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DESIGN OF ENERGY CONSERVING ALGORITHMS FOR
FRICTIONLESS DYNAMIC CONTACT PROBLEMS

T. A. LAURSEN AND V. CHAWLA

Department of Civil and Environmental Engineering, Box 90287, Duke University, Durham, NC 27708-0287, U.S.A.

This paper proposes a formulation of dynamic contact problems which enables exact algorithmic conservation
of linear momentum, angular momentum, and energy in �nite element simulations. It is seen that a Lagrange
multiplier enforcement of an appropriate contact rate constraint produces these conservation properties. A
related method is presented in which a penalty regularization of the aforementioned rate constraint is utilized.
This penalty method sacri�ces the energy conservation property, but is dissipative under all conditions of
changing contact so that the global algorithm remains stable. Notably, it is also shown that augmented
Lagrangian iteration utilizing this penalty kernel reproduces the energy conserving (i.e. Lagrange multiplier)
solution to any desired degree of accuracy. The result is a robust, stable method even in the context of
large deformations, as is shown by some representative numerical examples. In particular, the ability of the
formulation to produce accurate results where more traditional integration schemes fail is emphasized by the
numerical simulations.

KEY WORDS: energy conservation; dynamics; contact; �nite elements

1. INTRODUCTION

The contact problem attracts considerable attention from the computational mechanics community,

due in large part to its highly non-linear and discontinuous nature. Indeed, engineering analysts

charged with solving such problems will attest that merely achieving convergence of non-linear

solution schemes can be di�cult under many circumstances. These di�culties stem primarily from

the fact that contact surfaces are unknown a priori, and must be evolved in a manner consistent with

the equilibrium conditions of the two bodies and the Kuhn–Tucker conditions governing contact

evolution. These physical requirements imply a variational inequality for the overall system, with

admissible variations being constrained by the conditions governing the solution.1; 2 Many �nite

element modelling e�orts have been addressed most directly to the quasi-static contact problem,

where inertial e�ects are essentially negligible and the contact conditions can be e�ectively devised

and implemented on individual con�gurations, without much regard to the temporal variation of

contact kinematic measures.

This work, by contrast, concerns itself with treatment of the dynamic contact problem. In general

the most prevalent technique for treating dynamics in non-linear solid mechanics has been the

semidiscrete �nite element method. Formulations of this type can be roughly grouped into two

classes: explicit schemes, which are favoured for highly transient problems; and implicit schemes,
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which are more appropriate for systems dominated by low-frequency behaviour. Implementations

of the dynamic contact problem that have been proposed might also be grouped similarly, with

explicit treatments appearing for example in References 3–6, and implicit schemes being described,

e.g. in References 7 and 8. Roughly speaking, the conceptual approach to contact constraints in

many of these works can be described as follows. A semidiscrete �nite element system is developed

exactly as would be done in a problem with no contact, except that a contact force vector is also

included. The contact tractions de�ning this force vector must be subject to some type of contact

conditions, and the description of these conditions is critical in determining the properties of the

resulting method. A common choice, for example, is to take the contact conditions to be the

same as those governing quasi-static response, and to apply any required numerical integration

techniques (e.g. for frictional response) exactly as would be done in the quasi-static case. An

analogue to this treatment is to be found in many implementations of elastoplasticity, where the

integration algorithm for the constitutive equations at each quadrature point does not in general

depend on the global time integration scheme, or even on whether the problem is static or dynamic.

Stretching this analogy a bit further, we might describe most contact implementations as treating

the contact force vector in the global equilibrium equations essentially as an extremely non-linear

(and non-smooth) internal force vector, with the ‘constitutive law’ for the contact being de�ned

by the complementarity conditions and the friction law, if present.

This general conceptual framework, while widely applied, appears to have several drawbacks.

In explicit calculations, when using the penalty method for constraint enforcement, one �nds that

large penalties cannot be used in a fully explicit contact treatment without a�ecting the Courant

stability criterion.5 In softening the penalties, the accuracy of constraint is sacri�ced to some de-

gree, and because central di�erence methods possess no numerical damping, the noise generated

by the contact treatment will tend to obscure the solution as the calculation proceeds. In fact, one

can show6 that the Lagrange multiplier formulation of the fully explicit contact treatment is

singular, calling into question the basic validity of the fully explicit penalty approach. Accordingly,

Carpenter et al.6 have advocated an implicit treatment of the (quasi-static) contact constraints, along

with an otherwise explicit time integration of the momentum equations. This approach possesses

a well-de�ned Lagrange multiplier formulation which unfortunately couples the equilibrium equa-

tions in general. Carpenter and co-workers propose a Gauss–Seidel iteration scheme for constraint

enforcement, while Zhong9 uncouples the constraints by using an alternative discretization he refers

to as the ‘defense node’ approach. Both alternatives appear to be reasonably well behaved in com-

parison with the fully explicit approach, but the very fact that the contact conditions are treated

completely di�erently than the rest of the system calls into question our basic understanding of

the appropriate dynamic contact constraints.

In the implicit arena the state of the art is somewhat similar. For example, it has long been

recognized that use of the second-order accurate trapezoidal rule with a fully implicit treatment of

the contact constraints produces signi�cant oscillations which can become worse as time steps and

spatial discretizations are re�ned (see, e.g. Reference 6). Some authors have proposed corrections

to the Newmark updates aimed at correcting such di�culties; examples are a correction based on

wave propagation results for linear elastic materials7 and a more recent treatment8 in which new

contacts are e�ectively forced to be persistent. While in some cases e�ective, the need for such

‘corrections’ suggests some sort of inadequacy in our basic understanding of contact constraints

in a dynamic context.

This paper makes an attempt at such understanding by formulating an implicit time integration

method which is fully conservative, i.e. it conserves all momenta and the total system energy for

hyperelastic bodies undergoing perfectly elastic impact events. Since we concentrate here on such

conservative systems, we consider only non-dissipative contact and therefore assume frictionless
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response. Our approach is an extension of the work of Simo and Tarnow,10 where conservative

algorithms were proposed and demonstrated for hyperelastic systems without contact constraints.

In the current context, we will see that a Lagrange multiplier formulation of a particular rate

constraint on interfaces is completely consistent with global conservation laws. Since the penalty

method can be much simpler to apply than Lagrange multipliers in general, we propose a penalty

regularization which is unconditionally dissipative, altering the energy conservation property but

retaining the stability we desire. We will also demonstrate an augmented Lagrangian update scheme

which uses this penalty kernel to reproduce the energy conserving (Lagrange multiplier) solution.

In this manner, an algorithm is produced which is stable, and which can conserve energy to any

desired degree of accuracy through the augmented Lagrangian iteration procedure. All development

will be done without restricting the amount of motion or deformation that can occur, enabling

application of the method in a very broad context.

The plan of the paper is as follows. Section 2 outlines the contact problem and discusses the

conservation laws and their implications in a continuum context. Section 3 reviews the conser-

vative time integration method proposed by Simo and Tarnow10 and discusses its extension to

the frictionless contact problem. Imposition and regularization of the contact constraints in the

context of the conservative algorithm is discussed in Section 4. In particular, Lagrange multiplier,

penalty, and augmented Lagrangian algorithms will be proposed in this section. Section 5 briey

discusses the spatial discretization of the contact problem and some associated issues involved in

�nite element implementation. Finally, Section 6 presents some numerical examples demonstrating

the performance of the method and some implications of the conservative scheme.

2. PROBLEM FORMULATION AND CONSERVATION LAWS

In the following, we briey discuss the governing equations and contact conditions for the system

of interest. The interested reader should consult Laursen and Simo11 for more details on the

continuum formulation of large-deformation contact problems.

2.1. Governing equations

We consider the open sets 
(i)⊂Rns d ; i = 1; 2, which represent the reference con�gurations of
two bodies expected to contact during a time interval of interest I = [0; T ]. For each body, we

de�ne a portion of the boundary �(i)⊂ @
(i) so that all expected areas of contact are included.
Adopting a Lagrangian description of the problem, we designate material points in the contact

surfaces as X ∈ �(1) and Y ∈ �(2). Writing the unknown con�guration mappings at any time t ∈ I
as �

(i)
t , i = 1; 2, we can express the spatial positions of the contact surfaces as 

(i)
t = �

(i)
t (�

(i)).

Typical points x ∈ (1)t and y ∈ (2)t are then given by x = �
(1)
t (X) and y = �

(2)
t (Y). We assume

that the (nsd − 1) dimensional manifolds �
(i) are parametrized by mappings �

(i)
0 such that �(i) =

�
(i)
0 (A

(i)), i = 1; 2, where A
(i) is a parent domain for the surface in question and the mappings

�
(i)
0 are assumed to be su�ciently smooth. In particular, considering �(2), we denote points in

A
(2) as ^ and write Y = �

(2)
0 (^) and y = �

(2)
t (^), where �

(2)
t = �

(2)
t ◦�(2)0 .

Considering any point X ∈ �(1), the normal (impenetrability) contact conditions are written in
terms of a gap function g(X; t):‡ It is de�ned at any time t in terms of a closest point projection

‡We use the term gap function throughout the manuscript to be consistent with most contact mechanics literature. Actually,
because of the sign convention chosen, the term penetration function might be more appropriate since the function g is
positive when interpenetration occurs and negative otherwise
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in the spatial con�guration:

g(X; t) = sign(g(X; t))|g(X; t)|

where

|g(X; t)| = min
Y∈�(2)

‖�(1)(X; t)− �(2)(Y; t)‖

and (1)

sign(g(X; t)) =

{

−1 if �(1)(X; t) is admissible

1 otherwise

Impenetrability is enforced by the condition g(X; t)60. The point in �(2) achieving the minimiza-

tion in (1) is written as Y, with its counterpart in A
2 denoted as .̂ It is important to remember

that given a point X, the identi�cation of Y and ^ will both in general vary with time, so that we

will often write Y(X; t) and ^(X; t). Given these de�nitions, a basis can be constructed at each

contact point by de�ning

�� := �
(2)
t; � ( )̂ = F

(2)
t (Y)�

(2)
0;�( )̂; � = 1; : : : ; ns d − 1 (2)

It will be convenient in the following to augment this basis with a surface normal ], which points

out of body 2. In three dimensions, ] would be de�ned via

] =
�1 × �2

‖�1 × �2‖
(3)

where it is assumed that the parameterizations are de�ned so that ] has the proper sense. Although

both �� and ] are to be associated with X and vary with time, we suppress these arguments in

the following to reduce notation.

The (Piola) contact traction t(1)(X; t) is resolved into normal and tangential parts via

t(1)(X; t) = tN (X; t)]+ P�t
(1)(X; t) (4)

where ] is the outward normal to 
(2)
t at y (thus the inward normal to 

(1)
t ), and P�t

(1) is the

projection of t(1) onto the associated tangent plane. The contact pressure tN (X; t) should be positive

for compressive contact. We assume no frictional tractions in the present discussion; therefore

P�t
(1) = 0. The conditions for normal contact can now be written as

g(X; t)60

tN (X; t)¿0

tN (X; t)g(X; t) = 0

tN (X; t)ġ(X; t) = 0

(5)

which must hold for all X ∈ �(1) and for all t ∈ I. Equations (5)1–3 represent the classical Kuhn–
Tucker complementarity conditions between gap and pressure. Equation (5)4 is a constraint called

the persistency condition, and requires that non-zero traction may only be generated during per-

sistent contact. It will be of particular importance in subsequent developments.

With the contact conditions written, we specify the problem to be solved as follows.
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Given the following boundary conditions on body force, traction, and boundary displacement:

f
(i)
t : 
(i) × I→ R

ns d ; i = 1; 2

t
(i)

t : �(i)� × I→ R
ns d ; i = 1; 2

�
(i)
t : �(i)’ × I→ R

ns d ; i = 1; 2

(6)

Find the motions �
(i)
t : 


(i)
× I→ R

ns d ; i = 1; 2; such that

�
(i)
0

@2

@ t2
�
(i)
t = DIVP

(i)
t + f

(i)
t on 
(i) × I; i = 1; 2

�
(i)
t =�

(i)
t on �(i)’ × I; i = 1; 2

P
(i)
t n

(i)
0 = t

(i)

t on �(i)� × I; i = 1; 2

�
(i)
t |t=0 = I (the identity mapping) in 


(i)

@

@t

∣

∣

∣

∣

t=0

�
(i)
t = V

(i)
0 in 


(i)

(7)

and contact conditions (5) are satis�ed on �(1).

In the above, �
(i)
0 is the reference density, f

(i)
t is the body force, �

(i)
t is the prescribed boundary

displacement, t
(i)

t is the prescribed boundary traction, and V
(i)
0 is the initial material velocity. The

constitutive relations governing Pt are at this point left unprescribed. The subregions �
(i)
� , �

(i)
’ ,

and �(i) are assumed to be non-intersecting and invariant with time, while satisfying

�(i)� ∪ �(i)’ ∪ �(i) = @
(i) (8)

2.2. Variational principle

At any time t ∈ I, one can introduce admissible variations �
∗ (i)

on each body and construct a

variational principle. Following the development in Laursen and Simo,11 which should be consulted

for more details, this weak form of the equations can be stated as

Find �
(i)
t ∈ C

(i)
t , such that for all �

∗ (i)
∈ V

(i); i = 1; 2:

G(i)(�
(i)
t ;�

∗ (i)
) :=

∫


(i)
�
(i)
0 A

(i)
t · �

∗ (i)
d
(i) +

∫


(i)
P
(i)
t : GRAD[�

∗ (i)
] d
(i)

−

∫


(i)
f
(i)
t · �

∗ (i)
d
(i) −

∫

�
(i)
�

t
(i)

t · �
∗ (i)

d�(i)�

=

∫

�(i)
t (i) · �

∗ (i)
d�(i)

(9)

where A
(i)
t is the material acceleration of the body, and arguments X and t are dropped from

t (i)(X; t) for convenience of notation.

The time-dependent solution spaces C
(i)
t and time-independent variational space V(i) are de�ned

such that

C
(i)
t = {�(i)t : 


(i)
→ R

ns d | J (i)t = det[D�
(i)
t ]¿ 0 and �

(i)
t = �

(i)
t on �(i)’ } (10)
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and

V
(i) = {�

∗ (i)
: 


(i)
→ R

ns d |�
∗ (i)

= 0 on �(i)’ } (11)

One may add the virtual work expressions implied by (9) to de�ne a global variational principle

G(�t ;�
∗
) := G(1)(�

(1)
t ;�

∗ (1)
) + G(2)(�

(2)
t ;�

∗ (2)
)

=

∫

�(1)
t(1) · �

∗ (1)
d�(1) +

∫

�(2)
t(2) · �

∗ (2)
d�(2)

(12)

where �t is understood to be the collection of mappings �
(i)
t ; i = 1; 2 (similarly for �

∗
). In (12)

we also use the notations G(i)(· ; ·) to indicate the sum of the internal virtual work and those of the
applied forces. The right-hand side of (12), representing the contact virtual work, can be expressed

as a single integral over �(1) by requiring the contact forces on either side of the interface to be

equal and opposite, which leads to

G(�t ;�
∗
) + Gc(�t ;�

∗
) = 0 (13)

where

Gc(�t ;�
∗
) := −

∫

�(1)
t(1)(X; t) · [�

∗ (1)
(X)− �

∗ (2)
(Y(X; t))] d�(1) (14)

Equation (14) can be simpli�ed further by considering linearized variations of the kinematic

quantities, denoted here by the symbol �(·):

��(X;�t ;�
∗
) :=

d

d�

∣

∣

∣

∣

�=0

�(�t(X) + ��
∗
(X)) (15)

Direct calculation will verify that

�g(X) = −] · [�
∗ (1)

(X)− �
∗ (2)

(Y(X; t))] (16)

Using the fact that the frictional traction is zero, (16) can be substituted into (14) to produce

Gc(�t ;�
∗
) =

∫

�(1)
tN (X; t)�g(X) d�

(1) (17)

2.3. Conservation laws

Before we begin development of the algorithm, it is instructive to consider the global conser-

vation laws in the context of the problem at hand. Speci�cally, we wish to verify that the linear

momentum Lt , the angular momentum Jt , and the total energy E
tot
t are globally conserved by the

formulation we propose. The paper of Simo and Tarnow10 should be consulted for more detail on

the general approach. Using the current notation, we de�ne the total system linear momentum Lt
and total system angular momentum Jt for any time t as

Lt :=

∫


(1)
�
(1)
0 V

(1)
t d
(1) +

∫


(2)
�
(2)
0 V

(2)
t d
(2) (18)

and

Jt :=

∫


(1)
�
(1)
0 �

(1)
t × V(1)t d
(1) +

∫


(2)
�
(2)
0 �

(2)
t × V(2)t d
(2) (19)
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The theorem of power expended states the global energy balance in rate form

dKt

dt
+P

int
t = P

ext
t +P

con
t (20)

where the total kinetic energy is de�ned as

Kt =
1

2

{
∫


(1)
�
(1)
0 ‖V(1)t ‖2 d
(1) +

∫


(2)
�
(2)
0 ‖V(2)t ‖2 d
(2)

}

(21)

the stress power is written as

P
int
t =

∫


(1)
(D�

(1)
t S

(1)
t ) : GRAD[V

(1)
t ] d


(1) +

∫


(2)
(D�

(2)
t S

(2)
t ) : GRAD[V

(2)
t ] d


(2) (22)

the expended power of the external loading is given by

P
ext
t =

2
∑

i=1

{
∫


(i)
f
(i)
t · V

(i)
t d


(i) +

∫

�
(i)
�

t
(i)

t · V
(i)
t d�

(i)

}

(23)

and the total power input of the contact stresses is given by

P
con
t =

2
∑

i=1

∫

�(i)
t (i)(X; t) · V

(i)
t d�

(i) (24)

In (22), S
(i)
t is the second Piola–Kirchho� stress tensor and is related to P

(i)
t by the relation

P
(i)
t = D�

(i)
t S

(i)
t .

Introducing the notations Dint
t for the internal dissipation function and E intt for the total stored

internal energy, we can write the following form of the second law of thermodynamics (i.e. a

reduced dissipation inequality):

D
int
t := P

int
t −

dE intt
dt

¿0 for all t ∈ I (25)

Combining (20) and (25) yields

dE tott
dt

= P
ext
t +P

con
t −D

int
t (26)

where E tott is the sum of the kinetic and internal energies of the two bodies in question. In the

study considered in this paper, we will make the following assumptions about the system at hand:

1. The bodies are subject to no body forces, so that f
(i)
t = 0 on 
(i) × I for i = 1; 2.

2. There are no Dirichlet (displacement) boundary conditions, and the tractions are zero on the

Neumann boundaries, so that �
(i)
’ = ∅ and t

(i)

t = 0 on �
(i)
� × I, i = 1; 2.

3. There is no internal dissipation in the bodies under consideration, so that Dint
t = 0 for all

time t.

Under this set of assumptions, we can examine the conservation properties of our system by

making appropriate substitutions into the virtual work expression (13). For example, substituting

7



�
∗
= W into (13), where W is a constant arbitrary vector on 


(1)
∪ 


(2)
, gives

0 = G(�t ; W) + Gc(�t ; W)

=
2
∑

i=1

∫


(i)
�
(i)
0 A

(i)
t · W d
(i) −

∫

�(1)
t(1)(X; t) · (W− W) d�(1)

=

(

dLt

dt

)

· W

(27)

which in turn implies that dLt=dt=0 (W is arbitrary). In a similar manner, considering the variation

�
∗
= W× �t , where W is a �xed vector, gives

0 = G(�t ; W× �t) + Gc(�t ; W× �t)

=
2
∑

i=1

{
∫


(i)
(D�

(i)
t S

(i)
t ) : ( ŴD�

(i)
t ) d


(i) +

∫


(i)
(�

(i)
t × �(i)0 A

(i)
t ) · W d


(i)

}

−

∫

�(1)
t(1)(X; t) · [W× (�(1)t (X)− �

(2)
t (Y(X; t))] d�

(1)

=
2
∑

i=1

∫


(i)
(D�

(i)
t S

(i)
t D�

(i)
t

T
) : Ŵ d
(i) +

(

dJt

dt

)

· W

+

∫

�(1)
W · [t(1)(X; t)× (�(1)t (X)− �

(2)
t (Y(X; t))] d�

(1)

=
dJt

dt
· W

(28)

where Ŵ is the skew-symmetric tensor whose axial vector is W. In the last step of (28), the �rst

term disappears because the contraction of a skew symmetric tensor ( Ŵ) with a symmetric tensor

(D�
(i)
t S

(i)
t D�

(i)
t

T
) is zero, while the last term, the contact contribution, disappears because in the

frictionless case the traction t(1)(X; t) is collinear with (�
(1)
t (X)−�

(2)
t (Y(X; t))). Again, since W is

arbitrary, we can conclude that dJt=dt = 0, so that angular momentum is conserved.

To examine the energy, we consider use of the material velocity �eld Vt as the variation.

Accordingly, we compute

0 = G(�t ;Vt) + Gc(�t ;Vt)

=
2
∑

i=1

{
∫


(i)
(D�

(i)
t S

(i)
t ) : GRAD[V

(i)
t ] d


(i) +

∫


(i)
�
(i)
0 A

(i)
t · V

(i)
t d


(i)

}

−

∫

�(1)
t(1)(X; t) · [V

(1)
t (X)− V

(2)
t (Y(X; t))] d�

(1)

= P
int
t +

dKt

dt
−

∫

�(1)
t(1)(X; t) · [V

(1)
t (X)− V

(2)
t (Y(X; t))] d�

(1)

(29)

In view of our assumptions above, Pext = 0. Using this fact and comparing (29) with (20) leads

to the identi�cation P
con
t =

∫

�(1)
t(1)(X; t) · [V

(1)
t (X) − V

(2)
t (Y(X; t))] d�

(1). By similar reasoning

used to calculate �g in (16), the material time derivative ġ(X; t) is given by

ġ(X; t) = −] · [V(1)t (X)− V
(2)
t (Y(X; t))] (30)

8



so that the expression for Pcon
t becomes

P
con
t =

∫

�(1)
t(1)(X; t) · [V

(1)
t (X)− V

(2)
t (Y(X; t))] d�

(1)

=

∫

�(1)
tN (X; t)] · [V

(1)
t (X)− V

(2)
t (Y(X; t))] d�

(1)

= −

∫

�(1)
tN (X; t)ġ(X; t) d�

(1)

(31)

If we now examine equation (5)4, the persistency condition for frictionless contact, we are led to

conclude

P
con
t = 0 (32)

which, in view of (26) and the fact that Pext
t = D

int
t = 0, implies

dE tott
dt

= 0 (33)

In other words, total energy is conserved for the system at hand as a direct result of persistency

condition (5)4. Another way to say this is that if we wish to ensure that all contacts are perfectly

elastic, so that the net contact power input to the system is zero, the persistency condition should be

satis�ed. This observation will be key to the ensuing algorithmic development, where a counterpart

of this condition in the temporally discrete framework must be found.

3. CONSERVATIVE DISCRETIZATION SCHEMES

In this section we extend the energy-momentum conserving scheme of Simo and Tarnow10 to

the contact problem posed in the last section. The reader is referred to that reference for ex-

tensive details on the approach, which will be only briey outlined here. In the following, we

pay particular attention to the temporal discretization of the contact conditions, with the aim of

algorithmically reproducing the conservation properties outlined for the continuous case in the last

section.

We subdivide the time interval of interest I into intervals [tn; tn+1], where n is an index on time

steps. Given a time step n, we sometimes write �t = tn+1 − tn, and note that in general �t need
not be uniform throughout a problem. Focusing our attention on a typical time interval [tn; tn+1]

we will use the notation (·)n to mean the algorithmic (i.e. time discrete) approximation to the
continuum variable (·)(tn). The conservation properties we wish to maintain are

Ln+1 = Ln; Jn+1 = Ln; E totn+1 = E
tot
n (34)

where all quantities are as de�ned in the last section.

Simo and Tarnow described their algorithm by making the following de�nitions based on convex

combinations of variables at n+ 1 and variables at n:

�n+� = ��n+1 + (1− �)�n; Vn+� = �Vn+1 + (1− �)Vn (35)

where � ∈ [0; 1] is an algorithmic parameter. Considering �rst a problem with only one body, and

hence no contact constraints, one could summarize their algorithm in the unforced case as

9



Given all data at n, �nd �n+1 ∈ Cn+1, such that for all �
∗
∈ V

0 = G(�n+�;�
∗
) :=

∫




�0
(Vn+1 − Vn)

�t
· �

∗
d
 +

∫




(D�n+�S) : GRAD[�
∗
] d


Vn+� =
1

�t
[�n+1 − �n]

(36)

This algorithm has the following properties:

(i) Algorithmic conservation of linear momentum (i.e. satisfaction of (34)1) for any � ∈ [0; 1]
and for an arbitrary constitutive relation describing the (symmetric) second Piola–Kirchho�

tensor S;

(ii) Algorithmic conservation of angular momentum (i.e. satisfaction of (34)2) for the case

where � = 1
2
and arbitrary prescription of S;

(iii) Algorithmic energy conservation (i.e. satisfaction of (34)3) for the case where � =
1
2
, and

where S is de�ned according to a gradient of a generic stored energy function ê(C):

S := ∇ê(Cn+�) +∇ê(Cn+1−�) (37)

Cn+� is an algorithmic right Cauchy–Green tensor, de�ned via

Cn+� := �Cn+1 + (1− �)Cn (38)

and � ∈ [0; 1] is selected to satisfy

ê(Cn+1)− ê(Cn) = ∇ê(Cn+�) · (Cn+1 − Cn) (39)

Such a � must always exist as a direct consequence of the mean value theorem.

(iv) Second-order accuracy under the conditions stated in item (iii).

For more details on the proof of these properties the paper by Simo and Tarnow is recommended.

In particular, properties (i)–(iii) can be veri�ed by substitution of W, W × �n+� and Vn+1=2, re-
spectively, into (36)1, where W is again an arbitrary constant vector. These arguments are directly

analogous to those given in the last section for the time continuous case.

Returning once more to the case at hand, where contact constraints are active between two

bodies, we propose the following algorithm, which extends that in (36) by including Gc(�n+�;�
∗
):

Given all data at n, �nd �n+1 ∈ Cn+1, such that for all �
∗
∈ V:

0 = G(�n+�;�
∗
) + Gc(�n+�;�

∗
)

Vn+� =
1

�t
[�n+1 − �n]

(40)

where

G(�n+�;�
∗
) :=

2
∑

i=1

{
∫


(i)
�0
(V

(i)
n+1 − V

(i)
n )

�t
· �

∗ (i)
d
(i) +

∫


(i)
(D�

(i)
n+�S

(i)) : GRAD[�
∗ (i)
] d
(i)

}

(41)

and

Gc(�n+�;�
∗
) := −

∫

�(1)
t(1) · [�

∗ (1)
(X)− �

∗ (2)
(Yn+�(X)] d�

(1) (42)
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Yn+�(X) is that point of �
(2) which minimizes ‖�(1)n+�(X)−�

(2)
n+�(Y)‖; i.e. the closest point projection

used to de�ne the contact basis is done in the n + � con�guration. One can also infer from this

de�nition that force equilibrium on the interface is enforced in the n+ � con�guration.

It is readily veri�ed that properties (i) and (ii) of the non-contact algorithm are retained by this

algorithm. These veri�cations are directly analogous to those for the continuum case and will not

be repeated here. In examination of the energy conservation property, we set � = 1
2
and examine

the equation

G(�n+1=2;Vn+1=2) + Gc(�n+1=2;Vn+1=2) = 0 (43)

If both bodies are described by the constitutive law outlined in equations (37)–(39), one can show

by the same arguments used without contact that

G(�n+1=2;Vn+1=2) =
1

�t
(E totn+1 − E

tot
n ) (44)

In view of (43), it is clear that the following must be satis�ed for energy to be conserved:

Gc(�n+1=2;Vn+1=2) = −

∫

�(1)
t(1) · [V

(1)
n+1=2(X)− V

(2)
n+1=2(Yn+1=2(X))] d�

(1) = 0 (45)

Since we consider frictionless response, and have already made the condition that the basis for

t(1) will be de�ned in the n+ 1
2
con�guration, we can simplify Gc(�n+1=2;Vn+1=2) as

Gc(�n+1=2;Vn+1=2) =

∫

�(1)
−tN]n+1=2 · [V

(1)
n+1=2(X)− V

(2)
n+1=2(Yn+1=2(X))] d�

(1)

=

∫

�(1)
tN g̃n+1=2(X) d�

(1)

(46)

where g̃n+1=2(X), an algorithmic gap rate, is de�ned as

g̃n+1=2(X) := −]n+1=2 · [V
(1)
n+1=2(X)− V

(2)
n+1=2(Yn+1=2(X))]

= −
1

�t
]n+1=2 · [(�

(1)
n+1(X)− �

(2)
n+1(Yn+1=2(X)))

−(�(1)n (X)− �
(2)
n (Yn+1=2(X)))]

(47)

Finally, we can conclude from (46) that if the following algorithmic persistency condition is

satis�ed pointwise on �(1), then global energy will be conserved for the two-body contact system:

tN g̃n+1=2 = 0 (48)

We now have the algorithmic counterpart of (5)4 appropriate for energy conservation. Note that

the remainder of the contact conditions, i.e. equations (5)1–3, are to this point unenforced by our

algorithmic formulation. We discuss some alternatives for carrying out this step in the next section.

Remark. Examination of equations (47) and (48) shows that the pointwise contact condi-

tion necessary to obtain conservation properties only involves quantities associated with X and

Yn+1=2(X). In particular, no history terms associated with the point X need be stored and utilized

in calculation of g̃n+1=2, with only algorithmic material velocities and the surface normal at the

n + 1
2
con�guration being involved. This is particularly advantageous in large deformation, large

slip problems, which are characterized by frequent changes in the elements contacted by individual

points X. The fact that the conservation properties are una�ected by such events is a crucial feature

of the algorithm we propose.
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4. DISCRETE CONTACT CONSTRAINTS

In the following we discuss three alternative formulations of the contact constraints appropriate

for the above conservative framework. In view of the role of the normal pressure–gap rate com-

plementarity condition in energy conservation, we propose the following expression of the contact

conditions in the continuum setting. In contrast to (5), they emphasize complementarity conditions

between the gap rate and the pressure:

IF g ¡ 0 THEN

tN = 0

ġ is unconstrained

(49)

ELSE IF g = 0 THEN

tN¿0

ġ60

ġtN = 0

ENDIF

(50)

We note that g is precluded from becoming positive by equation (50)2, which simply states

that if g = 0 the only change that can occur is a negative one. In the continuum case, one can

verify that conditions (49) and (50) place the same physical restrictions as equations (5). However,

these new conditions appear to be more readily accommodated into a conservation context, as we

demonstrate below.

4.1. Lagrange multiplier formulation

In the time discrete setting we now consider, we let tN = 
N , where 
N is the Lagrange multiplier

�eld on �(1) satisfying:

IF gn ¡ 0 THEN


N = 0

g̃n+1=2 is unconstrained

(51)

ELSE IF gn¿0 THEN


N¿0

g̃n+1=260

g̃n+1=2
N = 0

ENDIF

(52)

where g̃n+1=2 is as de�ned in (47) and gn is de�ned via

gn := −]n · (�(1)n (X)− �
(2)
n (Yn(X)) (53)

We note that the impenetrability condition g60 is only enforced in the limit as �t → 0; in

particular, examination of (51) and (52) will show that computation of a non-zero contact traction

12



tN will lag one time step behind the detection of an interpenetration. Conditions (52) will then

act to preclude further violation of the constraint by directly enforcing the gap rate to be non-

positive. Note that this prescription, when used in conjunction with the global algorithm of the

last section, preserves all the conservation properties discussed. In particular, energy is conserved

because 
N g̃n+1=2 = 0 at all contact points and for all conditions of contact.

4.2. A penalty regularization

Equations (51) and (52) have the advantage that they are readily regularized, enabling a penalty

solution which in some cases may be more convenient. Consider the following prescription for tN :

tN = H (gn)�N 〈g̃n+1=2〉 (54)

where �N ¿ 0 is a penalty parameter (physically speaking, a viscosity) and 〈·〉 denotes the
MacAuley bracket, or positive part of the operand. One notes that in the limit as �N → ∞ condi-

tions (51) and (52) are reproduced. However, it is no longer true that tN g̃n+1=2 = 0, so we cannot

expect exact energy conservation in this case. This makes sense; in fact, penalty methods rely on

the �nite, non-zero energy associated with the penalization to enforce the constraint as the penalty

is increased. We would like to ensure, however, that use of (54) with the otherwise conservative

framework does not increase energy. This is readily veri�ed by using equations (43), (44) and

(46):

E totn+1 − E
tot
n = −�t

∫

�(1)
tN g̃n+1=2 d�

(1)

= −�t

∫

�(1)
H (gn)�N 〈g̃n+1=2〉g̃n+1=2 d�

(1)

= −�t

∫

�(1)
H (gn)�N 〈g̃n+1=2〉

2 d�(1)

6 0

(55)

which shows that the algorithm is unconditionally dissipative. From an energy standpoint the

integrator thus remains stable. The dissipated energy can also be restored via augmented Lagrangian

iteration, as discussed below.

4.3. Augmented Lagrangian iteration

Consider the following expression for tN , based on an augmented Lagrangian augmentation of

the penalization in (54):

tN = H (gn)〈

(k)
N + �N g̃n+1=2〉 (56)

where 

(k)
N is a �xed iterate for the Lagrange multiplier satisfying (49) and (50). One may therefore

consider solving the following iterative sequence of problems within a time step, in which we begin

with some initial estimate 

(0)
N of the multipliers on �(1), and proceed with iterations (k) until some

tolerance is satis�ed:

1. Solve for �
(k)
n+1, with 


(k)
N �xed:

G(�
(k)
n+1=2;�

∗
) + Gc(�

(k)
n+1=2;�

∗
; 

(k)
N ) = 0 (57)
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where G(· ; ·) is as de�ned in (41), �(k)n+1=2 is as de�ned in (35), and Gc is de�ned via

Gc(�
(k)
n+1=2;�

∗
; 

(k)
N ) =

∫

�(1)
−H (gn)〈


(k)
N + �N g̃

(k)
n+1=2〉

]
(k)
n+1=2 · (�

∗ (1)(k)

(X)− �
∗ (2)(k)

(Y
(k)

n+1=2(X))) d�
(1) (58)

2. Update the multipliers on �(1):



(k+1)
N = H (gn)〈


(k)
N + �N g̃

(k)
n+1=2〉

k ← k + 1
(59)

3. IF convergence achieved EXIT, ELSE return to 1.

As we will show in the numerical examples, this algorithm can reproduce conditions (51) and

(52) arbitrarily closely as iterations (k) proceed. Several convergence criteria might be proposed

to de�ne step 3; for example, the error in E totn+1 − E
tot
n might be a reasonable choice for de�ning

a convergence tolerance for these iterations.

5. SPATIAL DISCRETIZATION AND IMPLEMENTATION

In this section we briey present an overview of the spatial discretization process which, when

applied to the conserving algorithm of the last section, produces the same conservation properties

in the fully discrete setting.

5.1. Finite element discretization

In general terms, the �nite element discretization is achieved by introducing �ht and �
∗h
, the

�nite dimensional approximations of �t and �
∗
. These lie in the discrete spaces Cht and V

h such

that

�ht =
nnod
∑

A=1

NAdAt ∈ C
h
t ⊂Ct (60)

and

�
∗h
=

nnod
∑

A=1

NAcA ∈ V
h⊂V (61)

where dAt is the vector-valued nodal value of the con�guration mapping, NA is a �nite element

shape function with domain 

(1)

∪

(2)
, and cA are nodal constants. Substitution of these �nite

dimensional approximations into the time discrete weak form and enforcing it for arbitrary combi-

nations of cA yields the following fully discrete equations to be solved in each time step [tn; tn+1]:

M
1

�t
[Vn+1 − Vn] + F

int
n+1=2 + Fcn+1=2 = 0

1

�t
[dn+1 − dn] = Vn+1=2

(62)

where M is the global mass matrix, d is the global solution vector, Fc is the contact force vector,

and Fint is the internal force vector. We retain the discrete counterparts of �n+1=2 and Vn+1=2 used

previously, e.g.:

dn+1=2 =
1
2
[dn+1 + dn]

Vn+1=2 =
1
2
[Vn+1 + Vn]

(63)
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and remark that the nodal force Fintn+1=2A associated with node A is given by

Fintn+1=2A =

∫


(1)∪
(2)
D�hn+1=2S

hGRAD[NA] d
 (64)

where Sh is as de�ned in (37)–(39).

In giving a general expression for Fc we summarize the main results, referring the reader to

Laursen and Simo11 for more details on the general procedure. The integral Gc can be approximated

via

Gc(�
h
n+1=2;�

∗h
) ≈ −

n int
∑

l=1

W ljl[tN]n+1=2 · (�
∗ (1)

(X)− �
∗ (2)

(Yn+1=2(X)))]
l (65)

where nint is the total number of contact quadrature points on �
(1), W l is a weight of integration

for quadrature point l, and jl is the jacobian resulting from the local to global transformation

used to describe �(1). Fc can then be expressed as an assembly of individual quadrature point

contributions as follows:

Fcn+1=2 =

n int

A
l=1

W ljlf lcn+1=2 (66)

where A is the standard �nite element assembly operator. In the case of interest, frictionless

contact, f lcn+1=2 takes the following form if nodal quadrature is used in (65):

flcn+1=2 = −t lNn
l (67)

where nl = []ln+1=2;−N1(^
l

n+1=2)]
l
n+1=2; · · · ;−Nnel(^

l

n+1=2)]
l
n+1=2]

T with Na; a = 1; · · · ; nel repre-

senting the shape functions interpolating the element surface containing the projection Yn+1=2(X
l).

The contact pressure tN can be described by any of the representations given in the last section.

Calculation of the contact sti�ness requires exact linearization of the contact force vector. We omit

this calculation here, and refer the interested reader to Laursen and Simo11 for elaboration on the

general procedure.

6. NUMERICAL EXAMPLES

In presenting some results obtained with the proposed algorithm, we give comparisons with results

obtained via two other prevalent strategies: the Newmark method12 and the Hilber–Hughes–Taylor,

or HHT method.13 As frequently implemented for contact problems, these integrators could be

summarized as follows:

Newmark

Man+1 + F
int(dn+1) + Fc(dn+1) = F

ext
n+1

dn+1 = dn +�tvn +
�t2

2
[(1− 2�)an + 2�an+1]

vn+1 = vn +�t[(1− )an + an+1]

(68)
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Figure 1. Longitudinal impact between two identical slender bars

HHT

Man+1 + F
int(dn+�) + Fc(dn+�) = F

ext
n+�

dn+� = �dn+1 + (1− �)dn

dn+1 = dn +�tvn +
�t2

2
[(1− 2�)an + 2�an+1]

vn+1 = vn +�t[(1− )an + an+1]

(69)

where �, � and  represent algorithmic parameters throughout. As discussed in the introduction,

the contact constraints are commonly imposed in both strategies without explicit consideration of

rate conditions, so that Fc is assembled from tractions tN satisfying

g60; tN¿0; tNg = 0 (70)

where g in equations (70) is evaluated from the n+ 1 con�guration in the case of Newmark and

from the n+ � con�guration in the case of HHT.

6.1. Impact between identical bars

In the �rst example we consider the axial impact of two identical straight elastic bars, which

provides a simple yet illustrative demonstration of the algorithm’s performance. In the initial state

the two bars are collinear but out of contact as shown in Figure 1. Bar A is initially moving at a

uniform velocity of 1 unit while bar B is at rest initially. The properties are: density � = 1 unit,

area of cross section ac = 1 unit, length l = 10 unit, Young’s modulus E = 1 unit and Poisson’s

ratio � = 0. The problem is driven only by the initial conditions with di�erent amounts of initial

separation considered between the bars.

The solution for displacements and velocities of the impacting ends of the two bars based on

physical observations is plotted in Figure 2 for the case of small strains. The numerical solution

is obtained using small strain bilinear elastic elements, with 100 elements in each bar and with a

time step of �t = 0·1 unit. We consider four algorithms for the temporal integration: the proposed
conservative scheme, the trapezoidal rule (second-order accurate Newmark with � = 0·25,  = 0·5),
Newmark with maximum high-frequency dissipation (� = 0·49,  = 0·9) and HHT with optimal
high-frequency damping (� = 0·3025,  = 0·6, � = 0·9). Solutions for these cases are shown in
Figures 3–6. Unless otherwise stated, the method of augmented Lagrangians is used with iterations

until the change in the multiplier value is less than 1 per cent.

Examination of the results shows that dissipative Newmark (Figure 4) and HHT (Figure 5)

produce oscillations shortly after the initial contact event, characterized by the two bars coming

into and out of contact. The high-frequency dissipation of these two integrators eventually damps
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Figure 2. (a) Displacement vs. time, (b) velocity vs. time at the impact ends of the bars (expected solution)

Figure 3. (a) Displacement vs. time, (b) velocity vs. time at node b and d obtained using the trapezoidal rule with penalty
method (�N = 10

8)
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Figure 4. (a) Displacement vs. time and (b) velocity vs. time for nodes b and d obtained using the dissipative Newmark
method

Figure 5. (a) Displacement vs. time and (b) velocity vs. time for nodes b and d obtained using the HHT method
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Figure 6. (a) Displacement vs. time and (b) velocity vs. time for nodes b and d obtained using the conservative scheme

out this behaviour, so that a reasonable solution is produced. The trapezoidal rule possesses no such

dissipation, so that these numerically induced contact oscillations persist throughout the solution

(Figure 3). Notably, the conservative algorithm possesses no dissipation either, and yet does not

excite these spurious modes due to the conservative treatment of the contact conditions (Figure 6).

In fact, one can show that up to the treatment of the contact conditions, the trapezoidal rule and

the conservative algorithm are identical for small-strain elasticity problems. We therefore conclude

that the key issue in this problem is the stable treatment of the contact constraints. The slight

interpenetration of the bar ends evident in Figure 6 also tells us that insistence on complete

impenetrability is unnecessary for accurate prediction of energy and momentum transfer across the

interface.

Further insight can be gained by looking at Figure 7, which shows the total system energy for

the four cases. Clearly, use of constraints (70) with the trapezoidal rule results in a net energy

gain with each new impact event. This energy remains in the system and continues to grow until

the impacts stop, after which the system energy is constant. The dissipative integrators damp out

the contact oscillations as discussed above, but lose system energy in doing so. The conservative

algorithm obtains results no more noisy than those provided by the dissipative integrators, while

conserving system energy. Importantly, the conservative algorithm in no way forces the contact to

be persistent, but instead allows the conditions to evolve as driven by the momentum equations. It

would therefore appear that formulations requiring such persistency of new contacts, as in Taylor

and Papadopoulos,8 may pose needless constraints which could in some problems be non-physical.

Finally, all integrators display oscillations after the separation of bars. This results from the

numerical dispersion of the solution near discontinuities causing the higher-frequency oscillations

to travel at lower speeds. A common way to deal with such numerical dispersion is to damp out
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these oscillations with arti�cial viscosity (see for example References 14 and 15). An interesting

issue we intend to pursue in future work is the incorporation of conserving contact treatments into

dissipative global schemes, creating algorithms with high-frequency dissipation which integrate the

contact conditions in a stable manner.

Figure 7. Total energy vs. time in the bar impact problem for (a) trapezoidal rule, (b) conservative scheme, dissipative
Newmark and HHT method

Figure 8. Ring con�gurations at intervals of 5 time units for (a) trapezoidal rule; (b) dissipative Newmark; and
(c) conservative scheme
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Figure 8. Continued

Figure 9. Total energy vs. time for the conservative scheme, the trapezoidal rule and dissipative Newmark; ring problem

6.2. Impact of a ring against rigid surface

This problem is motivated by a system originally discussed in Wriggers et al.16 An elastic ring

is thrown with an initial velocity of 2 units at a 45◦ angle to a at rigid surface, as depicted in

Figure 8. The material properties and dimensions of the ring are as follows: Young’s modulus

E = 102 units, density � = 0·01 unit, Poisson’s ratio � = 0·0001, outer radius ro = 10 units and
inner radius ri = 9 units. Bilinear large strain elements are used to discretize the ring, with the mesh

consisting of 64 elements. Results are obtained for the trapezoidal rule, the dissipative Newmark

method and the proposed conservative strategy, using a time step �t = 0 ·2 in all cases. The
ring con�gurations at various time intervals and the total energy are plotted in Figures 8 and 9,

respectively.

The con�guration plot shows large deformations during and after impact and an unstable blow-up

of the simulation for the trapezoidal rule. The dissipative Newmark method provides reasonable
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Figure 10. Striker positions at various times for (a) the trapezoidal rule, (b) dissipative Newmark and (c) the conservative
scheme

results for small times, but damps out the low-mode deformation of the ring for larger times,

preserving only the rigid-body motion with any accuracy. The conservative scheme is seen to be

clearly superior to either of the above two approaches. Examination of Figure 9, a plot of the

system energy for all three simulations, reveals clearly the energy instability in the trapezoidal

rule simulation, the loss of energy for the dissipative scheme, and the exact conservation for the

current method.

6.3. The carrom problem

This problem involves perfectly elastic and frictionless impact between rigid bodies. The system

can be visualized as a 2-D version of a pool table, where a plastic disk called the striker is
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Figure 11. Total energy vs. time for the conservative scheme, the trapezoidal rule and dissipative Newmark; carrom problem

manually struck with the aim of hitting other disks and causing them to go into holes in the four

corners of the carrom board. The model simulates the motion of the striker in the absence of other

disks as it hits the sides of the carrom board assuming no friction (see Figure 10). The sides

of the board are simulated with four elements and the striker is placed within the closed space

and subjected to an initial velocity. The material properties (contrived so that deformations will

be negligible) and dimensions are as follows: striker—Young’s modulus E = 102 units, Poisson’s

ratio � = 0·0001, density � = 0·1 unit and radius r = 1 unit; carrom board—Young’s modulus

E = 104 units, Poisson’s ratio � = 0 ·0001, density � = 102 units, length of inner side li = 13

units and length of outer side lo = 15 units. A time step of �t = 4 units was utilized in each of

three simulations, performed using the trapezoidal rule, dissipative Newmark and the conservative

scheme.

The initial condition causes the striker to hit the lower side in the middle and at an angle of

45◦, with a velocity of 0 ·1 units. The results in Figure 10 show that in case of the trapezoidal

rule the rebound is too sharp due to gain of energy; with an eventual blow-up of the solution. The

dissipative Newmark result has the opposite e�ect, with the angle of rebound being too at and

the system energy being reduced. Finally, the conservative scheme correctly predicts all rebounds

to be at 45◦ after the initial impact, giving the expected diamond-shaped trajectory of the striker

within the carrom board. The plot of total system energy in Figure 11 is consistent with these

observations, and again veri�es the energy conservation property.

7. SUMMARY AND CONCLUSIONS

This work extends the idea of algorithmic energy and momentum conservation to encompass sys-

tems featuring mechanical contacts. Importantly, these conservation properties hold for all changing

conditions of contact: new contact, release and persistent. The result is an algorithm which is sta-

ble in the complete absence of any dissipation. Although the framework we have developed is
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by de�nition only applicable to conservative systems featuring frictionless contacts, the work has

revealed that careful consideration of algorithmic contact work input is crucial to the construction

of stable integration procedures.

It is fair to observe that most physical systems of interest are not conservative, and that few

impact events are reasonably modelled as perfectly elastic. E�ective algorithms are needed for

problems featuring physical dissipation arising from inelasticity and/or interface friction. Further-

more, discretization of continuous systems introduces non-physical modes whose energy content

should ordinarily be damped out in transient simulations. When viewed in this light, perhaps the

most important product of this work is its identi�cation of algorithmic persistency conditions that

enable stable numerical integration through conditions of changing contact. We intend to extend

this work so that interface dissipation, consistent with the frictional model used, can be accurately

produced by the algorithm in each time step of a transient simulation. Future work will also explore

the use of such energetically consistent contact formulations in conjunction with otherwise dissipa-

tive global integrators (such as HHT). In this manner both physically and numerically dissipative

equations could be integrated without spurious energy input from the contact conditions.
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