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Design of Electrical Rotating Machines by Associating Deterministic
Global Optimization Algorithm With Combinatorial Analytical

and Numerical Models

Julien Fontchastagner1, Frédéric Messine1;2, and Yvan Lefèvre1

Laboratoire PLasma et Conversion d’Energie, Group, CNRS-UMR 5213, BP 7122, Toulouse 31071, France

ENSEEIHT-IRIT UMR 5505, Toulouse 31071, France

This paper presents a new methodology of design of electrical rotating machines. The methodology is an extension of previous works
of the second author. Indeed, associating combinatorial analytical models with exact global optimization algorithms leads to rational
solutions of predesign. These solutions need to be validated by a numerical tool (using a finite-element method) before the expansive
phase of hand-making a prototype. Such an automatic numerical tool for computing some characteristic values, such as the torque,
was previously developed. The idea of this paper is to extend the exact global optimization algorithm by inserting the direct use of this
automatic numerical tool. This new methodology makes it possible to solve design problems more rationally. Some numerical examples
validate the usefulness of this new approach.

Index Terms—Analytical model, deterministic global optimization, finite-element methods, interval branch and bound algorithm, in-
verse problem of design, numerical model.

I. INTRODUCTION

N
OWADAYS, the problem of the design of electrical ma-

chines is understood and formulated as an inverse problem.

The direct problem of design can be defined as follows: From

an electromagnetical actuator where the structure, the dimen-

sions, and the composition are known, compute some charac-

teristic values; for example, the flux density, the torque, etc. The

corresponding inverse problem of design is: From the charac-

teristic values given by the schedule of conditions (for example

the torque), get the structure, the dimensions, and the composi-

tion of the required actuator. Such a problem is ill-posed in the

Hadamart sense. Indeed, the existence and the uniqueness of the

solution cannot be guaranteed. Furthermore, this problem may

generate an infinity of solutions. Many counter-examples can be

found, like the machine considered in [14]. The inverse problem

of design of electrical machines is explained in [3].

In the classical literature about modeling and optimal design of

electrical rotating machines, some particular inverse problems,

named predimensioning problems of design, were considered.

These works focus on the association of analytical models with

local standard optimization algorithms; see [7], [17], [21], and

[22]. Thus, first optimal solutions were found for some elec-

trical machines. The solutions obtained by local optimization

methods were dependent to the starting point introduced by the

user. Consequently, a continuous exact global optimization algo-

rithm based on interval analysis, developed by the second author,

was used with efficiency to solve some of these predimensioning

problems of design, [14]; stochastic global optimization algo-

rithms are not well adapted to solve this kind of problem because

there are too many hard constraints (such as the torque of the ma-

chine which is fixed to a value). In [14], it is proved that even if
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the considered electrical machines are simple (a slotless machine

with magnets), the exact solutions were not found by using local

search algorithms; see [7] and [22] to compare results with the

exact ones published in [14]. For more general inverse problems

ofdesign, thesecondauthorwithNogaredeandFitanin[2]and[3]

considered that the structure and also the components of an elec-

trical machines are variables of the problems, generating mixed

constrained global optimization problems (including continuous

and discrete variables). Therefore, in [2] and [3], a rational way

associatingcombinatorialanalyticalmodelsofelectrical rotating

machines and an exact global optimization algorithm, named

IBBA, was proposed and studied. IBBA is an exact global opti-

mization method based on a Branch and Bound technique which

uses an interval analysis tool; see [5], [6], and [18] for details on

such algorithms and on its rigorous convergence to the global op-

timum. The obtained solutions satisfy the imposed schedule of

conditions via combinatorial analytical models. When these op-

timalsolutionsarevalidatedbythemeansofnumerical tools(such

as finite-element methods), we denote some differences about the

values of the electromagnetic torque. Thus, this involves some

adjustments of the parameters of the obtained machines. These

adjustments can be done by solving iteratively the direct problem

of design until the schedule of conditions will be satisfied using

a numerical model. In some numerical tools, such as ANSYS,

stochastic and local optimization algorithms can be used to solve

this problem of optimal adjustments. We propose in this work to

find the exact solution of an optimal design problem which di-

rectly satisfies, using numerical tools, the imposed schedule of

conditions.

In order to simplify the resolution of the direct problem of

design by using a finite-element method, we have proposed a

numerical tool, named NUMT, which can automatically mesh,

draw, and compute the torque of an electrical machine only de-

fined by its parameters of design, [8]. Thus, the computation

of the electromagnetic torque can be performed without the

drawing of the motor.

The purpose of this paper is to extend the algorithm IBBA

[3], [11] by inserting some steps of NUMT [8] in order to solve,



in another more accurate way, the inverse problem of design of

electrical rotating machines; see [4] for a preliminary work on

this subject. In Section II, we review the rational methodology

published in [3] which deals about the association of combinato-

rial analytical models and IBBA. We then present, in Section III,

the numerical tool NUMT [8] which makes it possible to solve

automatically the direct problem of design by using a numer-

ical model. Section IV is dedicated to the new methodology

combining IBBA and NUMT. In Section V, the new algorithm

named IBBA+NUMT is validated on some examples of design

of some electrical machines. The solutions are discussed and

compared with those produced by IBBA alone.

II. RESOLUTION OF THE INVERSE PROBLEM VIA

COMBINATORIAL ANALYTICAL MODELS AND IBBA

The purpose of the paper [3] was to propose a rational

methodology for solving the inverse problem of design. Thus,

new analytical models, named combinatorial analytical models,

allowed us to take into account a lot of distinct rotating elec-

trical machines with permanent magnets. These combinatorial

analytical models were done by introducing discrete variables

into dimensional analytical models; for example the number

of pole pairs, the kind of structure (internal or external rotor

configuration), and the kind of materials used for the mag-

nets. We then obtain a combinatorial analytical model which

represents a large part of electrical rotating machines with

magnetic effects; see [2] and [3]. By combining this general

combinatorial model with IBBA, which is an efficient exact

global optimization code developed by the second author [3],

[11], some exact optimal solutions were found by minimizing

the magnet volume, the active part volume, the total volume,

the mass, or a combination of these criteria with a fixed torque;

see [2] and [3]. This methodology is perfect in the first steps of

the design of an electrical machine in order to propose solutions

which satisfy at best an imposed schedule of conditions.

The inverse problems considered in [3] are formulated as

mixed constrained global optimization problems:

subjected to (1)

where is a real function, represents an enumerated set

of categorical variables, for example the type of magnet, and

the boolean set which is used to model the fact

that an actuator is with or without slot(s) for example. and

are respectively the real and the positive integer sets. This

formulation is called optimal design optimization problem and

answers perfectly to the inverse problem of the design of electro-

mechanical actuators; see [3] and [14] for more details about this

formulation.

To solve these problems (1), we must use an exact global op-

timization algorithm in order to characterize the solution of the

problem which can establish that one structure is more efficient

than another (with respect of the dimensions). For the use of

IBBA, all the functions must be explicitly defined.

A. Algorithm IBBA

Interval analysis was introduced by Moore [16] in order to

control the propagation of numerical errors due to floating point

computations. Thus, Moore proposes to enclose all real values

by an interval where the bounds are the two closest floating point

numbers. Then expanding the classical operations—addition,

subtraction, multiplication, and division—into intervals, defines

interval arithmetic. A straightforward generalization allows

computation of reliable bounds (excluding the problem of

numerical errors) of a function over a hypercube (or box)

defined by an interval vector. Moreover, classical tools of

analysis such as Taylor expansions can be used together with

interval arithmetic to compute more precise bounds [16]. Other

new bounding techniques include combining linear bounds

at all vertices of the box [12] or using affine arithmetic, [9],

[15]. Extensions of these methods are proposed in [3] and [11]

in order to solve mixed (discrete and continuous) problems

of type (1).

The principle of IBBA is to bisect the initial domain where

the solution is sought for into smaller and smaller boxes, and

then to eliminate the boxes where the global optimum cannot

occur. Elimination of boxes is done by:

• proving, using interval bounds, that no point in a box can

produce a better solution than the current best one;

• proving (with interval arithmetic) that at least one con-

straint cannot be satisfied by any point in such a box.

To accelerate the convergence, constraint propagation tech-

niques are used in some steps of IBBA; see [10] for details. The

principle is to use, a priori, the implicit relations between the

variables which are induced by the constraints in order to re-

duce the size of a box.

Such interval Branch and Bound algorithms guarantee to pro-

duce an -global optimal solution, where is the maximal

error on the objective function value. For details and rigorous

convergence analysis of these deterministic global optimization

methods based on interval analysis, the reader is invited to con-

sult the three following books: [5], [6], and [18]. For details on

IBBA dedicated to solve electromagnetical rotating machines

and other actuators, see [3], [11], [13], and [14].

B. Combinatorial Models for Electrical Machines

Hereafter, the analytical equations of the magnetical model

are reviewed; see [2] and [3] for details.

The parameters of a rotating electrical machines are as

follows: represents the bore diameter, is the

length, the thickness of the permanent magnets,

the winding thickness, the thickness of yoke, the polar

arc factor, the thickness of the mechanical air gap, the

number of pole pairs, is the number of slots per pole and

per phase, the magnetic polarization which depends on

the categorical variable representing the type of permanent

magnet. Another categorical variable denoted by defines

the type of magnetic conductor, etc., for details; see [2] and [3].

The parameters in bold represent functions depending on the



parameters explained above:

where the generic expression of the electromagnetic torque is

denoted by .

represents the current electric loading. According to the

considered kind of armature (nonslotted or slotted), is iden-

tified with two distinct functions. In the case of nonslotted ma-

chines, this function is written whereas for slotted

machines , where is the current density.

A generic formulation of the current electric loading can then

be elaborated by introducing a boolean variable (zero or one)

. When has value zero, nonslotted machines are considered,

and when it is one, slotted machines are taken into account. is

the torque coefficient, the expression of which depends mainly

on the kind of waveform which has been chosen (sinusoidal or

rectangular). This coefficient is written for

rectangular waveform machines and for

sinusoidal waveform machines. The elaboration of a generic ex-

pression is proposed by introducing a new boolean variable .

If is equal to zero, sinusoidal waveform machines are consid-

ered and if is equal to one, rectangular waveform machines

are taken into account.

Concerning nonslotted machines with rectangular waveform,

a semi-empiric magnetic leakage is proposed. represents

the no-load magnetic radial flux density to the bore diameter

neighborhood, which is supposed purely radial in the air gap.

An analytical expression for nonslotted machines with internal

rotor has already been elaborated; see [14]. A generic formula-

tion of permits on the one hand to take into account the kind

of armature by using the boolean variable, and on the other

hand to take into account the rotoric configuration (internal or

external) by introducing an extra boolean variable (

for an internal configuration and for an external one).

TABLE I
MATERIAL CHARACTERISTICS

In order to take into account the influence of slots on the dis-

tribution of the magnetic induction in the air gap, we use the

Carter coefficient , which is equal to 1 for nonslotted ma-

chines and is superior to this value for slotted ones. It depends on

some geometric parameters and the number of slots . There

are two ways for computing this function relating to a geometric

relation and an expression of electric origin. These two relations

lead to an equality constraint.

and are respectively the flux density inside the teeth

and the yoke. They are limited to a maximal value which

depends on the kind of magnetic material. Under this value, the

material behavior is supposed linear. So we can introduce two

inequality constraints linked to the kind of magnetic material,

given by

(2)

(3)

Numerical values of depending on the categorical variable

appear in Table I. is a specific function added to take into

account the shape of the slots. It is equal to the ratio between the

tooth width and the width of the tooth pitch. These definitions

associating with a schedule of condition define the constraints

of the problem. For details on such a model, see [2] and [3].

The other relations define the volumes of the active parts

of the machines, the permanent magnet volume , the yoke

volume , the teeth or wedge volume , the electrical con-

ductors volume , and the global volume , by considering

that the slots, wedges, and magnets have a radial geometrical

form:

(4)

(5)

(6)

(7)

(8)



Fig. 1. Meshes of the two solutions corresponding to the minimization of the multicriteria in Table II, displayed in the same zoom box. With the same scale, some
differences can be noticed. (a) IBBA. (b) IBBA+NUMT.

A last relation is dedicated to the mass of the active parts :

(9)

where , , , and are the densities of

the aluminum, the copper, the magnetic conductor , and the

permanent magnet , respectively. Relations linked to vol-

umes and weight will be the objective functions of the cor-

responding global optimization problems.

The strong equality constraint is about the torque which

is fixed to a value by the schedule of conditions, denoted in this

paper by , i.e., . In the following, this

constraint is replaced by a numerical computation.

III. AUTOMATIC NUMERICAL TOOL TO VALIDATE OPTIMAL

SOLUTIONS OF DESIGN

Before the phase of prototype making the optimal solutions

obtained by the methodology described in [3] need to be vali-

dated by using numerical tools, such as finite-element methods

EFCAD [1] or ANSYS for example. Some differences between

the analytical and numerical values are denoted concerning the

electromagnetic torque and then the optimal solution found by

the rational methodology proposed in [3] must be adjusted.

An in-depth analysis shows that the problem of comparing

analytical and numerical results is a very complicated one. In-

deed, the general analytical model is based on some restrictive

assumptions which are taken into account in order to develop its

equations. This model comes from the electromechanical con-

version and the flux conservation by assuming that the magnetic

induction in the air gap is purely radial. The respective perme-

abilities of magnets and iron are fixed as unity and infinity. First,

analytical models for nonslotted machines are developed, and

then they were extended to slotted machines thanks to the func-

tion (which gives current electric loading, with ) and

to the Carter coefficient ; see Section II-B and [2], [3].

The magnetic flux density computation using finite-element

methods [19], is more accurate than the analytical one. Never-

theless, we must do some other assumptions. At a design stage,

waveforms of the flux and the feeding currents of the electrical

machines are assumed to be ideal: rectangular, trapezoidal, or si-

nusoidal. So the performances or the characteristics of electrical

machines can be deduced from flux computations. For instance,

for a permanent-magnet machine, the no-load flux in windings

due to magnets and the flux in windings for two types of

load currents (longitudinal and transversal, which give the lon-

gitudinal and transversal inductances and ) are computed.

From these three values, the torque, flux, and voltage can be cal-

culated for any type of sinusoidal currents. The electromagnetic

torque can be expressed as follows:

(10)
where is the circuit current and is the phase angle difference

between the current and the electromotive force.

In order to make the validation phase easier, we developed

a numerical tool, named NUMT, [8]. This algorithm is able

to translate the values of parameters issued from optimal solu-

tions via IBBA or other ones given by the user. Then, NUMT

draws and meshes automatically the corresponding machine.

The meshing is performed using simple laws which divided

the different regions of drawing in a well adapted way, before

calling “Triangle” a free 2-D mesh generator [20]; two examples

of obtained meshes are shown in Fig. 1. The flux computations

follow and can be performed with or without the drawing of the

machine. This tool is very useful to validate our analytical global

optima; see [8] for details.

IV. NEW METHODOLOGY OF DESIGN

The purpose of this work is to answer the following ques-

tion: is it possible to replace in (1), the first strong equality

constraint (corresponding to ) by

?

(11)



i.e., find the solution which satisfies the value of the 
torque by using a finite-element method. Such a constraint

is named a black box constraint be-

cause it depends on an algorithm for computing it. Such a new 
problem (11) is impossible to be solved using IBBA because for 
using interval analysis tools, all the expressions of the objective 
or constraint functions must be given explicitly. Indeed, in our 
knowledge, it is impossible to compute bounds (in a polyno-

mial time) using interval analysis or other tools for the function 
over a box of the initial domain of research. Note that

for the equality constraints the index starts from 2. This is 
due to the fact that compared to (1) the first equality constraint

corresponding to the torque is deleted

and replaced by the numerical one .

Therefore, is it possible to consider a more interesting inverse

problem of design than (1), which is defined as follows:

(12)

The purpose of this work is to extend the code IBBA by in-

troducing some steps of NUMT in order to solve problems of

type (12) applied to rotating machines with permanent mag-

nets. Indeed, the combinatorial analytical model permits to lead

such an algorithm to the determination of the global optima. The

idea is to find a solution which satisfies numerically in place of

analytically the equality constraint of the torque. The analyt-

ical computations of the torque are used to determine the do-

main where some numerical evaluations must be performed:

, where

and are real values in [0,1[ which permit to define the

domain of research. Therefore, each optimal solution which is

found by using the combination of IBBA and NUMT, named

IBBA+NUMT below, satisfies numerically the equality con-

straint on the fixed torque: . The ob-

tained solutions are the exact global ones of mathematical pro-

gram (12); attention must be paid for users of IBBA+NUMT

to the definition of and (during the following numerical

experiments, and are fixed to 0.1). In fact, the analytical

model is just used to determine a small zone where the numer-

ical solution is sought for, hence if this zone is too reduced then

the true numerical optima of problem (11) cannot be reached

and if the zone is too large the algorithm could not converge.

In the following, algorithm IBBA+NUMT is detailed in order

to solve more general inverse problems of type (12).

Algorithm IBBA+NUMT:

1) Set X:= the initial domain in which
the global minimum is sought for,
X � IRn � INn �

n

i=1Ki � Bn
.

2) Set ~f := +1.
3) Set L := (+1; X).
4) Extract from L the lowest lower bound.
5) Bisect the considered box chosen by its

midpoint, yielding V1, V2.

6) For j := 1 to 2 do
a) Compute vj := lb(f; Vj) (a lower bound of f

over Vj).
b) Compute all the lower and upper bounds

of all the analytical constraints on Vj;
deduction steps using the analytical
constraints of (12) permit to reduce Vj,
[10].

c) if ~f � vj and no analytical constraint of
(12) is unsatisfied then
• insert (vj ; Vj) in L.
• set m the midpoint of Vj.
• if m satisfies all the analytical
constraints and then if the numerical
constraint NUMT(x; z; �; b) = � is also

satisfied then ~f := min( ~f; f(m)).
• if ~f is changed then remove from L all

(z; Z) where z > ~f and set ~y := m.

7) If ~f � min
(z;Z)2L

z < � (where z = lb(f;Z)) then

STOP.
Else GoTo Step 4.

We call the analytical constraints, all the constraints (including

) except the

last one . Because the algorithm stops

when the global minimum is sufficiently accurate less than ,

one -global numerical solution is reached: corresponding to

. However, it can be possible that a better solution exists in the

sub-boxes remaining in the list at the end of the algorithm.

Nevertheless, even in the best case, its corresponding minimal

value will not be less than . Therefore, by correctly fixing

the value, the obtained solution is sufficiently useful

and can be considered as the global solution (more precisely the

-global solution) of the considered problem (12). For details on

IBBA, the way to bisect a box, to compute bounds, to propagate

the constraints, to stop the algorithm, etc., see [3], [5], [6], [10],

[11], [14], and [18].

The way to correctly define the parameters and is not

so easy. In this first study, we consider that variations about 10%

around the analytical value of the torque are significant enough,

i.e., .

V. EXAMPLES OF DESIGN

The global optimization algorithms used here, IBBA and

IBBA+NUMT, are implemented in Fortran 90/95. All compu-

tations were performed on an isolated PC from our laboratory

with a 1.8-GHz hard disk drive with 7200 rpm and 512 Mb of

RAM.

In order to illustrate the use of our new algorithm

IBBA+NUMT, let us consider the following optimal de-

sign problems of general electrical slotted rotating three-phase

machines with permanent magnets. Thus, in the following

will be equal to one. Some parameters such as the diameter ,

the length , and the thickness of the magnets are variables.

They are all listed in all tables of result. And some other pa-

rameters, such as the current density, the kind of waveform, or

the winding fitting factor are fixed for these studies. The kind

of material is fixed to a modern NdFeB for problems which

results are reported in Tables II and IV. For problems where the

results are reported in Tables III and V, the kind of materials

can take two different values; see Table I.



TABLE II
COMPARISONS BETWEEN IBBA AND IBBA+NUMT ALGORITHMS (WITH � = 2 AND � = 1)

TABLE III
SAME TESTS, INCLUDING MATERIALS (AND SAME Multi)

TABLE IV
SAME TESTS AS TABLE II (WITH � = 2 AND � = 1) WITH b = 1



TABLE V
SAME TESTS AS TABLE IV (b = 1), INCLUDING MATERIALS

Three optimization problems are solved—the first two deal

with the minimization of a single criterion which are the global

volume and the mass , and the third problem is a

multicriteria one :

(13)

where the weight factors are the inverse of the global optima

values of the global volume and mass of problem (1) which are

obtained using IBBA; they are denoted by and

. In order to make some comparisons, we use ex-

actly the same criterion for solving the more general associated

problem of type (12) by using IBBA+NUMT.

The mechanical air gap is also fixed to the value of 1 mm; if

this value were free then it always decreases to its lower bound

when we minimize some volumes or the mass. The magnets are

a modern NdFeB and the magnetic circuits (yoke and teeth) are

made with core of laminated sheets.

The main equality constraint is true when the torque is equal

to 10 ( or 0.2) . For IBBA+NUMT, the zone defined

using the analytical model is between 9 and 11 , i.e.,

. The stopping criteria in step 7) of Algorithms

IBBA+NUMT and IBBA are fixed to , , and

for , , and , respectively. The numerical results pre-

sented in Tables II–V correspond to the solving of problem (1) in

the columns named IBBA, and of problem (12) in the columns

named IBBA+NUMT, respectively.

Even if all the solutions have the same structure (eight pole

pairs and an inverse rotoric configuration), the behavior of our

new algorithm is not the same in the three cases. First, for

the three minimizations, we note that the constraint upon the

torque is never satisfied numerically for the solutions obtained

by IBBA. Considering the minimization of in Table II, only

the two geometrical parameters ( and ) change to reach a

correct numerical value for the torque. An expert of the domain

would be able to perform these adjustments or equivalent ones.

For the minimization of , four parameters (linked to the

active parts) change. Comparing IBBA and IBBA+NUMT

methods in Table II, the values of the corresponding torque

increase about 6.5% in these two first cases, the volume only

about 2.2%, and the mass about 4.4%. For the multicriteria

minimization in Table II, we note that the numerical torque of

the analytical solution is close to 9 . The changes of some

parameters of design (for example, and ) are not so obvious

as those for the minimization of the global volume. In this

case, IBBA+NUMT found a new optimum which differs from

the analytical one for almost all the geometrical parameters.

Moreover, we note that the value of the multicriteria increases

about 3.4% between IBBA and IBBA+NUMT and all the

variables are distinct. Hence, for an expert, this solution (or an

equivalent one) should be very difficult to obtain. This last case

shows the real efficiency of this new methodology of design

perfectly. Furthermore, in Table II, we notice that the values of

the criterion of the optima obtained using the IBBA methods

are better than those found using IBBA+NUMT. However, the

numerical optimal value of the torque for a solution obtained

using the IBBA method does not satisfy numerically the main

constraint of the torque. Therefore, the analytical optimal

solutions of design are less interesting than the numerical ones.

We can also note in Table II that the analytical values are very

close to the numerical ones for the solutions obtained by using

IBBA+NUMT algorithm.

Moreover, for this first example presented in Table II, the

computational times are rather short, less than 9 min for the

slowest problem which needs 560 runs of NUMT.

Remark 1: Fig. 1 represents the two solutions obtained by

IBBA and IBBA+NUMT for the minimization of the criteria

Multi of the example presented in Table II. We can note in Fig. 1

that the external radius of the machine is smaller in the case of

IBBA+NUMT than with IBBA. Thus, even if the solution of the

multicriteria problem obtained by our new algorithm is greater

for or compared to the one issued from IBBA, this

solution is more efficient with regard to the external volume.

In Table III, we solve the same problem but considering that

the kind of materials of the magnet and the iron yoke can have



two possible values referenced in Table I. In Table III, all the

solutions change between IBBA and IBBA+NUMT depending

on the optimization problem.

First, the kind of permanent magnet keeps the same value

in the two problems; see Tables II and III. Indeed,

in all case, it is more interesting to use modern magnets rather

than plastic ones. For a criterion like , it is totally natural be-

cause the density does not intervene in the volume calculation.

So the material with the highest magnetic polarization appears

in our results. It is not so obvious with criteria like or ,

but we can see that the difference between the densities of the

two kind of magnets are not significant enough to compensate

the gap between the polarization values. Second, the values of

have changed compared to Table III for the mass and the

multicriteria. We obtain better results with powder than with

laminated sheets, due to the smaller value of its density. For

the global volume minimization, it is natural to obtain stamping

again. This one is the material with the highest maximal value

of the magnetic flux density, so the iron volume can be smaller

than the volume of powder, without reaching its saturation.

We note that the computational times are most important than

those presented in Table II where the kind of materials were

fixed.

Remark 2: In light of such results, we can think that the kind

of magnetic material may be useless during the resolution

of our problems. Indeed, we obtain exactly the same result in

including materials or not for the volume minimization and, for

the mass minimization it is the less heavy material which ap-

pears in our results. Nevertheless, the problems corresponding

to the minimization of the global volume have been also com-

puted with a value of fixed to 2. The obtained results differ

from those presented in Tables II and III: for

IBBA and for IBBA+NUMT. These results

are quite different (and worse) than the previous ones. It means

that the inequality constraints on the maximal value of the flux

density in the yoke and the teeth (2), (3) in which appear

has an implicit effect on the optimization problems of design (1)

and (12). This remark is also available for the following prob-

lems presented in Tables IV and V.

Because all the solutions obtained in Tables II and III are

about machines with an external rotoric configuration ,

we fixed all rotoric configuration to the internal case .

The obtained solutions are reported in Tables IV and V, respec-

tively, with or without the fact that the kind of material is fixed

or not, as above.

We can note that the value of pole pairs has changed to

nine, and all results again have the same value. Different

results are obtained comparing the two algorithms IBBA and

IBBA+NUMT. Sometimes the differences take into account

a lot of parameters (see in the two tables). Further-

more, the solution for the minimization of the mass is more

quickly obtained when the parameters of materials are free (see

Tables IV and V). This is due to the fact that fixing materials

in the third problem involves a more difficult global optimiza-

tion problem than the more general one including the kind of

materials as free parameters.

We note that for all these numerical tests the magnetical

torques calculated with NUMT from the solutions given by

IBBA are lower than the imposed value fixed to 10 Nm; the

lowest obtained value is about 8.61 , see Table IV for the

criterion . Nevertheless, the values of the magnetical

torque computed with the analytical equation from solutions

given by IBBA+NUMT are close to 10 (just above). This point

leads to prove that solutions obtained using IBBA+NUMT are

more acceptable for a future construction of the machine.

Remark 3: In all the numerical tests presented in this paper,

the structure and the composition of the machine are the same

comparing solutions obtained with IBBA and IBBA+NUMT;

only the continuous parameters of the machine have to be

changed. This fact validates the predesigning phase of the use

of IBBA and also analytical models.

Remark 4: Using only IBBA and analytical models, all the

numerical tests show that the solutions are under the given

torque (10 ). This seems to show that, when optimal

solutions were computed using IBBA and analytical models,

this method also maximizes the error (due to the analytical

model) about the so-computed torque.

VI. CONCLUSION

In this paper, we solve for the first time a much more gen-

eral and useful inverse problem of design [formulated by (12)]

than those already solved in [2] and [3]. The obtained solutions

using our new algorithm IBBA+NUMT now satisfy the con-

straint about the torque (which is fixed by the schedule of con-

ditions) in a numerical way. Thus, the generated solutions are

directly validated numerically. Of course, problems of type (12)

are much more difficult to solve than its corresponding problem

considering the analytical equation in place of the numerical

constraint (1). Indeed, the examples show the usefulness of the

IBBA+NUMT in place of IBBA alone; a lot of continuous pa-

rameters can change between the two obtained solutions. In the

field of global optimization, this is, in our knowledge, the first

time that problems with a black-box constraint are solved by an

exact interval Branch and Bound algorithm.
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