking velocities are less than 1e − 7rad/[time − unit], the rocking motion is negligible and
rocking will be terminated. These two parameters are very severe, but they guarantee the
stability of the algorithm even when the matrix Keff is poorly conditioned.
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Figure 48: Free Rocking Response, Then Subjected to a Large Ground Acceleration
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4.8 Behavior of a Two-block Assembly

As explained in section 3.3 the governing equations of two rigid blocks stacked were derived
in [28]. This model is much more complex than the single rigid block model. The equations
for three or more rigid blocks would be even more difficult to derive. Such configuration is
very sensitive to small geometric variations. This can quickly lead to an overturning of the
structure, due to the inherent instability of the assembly. A two-block structure is modeled
here in order to compare the results of simulation, using the rocking element to the analytic
solution for rigid blocks presented by Psycharis, even though such configuration could hardly
be used in earthquake engineering.
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Figure 49: Free Rocking Response of a Two Rigid Blocks Assembly and a Two Beams
Assembly With Rocking Elements at Interfaces

Figure 49 compares the response of a two rigid bodies assembly with the beam and rocking
elements assembly subjected to an initial rotation. The geometric parameters are presented
in Table 2; they are similar to the ones used in [28]. The rocking elements successfully
represent the two-block assembly behavior. The error is more noticeable than that observed
in Figure 47. However, it can be explained by the high sensitivity of the model. The
solution varies noticeably when a slight change is made to the mass distribution (lumped
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Top block
Height = 2.5m
Width = 1m

Density = 2.5e3kg/m3

Top block
Height = 1.25m
Width = 1.25m

Density = 2.5e3kg/m3

Table 2: Blocks Properties

or distributed) to the stiffness, or to the natural damping. In order to preserve stability,
it is necessary to add viscous damping. The damping ratio is set to 2% and the damping
matrix is proportional to the tangent stiffness matrix. It is continuously updated during
computation, as explained in 5.3. This is to be expected since the rigid block model assumes
that radiating shock waves will be damped. The rocking between the two blocks initiates
only after the first impact between the bottom block and the footing. This is successfully
represented by the rocking element. In fact, during the free fall before the first impact, the
compressive force at the interface between the two blocks is very small. The initiation of
rocking defined in Equation 25 shows that premature rocking initiation can occur. However,
the HHT integration scheme and a sufficiently small time step prevent this problem.
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4.9 Conclusion

In this chapter, the implementation of a rocking element was presented. It consists of a zero-
length two nodes element capable of representing the behavior of a rocking surface between
prismatic elements. The kinematics of this element are limited to the plane of the frame.
The rocking parameters presented in Chapter 3 are no longer suitable for this modeling ap-
proach. Therefore, new parameters intrinsic to the element, namely, the rocking radius R
and its orientation θ0, were introduced.

This element behavior is not governed by a material constitutive law but by kinematic
constraints. The element has one degree of freedom, namely, the relative rotation between
the two nodes but, the center of rotation is not located at the nodes. The kinematic con-
straints force the rotation to occur around a center located at a distance R from the nodes.
So, when this element is used in a model, the solution cannot be obtained with a conven-
tional energy minimization method. Instead, the energy minimization must also respect the
kinematic constraints. An approximated solution called the Augmented Lagrangian method
was implemented.

Several computational issues had to be addressed during the implementation of the solv-
ing algorithm. First, the element can cause rocking to initiate and to terminate. By doing
so, the number of constraints change during the computation. Furthermore, one of the kine-
matic constraints is not Lipschitz continuous and may prevent the Newton-Raphson iteration
method to converge. At last, the rocking impacts may cause noise in the velocity response
that must be filtered by the integration scheme.

A stiff column was modeled with a rocking element at its base and the rocking response
was compared with the response of a rigid body. The solution obtained was very consistent.
The rocking response of two stacked rigid blocks was also approximated with success by
using stiff frame elements and rocking elements at their interface.

Thus, this element can be used to model the effect of rocking on deformable structures. It
is extensively used in the rest of this thesis address several issues concerning bridge columns
subjected to earthquake and has helped overcoming the severe limitations of the rigid block
model presented in Chapter 3. For instance, the fiber elements capable of representing beams
with inelastic material behavior can be used to compute the earthquake response of a slender
reinforced concrete structure allowed to rock.
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5 Rocking Analysis of Elastic Columns

5.1 Introduction

In Chapter 3, the behavior of a free standing rigid block subjected to earthquake ground
motion was studied. It was shown that the rocking impacts can radiate energy. Furthermore,
the frequency of rocking varies with the amplitude. Since the rocking motion changes the
dynamic response, a rocking structure is unlikely to resonate. Over the last decade, many re-
searchers focused on rocking mechanism for large structures subjected to earthquake. Kwan
and Billington designed bridge columns with a rocking footing in [20] and [21]. M. Garlock
et al. [13] designed a self-centering steel frame capable of rocking. Finally, Eatherton et al.
[8] studied the behavior of a shear wall allowed to rock with a post-tensioning cable and a
custom dissipation device.

Figure 50: Common Model Configuration for a Rocking Frame

It is important to note that rocking walls are modeled with a different element from the
one presented in Chapter 4. A contact element is added at each end of the wall, as shown
in Figure 50. When the element is in tension, the two nodes can freely move apart but,
when the element is in compression, the distance between the two nodes is set to zero. Such
element also prevents slipping. It allows free rotation such that the structure can be uplifted
when there is contact on only one node. The wall itself can be modeled with shell elements
or with an assembly of frame and truss elements. The structure can be subjected to rocking
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only if at least two nodes of the frame are connected to the footing with this contact element.
But for slender structures such as bridges, the columns are modeled with frame elements.
Therefore, the column and the footing are bonded with only one node, preventing the use of
contact elements described above. This is when the rocking element presented in Chapter 4
can be used.

W

E,A,I,

2R

Figure 51: Elastic Column With a Lumped Mass and a Rocking Base

5.2 Rocking-Bending Interaction

Figure 51 represents a deformable column with a distributed mass and a lumped mass at the
top. The base of the column is allowed to rock. The column consists of a 400mmx400mm
square steel tube with 12mm wall. The structure properties are presented in Table 3. In this
Chapter, the Young’s Modulus Es is scaled extensively in order to emphasize the influence
of column stiffness on the structure response.

The structure was chosen such that, even without rocking, very large inertia forces are
expected. The first mode of the structure has a natural period of Tn = 0.315sec. Figure
52 represents the Pseudo-Acceleration Response Spectrum of the considered earthquake. It
shows that the acceleration of the mass (that is lumped at the top of the column) would be
large for a SDOF system, responding with column oscillatory bending.
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Column
Height h = 6m

Young’s Modulus Es = 200GP a
Cross Section Area A = 18, 624mm2

Cross Section Inertia I = 4.677e8mm4

Linear Density ρ = 96.7kg/m
Lumped mass Mass = 3000kg

Footing Rocking Radius = 1m

Table 3: Model properties
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Figure 52: Unscaled Pseudo-Acceleration Response Specrum With 2% Damping - Kobe
EQ(1995) - Takatori Record - Longitudinal
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Figure 53 represents the horizontal acceleration of the lumped mass. It was obtained
by a time history analysis of the structure when rocking is prevented. The damping matrix
was built such that the first mode has a 2% damping. The result is in accordance with the
Pseudo-Acceleration Response Spectrum (Figure 52).
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Figure 53: Acceleration Response of the structure subjected to Kobe (1995)

This column-mass structure represents an elastic column predominantly excited in its
first mode when subjected to the Kobe earthquake. A first computation is performed with a
clamped base (no rocking) and a second computation is performed with a rocking base and
a rigid column. Figure 54 shows the results obtained. The oscillation period of the rocking
column is much longer than the oscillation period of the elastic column.
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Figure 54: Displacement Response of a Clamped Elastic Column and a Rocking Rigid Col-
umn - Kobe (1995)
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Currently, the rocking behavior is represented by a rigid block model, as presented in
Chapter 3. Hence the interaction between the rocking rotation and the elastic deformations
can not be computed. The rocking element presented in Chapter 4 can represent such in-
teraction. It is proposed here to focus on the importance of such interaction in order to be
able to judge if it can further be neglected. Figure 55 represents the rocking base rotations
of a rigid column and of an elastic column. Both columns, detailed in Table 3, were allowed
to rock and they both had the same rocking base. The base rotation of the elastic column is
slightly less than the base rotation of the rigid column. Furthermore, the number of rocking
impacts is greatly reduced for the elastic column. For the elastic column, the kinetic energy
accumulated while the column was returning to its initial position is partially transformed
in bending energy. Hence the rocking rotations are reduced when the column is elastic and
rocking is more likely to be interrupted.
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Figure 55: Base Rotations of a Rigid Column and an Elastic Column When Subjected to
Kobe EQ(1995)
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5.3 Damping

In Chapter 4, the rigid block is replaced with a very stiff elastic column in order to compare
the results with the rigid block model. The impact generates a fast shock wave as well as
high-frequency numerical noise in the angular velocity. The HHT integration scheme was
chosen in order to filter out these high frequencies. The integration scheme reduces the noise
in the high-frequency range. Such technique is considered to be a numerical trick, whereas
viscous damping is oftentimes considered more realistic; such statement, however, is arguable
since the viscous damping is usually built with respect to the global response of a structure
and has nothing to do with material properties. Therefore, both can be considered as a
convenient numerical tool and they do not model a physical property of the model. It is
proposed here to study the viscous damping calibration for a free rocking column.

Equation 33 represents the Rayleigh damping matrix. The parameters a0 and a1 are
calibrated to match given damping ratios of the first two modes of the structure [5].

C = a0 · M + a1 · K (33)

At first, a damping matrix proportional to the mass matrix will be computed. A column
subjected to free rocking rotation is modeled. Its properties are summarized in Table 3, but
the Young Modulus is equal to 10Es. The modal analysis must be performed at rest because,
if the rocking element is active, the first mode is complex. So the displacement vector is set
to zero and the rocking surface is inactive. It is equivalent to a modal analysis of a clamped
column. The parameter a0 is chosen such that the first mode of the column has a damping
ratio of 2%. Figure 56 shows the result obtained. The period of rocking is significantly
longer than the period of the undamped system. Since the masses are lumped at the nodes,
the mass matrix and the damping matrix are diagonal. Hence, if the structure undergoes
rigid body motion, the mass-proportional damping matrix will damp it. Such issue is often
encountered in contact mechanics. When a deformable object is subjected to very large rigid
body displacements, this motion must be undamped in order to remain realistic. Therefore,
a mass-proportional damping matrix is not suitable for the problem studied here.

A stiffness proportional matrix is now considered. The parameter a1 is chosen to damp
the first mode of the non-rocking structure with a damping ratio of 2%. Note that the
constraints within the rocking element are approximated with a penalty factor and added
to the stiffness matrix. This penalty factor must not contribute to the damping matrix
otherwise, the kinematic constraints would be severely damped. Even though the rocking
element contributes to the stiffness matrix, it must be noted that this contribution is due
to the numerical strategy chosen to handle the constraints (penalty method or Augmented
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Figure 56: Free Rocking With Constant Damping Matrices

Lagrangian). Unlike other stiffness contribution, they are not associated with material de-
formations but with rigid body motion, so they should not be damped. In the algorithm, the
stiffness matrix is built by adding each element stiffness matrix. But to build the damping
matrix, the algorithm substracts the contribution of the rocking element from the stiffness
matrix before computing Equation 33. Figure 56 shows the result obtained. The rocking
period is extremely longer than the rocking period of the undamped system. Thus, this
damping matrix is also not adequate. It was chosen to be proportional to the stiffness
matrix, but this stiffness matrix is constantly updated to respect the corotational transfor-
mations, whereas the damping matrix remains constant. Here, the rigid body motion is
again disturbed by the damping matrix. In order to avoid such issue, the damping matrix
must also be updated. The parameter a1 remains constant but, for each increment and for
each iteration, the damping matrix is now updated proportionally to the stiffness matrix.
Again, the contribution of the rocking element to the stiffness matrix is substracted because
it is associated with rigid body motion. Figure 57 represents the solution obtained.
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Figure 57: Free Rocking With an Updated Damping Matrix

The updated stiffness-proportional damping matrix does not disturb the free rocking mo-
tion. The solution is now realistic and the column can damp the shock waves generated at
each impact an updated damping matrix can cause other issues, especially when it is used
with non-elastic materials. In fact, if the material softens, the damping matrix may not be
positive definite instead of being damped, some frequencies can be amplified and lead to
numerical instability.

In this thesis, the rocking element is intended to be used with large structures subjected
to earthqake excitation. Furthermore, these structures are restrained with unbonded post-
tensioned cables to reduce the rocking amplitude. Therefore, the rigid body motions should
be less important than the rigid body motions observed during free rocking tests. Hence a
more simple mass proportional damping matrix could be sufficient. In order to confirm this
assumption, the response of a cable-restrained column was performed. The column properties
are summarized in Table 3 but, again, the Young modulus is set to 10Es. The column is
restrained with a steel cable (EAcable = 200e6N , no initial prestress). Such properties are
close to those later used in Chapter 7, in which design of bridges is being considered. The
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damping matrix is calibrated such that the first mode of the structure at rest has a damping
ratio of 2%. Figure 58 represents the rocking rotation of the column when subjected to Kobe
earthquake.
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Figure 58: Rocking Rotation of a Cable Restrained Cantilever Column - Kobe EQ (1995)

A shown in Figure 58, even for an earthquake excitation, the mass-proportional matrix
significantly changes the results. The rotation period is longer than the first harmonic pe-
riod of the structure used to calibrate the damping matrix. Hence even though the rocking
rotations remain small, they are severely damped.

The use of a continuously updated stiffness-proportional damping matrix was also inves-
tigated but, as explained earlier, this type of damping matrix can be non positive-definite
and generate numerical instability. Indeed, with such damping matrix, the algorithm failed
to converge for this example.
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Although viscous damping is used in structural engineering to represent the energy dissipa-
tion of a structure, if this energy dissipation was only viscous, then a factor associated with
the strain rate ǫ̇ could be specified for a given material. Instead, the Rayleigh damping ma-
trix is calibrated based on the first few modes of the entire structure; hence a1 is defined for a
given structure and not for a given material. Therefore, viscous damping is calibrated using
an empirical approach. It is proven to be very convenient for most structural engineering
applications but, since it is not founded on physical ground, its reliability must be verified
for each application. In order to limit the elastic oscillations of large deformable structures,
viscous damping is essential. In Chapter 6 and Chapter 7 a 2% mass-proportional viscous
damping was used. This damping matrix is necessary to damp the elastic oscillations, but it
must be noted that, when the rocking rotations become very large, the damping will generate
inaccurate results.
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5.4 The effect of elastic deformations on rocking behavior

In Chapter 3, it was shown that, when a rigid block rocks, some energy is lost during impact.
This energy must be dissipated in order to respect the conservation of angular momentum,
hence the rigid block is assumed to be capable of absorbing it during the impact. This
model, presented by Housner in 1963 [16], is now used in most papers to describe rocking
behavior. It is very useful to represent stiff objects such as equipment or large construction
blocks [37]. Indeed, the harmonic oscillations generated by the impact are much faster than
the rocking oscillations, hence the shock wave is quickly damped and elastic deformations
are negligible. But the behavior of a free rocking elastic column with a lumped mass may be
different. Such column may undergo very large elastic deformations, hence their combined
rocking and flexural motion may be complex.

In order to observe the effect of elasticity, three columns are modeled. The columns have
the properties described in Table 3, but each one has a different Young modulus: Es, 10Es

and 15Es. All three columns are undergoing free rocking motion with the same initial angle.
There is no viscous damping and the HHT parameter is set to α = −1/12 in order to pre-
serve the high frequencies oscillations. In fact, when α tends to zero, the HHT integration
scheme does no longer filter out the high frequencies, when α = −1/12, it may compromise
the stability but, in this example, it is essential to capture accurately the column’s bending
oscillations. In the other examples studied in this thesis, α = −1/6 in order to favour ro-
bustness.
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Figure 59: Free Rocking of a Column for Different Young’s Moduli

Figure 59 shows the results obtained for the same initial angle with different Young mod-
uli. It is observed that the stiffer the column, the longer it rocks. Eventually, the column
is stiff enough to converge towards the rigid block solution. This is an important difference,
when compared with the results obtained in Chapter 3. An elastic column rocking on a rigid
surface may suddenly stop rocking. In fact, the kinetic energy due to the rocking motion is
transformed into bending energy, which prevents uplift. Hence, instead of creating a rota-
tion around the opposite corner, the column simply stops rocking. Figure 59 also shows that
the period of rocking and its amplitude are the same for each column, regardless of their
stiffness. It is interesting to note that a rigid column and an elastic column whose geometric
properties are the same will rock the same way but that the elastic column will stop rocking
whereas the rigid column will not.

Figures 60 and 61 represent the horizontal tip displacement of the column when the Young
modulus is equal to respectively Es and 10Es. It can be observed that, when the rocking
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stops, the column oscillates. The amplitude after the rocking interruption is much smaller
because there is no more rigid body motion at the base of the column. But the rocking
kinetic energy leads to bending oscillations. In Figure 61, it can be noted that the bending
oscillations are dissipated but not in Figure 60. This is because the bending oscillations in
Figure 61 are faster and the HHT integration scheme only filters the high frequnecies.
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Figure 60: Tip Displacement of an Elastic Rocking Beam with Young Modulus equal to Es
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Figure 61: Tip Displacement of an Elastic Rocking Beam with Young Modulus equal to
10Es
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It is proposed to evaluate the amplitude of the bending oscillations due to the rocking
interruption. Several approximations will be made to build the simplified model. The col-
umn is modeled as an Euler-Bernoulli beam with linear geometry. The axial deformations
are neglected and only the lumped mass is represented. Figure 62 represents the simplified
model used here. The last rocking rotation observed is called θr

last. It represents the maxi-
mum rotation before the last impact; there is no angular velocity in this instance.

Last Rocking 
Rotation 

Maximum Bending 
Deflection After 

Rocking Interruption

Lumped 
mass

O

U
max

h

2R

Figure 62: Simplified Model of an Elastic Rocking Beam

The column rotates around point O before impact and lands on its base. It is considered
that the landing does not radiate energy, so the energy is conserved. The kinetic energy due
to rocking is written in Equation 34
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Erocking =
1

2
I0θ̇2

impact (34)

In order to compute the angular velocity at impact θ̇impact, the equation of motion (2)
described in Chapter 3 has to be solved. It is proposed to linearize it for (α−θ), as explained

by Housner [16]. It gives Equation (35) with p2 = mg
√

R2+h2

I0
and α, the angle representing

the aspect ratio (α = arctan(R
h

)).

θ̈ − p2θ = −p2α (35)

Equation (36) is obtained by solving Equation (35) for θ(0) = θr
last (the last rocking

rotation observed) and ˙θ(0) = 0.

θ̇impact = −p
√

α2 − (α − θr
last)

2 (36)

Combining Equation (35) and Equation (36), the rocking kinetic energy is expressed with
respect to θr

last in Equation (37).

Erocking =
1

2
I0p2(α2 − (α − θr

last)
2) (37)

It is now proposed to compute the bending energy. Equation (38) describes the deflected
shape of the column. v(x) represents the deflection, and the origin of x is the base of the
column. This deflected shape is derived from the general Euler-Bernouilli beam equations,
assuming that the base of the column is clamped and no moment is applied at the top. Umax

represents the maximum bending deflection at the top of the column once rocking stops.

v(x) = −Umax

2h3
x3 +

3Umax

2h2
x2 (38)

Equation (39) represents the bending energy of the column.

Ebending =
1

2

∫ h

0
EI

(

∂2v

∂x2

)2

dx (39)

Equation 40 is obtained by solving (39) for the deflected shape given in Equation (38).

Ebending =
3EI

2h3
U2

max (40)

Since Ebending = Erocking, the maximum tip displacement Umax is expressed with respect
to θr

last in Equation (41).
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Umax =

√

h3

3EI
mg

√
R2 + h2(α2 − (α − θr

last)
2) (41)

In order to confirm that the rocking interruption observed in this chapter can be explained
with this simplified model, the maximum tip displacement observed after the rocking inter-
ruption is compared with the estimated tip displacement obtained with this model.

θr
ini [rad] Estimated Umax [m] Observed Umax [m] Error

EsI 0.094 5.53e − 2 6.02e − 2 8.1%
10EsI 0.056 1.45e − 2 1.59e − 2 8.8%
15EsI 0.011 5.7e − 3 5.0e − 3 14%

Table 4: Comparison of the rocking-elastic transition results with the simplified model
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5.5 Conclusion

In this chapter, the behavior of an elastic beam subjected to rocking was studied. The rock-
ing element presented in Chapter 4 allows to represent an elastic beam rocking on its base.
It was shown that, when an elastic column subjected to an earthquake rocks, it behaves
differently from a rigid block (Figure 55).

Viscous damping was discussed in Section 5.3. It was shown that, if the damping matrix
is proportional to the mass matrix or to the initial tangent stiffness matrix, the rocking
motion is severely damped and become unrealistic. This is particularly true for very large
rocking rotation. Only a continuously updated stiffness-proportional damping matrix can
properly represent the rocking behavior of a column. But such matrix can lead to numerical
instability and should be avoided for complicate problems. Hence it was decided to use a
mass-proportional damping matrix but only if the rocking rotations remain small. This is
usually the case for structures subjected to an earthquake and equipped with a restraining
cable. A mass-proportional damping matrix, however, is not suitable to compute the prob-
lems with a large initial rotation such as a free rocking block.

At last, the rocking interruption due to column bending was discussed. It was observed
that, when columns are tilted and allowed to rock freely, the stiffer columns will rock longer.
A softer column will land and the rocking kinetic energy will lead to column bending. A
simplified model of the rocking column was presented in order to explain how the rocking
interruption affects the column bending.
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6 Behavior of Bridge Columns Allowed to Rock

6.1 Introduction

Previous Chapter showed that deformable columns may have a different rocking behavior
than rigid blocks presented in Chapter 3. The behavior under earthquake excitation was
greatly influenced by the material deformations, and the column’s elasticity caused rocking
termination. In this chapter it is proposed to study the influence of inelastic material de-
formations on the rocking behavior of a cantilever column. Figure 63 represents the system
configuration. The geometric and material properties are summarized in Table 5. The col-
umn supports a large lumped mass and is free to rock at its base. The column material
is elastic, except in Section 6.3 where the column is elastic-perfectly plastic. A 2% mass-
proportional viscous damping is modeled. It is restrained with an unbonded post-tensioning
cable that is anchored to the column at 2m high and not at the top. It was shown in Section
3.6 that using a shorter cable can reduce the rocking rotations without increasing the cable
diameter. However in this configuration the cable may undergo very large strains.

Column

Height h = 12m
Axial Stiffness EA = 2.5e8kN

Flexural Stiffness EI = 2.0e8kN · m2

Linear Density ρ = 20, 900kg/m
Damping Ratio ζ = 2%

Restraining Cable

Young’s Modulus Es = 200GP a
Cross Section Area Af = 2, 000mm2

Cable Length Lcable = 2m
Prestressing Force q0 = 2000kN

Lumped mass Mass = 100, 000kg
Footing Rocking Surface Width = 3m

Table 5: Model properties of the Rocking Column With a Short PT Cable
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Figure 63: Cantilever Column with a Short Restraining Cable
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It is first proposed to study the consequences of a failure of the post-tensioning cable.
The purpose of this cable is to limit the rocking rotations, hence if it fails the structure may
overturn. This cable is then replaced with a post-tensioning tie-rod. A cable may undergo
brittle failure, but a tie-rod can withstand moderate plastic deformations. However, as the
tie-rod yields the initial prestressing force will be reduced hence the column may also over-
turn.

Secondly, the yielding of the column is studied. As a cantilever column rocks, it may
exceed its plastic capacity and a plastic hinge will form at the base. This plastic hinge will
dissipate energy so it may reduce the rocking rotation. But it will also lead to a larger drift
of the lumped mass and may cause the structure to collapse.

Finally, the use of a dissipative fuse connecting the base of the column to the footing is
discussed. It consists of a mild-steel rod located along the neutral axis of the column. It can
withstand very large plastic deformations in tension and compression. Hence it may help to
restrain the rocking rotations and prevent damage of the rest of the structure.
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6.2 Yielding and Failure of the Restraining Cable

In this section it is proposed to study the consequences of a cable failure while the structure
is rocking. It is impossible to represent the moment-rotation relationship of the rocking ele-
ment because it is not governed by a material constitutive law but by kinematic constraints
as explained in 4.2. So instead, Figure 64 represents the restoring moment of the entire
structure versus the rocking rotation, assuming that the structure is rigid. It represents the
relationship described in Equation (42), which is derived from the post-tensioned rigid blocks
analysis performed in Section 3.4.1. But in this case the slenderness angle of the structure
α = arctan(R

h
) is dissociated from the angle αcable arctan( R

hcable
), where h is the height of the

column, hcable is the length of the cable and R is half the width of the rocking surface. m and
g represent respectively, the lumped mass and the gravity constant. The other parameters
η0 and ηα correspond to restraining cable parameters as defined in Chapter 3. They are
calibrated to match the cable properties of the example studied here.

Mr(θ) = m · g ·
√

h2 + R2 · (sin(sign(θ)α − θ))

+ m · g ·
√

h2
cable + R2 · (sign(θ)η0 + (ηalpha − η0)

θ

αcable
sin(αcable)) (42)

In Figure 64, the dashed red plot represents the static restoring moment of the column
with a post-tensioning cable and the solid blue plot represents the static restoring moment
of the structure once the cable failed. When the column is close to its initial position (i.e.
θ is close to zero), the restoring moment is equal to ±4, 000kN · m with the cable and
±2, 000kN · m without the cable. Furthermore, without the cable the structure has a soft-
ening behavior. So based on the static analysis of this rigid model, it is expected that the
cable failure will lead to very large rocking rotations and eventually overturning.
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Figure 64: Static Restoring Moment versus θ for a Column assumed to be rigid

Clément B. Barthès 93



6 BEHAVIOR OF BRIDGE COLUMNS ALLOWED TO ROCK

The elastic column presented in Figure 63 is now studied. The post-tensioning cable is
modeled with a truss element. This element cannot be loaded in compression and it may
undergo a brittle failure in tension if the stress exceeds fu = 1, 800MP a. The column is
subjected to the Takatori station longitudinal record of the Kobe earthquake (1995).

Figure 65 represents the column’s drift ratio and the cable stress. Only the first 10sec
of the earthquake response are represented. The maximum drift ratio observed is 7.6%.
But due to the viscous damping used in this model, this value is conservative. Actually, in
Section 5.3 it was shown that the mass-proportional damping matrix may underestimate the
rocking rotations when they are too large. So when the cable fails the column’s drift ratio
becomes very large and the column stability may not be preserved.
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Figure 65: Drift Ratio of the Column and PT stress with Brittle Cable Failure fu =
1, 800MP a - Kobe EQ (1995)
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Figure 66 represents the resisting moment at the base of the column with an elastic
cable and an elastic-brittle cable. The resisting moment is larger when the cable remains
elastic, as expected based on the rigid block behavior presented in Figure 64. It can also be
noted that once the cable failed, (solid blue plot), the resisting moment oscillates between
±1, 920kN · m, which is also consistent with the rigid block behavior presented in Figure 64.
However, when the column impacts on the footing, it causes the resisting moment to exceed
10, 000kN · m . Once the cable has failed, the rocking rotations are larger, so the impacts
are also much more severe.
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Figure 66: Resisting Moment at the base of the Column with Brittle Cable Failure fu =
1, 800MP a - Kobe EQ (1995)
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It is proposed to replace the post-tensioning cable with a tie-rod of the same diameter.
This tie-rod (often called Dywidag bar in the industry) has an elastic limit fy = 1, 200MP a
[7]. It consists of a solid steel section rod with the same Young modulus than a PT ca-
ble (Es = 200GP a). It cannot be loaded in compression but it can withstand moderate
plastic deformations in tension. So the elastic-brittle truss element representing the cable is
replaced with an elastic-perfectly plastic truss element. This element has no resisting force
when loaded in compression.

Figure 67 shows the structure’s response with an elastic-perfectly plastic tie-rod when it
is subjected to Kobe earthquake. Only the first 10sec of the earthquake response are repre-
sented. It shows that the prestressing force of the tie-rod is entirely lost at time t = 5sec.
Therefore, the column’s drift ratio is larger than the column equipped with an elastic cable.
The plastic elongation of the tie-rod increases only if the column’s drift ratio exceeds the
maximum amplitude observed at previous time steps. Eventually, the plastic strain of the
tie-rod reaches 4%, and it does no longer restrain the rocking rotations. The column’s max-
imum drift ratio is 215% higher than the maximum drift ratio of the column equipped with
an elastic cable.
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Figure 67: Drift Ratio of the Column and PT stress with Elastic-Perfectly Plastic Tie-rod
fy = 1, 200MP a - Kobe EQ (1995)
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Figure 68 represents the resisting moment at the base of the column with an elastic cable
and with an elastic-perfectly plastic tie-rod. Due to the very large rocking rotations, the col-
umn equipped with a tie-rod undergoes very large impacts resulting in moment shock waves.
After t = 7sec, the resisting moment between impacts is close to the restoring moment of
the rigid model (±2, 000kN · m) observed in Figure 64. So it confirms that once the tie-rod
has severely yielded, it does no longer restrain the rocking rotation and becomes ineffective.
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Figure 68: Resisting Moment at the base of the Column with Elastic-Perfectly Plastic Tie-
rod fy = 1, 200MP a - Kobe EQ (1995)

So in order to preserve the integrity of the structure, the post-tensioning cable should
remain elastic. It was shown that when the column is equipped with an elastic cable, the
cable stress exceeded 6, 000MP a. But the best PT cables available in the industry are rated
for only 1, 800MP a. So a longer cable should be used in order to limit the maximum strain
(and therefore the maximum stress), and the cable diameter should be increased adequately
to preserve its stiffness.
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6.3 Elastic-Perfectly Plastic Column

In this section, it is proposed to study the rocking behavior of a column when a plastic
hinge forms at its base. The column configuration presented in Figure 63 is modeled. The
properties of the structure are presented in Table 5. The PT cable is assumed to remain
elastic. The column’s axial and shear deformations are elastic, but flexure deformations are
elastic-perfectly plastic. The plastic capacity of the column is Mp = 6, 000kN · m. Since the
moment is maximum at the base of the column, it is expected that a plastic hinge will form
as described in Figure 69.

W

E,A,I,

Mp

2R

Figure 69: Elastic Column With a Lumped Mass, a Plastic Hinge and a Rocking Base
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Figure 70 represents the column drift ratio and the rocking rotation at the base of the
column for an elastic column and for an elastic-plastic column. First it can be noted that
the rocking rotations are greatly reduced when a plastic hinge forms at the base (dashed
red plot). Figure 71 represents the resisting moment at the base of the column. As ex-
pected, the resisting moment of the elastic-plastic column (dashed red plot) never exceeds
Mp = 6, 000kN · m. Otherwise both plots are very similar, and the plastic hinge does not
seem to affect the pattern of the rocking impacts during the earthquake.
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Figure 70: Column Drift Ratio and Rocking Rotation for an Elastic Column and an Elastic-
Perfectly Plastic Column - Kobe EQ (1995)

As the rocking rotation increases, the resisting moment at the base of the column also
increases because of the PT cable elongation. Eventually, the resisting moment at the base
of the column reaches the plastic capacity Mp, the rocking rotation is bounded and only
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plastic rotation can occur. As a consequence, in the bottom plot of Figure 70, it can be
observed that the rocking rotation of the elastic-plastic column cannot exceed θ = 0.022α.
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Figure 71: Resisting Moment at the Base of the Column and Plastic Hinge Rotation for an
Elastic Column and an Elastic-Perfectly Plastic Column - Kobe EQ (1995)

The bottom plot in Figure 71 represents the plastic hinge ductility ratio of the column,
i.e. the plastic rotation over its maximum elastic rotation. The maximum ductility ratio is
equal to 105. Despite the very large amount of rocking oscillations, the sign of the plastic
rotations changes only 3 times during the earthquake. So the column yields only for very
large rocking rotations, when the PT cable has elongated significantly.

The plastic hinge also dissipates the shock waves observed during the impacts. It was
shown in Chapter 3 that squat blocks radiate more energy during rocking impact than slender
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blocks. Since this column is slender (aspect ratio of 8), the energy radiated by the rocking
impacts is small. Therefore, when a rocking impact occur, the column yields but the plastic
rotation does not change significantly.

Overall, the plastic hinge greatly reduces the column’s drift ratio. However, a strong
limitation of the model must be noted. When the plastic hinge forms at the base of the
column, the properties of the rocking element remain unchanged. But in practice, when a
column yields at its base, the local damage may change the rocking properties. This damage
may simply lead to a reduction of the rocking radius, or it may change the shape of the
rocking surface and cause rolling. Damage on the rocking surface is not investigated in this
thesis and is left for further research.

6.4 Rocking Column with a PT Cable and a Dissipative Fuse

It was shown that a PT cable can limit the rocking rotation when the column is subjected
to a moderate earthquake but it may not be sufficient. In fact, a short PT cable may fail
and a post tensioning tie-rod will become useless after one large rocking rotation as shown
in Section 6.2. Therefore, it is proposed in this section to combine the use of a PT cable
with a dissipative fuse. Figure 72 shows the system configuration. The fuse is modeled with
a truss element, connecting the base of the column with the footing. Unlike a PT cable, it
can be loaded in tension and compression. Its material properties correspond to a mild-steel,
with a low elastic limit and capability of withstanding large plastic cycles. The PT cable is
connected to the top of the column in order to limit its strain when the column rocks. The
system properties are summarized in Table 6.
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Figure 72: Column with an Unbonded Restraining Cable and a Dissipative Fuse

Clément B. Barthès 103



6 BEHAVIOR OF BRIDGE COLUMNS ALLOWED TO ROCK

Column

Height h = 12m
Axial Stiffness EA = 2.5e8kN

Flexural Stiffness EI = 2.0e8kN · m2

Linear Density ρ = 20, 900kg/m
Damping Ratio ζ = 2%

Restraining Cable

Young’s Modulus Es = 200GP a
Cross Section Area Ac = 2, 000mm2

Cable Length Lcable = 12m
Prestressing Force q0 = 2000kN

Dissipative Fuse

Young’s Modulus Es = 200GP a
Cross Section Area Af = 16, 000mm2

Fuse Length hfuse = 2000mm
Isotropic Hardening Hi = Es

20

Elastic Limit fy = 200MP a
Ultimate Strength fu = 1000MP a

Lumped mass Mass = 100, 000kg
Footing Rocking Surface Width = 3m

Table 6: Model Properties of the Rocking Column With Fuse and PT Cable
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The structure presented in Figure 72 is subjected to the Takatori station longitudinal
record of the Kobe earthquake (1995). Figure 73 shows the rocking rotations of the column.
Only the first 20sec of the earthquake response are represented. When no fuse is used (solid
blue line), the rocking rotations are very large. Because the PT cable is anchored at the top
of the column, it is less effective than the elastic short cable used previously in this chapter,
however, it also prevents the cable to undergo very large strains. When the fuse is added
(dashed red plot), the rocking rotations are greatly reduced. Figure 74 shows the resisting
moment at the base of the column. It should be noted that, when the rocking rotations are
large, the resisting force of the dissipative fuse causes the resisting moment at the column’s
base to increase. However, the maximum moment observed is larger for the column with no
fuse because the rocking impacts cause very large shock waves at the base. Hence, in this
example when a fuse is used, the resisting moment at the base of the column and the rocking
rotations are reduced.
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Figure 73: Rocking Rotation of a Column with an Unbonded Restraining Cable and a
Dissipative Fuse - Kobe (1995)
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Figure 74: Resisting Moment at the Base of a Column With an Unbonded Restraining Cable
and a Dissipative Fuse - Kobe (1995)
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An unexpected behavior can be observed after time t = 10sec in Figure 73. The column
with a fuse continues to rock, whereas the column that is not equipped with a fuse stops
rocking. The role of the fuse is to restrain rocking rotation, so why a fuse can cause rocking
to occur when a column without a fuse does not rock at all?

This contradiction can be explained by analyzing the consequences of the plastic elonga-
tion of the fuse. When the column is uplifted, the fuse yields in tension and restrains the
rocking rotation as shown in Figure 75, but, when the column returns to its initial position,
the fuse is now loaded in compression due to the plastic elongation that occured previously.
Hence the fuse acts against the weight of the structure and prevents the rocking surface to
close. This is confirmed with the fuse response presented in Figure 76. The resisting force
of the fuse is normalized with respect to the total weight of the structure added with the
prestressing force of the PT cable (P + W = 1392kN). It shows that the fuse is alternately
loaded in tension and compression and, after time t = 16sec, the normalized resisting force
is always less than −1. In other words, after time t = 16sec, the weight of the structure
and the prestressing force are entirely supported by the fuse and the rocking element is in
tension. Consequently, the structure cannot return to its initial position and remains tilted
toward one side. This is confirmed in Figure 73 where, after t = 16sec, the rocking rotation
remains negative.
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Figure 75: The Fuse Prevents the Column to Return to its Initial Position
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Figure 76: Fuse Resisting Force Normalized with Respect to the Weight of the Structure
added with the Prestressing Force of the PT Cable and Fuse Plastic Strain for a Column
With an Unbonded Restraining Cable and a Dissipative Fuse - Kobe (1995)
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Based on this observation, the fuse can be redesigned such that its resisting force can-
not exceed the total weight of the structure. The new fuse properties are shown in Ta-
ble 7. This fuse does not harden (Hi = 0) and it yields when the resisting force reaches
Rmax = Af fy = 1000kN . Since the weight of the structure added with the prestressing force
of the PT cable is P +W = 1392kN , the structure should always return to its initial position.

New Dissipative Fuse

Young’s Modulus Es = 200GP a
Cross Section Area Af = 5, 000mm2

Fuse Length hfuse = 2000mm
Isotropic Hardening Hi = 0

Elastic Limit fy = 200MP a

Table 7: Model Properties of the Second Dissipative Fuse

Figure 77 shows the rocking rotations at the base of the column with this new fuse. Only
the first 20sec of the response is represented. It should be noted that the maximum rocking
rotation increases significantly with the new fuse design but, as predicted, with the new fuse
design, the column now returns to its initial position when the earthquake excitation becomes
negligible. Thus, for a large excitation, this new fuse doe not restrain the rocking rotation
as well as the first one. However, when the excitation vanishes, rocking is terminated and
there is no residual drift.
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Figure 77: Rocking Rotation of a Column with an Unbonded Restraining Cable and the
New Dissipative Fuse - Kobe (1995)
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Figure 78 shows the PT cable stress during the earthquake excitation. It shows that
the cable stress is greatly reduced when a fuse is used. This is an expected result since the
cable strain depends on the amplitude of the rocking rotation, and the fuse does restrain the
rocking rotations. Hence the PT cable stress is also reduced since the cable is linear elastic.
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Figure 78: PT Cable Stress for a Column With an Unbonded Restraining Cable and a
Dissipative Fuse - Kobe (1995)

The results presented in this section show that the dissipative fuse is an effective device
to reduce the amplitude of the rocking rotations. It also damps the rocking impacts thus,
as a result, the resisting moment at the base of the column is not disturbed by shock waves.
However, when the fuse undergoes plastic elongation and returns to its initial position, it may
be loaded in compression. At the end of the earthquake excitation, if the residual force in
the fuse is greater than the weight of the structure, then the column may have a residual drift.
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6.5 Conclusion

In this chapter, the rocking behavior of a column equipped with a PT cable and subjected to
non-elastic deformations was studied. At first, the failure of the PT cable was investigated.
It was shown that it can lead to extremely large column’s drift ratio. Hence, if a cable is
used, its capacity must be such that no failure can occur when the structure is subjected
to a severe earthquake. It was then proposed to replace the post-tensioning cable with a
prestressing tie-rod. These tie-rods have a lower strength but they can undergo moderate
plastic deformations. The yielding of the tie-rods, however, was also very penalizing. Even
a reasonable plastic deformation leads to a total loss of the prestressing load. Furthermore,
once the tie-rod yields due to a large rocking rotation, it becomes slack and ineffective, as
shown in Figure 67. It was shown in Chapter 3 that the initial post-tensioning force can
control the rocking initiation, whereas the cable stiffness may have the advantage to keep
rocking rotation low. Since bridge columns are usually slender, the use of a PT cable is es-
sential. In this chapter, however, it was shown that to preserve the integrity of the structure,
the PT cable should remain elastic. Hence instead of using a short cable anchored near the
base of the column, it may be necessary to use a longer cable with a larger diameter that is
anchored at the top of the column.

Secondly, a plastic hinge forming at the base of a rocking column was studied. One con-
cern was that the rocking rotation cumulated with the plastic hinge rotation would lead to
the overturning of the structure but it turned out that, once a plastic hinge was formed at the
base of the column, the overall drift ratio was reduced. The kinetic energy due to rocking was
dissipated by the permanent rotations of the plastic hinge. Therefore, the rocking rotations
were greatly reduced and the structure remained stable despite the plastic hinge rotation.
It must be noted, however, that despite the plastic hinge rotation forming at the base of
the column, the properties of the rocking element were assumed to remain unchanged. In
practice, it is likely that, when damage occurs at the base of the column, the geometry of the
rocking surface will change. This issue is not discussed in this thesis and is left for further
research.

Finally, the use of a dissipative fuse at the base of the column was studied. As expected,
it helped to reduce the amplitude of the rocking rotation during a large earthquake excita-
tion. A curious behavior, however, was discovered. When the column returns to its initial
position, the elongated fuse may prevent the rocking surface to close and rocking rotations
may continue even for a minor earthquake excitation. This issue was explained in details
in Section 6.4. Overall, the use of a fuse combined with a PT cable was very effective to
restrain the rocking rotation, but it may cause the structure to have a residual drift after
the earthquake excitation if the fuse is too strong.
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7 Behavior of Bridges with Rocking Columns

7.1 Introduction

The behavior of a deformable rocking column was studied in Chapter 5. Interaction between
the rocking behavior and the deformations of the column was observed. Chapter 6 focused
on the behavior of the structure when permanent deformations occur with rocking and it was
shown that a cable failure must be avoided. Hence it was preferred to leave the restraining
cable unbonded along the entire height of the column in order to reduce the cable elongation
during rocking. Furthermore, it was proposed to use a mild-steel fuse at the base of the
column in order to dissipate energy during rocking and enhance stability.

The use of rocking footing for bridge columns was studied by Kwan and Billington in [20]
and [21] and rocking foundations were studied by S. Gajan and B. L. Kutter [12]. A rocking
footing may be unavoidable in precast construction. Since the reinforcing steel cannot be
easily connected at the prefabricated elements interface, only a post-tensioning cable is used
to hold the elements together. In this thesis the columns are intentionally allowed to rock,
in order to mitigate the harmonic excitation of the structure. To facilitate rocking on the
footing, the connection between the top of the column and the superstructure is also allowed
to rock.

In this chapter, the behavior of two bridge configurations is investigated. The first
configuration is a single-column bridge with two symmetric spans. At the abutments, the
girder is free to rotate and translate longitudinally. The second configuration is a three-span
bridge with two columns having different height with the same cross-section; thus, the two
columns have a different aspect ratio. The bridge columns are allowed to rock at both ends.
They are restrained with an unbonded PT cable anchored at the footing and the girder. For
each bridge configuration, the behavior of three types of column connections are studied:

• Columns monolithically connected to the girder and the footing

• Columns allowed to rock at both ends and restrained with a PT cable

• Columns allowed to rock at both ends and restrained with a PT cable and a dissipative
fuse at the base.
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The first bridge configuration is represented in Figure 79. The girder is free to rotate
and translate horizontally at the abutments but rocking is not allowed. A rocking element is
placed at the top and the bottom joint of the column. The column is post-tensioned between
the footing and the bridge deck, using an unbonded cable with a length equal to the column
height. One of the column connections studied in this chapter will be equipped with a fuse.
This fuse is modeled, using a truss element with a corotational geometry description. It is
connected with the footing and the bottom of the column, at a height of 1m. No fuse is
used at the top in order to make sure that the column’s resisting moment remains below
the girder’s moment capacity. A fuse at the base of the column may also prevent it from
slipping on its footing.

Rocking
Elements

Figure 79: Single Column Bridge Configuration
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The second bridge studied consists of a two columns structure. The abutment spans are
of equal length and the left column is twice as high as the right column. Seismic resistance
design of short columns is challenging. Indeed, a short column may undergo a brittle failure
in shear. Even with a very large amount of transversal reinforcements, it may be very diffi-
cult to avoid a shear failure mode. Note that fiber elements cannot properly represent shear
failure. Instead, the demand in shear observed during computation is used a posteriori to
choose the appropriate amount of transversal steel reinforcement.

It is expected that allowing the column to rock will prevent shear failure. However, since
both columns have a different aspect ratio, they have a different rocking behavior. A com-
plicate rocking interaction will occur between these two columns due to their connection to
the same girder.

Rocking 
Elements

Figure 80: Two-Columns Bridge Model

Properties of both bridges are summarized in Table 8. Figure 81 depicts the design
outlines. The abutment supports are simple rollers, allowing the girder to translate longi-
tudinally. A rocking element is inserted between the columns and the footings as well as
between the columns and the girder. A post-tensioning cable anchored between the girder
and the footing prevents the column from overturning. Furthermore, a dissipative fuse is
inserted at the base of the column connected to the footing. No fuse is installed between the
top of the column and the girder.
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Single Column Bridge Two-Columns Bridge

Column Height 24m 24m and 12m
Column Weight 4, 920kN 4, 920kN and 2, 460kN

Girder length 80m 120m
Girder Weight 11, 772kN 15, 696kN

Abutment spans 40m 35m
Central span na 50m

Table 8: Bridges Dimensions

Only the in-plane displacements are allowed, hence the structure can not deform laterally.
The columns and the girder were modeled using corotational beam elements embedded in
FEDEASLab. The geometric and material properties of the structure are presented in Table
9. The bridge properties were obtained from Ketchum et al. [18] report, which represent
a typical CalTrans highway bridge. CalTrans often designs bridge columns with a circular
solid section in order to optimize the concrete confinement. In this Chapter, it is proposed to
use a hollow square section in order to accommodate the PT cable and the fuse. Column size
and reinforcement are proposed based on experience developed in Chapter 6. The outcome
of the analyses conducted in this chapter will indicate the column force design values.
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Rocking
Connections

Restraining
Cable

Fuse

#32 M #16 M@35mm
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Cross-Section

Figure 81: Drawing Outline of the Column Connections with its Footing and the Super-
structure
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Column

Width b = 3m
d = 3m

Wall Thickness = 0.8m
Detailed Properties in Table 10

Girder

Young Modulus = 40e9N/m2

Cross Section = 5m2

I = 3.5m4

Density = 2.5e3kg/m3

Cable

Young Modulus = 200GP a
Cross Section Area = 5, 000mm2

Prestressing force = 2000kN
Ultimate Strength fu = 1800MP a

Dissipative Fuse

Young Modulus = 200GP a
Cross Section Area Af = 5, 000mm2

Yielding Strength fy = 200MP a
Isotropic Hardening Modulus Hi = 20MP a

Rocking Elements Rocking Width 2R = 3m

Table 9: Bridge properties

The cable properties are chosen to meet several requirements. First, it has to allow rock-
ing but restrain its amplitude. Secondly, it must not fail, even for a large rocking rotation.
Therefore, its initial prestressing load is only 20% of the weight supported by the column.
As explained in Chapter 3, a low initial prestessing force will allow the structure to rock
for a low earthquake excitation, hence limit the demand on the column. Furthermore, the
cable length and diameter were chosen such that the cable will not fail if the rocking rota-
tion at the base of the tall column remains below 80% of the slenderness angle of that column.

The fuse properties are presented in Table 9. Its yielding capacity is 1, 000kN and its
hardening modulus is very low (Hi

Es
= 1e − 4). The total resisting force at the base of the

column (Weight and PT cable force) is equal to 12, 806kN so the ratio between the fuse
capacity and the vertical load is 8.33%. Based on the findings presented in Section 6.4, the
capactiy of the fuse is sufficiently low to prevent any residual drift.
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Figure 81 shows the elevation and the cross-section of the columns used for both bridges.
In the numerical model, the columns are modeled with force based fiber elements developed
by Neuenhofer and Filippou [25]. The concrete is represented with the hysteretic unidi-
mensional model, commonly called Kent-Park-Scott. It was first developed by Park Kent
and Sampson [26] and later enhanced by Scott, Park and Priestley [30]. In this model, the
concrete confinement is taken into account to compute the ultimate compressive strength.
The transversal reinforcement yield strength and its volumetric ratio are used by the mate-
rial model only to represent the longitudinal concrete fiber behavior. The longitudinal steel
reinforcement is modeled with a separate layer of fibers. These fibers belong to the same
cross-section and it is considered that no slipping will occur between the longitudinal rein-
forcement and the concrete. The reinforcing steel is modeled with a conventional isotropic
hardening model. The columns cross-section properties are summarized in Table 10.
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Fibers layout
Concrete = 15fibers

Longitudinal Steel Reinforcements = 4fibers
Fiber Integration Rule = Midpoint

Elements layout

Geometric Description = Corotational
Integration Points = 5

Maximum Integration Points Subdivision = 5
Element Integration Rule = Gauss-Lobatto

Concrete Unconfined Compressive strength fc = 30MP a

Longitudinal Steel

Yielding strength fy = 420MP a
Young Modulus Es = 200GP a

Isotropic Hardening Hi = 10GP a
Outer Cross-Section area Aso = 244cm2

Inner Cross-Section area Asi = 147cm2

Transversal Steel
Yielding strength fy = 420MP a

Stirrups Volumetric Ratio ρs = 0.75%
Stirrups spacing at column ends sh = 35mm

Table 10: Column Cross-Section properties

Clément B. Barthès 122



7 BEHAVIOR OF BRIDGES WITH ROCKING COLUMNS

The girder capacity is such that no plastic hinge will form even during a severe earth-
quake. Hence, in order to reduce the computational cost, the girder is not modeled with
fiber elements but with corotational elastic beam elements whose material and geometric
properties are summarized in Table 9. It is assumed that the capacity of the girder is such
that the column will always yield first. Figure 82 shows the axial force behavior of the col-
umn for a monotonic loading and the moment-curvature behavior for a cyclic loading. At
rest, the total resisting force on the column (Weight and PT cable force) represents 16.1%
of the column’s axial capacity.
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Figure 82: Bridge Column - Force vs. Strain for a monotonic loading and Moment vs.
Curvature for a cyclic loading

The mass of the column and the girder are lumped at the element nodes. The density
of the reinforced concrete is considered to be constant, regardless of the steel reinforcement
layout. It is assumed to be ρrc = 2500kg/m3. The masses of the restraining cables are
neglected. The weight is computed at each node, based on the lumped mass. The service
load is not considered.
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A mass-proportional natural damping is modeled. Its damping ratio ζ = 2% is computed
for the first natural period of the structure. Modal analysis is conducted, assuming the
rocking surfaces are closed (rocking does not occur). The time integration is performed
with the HHT method [14] and a time-step division algorithm. The integration parameter
is α = 1/6. At each time step, the resisting moment is computed with a Newton-Raphson
iteration scheme. The stiffness is updated after each iteration in order to achieve quadratic
convergence. The smoothing parameter of the rocking elements presented in Chapter 4 is
ǫ = 1e−8 for both elements. The rocking termination is set to trigger when θ̇ < 1e−7rad/sec.
Both structures are subjected to Takatori station longitudinal record of the Kobe earthquake
(1995) with a magnitude of 100%.
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7.2 Single Column Bridge Results

Figure 86 shows the drift ratio of the structure, equal to the girder horizontal displacement
over the height of the column. The horizontal displacement is measured at the top of the
column. It should be noted that the three structures undergo moderate deformations. The
non-rocking structure reaches a maximum drift ratio equal to 1.13%, whereas the rocking
structures without and with a fuse reach respectively 1.12% and 0.88%.
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Figure 83: Structure Drift Ratio of the Single Column Bridge With Non-Rocking Column
and With Rocking Column, With and Without a Dissipative Fuse - Kobe (1995)
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Figure 84 shows the moment-curvature response for the non-rocking bridge. As expected,
the column yielded at both ends of the column. Due to the flexural flexibility of the girder,
the moment is larger at the base of the column. The maximum ductility ratio observed is
4. Therefore, the bridge resisted the earthquake, but the column is damaged. Conversely,
the rocking columns remained elastic. Figure 85 shows the resisting moment observed at
the column joints during the earthquake excitation. The column’s resisting moment of the
two structures allowed to rock (with and without the fuse) is 86% lower than the resisting
moment of the non-rocking column. It should also be noted that the fuse does not change
the resisting moment significantly.
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Figure 84: Moment-Curvature at the Column Joints for the Single Column Non-Rocking
Bridge - Kobe (1995)
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Figure 85: Resisting Moments at Column Joints of the Single Column Bridge With Non-
Rocking Column and With Rocking Column, With and Without a Dissipative Fuse - Kobe
(1995)
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Figure 86 shows the rocking rotations at the column joints with and without a fuse. It
is normalized with respect to the slenderness angle of the column α = 0.0624rad. At both
ends, the rocking rotations remain moderate. It is considered that the rocking remains stable
only when θrocking < α however, in this example, the cable may fail for θrocking > 0.8α.

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2
Bottom

Time [sec]

θ
/α

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2
Top

θ
/α

 

 Without Fuse

With Fuse

Figure 86: Rocking Rotations at Column Joints of the Single Column Bridge, With and
Without a Dissipative Fuse - Kobe (1995)

In this example, the resisting moment was significantly reduced as shown in Figure 85
and the rocking rotation was limited. Hence the rocking column combined with a restraining
cable proved to be a good solution to preserve stability during a large earthquake. The fuse
slightly reduces the rocking rotation, but it is not essential since the drift ratio is already
moderate when no fuse is used. The energy dissipation of the fuse increases with the rocking
rotation. Thus, it is expected to reduce the drift ratio significantly if the rocking rotation
becomes important, as shown in the example presented in Section 7.3.
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The stress and the plastic strain in the fuse are shown in Figure 87. A fuse with almost
no hardening was intentionally chosen to avoid residual drift (as explained in 6.4). As a
consequence, the maximum plastic strain is 1.2% but there is almost no residual plastic
strain inside the fuse at the end of the excitation. The weight of the structure is sufficient
to reduce the plastic elongation and to recenter the column.
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Figure 87: Fuse’s Stress and Plastic Strain of the Single Column Bridge - Kobe (1995)
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Figure 88 shows the stress in the restraining cable during the earthquake excitation. De-
spite significant increase when the column is rotating, the cable is far from exceeding its
failure strength fu = 1, 800MP a. It was shown in Chapter 6 that cable failure must be
avoided to preserve the stability of the structure. In this example, the PT cable behaves as
intended. It was designed to resist rocking rotation up to 0.8α, but the maximum rocking
rotation observed is only 0.18α.
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Figure 88: Restraining Cable Stress of the Single Column Bridge, With and Without Fuse -
Kobe (1995)
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Finally, it is proposed to study the shear demand on the foundation between the con-
ventional bridge and the two bridges equipped with rocking columns (with and without a
fuse). Figure 89 shows the horizontal reaction force at the base of the column during the
earthquake excitation. The shear force is 82% less when the column is allowed to rock. This
result is consistent with the reduction of the resisting moment observed in Figure 85, showing
a reduction of 86%.
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Figure 89: Shear Demand on the Footing of the Single Column Bridge - Kobe (1995)

The demand on the foundation is greatly reduced when the column is allowed to rock.
This finding may help to reduce the cost of the foundation. For instance, the number of
pilings can be reduced and the footing can be smaller.
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7.3 Two-Columns Bridge

Columns of different heights were selected to investigate how rocking would be affected.
Columns of the same height are expected to rock together however, columns of different
heights may not do so. A tall column will overturn with a smaller rotation than a short
column and initiation of rocking may be different since they have a different aspect ratio.
But the girder is expected to force both columns to rock together. A complex interaction
between the two columns will govern the rocking behavior of the structure.

The structure’s drift ratio is presented in Figure 90. Note that it is computed considering
that the height of the structure is the height of the short column and not the height of the
tall column. The bridge with non-rocking columns has a maximum drift ratio of only 0.7%,
whereas the bridge with rocking columns and without fuses has a maximum drift ratio of
2.5%. However, the bridge allowed to rock but equipped with fuses has a maximum drift
ratio of only 0.75%. Thus, in this example, the fuse significantly helps to reduce drift.
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Figure 90: Structure Drift Ratio of the Two-Columns Bridge With Non-Rocking Columns
and With Rocking Columns, With and Without a Dissipative Fuse - Kobe (1995)
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Figure 91: Moment-Curvature at the Column Joints for the Two-Column Non-Rocking
Bridge - Kobe (1995)

Figure 91 shows the moment-curvature response at each column joint of the non-rocking
bridge. In this example, only the short column yields, only at the base. In the previous
section, it was already observed that the resisting moment was larger at the base, due to
the flexural flexibility of the girder. In this example, it is more noticable since the column is
shorter and the girder did not change. Furthermore, the short column is much stiffer than
the tall column. Therefore, the drift ratio of the tall column remains low and the column
does not yield.

The maximum ductility ratio observed is 2.6. Therefore, the bridge resisted the earth-
quake but the short column is damaged. Conversely, the rocking columns remained elastic.
Figure 92 shows the resisting moment observed at each column joint during the earthquake
excitation. Only the first 20sec are represented. The resisting moment at the ends of the
rocking columns is significantly lower than the resisting moment at the ends of the non-
rocking columns. At the base, the resisting moment is 72% lower for the tall column and
85% lower for the short column.
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Figure 92: Resisting Moments at Column Joints of the Two-Columns Bridge With Non-
Rocking Column and With Rocking Column, With and Without a Dissipative Fuse - Kobe
(1995)
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Figure 93 shows the rocking rotations at each rocking surface. Each rotation plot is
normalized with the slenderness angle of the concerned column. Hence the two columns
slenderness ratios must be distinguished they are αtall = 0.0624rad and αshort = 0.124rad.
In this example, the fuses significantly reduce the rocking rotations. In fact, the maximum
rocking rotations at the base of the tall column and the short column are respectively 74%
and 71% smaller when fuses are used.
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Figure 93: Rocking Rotations at Column Joints of the Two-Columns Bridge, With and
Without a Dissipative Fuse - Kobe (1995)
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The stress and the plastic strain in the fuses are presented in Figure 94. A fuse with
almost no hardening was intentionally chosen to avoid residual drift. The maximum plastic
strains are 0.35% and 0.9% but, due to the gravity load, there is almost no residual plastic
strain inside the fuses at the end of the excitation. Thus, the weight of the bridge is sufficient
to recenter the column.
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Figure 94: Fuse’s Stress and Plastic Strain of the Two-Columns Bridge - Kobe (1995)
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The horizontal reaction forces at the base of each column are represented in Figure 95.
When the columns are allowed to rock, the shear reaction at the base of each column is
73% lower. This result is consistent with the reduction of the resisting moments observed in
Figure 92 when the columns are allowed to rock. As observed in the pervious section, the
use of a fuse does not change the reaction force significantly.
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Figure 95: Shear Demand on the Footings of the Two-Columns Bridge - Kobe (1995)
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7.4 Conclusion

In this chapter, the rocking element was used to assess the performance of an entire bridge
structure when the columns are allowed to rock. It was chosen to compare the results with
conventional monolithic bridges. Such bridges in current design philosophy can undergo
significant damage at the column joints during an earthquake. Hence, in order to properly
represent the permanent deformations of the columns, it was decided to use a fiber element
with hysteretic models for the concrete and the longitudinal steel reinforcements.

The same bridges were allowed to rock with a restraining cable preventing overturn-
ing. The results showed that the rocking rotations remained moderate if the columns were
equipped with a dissipative fuse. The bridges allowed to rock had a drift ratio of the same
magnitude as the monolithic bridges that suffered from plastic hinge formation. The lim-
itation of the rocking rotations within a controlled range was also crucial to preserve the
integrity of the restraining cables. In fact, as the rocking rotations increase, the resisting
forces within the cables also increase and it was shown in Chapter 6 that cable failure must
be avoided.

The resisting moments at the joints of the columns were significantly reduced when the
columns were allowed to rock. As a result, none of the rocking column was damaged after
the earthquake. Furthermore, there was no residual drift even when fuses were used. The re-
duction of the resisting moment was the primary reason to study the use of rocking columns
and the solution presented in this chapter proved to be very effective. It also shows that
the capacity of the girder and the column footings can be reduced as shown in Figure 89
and Figure 95. In order to transfer the moment loads from the column to the girder, the
bent caps are often massive in conventional earthquake resistant bridges. The use of rocking
surfaces may allow to reduce their capacity. The capacity of the columns footings is also
a very challenging problem. In fact, when the moment at the base of the column is very
large, the foundation may be in tension. Hence it requires the use of deep concrete pilings
to ensure the stability of the footing. Therefore, the use of rocking columns may allow to
reduce the size of the pilings and speed up the construction.

In the first example, the fuse at the base of the column was not affecting the response
significantly because the rocking rotation remained low even without a fuse but, in the sec-
ond example, the rocking rotations were greatly reduced when fuses were used at the base
of each column. Such device can prevent large rocking rotations and enhance the overall
stability.
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8 Summary and Conclusions

8.1 Summary

Current philosophy in bridge earthquake engineering is to ensure the continuity between the
different parts of the structure. The columns are designed to yield and form zones (plastic
hinges) where plastic deformation is expected to occur while keeping the developed resisting
forces capped and under control. The remaining bridge elements are then capacity-designed
to remain elastic under the forces capped by those that can be developed in the column
plastic hinges.

The goal of this research is to develop a design approach that allows for a substantial re-
duction in the forces transmitted from the columns to the bridge elements while keeping the
deformations (both maximum and residual) to the same or smaller level as the convention-
ally designed bridge. The design method to achieve this goal is to use segmented columns,
comprised of stacked segments with dry or grouted joints post-tensioned using a cable along
the longitudinal column axis. This design method enables a broad advance of accelerated
bridge construction principles to regions where seismic loads are significant. This design may
allow rocking motion between the segments but also between the column and the foundation,
and between the column and the bent-cap. Implementation of this approach in modular and
accelerated bridge construction was presented in Chapter 2. It is expected that modular
designs with rocking rather than monolithic joints will greatly increase construction speed,
have an earthquake performance equal to or better than conventional monolithic designs,
and have significantly better repairability characteristics achieved through replacement of
damaged elements rather than conventional repair and retrofit.

It is sometimes necessary to eliminate rocking at segment interfaces. For instance if rock-
ing occurs at column’s mid-height, the off-centered gravity load of the superstructure will
cause buckling and lead to collapse. However, rocking can also be used to modify the seismic
response of bridge structures. The mechanics and dynamics basis for this approach was pre-
sented in Chapter 3. Despite its inherent instability, it was shown that rocking behavior may
be a very efficient seismic response modification mechanism for slender structures. While
displacements of the rocking systems are large, the forces transmitted from the rocking el-
ements to the rest of the structure are small. It was shown that post-tensioning greatly
reduces the moments in the columns and the demands on the foundation. Despite negligible
energy dissipation at the rocking surface, the motion of the rocking system was shown to
attenuate and eventually disappear.

The rocking element presented in Chapter 4 is essential for modeling complex rocking
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systems where rocking may occur simultaneously at several rocking surfaces, namely, be-
tween the columns and the footings, but also between the columns and the superstructure.
If rocking must be prevented between two segments, the rocking element can also be used
to confirm that rocking will not be triggered during the duration of the earthquake. The
rocking surface finite element was developed using the augmented Lagrangian formulation,
combined with an HHT integration scheme. The element behavior was verified against ana-
lytical solutions for free rocking.

The behavior of elastic rocking columns was investigated in Chapter 5. It was shown
that the free rocking response of an elastic column is very similar to the response of a rigid
block. However, the rocking rotations of an elastic column may suddenly stop and lead to
bending oscillations.

For a very large earthquake, a column’s rocking can lead to the failure of the restraining
cable. It was shown in Chapter 6 that such scenario must be avoided. The cable has to
remain elastic in order to preserve the initial prestressing force and prevent overturning.

At last, a model of a rocking bridge featuring the rocking element was used in Chapter
7 to investigate longitudinal direction rocking of a three-span bridge with different column
lengths (i.e. aspect ratios). The element enabled computation of rocking response to an
earthquake ground motion.

8.2 Conclusions

In Chapter 3, the behavior of a rigid block rocking on its base was studied. Previous stud-
ies showed that when a block is allowed to rock under earthquake excitation, the resisting
moment at the base of the structure may be greatly reduced, but overturning may occur.
So it was proposed to use an unbonded post-tensioning cable, in order to allow rocking but
prevent overturning. This solution proved to be very effective. Actually, by adding an elastic
cable, a rocking block system can be stable. Furthermore, by changing the cable’s initial
prestressing force, it is possible to adjust the minimum ground acceleration required to trig-
ger rocking. However, it was shown that the cable elongation can be very large, especially
for squat blocks. Hence the cable may fail.

The main purpose of the research presented in this thesis is to apply the findings made on
cable restrained rocking blocks to earthquake resistant bridge design. Hence the interaction
between the material deformations of the bridge and the rotations of the rocking surfaces
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has to be modeled. But current literature focuses on the rocking behavior of rigid blocks,
making it impossible to represent the behavior of a large deformable structure combined with
rocking surfaces. Hence it was proposed to use a completely different approach; implement a
zero-length rocking element. The implementation of this element was described in Chapter
4. It was shown that this element combined with a stiff beam element can match the results
obtained with the rigid block model. This rocking element was essential to demonstrate the
findings made in Chapters 5, 6 and 7.

This element allowed to compute the behavior of a rocking bridge structure under earth-
quake excitation. It helped to confirm that moderate rocking can be very beneficial. Ac-
tually, compared to a conventional monolithic structure, the base moment of the structure
was greatly reduced whereas the drift ratio remained moderate. It allowed to reduce the
capacity of the column’s footings as well as the bent cap.

Several column configurations were investigated in Chapter 6. It was shown that when a
plastic hinge forms at the base of the column, the rocking rotations are greatly reduced due
to the energy dissipation. But such finding does not apply to a real structure. If a plastic
hinge forms at the base of the column, it will necessarily affect the behavior of the rocking
surface and compromise the integrity of the structure. Chapter 6 also revealed that cable
failure can lead to overturning, hence design criteria must prevent such scenario. It was pro-
posed to replace the cable with a tie-rod. This rod was able to yield moderately. However,
it was shown that as soon as the tie-rod yielded the initial prestressing force dropped and
the structure became unstable. Hence, it was concluded that the cable must remain elastic,
even during a severe earthquake.

It was also proposed to use a mild-steel dissipative fuse to bound the rocking column
with its footing. It allowed a cantilever column to resist a large earthquake with small rock-
ing rotation. It was shown that if the capacity of the fuse is too high, it may prevent the
column to return to its initial position. Furthermore, once the fuse yielded it may act as
a spring against the weight of the structure and cause rocking to occur even for a minor
ground motion. However, if the fuse is designed properly, it can help to reduce the rocking
rotations and enhance the stability of the structure.

8.3 Recommendations for further research

Future work on the rocking column bridge concept should focus on the following important
problems:
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• Development of a 3D rocking element

• Design of the rocking surfaces

• Model the damaged rocking surface within the rocking element

• Design of rocking bridge prototypes

The rocking element presented in chapter 4 is moving in plane. The kinematic equations
are significantly more complex in three dimensions [33]. In addition different shapes for the
rocking surface may generate extremely different behaviors. If the rocking surface is circular,
the column will no longer rock but it will roll. This phenomenon is shown in [33], for instance
a soda can tilted on its side will roll on its edge, even though it seems to rock. The sign of the
rotation is not determined, it will roll one way or the other depending on the perturbation
applied to the support. A finite element model that intends to describe the rocking/rolling
kinematics of a circular surface needs to detect these bifurcation points. Furthermore, a
system analysis may involve different scenarios; for instance if two bridge columns roll, the
bridge may behave very differently whether they roll in the same or in the opposite direction.

Since circular surfaces do not rock, they do not dissipate energy. Thus, a rectangular
surface may be more suitable for rocking surfaces in a three dimensional space. But as shown
in [34] rectangular surfaces may lead to instability. Namely, when a column tilts in both x
and y directions, it may rotate on the corner of its rectangular base.

Development of a rocking/rolling three dimensional finite element is crucial to under-
standing the behavior of complex rocking structures with arbitrary rocking surfaces. In
order to develop design guidelines, the complex instability behavior of such columns must be
understood. Polygonal shape rocking surfaces with round corners may be able to rock/roll
without becoming unstable. Such surfaces have not been studied yet, and further research
should explain in detail their complex behavior.

Rocking surfaces are subjected to large and numerous impacts. Hence design guidelines
must also pay attention to the rocking surface details. If the surface remains elastic, the
shock wave will radiate and dissipate through the column. If the rocking surface undergoes
permanent deformations, it may dissipate all the energy that the shock wave may propagate.
So ideally a rocking surface should dissipate most of the energy induced by the shock wave,
but it must withstand the gravity load during and after the earthquake excitation. Moreover,
the rocking surface has to keep its sharp geometry, or the rocking kinematics may change
and become unstable. Actually, if the edges of the rocking surface are damaged, the column
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may roll on its foot instead of impacting from one corner to the other.

These design characteristics are very similar to ballistic shielding design requirements.
Large bullet impacts are dissipated through multiple crack propagation: a matrix bonds
the composite material in order to resist multiple impacts. Hence, bullet-proof windows are
designed such that the crack length is maximized during impact, and an adhesive layer holds
it in place such that during a second impact the crack will close and lead to new cracks.
The use of fiber reinforced concrete may have these properties. The high strength concrete
can dissipate energy through crack propagation, and the fibers should be able to hold the
cracked elements together. A steel jacketing may help to confine the whole surface and add
strength. A prefabricated rocking surface element could be inserted in the formwork while
more conventional concrete is cast.
The dissipation observed in this thesis is a lower bound. It is expected to be higher with a
highly dissipative rocking surface as shown by ElGawady et al. [9].

As the rocking surface is damaged, its behavior will change. The edges of the rocking
surface will loose their sharpness and the rocking radius may decrease because the impact
will primarily affect the edges. It is crucial to model this localized damage because it may
lead to instability, if the overturning occurs at demands smaller than predicted using a dam-
ageless model.

Rocking surface damage could be modeled as a reduction of the radius of the rocking
surface. Such model shall be calibrated using a three dimensional finite element method.
But it may be preferred to design the rocking surface such that the radius is not altered
during a large earthquake. For instance it can be designed to resist a compressive load larger
than the column capacity. Such severe criterion may be satisfied using a high strength fiber
reinforced concrete and steel jacketing.

The element presented in this dissertation is unable to represent sliding. It is assumed
that the friction at the base of the column is sufficient to prevent sliding from occuring. But
the friction coefficient of the rocking surface is very hard to determine. When the column is
not rocking, the contact with the footing is distributed over the entire surface, but when the
column is rocking the contact with the footing is localized at one corner. Hence it may be
preferred to design shear connectors such that no sliding can occur at the rocking interface,
regardless of the friction coefficient.

Once the rocking columns are properly modeled and understood, a bridge prototype with
rocking columns can be designed. It should also meet the new design solutions developed
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for the next-generation of highwway bridges. Namely, the bridge prototype should be built
with prefabricated modules and its behavior should be compared to that of conventionally
designed bridges. A similar approach to the one developed by Dr. Ketchum for the PEER
Transportation Systems Research Program can be used. The initial construction costs can
be computed, taking into account the significantly reduced foundation size and number of
piles needed for rocking columns. A seismic performance study can then be conducted using
the PEER methodology following the pattern established in [2] to compute the likely repair
costs and repair times for rocking bridges. Then a comparison between conventional and
rocking bridge seismic performance of comparable bridge structures can be made to investi-
gate and quantify the potential benefits of rocking bridges.
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