
This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Design of electromagnetic cloaks and concentrators using
form-invariant coordinate transformations of

Maxwell’s equations

Marco Rahm a,*, David Schurig a, Daniel A. Roberts a, Steven A. Cummer a,
David R. Smith a, John B. Pendry b

aDepartment of Electrical and Computer Engineering, Duke University, Box 90291, Durham, NC 27708, USA
bDepartment of Physics, The Blackett Laboratory, Imperial College, London SW7 2AZ, UK

Received 15 June 2007; accepted 30 July 2007

Available online 8 August 2007

Abstract

The technique of applying form-invariant, spatial coordinate transformations of Maxwell’s equations can facilitate the design of

structures with unique electromagnetic or optical functionality. Here, we illustrate the transformation-optical approach in the

designs of a square electromagnetic cloak and an omni-directional electromagnetic field concentrator. The transformation equations

are described and the functionality of the devices is numerically confirmed by two-dimensional finite element simulations. The two

devices presented demonstrate that the transformation optic approach leads to the specification of complex, anisotropic and

inhomogeneous materials with well directed and distinct electromagnetic behavior.
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1. Introduction

In a theoretical study, Pendry et al. reported a general

method for the design of electromagnetic materials

based on form-invariant transformations of Maxwell’s

equations [1]. In that paper, the methodology of

transformation optics was applied to find the specifica-

tion for an electromagnetic cloak-a complex material

capable of rendering objects within its interior invisible

to detection. Although just one example of the many

intriguing structures possible using the transformation

optical approach, the proposed cloak design generated

enormous interest in its own right. An approximation to

the invisibility cloak based on metamaterials was

subsequently realized by Schurig et al., who demon-

strated the cloaking mechanism in microwave experi-

ments [2]. The transformation optical approach to

invisibility is quite general, differing in scope from prior

related work. Indeed, methods of reducing the electro-

magnetic scattering of objects at radar frequencies have

long been a subject of intense research [3–5]. On the

nanoscale, techniques have also been suggested to

reduce the scattering of one or more multipole

components of size-limited objects using tailored

negative index or negative permittivity coatings [6,7].

More recently, a mathematically rigorous proof of an
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invisibility structure based on active devices was

reported [8].

Transformation optics provides for a conceptually

simple approach to the design of complex electro-

magnetic structures: one imagines warping space to

achieve the desired electromagnetic functionality. The

trajectories of electromagnetic waves passing through a

region of warped space must conform to the local

metric, and this provides an alternative (though

conceptual) means to control and manipulate electro-

magnetic fields. Once the desired design is determined,

the coordinate transformation and its Jacobi matrix

determine the transformation of Maxwell’s equations

and the constitutive relations. The result provides the

specification for an electromagnetic structure that is

complex-being inhomogeneous and anisotropic-but

realizable for example through artificially structured

metamaterials. Indeed, because the fields in a volume

bounding a transformation optical structure are iden-

tical to those that would exist where the structure is

replaced by free space, anisotropy is necessary to

circumvent uniqueness constraints [8].

If the coordinate transformation can be realized

exactly in the constitutive parameters, all aspects of

wave propagation will be transformed by the structure,

including the near-fields. Adding constraints to the

materials reduces the ultimate performance of the

structure, but nevertheless can still allow for interesting

and novel structures. Leonhardt, for example, has

shown that if the materials are restricted to be isotropic,

an approximate cloak can be constructed that is valid in

the geometrical optic limit [9]. Likewise, constraints

were employed for the metamaterial cloak utilized by

Schurig et al. to ease the metamaterial design and

fabrication, resulting in a structure that produced

significant reflection yet still demonstrated the cloaking

mechanism for transmitted waves [2].

Since the concept of transformation optics was

introduced, there have been a growing number of

subsequent reports applying the method to a variety of

electromagnetic, acoustic and elasto-mechanical struc-

tures [10–17]. Full wave simulations have helped to

confirm the expected behavior and have provided a

platform to explore systematically the effects of

absorption, imperfections and other constraints that

are inherent to fabricated realizations of the transfor-

mation optical structures [18,19].

In this paper we present two examples that

demonstrate the general applicability of form-invariant

coordinate transformations for the design of complex,

inhomogeneous and anisotropic electromagnetic mate-

rials with well-defined functionality. For the first

example, we derive the electromagnetic constitutive

parameters corresponding to a two-dimensional elec-

tromagnetic cloak having square cross-section. The

square shape has been chosen to illustrate the nature of

the transformation and the resulting design for a

structure that lacks rotational symmetry in the plane. In

contrast to the cylindrical cloaks with circular cross-

section previously presented, the square cloak design

results in a non-orthogonal transformation producing a

more complicated specification for the spatially

dependent permittivity and permeability tensors. The

method to design this structure, however, can be applied

to the design of structures with arbitrary shape.

For the second example, we derive the material

properties of an electromagnetic field concentrator by

the same approach. The purpose of the cylindrical

concentrator is to focus incident electromagnetic waves

with wave vectors perpendicular to the cylinder axis,

enhancing the electromagnetic energy density of

incident waves in a given area. This example illustrates

the strength of the transformation-optical approach for

designing devices other than cloaks.

2. Transformation equations

In this section, the formulas describing the spatial

coordinate transformations and the calculation of the

resulting material parameters, i.e. the electric permit-

tivity tensor and the magnetic permeability tensor, are

derived. The methodology used to compute the

electromagnetic material properties is similar to the

one reported in [20].

For convenience, we denote Maxwell’s equations in

the Minkowski form [21]

@½kFln� ¼ 0 (1)

@nG
nl ¼ jl; k; l; n ¼ 0; 1; 2; 3 (2)

where the square brackets express an alternation among

the indices [22] and the skew-symmetric covariant and

contravariant tensors Fln and Gnl and the contravariant

vector jl possess the identifications

Fln ¼

0 �E1 �E2 �E3

E1 0 B3 �B2

E2 �B3 0 B1

E3 B2 �B1 0

0

B

B

@

1

C

C

A

(3)

Gnl ¼

0 D1 D2 D3

�D1 0 H3 �H2

�D2 �H3 0 H1

�D3 H2 �H1 0

0

B

B

@

1

C

C

A

(4)
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jl ¼

r

j1
j2
j3

0

B

B

@

1

C

C

A

(5)

where E is the electric field, B is the magnetic induction,

D is the electric displacement, H is the magnetic field, r

is the volume charge density, j is the current density and

the indices denote their spatial components. In this

notation, the coordinate vector in four-space is xa ¼
ðx0 ¼ t; x1; x2; x3Þ

T
with the vacuum speed of light c set

to unity.

For a linear medium, the constitutive relation can be

written as

Gln ¼
1

2
xlnskFsk (6)

where the tensor xlnsk contains the complete informa-

tion about the electromagnetic material properties.

The Minkowski Eqs. (1) and (2) and the constitutive

relation (6) are form-invariant for arbitrary continuous

space-time transformations of the form

xa
0

ðxaÞ ¼ Aa0

a x
a (7)

where Aa0

a ¼ @xa
0

@xa
are the elements of the Jacobian trans-

formation matrix and the primed indices denote the

space-time coordinates of the vector x in the trans-

formed space.

Considering the transformation (7), the Minkowski

Eqs. (1) and (2) transform as

@½k0Fl0n0� ¼ Ak
k0A

l
l0A

n
n0@½kFln� ¼ 0 (8)

@n0G
n0l0 ¼ ½detðAl0

l Þ�
�1
Al0

l @nG
nl

@n0G
n0l0 ¼ ½detðAl0

l Þ�
�1
Al0

l jl (9)

@n0G
n0l0 ¼ jl

0

(10)

and the constitutive relation transforms as

Gl0n0 ¼ ½detðAl0

l Þ�
�1
Al0

l A
n0

n G
ln

¼
1

2
½detðAl0

l Þ�
�1
Al0

l A
n0

n A
s0

s A
s
s0A

k0

k A
k
k0x

lnskFsk

¼
1

2
½detðAl0

l Þ�
�1
Al0

l A
n0

n A
s0

s A
k0

k x
lnskAs

s0A
k
k0Fsk

¼
1

2
xl0n0s0k0Fs0k0 (11)

with

xl0n0s0k0 ¼ ½detðAl0

l Þ�
�1
Al0

l A
n0

n A
s0

s A
k0

k x
lnsk (12)

Fs0k0 ¼ As
s0A

k
k0Fsk (13)

where det(X) indicates the determinant of a tensor X.

It is obvious, that the form-invariance of the

Minkowski Eqs. (1) and (2) and the constitutive relation

(6) also hold for transformations which only address the

space coordinates, as the space manifold is a sub-

manifold of the space-time manifold. In the following

we will restrict ourselves to time-independent, spatial

coordinate transformations. Under this restriction, the

constitutive parameters, i.e. the tensors of the permit-

tivity and the permeability of a linear, anisotropic, non-

dispersive, non-bianisotropic and locally interacting

medium can be written in a more accessible form as

ei
0 j0 ¼ ½detðAi0

i Þ�
�1
Ai0

i A
j0

j e
i j (14)

mi0 j0 ¼ ½detðAi0

i Þ�
�1
Ai0

i A
j0

j m
i j (15)

The relations (7), (14) and (15) form the underlying

equations for the calculation of the electromagnetic

material parameters used in the design of a square-

shaped cloak and a concentrator for electromagnetic

fields.

For all the transformations considered in the next

sections, the mathematical starting point is three-

dimensional, euclidian space expressed in a cartesian

coordinate system xi ¼ ðx1; x2; x3Þ
T
. From the physical

point of view, the space is considered to be medium-free

(vacuum) and isotropic. Thus, the permittivity tensor ei j

and the permeability tensor mi j of the original space can

be expressed in the form

ei j ¼ e0d
i j (16)

mi j ¼ m0d
i j (17)

with (di j ¼ 1) for (i ¼ j) and (di j ¼ 0) elsewhere.

2.1. Square cloak

The coordinate transformation equations for the

electromagnetic design of a square-shaped cloak with a

sidelength 2s1 of the inner square and a sidelength 2s2 of

the outer square (see Fig. 1a) are expressed by

x01ðx1; x2; x3Þ ¼ x1
s2 � s1

s2
þ s1 (18)

x02ðx1; x2; x3Þ ¼ x2

�

s2 � s1

s2
þ

s1

x1

�

(19)

x03ðx1; x2; x3Þ ¼ x3 (20)
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with the Jacobi matrix and its determinant

Ai0

i ¼

s2 � s1

s2
0 0

�x2

x21
s1

s2 � s1

s2
þ
s1

x1
0

0 0 1

0

B

B

B

@

1

C

C

C

A

(21)

detðAi0

i Þ ¼
s2 � s1

s2

�

s2 � s1

s2
þ

s1

x1

�

(22)

for (0< x1 � s2), (�s2 < x2 � s2), jx2j< jx1j and

(jx3j<1). It should be noted, that, by the foregoing

definitions, the transformation Eqs. (18)–(20) are only

defined for the green shadowed area in Fig. 1a and that

the transformation is continuous at the boundary of the

transformed domain. The corresponding transformation

formulas for the upper, left, and lower domain of the

square cloak can be readily obtained by applying rota-

tion operators with rotation angles of p=2, p and 3p=2
around the z-axis to Eqs. (18)–(20).

As can be seen from Fig. 1b, the transformation

expands the space within the inner square at the

expense of a compression of space between the inner

and outer square. Inserting Eqs. (21) and (22), (16) and

(17) into (14) and (15), applying the reverse transfor-

mations xiðxi
0
Þ of (18)–(20) and dividing (14) by e0 and

(15) by m0 yields the relative permittivity and the

relative permeability tensors ðerÞ
i0 j0

and ðmrÞ
i0 j0
,

expressed in the coordinates xi
0
of the transformed

space, as

ðerÞ
i0 j0 ¼ ðmrÞ

i0 j0 ¼

c

a
�
b

a
0

�
b

a

a2 þ b2

ac
0

0 0 ac

0

B

B

B

@

1

C

C

C

A

(23)

with

a :¼
s2

s2 � s1
; b :¼

x02

ðx01Þ
2
as1; c :¼ a

�

1�
s1

x01

�

(24)

Due to the natural invariance of the Minkowski

equations (as discussed in [20]), the permittivity and

permeability tensors can also be interpreted as the

material properties of a medium described in the

coordinate system of the original space by substituting

the primed indices by unprimed indices (‘‘material

interpretation’’). Again it should be noted, that the

material properties (23) are only valid in the green

shadowed region of Fig. 1a and that, due to the

symmetry of the cloak, the material properties of the

other cloak domains can be readily obtained by rotating

the tensors in (23) by p=2, p and 3p=2, respectively.
Furthermore, the relative permittivity and permeability

tensors are non-diagonal, which is a direct consequence

of the non-conformality of the transformation (18)–

(20). However, in terms of fabricating such a material, it

is desirable to have the material parameters denoted in

their eigenbasis, where the permittivity and perme-

ability tensors are diagonal. Due to the symmetry of the

tensors ei j and mi j, an eigenbasis solution always exists

M. Rahm et al. / Photonics and Nanostructures – Fundamentals and Applications 6 (2008) 87–9590

Fig. 1. Spatial coordinate transformation for the design of a square-

shaped cloak (a) original space, s1: half sidelength of the inner square,

s2: half sidelength of the outer square. The transformation Eqs. (18)–

(20) are only valid in the green shadowed region (b) transformed

space.
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and one obtains

ðerÞ
i j ¼ ðmrÞ

i j

¼
1

2ac

Aþ
ffiffiffiffiffiffiffi

ðBÞ
p

� �

0 0

0 A�
ffiffiffiffiffiffiffi

ðBÞ
p� �

0

0 0 2a2c2

0

B

@

1

C

A

(25)

with

A :¼ a2 þ b2 þ c2 (26)

B :¼ a2ða2 þ 2ðb2 � c2ÞÞ þ b2ðb2 þ 2c2Þ þ c4 (27)

Notice, that the primes were omitted to express the

electromagnetic parameters in the material interpreta-

tion. Due to the spatial dependence of the elements of

the permittivity and permeability tensors, the orienta-

tion of the basis vectors ðx; yÞ of the eigenbasis depends
on the spatial location ðx1; x2Þwithin the cloak material.

This is illustrated in Fig. 2a for a square cloak with

s1 ¼ 3 cm and s2 ¼ 6 cm. The graph shows the

rotation angle of the eigenbasis vectors ðx; yÞ in

dependence on the location x1 at different positions

x2. Again, the physical quantities are calculated for the

green shadowed region in Fig. 1a. The rotation angle of

the eigenbasis with refer to the coordinate system

ðx1; x2Þ varies within a range from 1.3 to 1.8 rad. In

order to fabricate such a medium as a metamaterial, the

principle axes of the unit cells have to be individually

aligned along the basis vectors ðx; y; zÞ of the

eigenbasis.

Fig. 2b–d shows the values of the relative

permeabilitiesmx :¼ m11
r andmy :¼ m22

r and the relative

permittivity ez :¼ e33r in dependence on the location

within the cloak. These three physical quantities deliver

a full description of the propagation behavior of an

electromagnetic wave with a linear polarization vector

of the electric field oriented along the z-direction. The

depicted area corresponds to the green shadowed region

in Fig. 1a. As opposed to my and ez, the value of mx

diverges at the boundary of the inner square of the cloak.

However, at a distance of about 1.6 mm from the inner

boundary of the square cloak, mx already approaches

finite values below 35 as determined along a straight

intersection line parallel to the y-axis at x ¼ 3:16 cm.

Please note, that Fig. 2b only displays the permeability

mx for x� 3:16 cm and thus does not show the

divergence of the relative permeability towards the

inner boundary of the cloak. However, assuming a

typical unit cell size of 3.3 mm for a fabricated effective

medium at a working frequency of 8.5 GHz, the value of

mx at the midpoint of the unit cells at the inner boundary

of the cloak is between 19 and 35, so that an

implementation of such a material is still possible.

Although the effective mx is inaccurate in the vicinity of

the boundary of the inner square, it can be shown, that

the performance of the implemented device is not

affected by this fact, which is out of the scope of this

paper.

2.2. Cylindrical concentrator

Due to its cylindrical symmetry, it is convenient to

describe the transformation equations in a cylindrical

coordinate system. In this context, it is necessary to

consider the transformation from cartesian to cylind-

rical coordinates for an isotropic medium with

M. Rahm et al. / Photonics and Nanostructures – Fundamentals and Applications 6 (2008) 87–95 91

Fig. 2. (a) Rotation angle of the eigenbasis vectors ðx; yÞ in dependence on their spatial location ðx1; x2Þ within the cloaking material calculated for

the green shadowed region in Fig. 1a. (b–d) Spatial dependence of the material parameters of the square cloak medium for a TE-wave polarized in z-

direction, expressed in their local eigenbasis ðx; y; zÞ, (b) permeabilitymx in x-direction, (c) permeabilitymy in y-direction and (d) permittivity ez in z-

direction.
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permittivity e and permeability m. With the transforma-

tion

r0ðx1; x2; x3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22

q

(28)

f0ðx1; x2; x3Þ ¼ arctan

�

x2

x1

�

(29)

x03ðx1; x2; x3Þ ¼ x3 (30)

and Eqs. (14) and (15) one obtains

hi
0 j0 ¼

r0h 0 0

0
h

r0
0

0 0 r0h

0

B

@

1

C

A
with h ¼ e;m (31)

At this point, the reader should be aware, that the

metric tensor of the transformed space is

gi0 j0 ¼
1 0 0

0 r0
2

0

0 0 1

0

@

1

A (32)

so that (31) necessarily still represents the material

properties of an isotropic medium.

The transformation equations for the optical design

of the cylindrical concentrator are denoted as

r00ðr0;f0; x03Þ

¼

R1

R2

r0 0 � r0 � R2

R3 � R1

R3 � R2

r0 �
R2 � R1

R3 � R2

R3 R2 < r0 � R3

8

>

<

>

:

(33)

f00ðr0;f0; x03Þ ¼ f0 0 � f0 < 2p (34)

x003ðr
0;f0; x03Þ ¼ x03 �1< x03 <1 (35)

with the corresponding Jacobi tensors and determinants

Ai0

i ¼

R1

R2

0 0

0 1 0

0 0 1

0

B

@

1

C

A
0 � r0 � R2

R3 � R1

R3 � R2

0 0

0 1 0

0 0 1

0

B

@

1

C

A
R2 < r0 � R3

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(36)

detðAi0

i Þ ¼

R1

R2

0 � r0 � R2

R3 � R1

R3 � R2

R2 < r0 � R3

8

>

<

>

:

(37)

The space transformation is visualized in Fig. 3.

Space is compressed into a cylindrical region with

radius R1 at the expense of an expansion of space

between R1and R3. The transformation is continuous to

free space at R3. Inserting (31), (36) and (37) into (14)

and (15) and renormalizing (31) by requiring

(-

h1
010 7! h1

010=ðr0hÞ; h2
020 7! h2

020r0=h; h3
030 7! h3

030=ðr0hÞ)
to conveniently describe the relative material properties

of free space as hi
0 j0

r ¼ di
0 j0 in cylindrical coordinates,

one obtains with help of the inverse transformations of

(33)–(35) the relative permittivity and permeability

tensors, expressed in the coordinates ðr00;f00; z00Þ as

ei
00 j00

r ¼ mi00 j00

r

¼

1 0 0

0 1 0

0 0
R2

R1

� �2

0

B

B

@

1

C

C

A

0 � r00 � R1

hr 0 0

0 hrð Þ�1
0

0 0
f

h

� �2

hr

0

B

B

@

1

C

C

A

R1 < r00 � R3

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(38)

with

hr ¼
e

f

R3

r00
þ 1 (39)

e :¼ R2 � R1; f :¼ R3 � R2; h :¼ R3 � R1 (40)

Again, in the material interpretation, (38) represents the

material properties of the cylindric concentrator in the

original space ðr0;f0; z0Þ. Fig. 4 shows the radial and

M. Rahm et al. / Photonics and Nanostructures – Fundamentals and Applications 6 (2008) 87–9592

Fig. 3. Visualization of the space transformation expressed in (33)–

(35). Space is compressed into a cylindrical region with radius

R1 ¼ 2 cm (black inner circle) at the expense of an expansion of

space between R1 and R3 ¼ 6 cm (black outer circle). The displayed

intermediate circle is located at R2 ¼ 4 cm.
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azimuthal components mr :¼ m1010

r and mf :¼ m2020

r and

the z-component ez :¼ e3
030

r in dependence on the radial

position within the concentrator, assuming an interac-

tion with an electromagnetic wavewith a polarization of

the electric field parallel to the z-direction. The experi-

mental implementation of such a material requires

independent control of the local values of all three

parameters. The metamaterial design and fabrication

is part of current research.

3. Simulation results and discussion

For the full wave electromagnetic simulations a two-

dimensional finite-element solver of the Comsol

Multiphysics software package was used. The compu-

tational domain and its boundaries are shown in Fig. 5.

A transverse-electric (TE) plane-wave was excited by a

current sheet. The computational domain was termi-

nated by perfectly matched layers (PMLs). The current

density distribution was chosen to exponentially

decrease towards the borders of the sheet in the y-

direction to prevent interactions with the PMLs. The

calculations did not include absorption in the object.

The finite-element solver required all physical quan-

tities to be described in cartesian coordinates. For all

simulations, a stationary solver was used. The solver

allowed to conveniently implement the functional

dependence of the permittivity and permeability tensors

of the simulated material into the model and thus to

accurately describe and predict the electromagnetic

behavior of the designed medium.

3.1. Square cloak

Fig. 6 shows the results of the two-dimensional full-

wave simulations of a square-shaped cloak. The inner

square of the cloak is filled with a perfectly electrically

conducting material. The color map depicts the spatial

distribution of the real part of the transverse-electric

phasor oriented along the z-direction. In addition, the

direction of the power flow is indicated by the grey

lines. The frequency of the TE wave is 8.5 GHz. The

sidelengths of the inner and outer square of the cloak are

6 cm and 12 cm, respectively. In Fig. 6a, the phase

fronts of the impinging wave are parallely aligned to

one of the sides of the cloak. As can be seen, the wave is

smoothly bent around the cloaked area and the phase

fronts are completely restored when the wave exits the

cloak material. The inhomogeneity and the anisotropy

of the cloak medium are evident as the direction of the

power flow and the phase front normal are not parallel

and the angle between the directions changes locally. In

Fig. 6b, the cloak is rotated by an angle of p=8 with

respect to the phase fronts of the incoming wave. In this

configuration, the phase fronts are no longer parallel to

any side of the square cloak. As before, the phase fronts

are completely restored after propagation through the

cloak material and the inner square is not sensed by the

wave. In both cases, the wave impedances of the cloak

medium and free space are exactly matched and the

device is therefore reflectionless.

The square-shaped cloak is an example of a cloak

with reduced symmetry in comparison to a cylindric

cloak. In addition, the square cloak possesses sharp

corners. The simulations clearly show, that the

transformation-optical cloak design is not restricted

by cylindric symmetry requirements. In principle,

cloaks of arbitrary shape can be designed by use of

the transformation-optical approach.
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Fig. 4. Radial dependence of the material properties of a cylindric

concentrator with an inner radius R1 ¼ 2 cm and an outer

radius R2 ¼ 6 cm. (a) radial permeability component mr , (b) azi-

muthal permeability component mf, (c) z-component ez of the

permittivity.

Fig. 5. Computational domain terminated by perfectly matched layers

with functionality in the x-, y- and x–y-direction. The TE planewave is

excited by a current sheet.
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3.2. Concentrator

In Section 2.2, the material properties of a

concentrator were described in a cylindrical coordinate

system. In cartesian coordinates, the relative permittiv-

ity and permeability tensors can be obtained from (38)

by use of the general transformation

ji
0 j0 ¼

1

r2
j11x21 þ j22x22
� �

ðj11 � j22Þ
x1x2

r2
0

ðj11 � j22Þ
x1x2

r2
1

r2
j22x21 þ j11x22
� �

0

0 0 j33

0

B

B

B

@

1

C

C

C

A

(41)

with j ¼ er; mr. The variables er and mr as functions of

the space variables ðx :¼ x1; y :¼ x2; z :¼ x3Þ are then

directly assigned to the concentrator domains.

Fig. 7a displays the real part of the phasor of the

electric field for a z-polarized TE wave. The grey lines

represent the direction of the power flow. The free-space

frequency of the TE wave is 8.5 GHz. The outer radius

of the concentrator is R3 ¼ 6 cm. As can be seen, the

fraction of the plane-wave extending in the y-direction

from �R2 ¼ �4 cm to R2 ¼ 4 cm is completely

focussed by the concentrator into the region with

radius R1 ¼ 2 cm. Additionally, the fields within the

intervals ½�R3;�R2Þ and ðR2;R3� in the y-direction are

focussed to an area with a radius lying in the interval

ðR1;R3�.
Fig. 7b illustrates the normalized intensity distribution

of the TE wave. It is obvious, that the field intensities are

strongly enhanced in the inner region of radius R1 within

the concentrator material. The intensity enhancement

factor for the chosen structure, computed as the ratio

between the maximal values of the field intensities

outside the circular region with radius R3 and inside the

concentrator region with radius R1, is 2. Significantly

stronger enhancements can be achieved by increasing the

ratio R2=R1. As can be seen, the enhancement

theoretically diverges to infinity as R1 goes to zero.
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Fig. 6. Electric field distribution in the interior and exterior region of the square cloak. The direction of the power flow is in the positive x-direction.

The wave is smoothly bent around the corners of the square cloak. (a) Phase fronts parallel to one side of the cloak and (b) cloak rotated by p=8 with

respect to the phase fronts of the incoming wave.

Fig. 7. (a) Electric field distribution in the interior and exterior region of the cylindric concentrator. The direction of the power flow is in the positive

x-direction, indicated by the grey lines. (b) Normalized power flow distribution. The power flow is enhanced within the region with radius R1 ¼ 2 cm

by a factor of 2. Much stronger power flow enhancements can be achieved by increasing the ratio R2=R1.
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Due to the rotational symmetry around the axis

perpendicular to the x–y-plane, the concentrator

focusses waves impinging from arbitrary directions.

The concentrator is reflectionless due to inherent

impedance matching in the transformation-optical

design method. Although metamaterials, which are

necessary to implement the material properties of a

concentrator, inherently suffer from losses, we think,

that the concentrator can play an important role in the

harnessing of light in solar cells or similar devices,

where high field intensities are required.

4. Conclusion

In conclusion, we have presented the material

design of a square-shaped cloak and an electro-

magnetic field concentrator based on form-invariant

transformations of Maxwell’s equations. The electro-

magnetic behavior of the devices was simulated by

use of a two-dimensional finite element solver. In

contrary to previous publications, the simulated

cloaking device did not possess a cylinder-symmetry.

The proposed electromagnetic field concentrator

proved to be well suited for the confinement of

electromagnetic energy of waves impinging from

arbitrary directions. The two demonstrated optical

devices exemplify the strength of the general

methodology of form-invariant coordinate transfor-

mations of Maxwell’s equations for the design

of electromagnetic materials with a well-defined

functionality. The technique allows to chose from

an infinite set of allowed transformations and thus

provides a powerful tool for the conception of optical

elements with previously unachievable electromag-

netic behavior.
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