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Design of Energy Efficient Embedded Systems

Exploiting Domain-specific Information

Junlin Chen, Ph.D.

University of Connecticut, 2016

Improving the energy efficiency has been the critical design goal for embedded

systems. Recently, there have been some practical techniques employed to the

power supply of embedded systems to extend the system’s lifetime. One is re-

newable energy technologies such as energy harvesting from the environment to

offer a sustainable, inexpensive, and maintenance-free alternative power source.

Another is voltage overscaling (VOS) technique, which scales down the supply

voltage to reduce the power consumption quadratically. However, most renewable

energy sources are unstable and intermittent due to dynamically changing envi-

ronmental conditions, and VOS inevitably incurs hardware errors, thereby posing

new challenges to the improvements of energy efficiency in the embedded systems.

In this dissertation, we identify four specific power-hungry signal process-

ing units and develop a suite of techniques to improve the energy efficiency of

embedded systems, by jointly exploiting the properties of the power source and



the domain-specific information in the signal processing of embedded systems.

First, we propose to dynamically adjust the modulation scheme to deal with time-

varying wireless channel conditions and non-deterministic renewable energy levels

in a coherent manner to maximize the data rate of RF circuits of the embedded

systems. Then, we develop a progressive performance tuning approach to dynam-

ically determine an acceptable signal processing performance in accordance with

the changing energy level at runtime, by considering both of the non-deterministic

characteristics of renewable energy and the unique relationship between signal

processing performance and the required energy consumption. We also develop a

link and energy adaptive UWB-based sensing technique to improve the detection

time coverage and range coverage for self-sustained embedded applications. The

proposed technique jointly exploits the link information between the transmitter

and receiver of the UWB pulse radar, and the non-deterministic characteristics

of the renewable energy, and dynamically adjusts the pulse repetition frequency

of the UWB radar to enhance the sustainable operation under the unreliable en-

ergy supply. Finally, we present a low-power LDPC decoder design by exploiting

inherent memory error statistics due to voltage scaling. After analyzing the er-

ror sensitivity to the decoding performance at different memory bits and memory

locations in the LDPC decoder, we apply the scaled supply voltage to memory

bits with high algorithmic error-tolerance capability to reduce the memory power

consumption with minimal decoding performance loss.
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Chapter 1

Introduction

1.1 Overview

Improving energy efficiency has become one of the most critical design goals for

the electrical embedded systems, especially when the power supply is limited. A

lot of research work have been conducted to reduce the energy consumption by

optimizing the signal processing and/or circuits operations without the consider-

ation of the power source. Mostly, this type of method can lead to energy-efficient

design because the power supply, such as rechargeable battery, is stable and con-

tinuous all the time, and the voltage generated from the battery can always enable

the embedded systems to function correctly.

Recently, some emerging autonomous and distributed embedded systems,

such as wireless sensor networks (WSN), self-organizing micro-robots, and medi-

cal implantable devices, have gained significant research interest. While many of

these systems can be powered by batteries, frequent recharge and maintenance

is costly if not impossible. Fortunately, renewable energy technologies such as

1
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energy harvesting from the environment offer a sustainable, inexpensive, and

maintenance-free alternative. However, most renewable energy sources are un-

stable and intermittent due to dynamically changing environmental conditions.

Therefore, it poses a challenge for the traditional design methodology, i.e., opti-

mizing the energy efficiency regardless of the power source.

Another challenge on the power supply of the embedded system design is the

widely-used voltage overscaling (VOS) technique. VOS has been developed as an

effective solution to quadratically reduce the power consumption of the integrated

circuits under limited power supply. However, the low power design of VOS is

realized at the cost of performance tradeoff of the embedded systems due to the

hardware error incurred by the scaled supply voltage. The adaptation of VOS

technique brings in more opportunities and freedom to the energy-efficient design,

on the other hand, it makes the traditional design unsuitable any more.

1.2 Thesis Contributions

In this dissertation, we focus on optimizing power consumption of the embedded

systems when the power supply can not be regarded as a fixed source. In par-

ticular, we identify four commonly-used signal processing units, which dominate

the power consumption of most embedded systems, and analyze the interplay be-

tween the signal processing in the embedded systems and the properties of the

power supply, and then propose four power supply aware techniques to improve
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the energy efficiency of the embedded systems.

In this dissertation, we have made the following contributions:

• In Chapter 2, we proposed the energy-adaptive modulation scheme [1,2]

to dynamically adjust the modulation scheme to deal with time-varying

wireless channel conditions and non-deterministic renewable energy levels in

a coherent manner to maximize the data rate of RF circuits of the embedded

systems.

• In Chapter 3, we developed a progressive performance tuning approach [3,4]

to dynamically determine an acceptable signal processing performance in

accordance with the changing energy level at runtime. Distinct from the

traditional approach, the proposed technique jointly considered the non-

deterministic characteristics of renewable energy and the unique relationship

between signal processing performance and the required energy consump-

tion.

• In Chapter 4, we developed a link and energy adaptive UWB-based sensing

technique [5,6] to improve the detection time coverage and detection range

coverage for self-sustained embedded applications. By jointly exploiting the

link information between the transmitter and receiver of the UWB pulse

radar, and the non-deterministic characteristics of the renewable energy,

the proposed technique dynamically adjusts the pulse repetition frequency
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of the UWB radar to enhance the sustainable operation under the unreliable

energy supply.

• In Chater 5, we proposed a low-power LDPC decoder design [7] by exploiting

inherent memory error statistics due to voltage scaling. By analyzing the

error sensitivity to the decoding performance at different memory bits and

memory locations in the LDPC decoder, the scaled supply voltage is applied

to memory bits with high algorithmic error-tolerance capability to reduce

the memory power consumption while mitigating the impact on decoding

performance.



Chapter 2

RF Power Management via Energy-adaptive Modulation

for Self-powered Systems

This chapter presents a system design technique for improving the energy effi-

ciency of RF circuits powered by renewable energy sources. Different from con-

ventional systems, the operation of self-powered RF circuits is largely constrained

by two factors: time-varying channel conditions and non-deterministic renew-

able energy levels. The proposed technique dynamically adjusts the modulation

scheme to deal with these two factors in a coherent manner. This is an effec-

tive way to maximize the data rate of RF circuits while maintaining the required

performance under unstable energy supplies. Some practical issues, such as the

battery aging effect, have been investigated. The proposed technique is shown

to be robust and insensitive to these issues. A detailed VLSI implementation is

developed with negligible energy overhead. Simulation results demonstrate that

the proposed technique outperforms conventional RF circuits based on the fixed

modulation scheme under various channel and energy conditions.

5
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2.1 Introduction

Exploiting renewable natural resources to power autonomous and distributed em-

bedded systems, such as wireless sensor networks (WSN) [8], self-organizing micro-

robots [9], and medical implantable devices [10], has gained significant interest

recently [11–13]. While many of these systems can be powered by batteries, fre-

quent recharge and maintenance is costly if not impossible. Fortunately, renewable

energy technologies such as energy harvesting from the environment offer a sus-

tainable, inexpensive, and maintenance-free alternative. However, most renewable

energy sources are non-deterministic due to dynamically changing environmental

conditions. Therefore, it is critical to improve the energy efficiency of self-powered

systems for reliable and durable operations.

Many techniques have been proposed to deal with this challenging problem

at different levels of design hierarchy. At the circuit level, a self-timed circuit with

AC power supply was developed in [14] to eliminate power electronics in energy

harvesting circuits. A low-power maximum power point tracking (MPPT) circuit

was proposed in [15] to maximize the efficiency of transferring solar energy to

rechargeable batteries. At the algorithm level, a harvesting-aware scheduling al-

gorithm was introduced in [16] to handle the uncertainties in solar energy. In [17],

an energy prediction algorithm was developed to predict the solar energy profile

and then adjust the duty cycle accordingly to maximize the sensor performance.

A game-theoretic approach was derived in [18] to obtain the optimal sleep and
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wake-up strategies for improving energy efficiency. At the system level, various

self-powered embedded systems have been developed [19–22] for prototype explo-

ration.

While a lot of effort has been directed towards the power reduction and

performance improvement, few results exist in jointly exploiting the properties of

renewable energy sources and domain-specific information that is typically avail-

able in the design of embedded systems. As the performance of self-powered sys-

tems relies upon the interaction between application requirements and resource

capabilities, these two components need to be bridged so that effective solutions

can be derived. One specific example is a solar-powered sensor node that collects

information or monitors important infrastructures continually and sends out data

by RF circuits through wireless channels. Data rate is an important performance

metric because it determines the precision of the sampled data and the amount

of information being transmitted. By increasing the data rate, more information

can be collected from the field; but on the other hand, the power consumption of

RF circuits will become significant and may evolve into the limiting factor.

In this chapter, we develop a system-level design technique that utilizes

energy-adaptive modulation to improve the data rate of RF circuits powered by

renewable energy sources. In contrast to most conventional wireless systems that

employ a pre-determined modulation scheme, our approach exploits an interesting

interplay among channel conditions, available renewable energy, and RF data rates
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subject to a given application requirement such as signal-to-noise ratio (SNR) or

bit error rate (BER). Specifically, the proposed technique dynamically adjusts

the modulation scheme based on a composite effect of wireless channel conditions

and renewable energy characteristics. This allows RF circuits to effectively cope

with the non-deterministic energy supply while achieving significant improvement

in performance. The energy overhead of the proposed technique is negligible,

making it suitable for a wide range of self-powered wireless systems. We also

study several practical issues such as the battery aging effect. It is shown that the

proposed technique is robust and insensitive to battery aging. Simulation results

demonstrate that the proposed technique outperforms the conventional systems

by a large margin.

It is worth mentioning that adaptive transceiver designs, such as adaptive

modulation and coding (AMC) [23–25], low-power adaptive RF systems [26], and

use-aware adaptive MIMO RF receiver systems [27], had been studied in the

past. Most of these systems exploit the channel conditions with the underlying

assumption that the energy supply is always stable though limited. In contrast,

our work targets RF systems powered by renewable energy that is inherently

non-deterministic. All energy components are essentially variables with large un-

certainties and changing dynamically with the time. The modulation schemes

have to be determined based on the statistical effects of renewable energy and

channel conditions in a coherent manner.
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Fig. 2.1: Model of a self-powered system.

The rest of the chapter is organized as follows. In Section 2.2, we describe

the system model of RF circuits powered by renewable energy. In Section 2.3,

we propose the energy-adaptive modulation technique to maximize the data rate

of self-powered RF circuits. Section 2.4 presents the VLSI implementation of the

proposed technique and discusses the related energy overhead. Section 2.5 eval-

uates the proposed technique under different renewable energy models. Finally,

the conclusions are summarized in Section 2.6.

2.2 System Model

In this section, we present the model of self-powered RF circuits. This model will

be utilized to develop the energy-adaptive modulation technique.
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2.2.1 RF Circuits with Renewable Energy

We consider a generic system (e.g., a wireless sensor node) powered by renewable

energy sources. As shown in Fig. 2.1, the energy harvest unit (EHU) collects

the energy Eh from environmental sources such as solar radiation. The harvested

energy is consumed by the RF circuit to transmit information symbols. If the

energy cannot be fully consumed, a portion of Eh will be stored into a rechargeable

battery for future use. On the other hand, if the energy generated from the EHU

is not sufficient to support the required operation, the gap is filled by the battery.

This process is controlled by the power management unit (PMU), which collects

the necessary information at runtime such as the renewable energy level Eh, the

battery remaining charge Eb, and the channel gain α of the current time slot, all

of which can be estimated using existing methods with sufficient accuracy. Based

on these information, a decision is made to allocate a suitable amount of transmit

power Pt to the transmitter.

Figure 2.2 illustrates the block diagram of a standard transmitter. Mod-

ulated symbols are first converted by the digital-to-analog converter (DAC) into

the analog signal and then pass through the filter and up-convertor (mixer and

local oscillator (LO)) to the radio frequency. The signal is then amplified by the

variable gain power amplifier (VGPA), whose power consumption is the dominant

component in the transmitter. The variable gain controller (VGC) in the VGPA

is controlled by PMU. At the beginning of each time slot, VGC determines the
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Fig. 2.2: Block diagram of transmitters.

power gain of the power amplifier (PA) according to the level of transmit power

Pt assigned by PMU.

2.2.2 Power Model

The power consumption of the transmitter is a direct function of system perfor-

mance requirements. Through wireless channels, the channel gain α affects the

signal quality at the receiver. The signal-to-noise ratio (SNR) at the receiver is

defined as

γ =
αPs
Pn

, (2.1)

where Ps and Pn denote the transmitted signal power and channel noise power,

respectively. It is clear that when the channel gain α is large, the transmitted

signal power Ps can be reduced under the same SNR requirement, thereby allowing

low-power operations in the transmitter.

In Fig. 2.2, the power consumption Pt of the transmitter consists of three
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components

Pt = Ps + Pamp + Pc =
ξ

η
Ps + Pc, (2.2)

where Pamp is the circuit power consumption of the PA, ξ and η are the peak-to-

average power ratio (PAPR) and the drain efficiency of the PA [28], respectively.

Note that the combination of Ps and Pamp in (2.2) is the power consumption of

the PA, PV GPA, which can be expressed as PV GPA = ξ
η
Ps because it is related

to the transmitted signal power Ps. The other parts of the transmitter, such as

mixer, filter, DAC and LO, consume a relatively small amount of power Pc =

Pmixer +Pfilter +PDAC +PLO. Note that the power consumption of DAC actually

varies with different PAPR, e.g., more power will be consumed by DAC under

high level modulation schemes. However, this variation is very small (less than

5% as indicated in [29]), and thus it is reasonable to model Pc as a constant [30]

within the scope of this work.

The total power consumption of the PA, PV GPA, is the dominant component

in the transmitter. In this work a linear power amplifier model [31] is considered.

This is because for wireless sensor nodes the power consumption of the PA is

usually in the range of mW due to the short transmission distance between the

nodes. Thus, the PA typically works in the linear region to preserve RF signal

linearity after amplification. Note that the proposed technique does not depend

on the perfectly linear relationship between the PA power consumption and the

transmission power. As long as the PA power consumption increases with trans-
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mission power, the proposed technique can achieve better performance than the

existing techniques.

Utilizing Ps from (2.1), PV GPA can be recast as

PV GPA =
ξγPn
ηα

, (2.3)

where both ξ and γ are related to the modulation scheme, as discussed next, and

the channel gain α can be estimated in realtime because wireless sensor nodes

typically have a large coherence time for transferring the channel state information

between the transmitter and the receiver.

2.2.3 Implications of Modulation on RF Power Consumption

Choosing an appropriate modulation scheme for self-powered RF circuits involves

careful tradeoffs between energy availability and system performance require-

ments. From (2.3), the PAPR ξ can be expressed as [32]

ξ =
max |St|2

E [|St|2]
, (2.4)

where St and E [|St|2] denote the modulated symbols and the average signal power

of the symbols, respectively. In general, a higher level modulation scheme (e.g,

larger signal constellation) introduces a larger PAPR [32].

On the other hand, the SNR γ at the receiver is a function of wireless

channel characteristics. While the proposed technique does not depend on any

specific channel model, the Rayleigh fading channel is assumed in this work for the
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purpose of illustration. Note that other channel impairments, such as interferers,

are usually handled by different techniques such as filtering, error-control coding,

and/or higher layer solutions (e.g., code division multiple access (CDMA)), and

thus are not considered here.

For the Rayleigh fading channel, the channel gain α in (2.3) follows the

chi-square distribution [33], expressed as

f(α) =
1

Ω
e−α/Ω. (2.5)

The SNR γ can be determined when the quadrature amplitude modulation

(QAM) is applied [34], as

γ =
2(2b − 1)

3
[

1
(1−2Pe)2

− 1
] = C(2b − 1), (2.6)

where b and Pe are the number of bits per symbol (determined by the modulation

scheme) and the bit error rate (BER), respectively. If Pe is fixed by the pre-

specified performance requirement, we can combine it with other constants in

(2.6) into a constant term C. Clearly, from the relationship between γ and b, a

higher modulation level is preferred when the channel condition is good. This fact

has been exploited in many conventional wireless systems when the energy supply

is unlimited or stable.

Note that other design techniques at the different layers of wireless com-

munication systems, such as error control coding at the baseband, also affect the

tradeoff between power consumption, data rate and BER. Since our work focuses
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primarily on the selection of modulation schemes for RF front-ends, the tradeoff

on power, data rate and BER is the net effect of modulation schemes exclusive

of ECC. Modeling and investigating the relationship between transceiver power

and ECC under the renewable energy supply is an important topic for our future

study.

2.3 Energy-Adaptive Modulation for RF Power Management

In this section, we will develop an energy-adaptive modulation technique to im-

prove the efficiency of self-powered RF circuits. Considering the fact that renew-

able energy sources are non-deterministic, the proposed technique dynamically

adjusts the modulation scheme in accordance with the changing energy levels and

channel conditions to maximize the data rate of RF circuits. Several important

practical issues, such as the battery aging effect, will be investigated to assess the

effectiveness of the proposed technique.

2.3.1 Motivation

From (2.3), the power consumption PV GPA, the dominant component in the trans-

mitter, is inversely proportional to the channel gain α. Intuitively, when the

channel gain α is large (e.g., under good channel conditions), it is preferable

to use a high-level modulation scheme to improve the data rate. While this is

generally true for conventional systems powered by stable power sources, it may
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not be feasible in a system powered by renewable energy. As indicated in (2.4)

and (2.6), a higher level modulation scheme has larger PAPR ξ and b, both re-

sulting in a larger power consumption PV GPA that may not be feasible due to

the non-deterministic energy harvesting process. Thus, there exists an interest-

ing interplay among channel conditions, available renewable energy, and RF data

rates subject to a given performance requirement such as SNR or BER. For this

consideration, it is important to develop a scheme that can improve the energy

efficiency of RF circuits by adaptively adjusting the modulation scheme based

on a composite effect of channel conditions and renewable energy levels. Existing

energy-constrained adaptive modulation techniques [30], however, only handle the

situation with limited battery capacity without considering the unique features of

renewable energy.

To maximize the data rate, the RF circuit should try to fully utilize the

available harvested energy and the energy stored in the battery when the channel

condition is good enough (e.g., larger than a threshold αth [35]), such as

Eb + Eh = Ton(Pc + ξγPn

ηα
),

Ton ≤ Ts,

(2.7)

where Eb and Eh represent the available energy in the battery and the energy

collected by the EHU, respectively, that will be used in one time slot, Ts denotes

the duration of one time slot in wireless transmission, and Ton is the on time

of the transmitter in the current time slot. In this work, both Eb and Eh are
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replenishable and are treated as random variables due to the non-deterministic

energy harvesting process. Also in practical systems, Ton is bounded by Ts even

if the available energy is sufficiently large.

When the modulation scheme is adjusted dynamically, the data rate at each

time slot will be different as it is determined by the selected modulation scheme

and the on time of the transmitter. Given the number of bits per symbol b and

the duty cycle λ = Ton/Ts, the effective data rate (assuming a fixed symbol rate)

of a time slot can be expressed as

bλ = b
Ton
Ts

=
Eb + Eh

Ts(
Pc

b
+ ξCPn(2b−1)

ηαb
)
,

(2.8)

where (2.8) is obtained by substituting Ton and γ from (2.7) and (2.6), respectively.

Note that the effective data rate bλ could be smaller than 1bit/use if Ton is smaller

than Ts. The actual data rate can be obtained by multiplying with the symbol

rate.

While the proposed technique can be applied to different modulation

schemes, in this work we will consider M -QAM modulation so that the key idea

of our approach can be explained clearly. Here M represents the modulation level

that is adjusted dynamically based on the channel conditions and renewable en-

ergy levels. Since M = 2b for M -QAM, the value of M should be selected to

maximize the data rate, as expressed in (2.8).

Note that since the channel gain α and available energy Eb and Eh change



18

continually, the value of M will be different in each time slot and thus needs to

be determined dynamically at runtime.

2.3.2 Energy-adaptive Modulation

To derive the energy-adaptive modulation technique, we need to know the channel

gain α and available energy Eb and Eh. The channel gain α can be estimated using

channel estimation algorithms [36] at the beginning of each time slot. This is a

commonly employed procedure in many wireless communication systems [37,38].

Techniques for monitoring the battery condition are also well-developed [39] and

applied in most mobile systems. Similarly, many algorithms have been developed

for estimating the renewable energy at runtime with sufficient accuracy [40]. These

topics are beyond the scope of this work.

We start with a simple case of choosing between b = 1 and b = 2, i.e.,

2-QAM and 4-QAM. Note that ξ2 and ξ4 are the PAPR parameters for 2-QAM

and 4-QAM, respectively, both equal to 1 according to (2.4). From (2.8), 4-QAM

is selected for a time slot under the following condition

Eb + Eh

Ts(
Pc

2
+ 3CPn

2ηα
)
>

Eb + Eh

Ts(Pc + CPn

ηα
)
, (2.9)

which reflects the scenario that, when the channel gain α is relatively large, a

higher level modulation scheme will be chosen to maximize the data rate. In this

case, the main factor to determine the modulation scheme is the channel condition.

According to (2.9), while the transmitter using 4-QAM consumes more power and
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may lead to a shorter on time Ton, the data rate is still larger than that using

2-QAM under the same energy level if α is larger than a threshold (determined

in (2.13)).

On the other hand, when the channel gain α is small, a low level modulation

scheme is preferable for performance consideration. Interestingly, the modulation

scheme also needs to be determined by the available energy level. If energy is low,

then 2-QAM should be selected when

1 >
Eb + Eh

Ts(Pc + CPn

ηα
)
>

Eb + Eh

Ts(
Pc

2
+ 3CPn

2ηα
)
, (2.10)

where in this case the on time Ton is smaller than the duration of the time slot

Ts; or when

Eb + Eh

Ts(Pc + CPn

ηα
)
≥ 1 >

Eb + Eh

Ts(
Pc

2
+ 3CPn

2ηα
)
, (2.11)

where in this case the on time Ton of the transmitter using 2-QAM is actually

bounded by Ts (i.e., bλ = 1), but the data rate of the transmitter using 4-QAM

is smaller than 1bit/use.

However, if energy is sufficient, then the transmitter using 2-QAM may not

be able to consume all the available energy even when the duty cycle reaches its

maximum (i.e., Ton = Ts). To avoid the waste of energy and possible battery

overflow, the higher level modulation scheme is selected when

Eb + Eh

Ts(Pc + CPn

ηα
)
>

Eb + Eh

Ts(
Pc

2
+ 3CPn

2ηα
)
> 1. (2.12)

As in practice bλ cannot be larger than 1 when b = 1 (i.e., 2-QAM), the
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first term in (2.12) (i.e., the data rate of the transmitter using 2-QAM) is actually

bounded by 1 while the second term (i.e., the data rate of the transmitter using

4-QAM) is larger than 1. Thus, 4-QAM should be selected.

Rearranging (2.9) and (2.12) as a function of the channel gain α, we obtain

α >
CPn
ηPc

, (2.13)

and

CPn
ηPc

> α >
3CPn

2η(Eb+Eh

Ts
− Pc

2
)
, (2.14)

from (2.9) and (2.12), respectively. Combining these two conditions, the 4-QAM

scheme should be selected for the transmitter if the channel gain α is larger than

α2,4, expressed as

α2,4 =
3CPn

2η(Eb+Eh

Ts
− Pc

2
)
, (2.15)

where α2,4 is a function of renewable energy and the energy stored in the battery.

On the other hand, when α < α2,4, 2-QAM will be selected. Clearly, the proposed

technique selects the appropriate modulation scheme based on both channel and

energy conditions.

Extending the above procedure, we can also derive the channel gain thresh-

old α4,16 between 4-QAM and 16-QAM, and α16,64 between 16-QAM and 64-QAM.

Note that higher modulation schemes (such as 256-QAM and higher) are seldom

used in self-powered systems due to the exponentially increased complexity. This

is further shown in Section 2.5, where simulation results indicate that the pro-
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posed technique usually chooses a modulation scheme lower than 64-QAM. Also,

non-square QAM schemes (e.g., 8-QAM) are not considered either mainly because

they lead to an incompatible hardware implementation (see Section 2.4).

From (2.8), 16-QAM will be selected if the resulted data rate of the trans-

mitter is larger than that using 2-QAM, 4-QAM and 64-QAM, i.e.,

Eb + Eh

Ts(
Pc

4
+ 15ξ16CPn

4ηα
)
>

Eb + Eh

Ts(Pc + ξ2CPn

ηα
)
, (2.16)

Eb + Eh

Ts(
Pc

4
+ 15ξ16CPn

4ηα
)
>

Eb + Eh

Ts(
Pc

2
+ 3ξ4CPn

2ηα
)
, (2.17)

4 >
Eb + Eh

Ts(
Pc

4
+ 15ξ16CPn

4ηα
)
>

Eb + Eh

Ts(
Pc

6
+ 21ξ64CPn

2ηα
)
, (2.18)

where ξ16 = 1.8 and ξ64 = 2.33 are the PAPR parameters of 16-QAM and 64-

QAM, respectively. Similar to (2.9), the above conditions represent the relatively

large channel gain α in the current time slot, while the available energy is not

sufficient to support 64-QAM.

In addition, 16-QAM should also be selected when the energy supply and

channel gain satisfy the following conditions,

Eb + Eh

Ts(Pc + ξ2CPn

ηα
)
≥ Eb + Eh

Ts(
Pc

4
+ 15ξ16CPn

4ηα
)
> 1, (2.19)

Eb + Eh

Ts(
Pc

2
+ 3ξ4CPn

2ηα
)
≥ Eb + Eh

Ts(
Pc

4
+ 15ξ16CPn

4ηα
)
> 2, (2.20)

Eb + Eh

Ts(
Pc

4
+ 15ξ16CPn

4ηα
)
≥ 4 >

Eb + Eh

Ts(
Pc

6
+ 21ξ64CPn

2ηα
)
. (2.21)
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Note that (2.19) and (2.20) reflect a similar scenario as (2.12), where the

transmitter using 2-QAM or 4-QAM cannot fully utilize the available energy.

Since the on time Ton is bounded by Ts, bλ is bounded by 1 and 2 for 2-QAM

and 4-QAM, respectively. On the other hand, the condition in (2.21) indicates

that, while the available energy is sufficient, the channel gain is not high enough

to support 64-QAM.

Rearrange (2.16)–(2.21), we obtain the range of channel gains, within which

16-QAM should be selected for the transmitter to transmit information, as

48.93CPn

η(Eb+Eh

2Ts
− Pc

3
)
> α ≥ 27CPn

η(2(Eb+Eh)
Ts

− Pc)
. (2.22)

From (2.22), the thresholds α4,16 and α16,64 can be determined as,

α4,16 =
27CPn

η(2(Eb+Eh)
Ts

− Pc)
, (2.23)

α16,64 =
48.93CPn

η(Eb+Eh

2Ts
− Pc

3
)
. (2.24)

2.3.3 Performance Measurement

Note that the above discussion is based on one time slot in wireless transmission.

Considering the fact that channel conditions and renewable energy levels are non-

deterministic and mutually independent, we can derive the average data rate,

which is a statistical measure of the performance for the proposed technique. For

the purpose of illustration, we assume that α follows the chi-square distribution

as expressed in (2.5), and the battery energy has a uniform distribution ranging
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from zero to the maximum capacity Eb
max. The average data rate is obtained as

E(bλM) =
Eb
max/2 + E(Eh)

Ts

[∫ µ2,4

αth

f(α)

Pc + ξ2CPn

ηα

dα+

∫ µ4,16

µ2,4

f(α)
Pc

2
+ 3ξ4CPn

2ηα

dα +

∫ µ16,64

µ4,16

f(α)
Pc

4
+ 15ξ16CPn

4ηα

dα+

∫ ∞
µ16,64

f(α)
Pc

6
+ 21ξ64CPn

2ηα

f(α)dα

]
,

(2.25)

where

µ2,4 = E(α2,4) =
3CPn

2η(E
b
max/2+E(Eh)

Ts
− Pc

2
)
,

µ4,16 = E(α4,16) =
27CPn

2η(E
b
max/2+E(Eh)

Ts
− Pc

2
)
,

µ16,64 = E(α16,64) =
48.93CPn

η(E
b
max/2+E(Eh)

2Ts
− Pc

3
)
.

(2.26)

Note that (2.25) is derived by considering all the possible modulation

schemes (2- to 64-QAM in this study). However, it is known that higher level

modulations (e.g., 16-QAM and 64-QAM) will consume more energy. Also, higher

level modulations are usually selected under very good channel conditions, which

may occur rarely in a fading channel. Thus, it is expected that the main contri-

butions to the average data rate will come from lower level modulation schemes

(e.g., 2-QAM and 4-QAM). This can be seen from (2.25), where the integral

terms corresponding to 16-QAM and 64-QAM decrease quickly as compared with

those of 2-QAM and 4-QAM. To simplify the performance analysis, the average

data rate can be approximated by using the first two integrals in (2.25), i.e., the

contributions from higher modulation schemes are ignored with minor impact on

accuracy.
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Note that while the above analysis assumes a specific channel model and

battery energy distribution for the purpose of illustration, the proposed technique

provides a general solution that does not depend on any of these models.

2.3.4 Battery Issues

The rechargeable battery plays a key role in self-powered systems. With the re-

peated charging and discharging, the battery capacity will decrease gradually.

This is referred to as the battery aging effect. Conventional systems with a fixed

modulation scheme may have to stop working frequently because of the degra-

dation in battery capacity. In contrast, the proposed technique will try to avoid

using high-level modulation schemes under such circumstance. This can be seen

from (2.25) and (2.26), where µi,j increases as Eb
max reduces, i.e., it becomes less

likely to choose high-level modulation schemes due to their high energy cost. In-

stead of shutting down the RF circuit when the battery energy is insufficient, the

proposed technique will automatically switch to a low-level (and low-power) mod-

ulation scheme (e.g., 2-QAM) to compensate for the battery aging effect. Also

note that the probability density function f(α) of the channel gain decreases with

α (see (2.5)). As Eb
max reduces (µi,j increases), we expect the average data rate

to be dominated by low-level modulation schemes, such as 2-QAM.

Although the data rate of 2-QAM is relatively small, the chance of operating

with 2-QAM (instead of shutting down the RF circuit) will increase. As a result,
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our technique is relatively insensitive to battery aging. Specifically, by using lower

level modulation schemes, a relatively stable data rate can be maintained. This

is verified by the simulation results in Section 2.5.

As in practice the battery capacity is limited, battery overflow may occur.

This is particularly the case when the RF circuit is turned off under bad chan-

nel conditions, while the renewable energy is sufficient. If the battery capacity

is reached, the extra energy cannot be stored, which should be avoided in self-

powered systems. As battery overflow usually occurs under bad channel conditions

but high renewable energy levels, one effective way to address this problem is to

exploit error control coding (ECC) [41] on the baseband signal, so that the SNR

requirement can be relaxed and the RF circuit can work under bad channel condi-

tions. This approach, however, involves some tradeoffs between the effective data

rate (as ECC will add redundancy on transmitted data), performance, and over-

head (e.g., the power consumption of ECC circuits). Exploiting channel/source

coding for self-powered systems is an important topic for our future study.

2.3.5 Power Management Scheme

The proposed power management scheme exploiting adaptive modulation for self-

powered RF circuits is summarized in Procedure 1. Here, channel gain α, har-

vested energy Eh
i , and stored battery energy Eb

i are time-varying and thus are

treated as random variables, while the noise power Pn and battery capacity Eb
max
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are relatively stable and thus are considered as constants. Note that in Section

2.5 we will study the battery aging effect related to Eb
max. The SNR require-

ment γ and PAPR ξ are determined by the specific application and the selected

modulation scheme.

At the beginning of each time slot, the renewable energy is estimated and

the thresholds αi,j’s are derived for different modulation schemes. The channel

gain is estimated to determine the modulation scheme, which also decides the

duty cycle Ton of the current time slot. These information are utilized to adjust

the modulation circuit and the VGPA in the transmitter. If α is too small (e.g.,

less than αth [35]), the RF circuit are turned off and the harvested energy is stored

in the battery for future use.

2.4 Implementation

In this section, we present the VLSI design of the proposed energy-adaptive mod-

ulation technique to demonstrate that our technique can be easily implemented

without introducing large overheads. We focus on the implementation of new

functions such as the power management unit (PMU) and baseband modulation

unit (BMU), as shown in Fig. 2.1. A key requirement is to ensure hardware

compatibility for different modulation levels so that the transmitter can be made

adaptive at runtime. Due to this consideration, non-square QAM schemes (e.g.,

8-QAM) are excluded due to their unbalanced I and Q channels, which will need
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Fig. 2.3: Implementation of power management unit.

a different hardware architecture from square QAM schemes. We will also dis-

cuss the receiver design for the proposed technique. Finally, the overhead of the

proposed technique will be assessed.

2.4.1 Power Management Unit

Figure 2.3 shows the implementation of the power management unit (PMU). The

PMU consists of three modules: threshold calculation, modulation selection, and

modulation information insertion. The threshold calculation module determines

the thresholds αi2,4, αi4,16, and αi16,64 using (2.15), (2.23), and (2.24) based on the

total energy Ei
total from the harvested energy and the battery in the ith time slot.
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As in most self-powered systems, the renewable energy can be estimated by the

existing energy prediction schemes, which usually operate at a much lower fre-

quency (e.g., once per time slot) and thus the energy overhead can be ignored.

Also, battery management unit, which is the standard component in mobile de-

vices, can provide the battery status and handle battery overflow. Since the design

of energy predictors and battery meters is beyond the scope of this work, they are

not shown in Fig. 2.3.

Direct implementation of (2.15), (2.23), and (2.24) involves large energy

overhead as they require the inversion operation on the energy measures. To re-

duce the overhead, we propose to use the reciprocals of the thresholds to determine

the modulation scheme. For example, αi4,16 can be calculated as,

1

α4,16

=
2η

27CPnTs
(Eb + Eh)−

ηPc
27CPn

, (2.27)

where all the variables other than the energy measures are non-changing/static

and can be calculated in advance. The hardware implementation of (2.27) only

involves linear computations (one multiplication and one substraction) and thus

avoid division operation, which is more complicated than multiplication [42].

Therefore, our approach greatly simplifies the hardware implementation and re-

duces the energy overhead.

All the subsequent comparisons in the modulation selection module are

based on the reciprocals of the thresholds, which are the input to the modula-

tion selection module. The channel gain is also represented by its reciprocal 1/αi,
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which can be obtained from the wireless channel gain estimator [36], a standard

component in wireless communication systems. The thresholds will be compared

with the channel gain. If the reciprocal of channel gain is smaller than the recipro-

cal of one threshold, the corresponding comparator will generate a logic “1”. The

outputs of all the comparators are added up to generate the modulation selection

signal. For example, if all the comparators output “1”, then 2-QAM (b = 1) will

be selected as the modulation scheme for the transmitter during the ith time slot.

Once the modulation scheme is determined, this information is inserted into

the head of data package so that the selected modulation scheme can be known

by the receiver. This information is sent using a default low-power modulation

scheme such as 2-QAM. At the beginning of each time slot, the signal head ctrl

(control signal to transmit the modulation information) will be valid for a short

time and the modulation information is fed into the BMU using the default 2-

QAM scheme. The modulation information insertion module is implemented by

a two-multiplexer structure, as illustrated in Fig. 2.3. The timing diagram of the

power management unit is depicted in Fig. 2.4, where the channel gain thresholds

are calculated at the beginning of each time slot.

2.4.2 Baseband Modulation Unit

The value of bits per symbol b is sent to the BMU for transmitting symbols, as

shown in Fig. 2.5. The bitstream first passes through a serial-to-parallel (S/P) con-
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Fig. 2.4: Timing diagram of power management unit.

verter to split into two paralleled bitstreams, in-phase data (i data) and quadra-

ture data (q data). The main parts of the S/P converter include a counter and a

multiplexer [43]. Based on the value of b, the i data and q data are fed into two

identical modules to perform the I/Q channel symbol mapping operations.

To maintain the same average signaling power for the modulated symbols,

the symbol values are different when different modulation schemes are utilized.

For example, when 2-QAM is chosen, +1 and -1 (normalized values) are used to

represent the bit values of 0 and 1, respectively; while with 4-QAM, bit values of

0 and 1 in both i data and q data are mapped to the symbols with the normalized

values of − 1√
2

and 1√
2
, respectively, in order to maintain the same average signal-

ing power of the QAM symbols. Note that all these mapped symbol values are

pre-determined constants that can be implemented as 2’s complements in hard-

ware. After symbol mapping, the symbols go through two parallel analog signal

processing circuits consisting of digital-to-analog conversion (DAC), filtering, and
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Fig. 2.5: Implementation of baseband modulation unit.

quadrature modulation (mixer and local oscilloscope (LO)). The analog signals

are then amplified by the variable gain power amplifier (VGPA), whose gain is

determined from (2.3).

2.4.3 Receiver Design

The proposed energy-adaptive modulation technique targets the RF circuit in the

transmitter; however, the receiver should also be modified accordingly so that

symbols with different modulation schemes can be recovered. We consider a com-

mon scenario in distributed sensor nodes where the receiver and the transmitter
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are close to each other and thus the optimal modulation scheme is the same as

both are under similar energy and channel conditions. Note that for other situ-

ations the receiver design may require different approaches that are beyond the

scope of this work.

As shown in Fig. 2.6, the only difference between the modified receiver and

the conventional one [44] is the modulation information extractor. Other parts,

such as the I/Q channel demodulator, are the same. At the beginning of each

time slot, the receiver will receive a short head frame containing the modulation

information from the transmitter designed in the previous subsections. After

synchronization, the receiver will correlate the input with the recovered carrier

frequency to obtain the symbols in the head frame, and then demodulate these

symbols using 2-QAM demodulation (the default modulation scheme for the head

frame, as explained in Section 2.4.1). The value of bits per symbol b is obtained

for the following data packages. This value will then be used to demodulate the

incoming symbols into the serial data bits in the I/Q demodulators as shown in

Fig. 2.6.

2.4.4 Overhead

As this work focuses primarily on the system-level power management, the de-

tailed physical implementation of the transceiver is not presented. However, the

hardware overhead related to the physical implementation can be analyzed. The



33

DD

6421

Modulation 

information extractor
RF input

Channel 

estimator

AGC
Carrier 

recovery

I/Q demodulator

Data 

output 

Fig. 2.6: Receiver architecture of the proposed scheme.

new circuit components in the PMU and BMU process baseband signals only.

The power consumption of these baseband operations is much smaller than that

of the RF circuit (see Section 2.5). In addition, the PMU only operates at the

beginning of each time slot to select the modulation scheme. Simulation results

in Section 2.5 show that by utilizing the reciprocals of channel gain thresholds

(see (2.27)), the energy consumption of the PMU can be further reduced by half.

The energy overhead at the receiver is also negligible as compared with the energy

consumption of the entire receiver. Thus, the proposed technique introduces very

small energy overhead. It is also possible to further reduce the energy overhead

by powering off the unused hardware units. For example, when input b = 1 (i.e.,

2-QAM), we can power off the q bitstream signal processing unit such as the Q

channel symbol mapping and DAC in the Q channel in Fig. 2.5.

In addition to the energy overhead, the proposed transceiver design also in-

troduces some extra time delay due to the additional circuits needed to determine
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the modulation scheme. This issue, however, is minor for sensor node appli-

cations, which are usually operated with low data rates. Note that conventional

schemes with fixed modulation may be forced to stop functioning frequently under

non-deterministic renewable energy (when the harvested energy is insufficient), as

shown in Section 2.5.

2.5 Evaluations

In this section, we evaluate the performance of the proposed energy-adaptive

modulation technique. All the results are simulation-based obtained from the

transceiver design as discussed in Section 2.4, implemented in a 130nm CMOS

process and powered by solar energy as modeled in the next subsection.

2.5.1 Simulation Setup

We adopt two commonly used solar energy models to represent the repetitive

yet non-deterministic solar energy patterns. This first one is an analytical

model [45,46] that describes the daily solar radiation as

Ph(t) = |10 ·N(t) · cos(
t

70π
) · cos(

t

100π
)|, (2.28)

where N(t) denotes a normally distributed random variable with zero mean and

unit variance. Figure 2.7 shows the results obtained from this model, where the

time slot is set to be 0.5 hour. Note that (2.28) describes the short-term (daily)

variations in solar energy; it does not consider the long-term seasonal patterns.
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Fig. 2.7: Solar power variations from the analytical model.

The second model is an empirical model from the National Climatic Data

Center (NCDC), which provides the environmental measurements collected from

various monitoring stations across the United States. The energy profile used in

this work is obtained from its Renewable Energy Data Source database [47]. The

solar radiation energy for a half year is depicted in Fig. 2.8. In contrast to the

analytical model (2.28), this model reflects the long-term seasonal variations in

solar radiation. Both models will be applied to investigate the performance of the

proposed energy-adaptive modulation technique.

For the purpose of demonstration, we consider the Rayleigh channel model

for wireless communications and the channel noise follows the Gaussian distribu-

tion with zero mean and unit variance. The channel gain α follows the chi-square
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Fig. 2.8: Solar power variations from real measurements by the National Cli-

matic Data Center.

distribution as expressed in (2.5). The battery capacity Eb
max is normalized with

respect to the average harvested energy of one day. The PAPR ξ of different mod-

ulation schemes are 1, 1, 1.8, and 2.33 for 2-, 4-, 16-, and 64-QAM, respectively.

To estimate the power consumption, we simulate our transceiver design in a

130nm CMOS process. Table 2.1 shows the power consumption of BMU. We ob-

served that a higher level modulation scheme introduces a larger power in BMU.

This is mainly due to the fact that the higher level modulation scheme needs to use

a larger multiplexer (see Fig. 2.5). Table 2.1 also shows that in most time slots 2-

QAM and 4-QAM were selected by the proposed technique. This is consistent with

our analysis based on (2.25) and (2.26) in Section 2.3.3. The power consumption of
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PMU is 5.22µW when the reciprocals of the thresholds are implemented to deter-

mine the modulation scheme (direct implementation of (2.15), (2.23), and (2.24)

would cost about 10.63µW ). Since PMU involves more complicated arithmetic

operations, it introduces larger power overhead. However, different from BMU

that works all the time, PMU only works at the beginning of each time slot, thus

the energy overhead of PMU is negligible compared with that of BMU. Overall,

the proposed technique introduces about 1% of energy overhead as compared to

the RF circuit operated under the fixed 2-QAM modulation scheme. Nevertheless,

by dynamically adjusting the modulation scheme in accordance with renewable

energy levels and channel conditions, the improvement in energy efficiency can

easily offset the energy overhead.

2.5.2 Performance Comparisons

Figure 2.9 shows the average data rate achieved in our transceiver design under the

first solar energy model (2.28) for several fixed QAM schemes and the proposed

technique (denoted as MQAM). The normalized battery capacity is assumed to be

4% of the average harvested energy of one day. These results were obtained under

different channel gain threshold αth (see (2.25)) to simulate all possible situations

in practice. If the channel gain threshold is small, the RF circuit may be turned

on more frequently, but the average data rate is low as only low-level modulation

schemes will be used. On the other hand, when the channel gain threshold is large,
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Fig. 2.9: Performance of RF circuits using the fixed QAM and MQAM under

the analytical energy model.

the RF circuit will be turned on less frequently (i.e., only under the good channel

condition), and thus the average data rate is also low. Since MQAM dynamically

selects the best modulation scheme from 2- to 64-QAM at runtime, it outperforms

any of the fixed QAM schemes. The maximal data rate (statistical average) of

0.70bit/use is achieved in Fig. 2.9. Note that the average data rate is utilized

to quantify the energy efficiency of self-powered RF systems. This is because for

these systems we are mainly concerned with how many data to be transmitted

using the non-deterministic energy supply, but not simply reducing the power

consumption of the system. This is fundamentally different from conventional

low-power transceiver designs.
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Fig. 2.10: Performance of RF circuits using the fixed QAM and MQAM un-

der the real measurements collected from the National Climatic Data

Center.

Figure 2.10 shows the similar performance trends in the fixed QAM schemes

and proposed MQAM using the second empirical energy model (see Fig. 2.8). The

maximal data rate achieved in the proposed MQAM is 0.52bit/use, less than that

in Fig. 2.9. The reason is that the empirical energy model considers both seasonal

and daily variations in solar energy, which introduces more uncertainties in the

available energy and thus affects the achievable date rate in the RF circuit.

Note that from Figs. 2.9 and 2.10, 4-QAM and 2-QAM show the best per-

formance in most time slots. Thus, we expect that the MQAM will be operated

mostly under these two schemes. Considering this observation, we can simplify the
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Fig. 2.11: Performance comparison between the simplified MQAM and MQAM.

proposed technique by using the lower-level modulation schemes (e.g., 2-QAM and

4-QAM) only. The performance of this simplified approach is compared with the

original MQAM (i.e., using all modulation schemes) in Fig. 2.11. As shown, only

minor performance degradation is incurred in terms of data rate loss. Thus, this

approach is favorable when further reduction in the hardware/energy overhead is

needed.

2.5.3 Implications of Battery Aging

One unique feature of the proposed energy-adaptive modulation technique is to

make self-powered RF circuits insensitive to the battery aging effect. As shown in

Fig. 2.12, with the reduction of battery capacity, the average data rate of the RF

circuit employing MQAM decreases at a slower rate than the fixed modulation
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Fig. 2.12: Performance under the battery aging effect.

schemes. Specifically, the reductions of the average data rate are 8.3%, 10.8%, and

3.6% for 2-QAM, 4-QAM, and MQAM, respectively. It is obvious that battery

aging has a less impact on MQAM as compared with other modulation schemes.

This is consistent with the discussion in Section 2.3.4. The proposed technique

can be adjusted to a lower level modulation scheme if necessary to compensate for

the battery aging effect. This is because the average data rate is proportional to

both the turn-on time of the transmitter and the amount of data being transferred

during the turn-on time. Although the fixed 2-QAM consumes the least amount of

energy and thus can operate for a longer time in the presence of battery aging, it

also transfers the least amount of data. The fixed 4-QAM consumes more energy

than 2-QAM and thus may have to be shut down more often if energy is insufficient
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(i.e., reduced turn-on time). But when it is on, it can transfer more data than

2-QAM. Thus, overall the average data rate of 4-QAM is larger than that of

2-QAM under the same battery capacity. The proposed technique dynamically

adapts the modulation scheme based on the energy availability, enabling both a

longer turn-on time and more data being transferred.

2.6 Conclusions

In this chapter, we have developed an energy-adaptive modulation technique to

improve the energy efficiency of RF circuits powered by renewable energy sources.

By jointly considering the non-deterministic characteristics of renewable energy

and statistical channel conditions, the proposed approach exploits adaptive mod-

ulation to maximize the data rate of RF circuits. We also investigate the battery

issue and assess its impact on the proposed technique. A VLSI implementation of

the proposed technique is presented which introduces negligible energy overhead,

making the proposed technique suitable for various resource-constrained wireless

systems. Future work is directed towards considering the latency constraint of the

modulated data, and integrating adaptive modulation with source/channel coding

to further improve the performance of self-powered systems.
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Algorithm 1: Procedure of Energy-Adaptive Modulation Scheme.

1 Input:
Pn (Noise power at the receiver)
Pc (RF circuit power consumption)
γ (SNR requirement for the receiver)
ξ (PAPR for different modulation scheme)
α (Channel gain)
Eh
i (Harvested energy at the ith time slot)

Eb
i (Initial battery energy at the ith time slot)

Eb
max (Battery capacity)

Output:
b (Number of bits per symbol in modulation)
PV GPA (Power consumption of VGPA)
Ton (On-time of the RF circuit)

2 begin
3 1. Determine b by comparing α with channel gain boundary

between different QAM schemes;
4 % compare channel gain α with the gain bound α2,4 between

2-QAM and 4-QAM
5 if α2,4 > α > αth then
6 b = 1;
7 else
8 % compare channel gain α with the gain bound α4,16 between

4-QAM and 16-QAM
9 if α4,16 > α > α2,4 then

10 b = 2;
11 else
12 % compare channel gain α with the gain bound α16,64

between 16-QAM and 64-QAM
13 if α16,64 > α > α4,16 then
14 b = 4;
15 else
16 b = 6;
17 end
18 end
19 end
20 2. PV GPA is determined by (2.3);
21 3. Ton is determined by (2.7).
22 end
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Table 2.1: Power and Area Overhead of the BMU

2-QAM 4-QAM 16-QAM 64-QAM

Power Consumption 2.10µW 2.16µW 2.32µW 2.38µW

Area Overhead 3469µm2

Selection Occurrence 987 320 3 1

Average Power 2.12µW



Chapter 3

Energy-adaptive Signal Processing Under Renewable

Energy

This chapter presents an energy-adaptive performance management technique for

the design of embedded signal processing systems powered by renewable energy

sources. By jointly considering the non-deterministic characteristics of renewable

energy and the unique relationship between signal processing performance and

the required energy consumption, a progressive performance tuning approach is

developed to dynamically determine an acceptable signal processing performance

in accordance with the changing energy level at runtime. Several practical is-

sues such as energy prediction errors and battery capacity are investigated, and

their impacts on the proposed technique are evaluated. The proposed technique

is applied to a DCT-based image sensing system. Simulation results demonstrate

that by adaptively tuning signal processing kernels with renewable energy, signif-

icant improvements in time coverage and energy efficiency can be achieved in the

presence of unstable harvested energy.

45
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3.1 Introduction

Many embedded signal processing systems need to support long-term autonomous

applications, such as surveillance, real-time control, wireless sensor networks, and

monitoring. Exploiting renewable energy from the environment to power these sys-

tems [11,48,5,49–52] has emerged as an effective solution. Although renewable en-

ergy sources, such as solar, wind, and vibration, are sustainable and maintenance-

free, they also feature substantial energy non-determinism. Thus, there exists a

challenging problem to ensure acceptable system performance under the unstable

renewable energy.

Design methods for improving the energy efficiency of self-sustained sys-

tems are fundamentally different from those for conventional battery-powered

systems [53,54,7,55,56]. The approaches are needed to transform from minimiz-

ing energy utilization to coherent energy/performance adaptation subject to large

energy non-determinism. Many techniques have been reported to optimize the en-

ergy utilization by considering the renewable energy profile. In [57], a technique

was proposed to adjust the duty cycle according to the energy availability in the

environment. An energy-aware dynamic voltage and frequency scaling technique

was developed in [58] to adjust the execution speed of the processor based on the

available renewable energy by exploring the slack time. In [59], a maximum power

point tracking scheme was presented to adaptively operate different parts of the

circuit to accommodate the amount of harvested energy. In [60], a checkpoint
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insertion technique was developed to improve the stability of the system powered

by renewable energy.

While many existing work focus on the adjustment of the operation and/or

the configuration of self-powered embedded systems based on the renewable en-

ergy status, few work exist in jointly exploiting the non-deterministic energy har-

vesting process and domain-specific information that is typically available in the

design of embedded signal processing systems. Most embedded signal processing

systems demonstrate a unique relationship between the signal processing perfor-

mance and the corresponding energy consumption. Specifically, while hardware

operations may be the same with similar energy consumption, the resulted outputs

usually contribute differently to the algorithmic performance. Consider the imple-

mentation of an FIR filter [61] as an example. The multiply-accumulate (MAC)

operations contributing to the most significant outputs should be processed with a

high priority to minimize the impact of uncertainties in renewable energy sources.

Similarly, most information of an image concentrates in the low-frequency coef-

ficients of the discrete cosine transform (DCT), making it necessary to process

these coefficients first under the unstable renewable energy. Some emerging ap-

plications, such as large-scale neuromorphic computing system [62], and feature

selection in wearable sensor networks [63], also represent this kind of feature.

More importantly, the relationship between system performance and energy con-

sumption is typically non-linear [64], and thus the renewable energy can be more
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efficiently utilized to improve the system performance when the signal quality is

low. These unique features inherent in the embedded signal processing systems

can lead to new solutions that ensure acceptable system performance under the

non-deterministic renewable energy. Note that the domain-specific information

varies from system to system, and usually it is related with the system optimiza-

tion goal, such as low power design [1,2] and enhanced security design [65,66].

In this chapter, we propose an energy-adaptive performance management

technique to address the new challenges in the design of renewable energy pow-

ered signal processing systems. The basic idea of this technique is to dynamically

adjust the system performance in adaptation with the changing renewable energy

level. In particular, by considering the non-linear relationship between the per-

formance and energy consumption inherent in the signal processing systems, we

resort to a progressive performance tuning approach at runtime to cope with the

constraints of unstable energy supply. We also consider practical issues such as

harvested energy prediction error and battery capacity and develop correspond-

ing methods to mitigate their impacts on the proposed techniques. Simulation

results of a DCT-based image sensing system demonstrate that, by dynamically

adjusting the signal processing quality, the overall system performance in terms of

the time coverage and energy efficiency can be significantly improved under non-

deterministic renewable energy sources. It is worth mentioning that the concept of

adaptive design has been extensively studied in many different systems [26,67,68].
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Most of these systems adjust the system operation only based on the channel

conditions, while our work tunes the system according to the composite effects of

the channel and the renewable energy.

The rest of the chapter is organized as follows. In section 3.2, we develop a

generic model of renewable energy powered signal processing systems. In section

3.3, we present the proposed energy-adaptive performance management technique.

We also discuss several practical issues such as energy prediction errors and battery

capacity. Simulation results are evaluated in section 3.4, and the conclusion is

given in section 3.5.

3.2 System Model

We consider a generic system powered by renewable energy sources. As shown

in Fig. 3.1, this system includes four major components: energy harvesting unit

(EHU), energy storage unit (ESU), energy consuming unit (ECU), which performs

sensing, computing and signal processing functions, and energy management unit

(EMU). The EHU collects the renewable energy from the environment such as

solar radiation, wind, and vibration. Usually, the available time and the amount

of renewable energy are dynamically changing, while the energy consumed by the

ECU can be pre-determined. To buffer the energy till the time it is utilized, the

harvested energy can be stored into the ESU. Once the ECU starts to operate, it

draws energy from either the ESU or the EHU.
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Fig. 3.1: A generic model of self-sustained embedded systems.

3.2.1 Energy harvesting unit

The EHU is characterized as a variable energy supply. For solar powered systems,

the solar radiation usually varies at a relatively slow rate. Thus, it is reasonable

to assume that the usable solar power Ph remains relatively stable within a short

period of time; i.e., it can be approximated by a constant power level during

one operation time slot (e.g., 0.5hr), even though the value may change among

different time slots. As a result, the total harvested energy in the ith time slot can

be expressed as

Ei
h = Ph × Ts, (3.1)

where Ts is the duration of one time slot, and Ei
h represents the amount of the

available energy after the energy harvester, which excludes the loss including those

caused by regulating the supply voltage.

In order to adaptively allocate energy to different time slots, the profile
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of the energy harvesting process is expected to be known in advance. Existing

work [69] has shown that it is possible to predict the solar energy given the fact

that solar radiation follows the non-deterministic yet repetitive patterns.

3.2.2 Energy storage unit

Both rechargeable batteries and super capacitors can be used as the ESU. As

an energy buffer, the ESU temporarily stores the unused energy for future use

when necessary. In this work, we will consider rechargeable batteries, which have

a certain capacity and charging/discharging efficiency η [70]. The value of η is

less than 1 due to the energy loss during charging and discharging processes.

Note that η can also be used to account for the loss during energy storing and

voltage regulating. In practical systems, the value of η usually changes with

different workloads [70]. Since the goal of our technique is to optimize the overall

performance measured by the statistical average (not instant performance boost),

we use the average value of the charging/discharging efficiency, which is sufficient

for the purpose of this work.

If the harvested energy Ei
h is more than what is needed, the extra energy can

be saved into the rechargeable battery. The battery energy Ei+1
b at the beginning

of i+ 1th time slot is

Ei+1
b = Ei

b + η(Ei
h − Ei

c), (3.2)

where Ei
c is the amount of energy consumed in the ith time slot.
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On the other hand, if the harvested energy Ei
h is not enough to support

the ECU in the current time slot, the rechargeable battery can supply the stored

energy to the ECU. In this case, the battery energy will be reduced to

Ei+1
b = Ei

b − (Ei
c − Ei

h)/η. (3.3)

3.2.3 Energy consuming unit

The ECU performs the required computation of the system and consumes most

of the harvested energy. The tradeoffs between energy consumption and signal

processing performance (in terms of the peak signal-to-noise ratio (PSNR), bit

error rate (BER), etc.) can be exploited for design optimization. The reason is

that various signal processing kernels, such as discrete cosine transform (DCT) for

image processing [71] and FIR filters [61], do not contribute equally to the algo-

rithmic performance. Consider image processing as an example. Most information

of the image is concentrated in the low-frequency coefficients in the discrete cosine

transform (DCT). Depending on the order of these coefficients being processed,

the same rate of performance improvement actually requires different amount of

energy; e.g., signal quality improvement from 70% to 80% requires 50% more

energy than that from 60% to 70% [71]. Our past work [72] also demonstrated

the similar trend in compressive sensing, where the last rounds of signal recovery

iterations consume much more energy but can only recover less significant signal

components. It is worth mentioning that in this work we use the signal quality



53

metric Q to quantify how much performance is reduced under different energy

budgets. Because different signal processing systems may have different perfor-

mance metrics, we use the normalized value in percentage for unified comparison.

For example, in the DCT system, the value of Q is the ratio between the reduced

PSNR (due to energy uncertainties) and the desired PSNR (under the unlimited

energy).

This unique relationship between the energy consumption and algorithmic

performance in signal processing systems can be generally described by a concave

curve as depicted in Fig. 3.2. As shown, the system has a scalable performance

from the minimal signal quality Q0 to the maximal quality QN−1, and the as-

sociated energy consumption is E0 and EN−1, respectively. As the algorithmic

performance improves from Q0 to QN−1, the energy consumption will increase in

a non-linear pattern. In other words, the same amount of the energy can enable

a larger performance improvement if the system starts at a relatively low perfor-

mance level. Intuitively, it takes more efforts (e.g., more energy consumption) to

further improve the system performance if the performance is already high. This

feature can be expressed mathematically as,

Q0

E0

>
Q1

E1

> ... >
QN−1

EN−1

. (3.4)

This unique relationship will offer new opportunities to the design of signal pro-

cessing systems powered by renewable energy, as discussed in Section 3.3.
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Q0
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Q2

...

QN-1

Quality (Q)

Energy (E)E0 E1 E2 EN-1

Fig. 3.2: Energy consumption vs signal quality in a typical signal processing

system.

3.2.4 Energy management unit

The EMU collects the runtime information of the system, such as the renewable

energy level, the battery status, and the workload requirement. Based on these

information, a decision is made to allocate a suitable amount of the energy to the

ECU. In the next section, we will present an energy-adaptive performance man-

agement technique to optimize the tradeoffs of performance and energy efficiency

under non-deterministic renewable energy. Note that the proposed technique is

different from conventional low-power/energy-efficient techniques that typically

target the stable (though maybe limited) energy supply.
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Table 3.1: Energy and image quality (measured by the peak SNR, i.e., PSNR)

in DCT, both normalized by the maximum values.

Energy 1.00 0.65 0.43 0.28 0.18

Quality 100% 90% 80% 70% 60%

3.3 Energy-adaptive Performance Management

In this section, we discuss the proposed energy-adaptive performance management

technique for signal processing systems powered by renewable energy. Considering

the fact that renewable energy sources are typically non-deterministic, the pro-

posed technique dynamically adjusts the achievable signal quality to match with

the changing energy level.

3.3.1 Motivation

We consider a DCT-based image sensing and transmission system powered by re-

newable energy (e.g., solar) for outdoor unattended monitoring. Existing work [71]

studied the relationship between signal quality and energy consumption of the

DCT. As shown in Table 1, reducing the number of coefficients in DCT will incur

a performance loss but at the same time enables energy savings.

Assume that in two consecutive time slots ti and ti+1, the normalized har-

vested energy is 0.5 and 0.3, respectively, and the normalized battery energy at

the beginning of the ti slot is 0.3. A conventional design targeting the full signal
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Fig. 3.3: Performance comparison between (a) the conventional system and (b)

the proposed system without the battery effect.

quality cannot process the DCT signal in the ti slot, as the available energy is less

than what is needed, i.e., 0.5 + 0.3 < 1.0 (see Table 1). The harvested energy is

thus stored in the battery for the next slot. Consequently, the system can only

process the DCT signal in the ti+1 slot, as 0.5 + 0.3 + 0.3 > 1.0. This scenario is

illustrated in Fig. 3.3(a). In contrast, if the system can dynamically adjust the

signal quality in accordance with the changing energy level, a better performance

can be achieved. As depicted in Fig. 3.3(b), the DCT signal can be processed

at 90% quality (as the available energy 0.5 + 0.3 > 0.65, see Table 1) and 80%

quality (0.5+0.3+0.3−0.65 > 0.43) in these two slots. This results in an average

of 85% signal quality, much higher than the average 50% signal quality in the

conventional system.
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Fig. 3.4: Performance comparison between (a) the conventional system and (b)

the proposed system with the battery effect.

Note that the above example does not consider the battery charg-

ing/discharging efficiency. When this practical issue is taken into account, the pro-

posed energy-adaptive performance management technique can achieve even bet-

ter performance than the conventional system. Assume that the average battery

charging/discharging efficiency η is 0.9. The conventional system cannot process

the DCT signal in either the ti slot or the ti+1 slot. This is because the battery can

only store 0.5× 0.9 = 0.45 harvested energy after the ti slot. Thus, the available

energy at the beginning of the ti+1 slot is just (0.3+0.45)×0.9+0.3 = 0.975 < 1.0,

of which (0.3 + 0.45) × 0.9 = 0.675 comes from the battery. On the other hand,

the system employing the energy-adaptive performance management can achieve

an average of 80% signal quality in the presence of energy loss due to battery
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charging/discharging. These results are presented in Fig. 3.4 for comparison.

3.3.2 The proposed technique

Considering the fact that renewable energy is typically non-deterministic, the

limited (and unstable) energy must be allocated dynamically among multiple op-

eration time slots to enable the optimal performance over time. The proposed

energy-adaptive performance management technique exploits the unique relation-

ship between the performance and energy consumption in signal processing sys-

tems as depicted in Fig. 3.2 to achieve this goal. The basic idea is to resort to a

progressive energy allocation approach while considering the performance impact

among multiple time slots.

For the sake of simplicity, we will initially discuss the proposed technique

for two consecutive operation time slots, denoted as the current slot i and the

next slot i + 1. The harvested energy can be measured for the current slot and

predicted for the next slot with a high accuracy [69]. The proposed technique can

also be generalized to more time slots if the harvested energy in these slots can be

predicted, which is usually possible. Note that most energy prediction algorithms

strive to reduce the prediction errors statistically. This error effect will be studied

in the performance analysis in Section 3.4.
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Energy allocation among adjacent time slots

From Fig. 3.2, it is obvious that the limited amount of energy can be more ef-

fectively utilized to improve the system performance when the signal quality is

low. Thus, our technique starts with the lowest acceptable signal quality. This

procedure is shown as the step P0 in Fig. 3.5. The required energy to achieve the

baseline performance (e.g., signal quality Qi
0) at the ti slot is denoted as Ei

0. At

the beginning of the ti slot, if the harvested energy Ei
h is larger than Ei

0, then no

matter how much the harvested energy Ei+1
h at the ti+1 slot is, the signal quality

Qi
0 can always be achieved. Under this condition, the extra energy in the ti slot

will be stored in the battery for the ti+1 slot. Thus, the battery energy Ei+1
b at

the beginning of the ti+1 slot can be expressed as

Ei+1
b = Ei

b + η(Ei
h − Ei

0), (3.5)

where η ≤ 1 is the battery charging/discharging efficiency. Note that the underly-

ing assumption of (3.5) is that the battery capacity is sufficiently large, therefore

no battery overflow occurs. This assumption will be relaxed in Section 3.3.4

On the other hand, if Ei
h is less than Ei

0 while Ei
h + ηEi

b is larger than Ei
0,

the ECU can draw some energy from the battery to obtain the signal quality Qi
0.

In this case, the battery energy Ei+1
b at the beginning of the ti+1 slot becomes

Ei+1
b = Ei

b − (Ei
0 − Ei

h)/η. (3.6)

Under the extreme case when the total available energy at the beginning of
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Fig. 3.5: Progressive performance tuning (the length of energy bars in horizontal

indicates the amount of energy needed to achieve the image quality Qi).

the ti slot cannot support even the baseline performance (e.g., smaller than Ei
0),

the system can either be shut down or operate below the minimal performance

requirement to accommodate the available energy. The latter is usually prefer-

able because otherwise the harvested energy will be lost. Note that the minimal

performance denoted by Q0 is pre-specified by the user based on the requirement

of the application.

The second phase of the proposed technique is shown as the step P1

in Fig. 3.5, where we will evaluate whether a higher performance level can be

achieved at the ti slot under a certain energy condition. Consider the unique rela-

tionship between the performance and energy consumption as depicted in Fig. 3.2,

we should concurrently check if Qi+1
0 can be achievable at the next ti+1 slot as it

requires the smallest amount of energy; in other words, it enables the best overall
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energy-performance tradeoffs across the two time slots. There are four possible

scenarios as described blow.

Scenario 1 : When the harvested energy Ei+1
h is already more than the base-

line performance required energy Ei+1
0 , there is no need to transfer the harvested

energy from the ti slot to the ti+1 slot. It only needs to check the following condi-

tion to see if the available energy in the ti slot is sufficient for the next performance

level Qi
1,

Ei
h + ηEi

b > Ei
1. (3.7)

If the inequality holds, Qi
1 will be selected; otherwise, Qi

0 is selected due to

the lack of energy to support Qi
1 in the ti slot.

Scenario 2 : When the harvested energy Ei+1
h is less than the baseline per-

formance required energy Ei+1
0 , we can supplement Ei+1

0 −Ei+1
h from the battery

if the battery energy is sufficient. There is still a chance to select Qi
1 in the ti slot

and Qi+1
0 in the ti+1 slot, if the following condition is satisfied,

Ei
h + η[Ei

b − (Ei+1
0 − Ei+1

h )/η] > Ei
1, (3.8)

where (Ei+1
0 − Ei+1

h )/η is the amount of battery energy that will be allocated

to the ti+1 slot for the baseline performance. Clearly, when the total harvested

energy Ei
h and the residual battery energy Ei

b− (Ei+1
0 −Ei+1

h )/η is more than the

required energy Ei
1, the higher signal quality Qi

1 can be achieved.

Scenario 3 : The harvested energy Ei+1
h is less than the baseline performance

required energy Ei+1
0 , and the deficient Ei+1

0 − Ei+1
h cannot be provided by the



62

battery. To achieve Qi+1
0 , a portion of the harvested energy Ei

h in the ti slot will

be stored in the battery to fill the energy gap in the ti+1 slot. Thus, the following

condition will make Qi
1 achievable,

Ei
h − [(Ei+1

0 − Ei+1
h )/η − Ei

b]/η > Ei
1, (3.9)

where [(Ei+1
0 − Ei+1

h )/η − Ei
b]/η is the amount of energy that needs be stored in

the battery for use in the ti+1 slot to achieve Qi+1
0 . If the remaining energy is still

more than the required energy Ei
1, the higher signal quality Qi

1 can be achieved.

Scenario 4 : In the worst case when the total available energy at the begin-

ning of the ti+1 slot cannot support the baseline performance Qi+1
0 , i.e.,

Ei+1
h + ηEi+1

b < Ei+1
0 , (3.10)

then there is no need to check the higher quality Qi
1 at the ti slot. This is because

if Ei+1
b obtained from (3.5) or (3.6) based on the ti slot cannot support Qi+1

0 , it

cannot support Qi
1 either due to the higher energy requirement of Qi

1. This is also

reflected in Fig 3.5, in which the system will try to improve Qi
0 to Qi

1 only when

both baselines Qi
0 and Qi+1

0 are achievable under the unstable energy.

Proceeding in the same way, the progressive performance tuning will evalu-

ate whether higher performance levels can be achieved in adjacent time slots under

the given energy condition. This is represented by steps P2 to PN−1 in Fig. 3.5.

Then, the same procedure will be performed dynamically over other time slots.

This is summarized in Algorithm 2.
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Extension to multiple time slots

We now extend the proposed technique to multiple time slots, which may occupy

an entire day as solar radiation varies on a daily basis. The harvested energy in

these slots can be predicted, as shown in many previous work [73].

As mentioned before, the baseline signal quality requires the smallest

amount of energy to achieve. For this consideration, it is necessary to initially

check whether the system can work at Ei
0 for all the time slots t0 to tN−1 before

going for higher signal qualities, i.e.,

Ei
b + Ei

h > Ei
0, (3.11)

where i ranges from 0 to N − 1, and Ei
b is determined by (3.5) or (3.6) depending

on the harvested energy level at the ti−1 time slot.

It is expected that the system should be able to operate at the minimal

required signal quality level Q0 for most cases. Under the extreme condition such

as very bad weather for quite a long time, the system may not be able to receive

sufficient energy to work at Q0. As illustrated in Fig. 3.6, if the system can only

support Q0 from t0 to tL−1 but not the tL time slot, then there is no need to

further check the signal quality Q1 between t0 and tL due to the energy shortage,

and Qi
0, i = 0...L − 1, is the final performance level in these slots. This is the

same as that in (3.10) for two adjacent time slots.

As the energy harvested after tL could become abundant, we still need to
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Fig. 3.6: Illustration of quality Q0 allocation (the height of energy bars indi-

cates the amount of energy needed to achieve the corresponding image

quality).

adjust the system performance from tL to tN−1. Without loss of generality, we

assume tL, i.e., the earliest time slot when the system can possibly have the

performance higher than Q0, is the initial time slot t0. Three possible scenarios

may occur when determining whether the higher performance Q1 is achievable.

Scenario 1 : When the harvested energy is sufficient for most of the time

slots and the time slots with inadequate energy can use the stored energy from

the previous time slots, all the time slots can achieve Q1 if

Ei
h + ηEi

b > Ei
1, (3.12)

where Ei
b is determined by

Ei
b = Ei−1

b + η(Ei−1
h − Ei−1

1 )+ − (Ei−1
1 − Ei−1

h )+/η, (3.13)

where the function (x)+ equals x if x > 0 and otherwise equals 0. This scenario
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Fig. 3.7: Illustration of three possible scenarios in multiple time slots energy

allocation (the height of energy bars indicates the amount of energy

needed to achieve the corresponding image quality).

is illustrated in Fig. 3.7(a).

Scenario 2 : When the harvested energy is enough to support Q0 but not

Q1 at a certain time slot tM , i.e.,

EM
h + ηEM

b < EM
1 , (3.14)

then the energy allocation from t0 to tM is finished because all the available energy

will be consumed in these time slots. The final performance level from t0 to tM−1

is Q1, and the performance level at tM is Q0, as shown in Fig. 3.7(b). Now the

system will need to determine the energy allocation policy for the time slots after

tM , starting with Q1.
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Scenario 3 : This scenario is similar to scenario 2 except that the harvested

energy is not even enough to support Q0 at a certain time slot tM , i.e.,

EM
h + ηEM

b < EM
0 . (3.15)

This indicates that achieving Q1 in the previous time slots causes energy

deficiency and Q0 is unattainable at tM (see Fig. 3.7(c)). Under this situation,

the previous performance levels starting from tM−1 need to be lowered for more

energy savings, until at a time slot tM ′ (0 ≤M ′ ≤M − 1) where the saved energy

can support Q0 at tM . This process is illustrated in Fig. 3.7(d). Once M ′ is

determined, the final performance levels from t0 to tM can be determined as well,

which are Q1 for t0 to tM ′−1 and Q0 for tM ′ to tM . The performance for time slots

after tM will then need to be determined thereafter, starting with Q1.

This process will continue for higher signal qualities until all the harvested

energy is allocated and the overall system performance is maximized. The com-

plete algorithm is summarized in Algorithm 3.

3.3.3 Reducing the impact of energy prediction errors

The energy-adaptive performance management assumes accurate energy predic-

tion in each time slot. In reality, energy prediction will always introduce errors [73],

which will affect the effectiveness of the proposed technique. Thus, it is important

to compensate for the energy prediction errors, defined as

∆(i) = Ereal
h (i)− Epre

h (i) + η × Eres
h (i− 1), (3.16)
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where Ereal
h (i) is the measured harvested energy, Epre

h (i) is the predicted energy,

and Eres
h (i − 1) is the residual battery energy from the previous time slot. Note

that initially Eres
h (i−1) = 0, and in the subsequent time slots Eres

h (i−1) represents

the portion of the harvested energy that is not consumed.

Starting with a set of performance levels determined by the predicated en-

ergy as shown in the previous sections, the system will need to adjust the per-

formance at runtime to mitigate the effect of energy prediction errors. When

∆(i) < 0, the system can reduce the signal quality at the ti time slot to fill the

energy gap. If the signal quality is already at the baseline, the system may need to

reduce the signal quality further to below the minimal performance requirement,

if the time coverage requirement is more important. Reducing the signal quality

at future time slots will not help as the energy cannot be transferred from future

time slots to the current time slot. On the other hand, when ∆(i) > 0, i.e., the

system receives more energy than predicted, the extra energy should be assigned

to time slots with the lowest signal quality, as this is the most effective way to

improve energy efficiency for signal processing systems according to Fig. 3.2.

3.3.4 Limitations of battery capacity

Rechargeable batteries play a key role in renewable energy powered systems, as

they act as energy buffers to store the harvested energy for future use. However,

battery capacity must be considered in the practical system design. Obviously,
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a battery cannot store the energy beyond its capacity. When battery overflow

occurs, the extra energy is wasted. In the proposed technique, this extra energy

can be utilized to further increase the performance level.

When the expected battery energy Ei+1
b in (3.5) is larger than the battery

capacity Eb
max, the battery can only be charged to Eb

max, i.e.,

Ei+1
b = Eb

max. (3.17)

Thus, the system should try to consume Ei
h− (Eb

max−Ei
b)/η in the ti slot to

reduce the energy waste, where (Eb
max − Ei

b)/η is the maximum energy that can

be stored in the battery.

Another issue is that, when the battery capacity is small, the available en-

ergy (e.g., harvested and stored energy in the battery) may not be able to support

even the minimal signal quality at certain time slots. In this case, the system can

either be shut down or operate below the minimal performance requirement at the

current time slot to accommodate the available energy. As expected, the average

performance over multiple time slots will be reduced if the battery capacity is

smaller. Nevertheless, the proposed algorithm is less sensitive to the battery ca-

pacity limitation as compared with the conventional method (see results in Section

3.4). This is because our technique can adaptively adjust the energy consumption

to make these battery issues less likely to occur.
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3.4 Simulation Results

In this section, we apply the proposed energy-adaptive performance management

technique in a DCT-based image sensing system powered by solar energy. We will

compare with a conventional system and demonstrate the performance improve-

ment.

3.4.1 Simulation setup

We adopt the solar radiation profile collected by the National Renewable Energy

Lab [74], and conduct simulations based on the solar profile of 30 consecutive

days. Figure 3.8 shows four days with different solar profiles, where the energy

harvesting time is from 7am to 6pm. The DCT-based image sensing system is

assumed to operate during this period. The length of each time slot is set as

0.5 hour. The solar energy is converted by the solar panel of 10cm×10cm with

the efficiency of 20%. The energy prediction algorithms employed are Exponen-

tially Weighted Moving Average (EWMA) [75,17] for two time slots and Weather-

Conditioned Moving Average (WCMA) [69] for multiple time slots. The reason

is that WCMA, while has a better accuracy (4% prediction errors) than EWMA

(33% prediction errors), cannot be used for multi-slot prediction. All the simula-

tion results have included these prediction errors. The rechargeable battery has

an average efficiency of 0.9, and the battery capacity Emax
b is equal to the average

harvested energy of one day. The battery energy is monitored at the beginning
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of each time slot [39]. Note that the proposed technique does not depend on the

specific value of the battery capacity. This is because the battery is mainly used

as a buffer to temporarily store the harvested energy. In reality, the harvested en-

ergy varies due to many uncontrollable factors. Thus, most likely the battery will

not be fully charged and cannot support the required signal processing tasks. The

proposed technique dynamically adjusts the algorithm configuration at runtime

to deal with the non-deterministic renewable energy.

The DCT-based image sensing system is shown in Fig. 3.9. A standard

transmitter design [30] is employed and the associated configuration parameters

are adopted, which include the modulation, analog conversion, and RF transmis-

sion. Note that RF transmission energy is usually dominant. This problem has

been studied in our past work [1,2], where an energy-adaptive RF modulation

technique was developed to better utilize the renewable energy. As this work fo-

cuses primarily on the baseband signal processing, the results of RF energy are not

included in the comparison. The quality-adjustable DCT accelerator [71] can pro-

cess image data with different levels of quality for energy-performance tradeoffs.

The hardware support to the quality adjustments involves computing a subset of

the DCT coefficients. For example, by computing just 12 coefficients rather the

whole 64 coefficients, the signal quality can be adjusted to 60% of the best qual-

ity. Note that we do not change the supply voltage to adjust the signal processing

quality. It was done by changing the algorithm complexity/configuration.
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The image (640 × 480 pixels) is first partitioned into 8 × 8 blocks, each

encoded with the DCT accelerator. The first 12, 18, 28, 42, and 64 coefficients

with 12 bits per coefficient of the DCT results carry about 60%, 70%, 80%, 90%,

and 100% information of the image, respectively. By calculating and transmitting

only the first NDCT coefficients, the receiver can decode and reconstruct the image

at the corresponding quality. The upper limit of the acceptable image quality is

assumed to be 100% (measured by the normalized PSNR), and the lower limit

varies between 60% and 100% (normalized PSNR). Since the proposed technique

can adjust the energy consumption of the DCT accelerator and the transmitter

(but not the image sensor) by reducing the number of DCT coefficients being

processed and transmitted, we simulated these two components in a 90nm CMOS

process and found that the total average energy consumption is about 10µJ/bit

under the QPSK modulation. A standard image sensor [11] consumes a much

smaller energy of about 1µJ/frame. The workload in one time slot of 0.5 hour

is defined by the number of frames Nf being processed and transmitted. In our

simulation setup, Nf = 40 frames per time slot is selected to demonstrate the

effectiveness of the proposed method. Note that the proposed technique is not

limited by the frame rate of the DCTs. The proposed technique requires only sim-

ple operations (additions, subtractions, comparisons, and look-up table searching)

for progressive performance tuning. Due to the small number of image quality lev-

els (5 levels in our simulation) in the search space, the complexity of the proposed
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Fig. 3.8: Solar profiles of four days.

technique is very small. Nevertheless, the induced energy overhead was estimated

and included in the simulation results.

3.4.2 Performance analysis and discussion

We will show the results of two different schemes, one considering two adjacent

time slots and the other considering multiple time slots. We will demonstrate that

the multi-slot energy allocation scheme outperforms the two-slot energy alloca-

tion scheme under various workload conditions. These two schemes will also be

compared with the conventional system for performance and energy efficiency.
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Fig. 3.9: Block diagram of the DCT-based image sensing system.

Performance comparisons

We compare the two schemes with the conventional design targeting full-quality

DCT encoding and transmission under the same solar energy profile. All systems

are designed to achieve a pre-defined PSNR of 36dB under the full image quality.

To deal with energy supply fluctuations, the conventional system can adjust the

number of frames Nf to accommodate energy shortage. At the beginning of

each time slot, the conventional system will determine if the harvested energy is

sufficient for the required workload. If not, the system will reduce the number of

frames; otherwise, the extra energy, if any, will be saved for future use. This is

different from the proposed technique that aims to accomplish the required Nf

for tradeoffs with the image quality. In image sensing systems, the average time

coverage Tcov is related to the number of frames processed in each time slot, which

is defined as

Tcov =
Tf

NfNT

, (3.18)
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Fig. 3.10: Average time coverage of the two-slot energy allocation scheme under

the renewable energy.

where Tf is the total number of frames that the system can process under the

renewable energy and NT is the total number of time slots. Note that image

sensing systems typically require a high time coverage while the image quality

is compromisable for applications such as monitoring and surveillance. This is

the reason that the proposed technique trades off image quality for time coverage

under the variable harvested energy.

Figure 3.10 compares the average time coverage achieved by the two-slot en-

ergy allocation scheme and the conventional system. For the conventional system

targeting 100% signal quality, the average time coverage is only about 76% (i.e.,

about 30 out of 40 frames can be processed on average due to the unstable renew-

able energy). In comparison, the proposed scheme achieves a much higher time
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Fig. 3.11: Average time coverage of the multi-slot energy allocation scheme

under the renewable energy.

coverage when the image quality is dynamically adjusted to compensate for the

unstable renewable energy. This is because by dynamically adjusting the image

quality, the proposed technique can maintain a relatively stable image processing

capability in realtime even when the energy is insufficient and varying. Trading off

image quality for time coverage is typically preferable in renewable energy pow-

ered image sensing systems targeting monitoring and surveillance applications. In

Figure 3.10, due to the high accuracy of WCMA, the time coverage loss caused

by energy prediction errors is negligible (less than 1%). The similar comparison

between the multi-slot energy allocation scheme and the conventional system is

shown in Fig. 3.11. Multi-slot energy allocation scheme can achieve even better

time coverage than the two-slot scheme in Fig. 3.10. However, the time cover-
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age loss due to energy prediction errors is relatively large. Fortunately, by using

the method discussed in Section 3.3.3, the impact of energy prediction errors can

be minimized. In comparison, the conventional system experiences much larger

time coverage degradation as it only adjusts the number of frames per slot, which

directly affects the time coverage.

Energy efficiency

To quantify the energy efficiency, we compare the average image quality normal-

ized by the available renewable energy as,

EQ =

∑Tf
i=1 Q

i
j∑NT

i=1 E
i
h

, (3.19)

where
∑Tf

i=1Q
i
j is the sum of the image qualities in PSNR of the processed frames

Tf , and
∑NT

i=1E
i
h is the harvested energy in these time slots.

As shown in Fig. 3.12, with image quality being tuned down from 90%

to 60%, the difference in EQ between the two-slot energy allocation scheme and

the conventional system increases, indicating 7%−14% (or equivalently 1.5dB/J–

3dB/J) improvement in energy efficiency. In other words, more information can be

processed by the proposed technique under the same amount of renewable energy.

Similar trend was also observed in the multi-slot energy allocation system, as

shown in Fig. 3.13, which indicates about 9% − 17% (or equivalently 1.9dB/J–

3.5dB/J) energy efficiency improvement. This can be explained by the fact that

our technique exploits the non-linear relationship between the image quality and
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Fig. 3.12: Average image quality per Joule of the two-slot energy allocation

scheme under the renewable energy.

energy consumption (see Fig. 3.2), and consumes energy more efficiently to process

significant signal components when necessary; whereas the conventional system

treats signal components equally and thus wastes the energy. Clearly, the proposed

technique is beneficial to image sensing systems powered by renewable energy

sources. Note that the multi-slot energy allocation scheme again achieves the

better performance overall than the two-slot energy allocation scheme. Also, these

results consider the effect of energy prediction errors.

3.5 Conclusions

In this chapter, we have developed an energy-adaptive performance management

technique for self-sustained signal processing systems. Considering the fact that



78

60% 70% 80% 90% 100%
17

18

19

20

21

22

23

24

25

26

27

Lower limit of predefined quality range 

A
ve

ra
ge

 im
ag

e 
qu

al
ity

 p
er

 J
ou

le
 o

f e
ne

rg
y 

(d
B

/J
ou

le
)

 

 
Multiple slots allocation w/o prediction error
Multiple slots allocation w/ prediction error
Conventional allocation w/o prediction error
Conventional allocation w/ prediction error

Fig. 3.13: Average image quality per Joule of the multi-slot energy allocation

scheme under the renewable energy.

renewable energy sources are typically non-deterministic, the proposed technique

dynamically matches the achievable signal quality with the changing energy level

to optimize the energy and performance tradeoffs. The unique relationship be-

tween signal processing performance and the required energy consumption inher-

ent in most signal processing systems is exploited to achieve this goal. Future

work is directed towards hardware demonstration of the proposed technique, ap-

plying the proposed technique in real signal processing systems, and comparing

the tradeoff in performance and energy efficiency with other low-power design

techniques such as DVFS.
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Algorithm 2: Summary of the two-slot energy allocation scheme.

Input:
i (Index of time slot, range between 0 and NT − 1)
Ei
h (Harvested energy at the ith time slot)

Ei
b (Battery energy at the ith time slot)

η (Battery charging/discharging efficiency)
j (Index of signal quality, range between 0 and N − 1)
Qi
j (The jth quality at the ith time slot)

Ei
j (Energy associated with the Qi

j at the ith time slot)
Nf (The number of frames to be processed per time slot)
Output: Energy allocation at ith time slot

1 begin
2 for i← 0 to NT − 1 do
3 Check if Qi

0 is achievable. Ei+1
b is determined by eqns(5,6)

4 for j ← 1 to N − 1 do
5 if Ei+1

h + ηEi+1
b < Ei+1

j−1 then
6 return Ei

j−1. See scenario 4

7 else if Ei+1
h > Ei+1

j−1 then
8 if Ei

h + ηEi
b > Ei

j then
9 Qi

j is achievable. See scenario 1

10 else return Ei
j−1. See scenario 1

11

12 else if Ei+1
h + ηEi+1

b > Ei+1
j−1 then

13 if Ei
h + η[Ei

b − (Ei+1
j−1 − Ei+1

h )/η] > Ei
j then

14 Qi
j is achievable. See scenario 2

15 else return Ei
j−1. See scenario 2

16

17 else if η2Ei
h + ηEi+1

b + Ei+1
h > Ei+1

j−1 then
18 if Ei

h − [(Ei+1
j−1 − Ei+1

h )/η − Ei
b]/η > Ei

j then
19 Qi

j is achievable. See scenario 3

20 else return Ei
j−1. See scenario 3

21

22 end
23 end
24 end
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Algorithm 3: Summary of the multi-slot energy allocation scheme.

Input:
i (Index of time slot, range between 0 and NT − 1 in one day)
Ei
h (Harvested energy at the ith time slot)

Ei
b (Battery energy at the ith time slot)

η (Battery charging/discharging efficiency)
j (Index of signal quality, range between 0 and N − 1)
Qi
j (The jth quality at the ith time slot)

SPj (Starting point for the Qj checking process)
Ei
j (Energy associated with the Qi

j at the ith time slot)
Output: Energy allocation of NT time slots

1 begin
2 for i← 0 to NT − 1 do
3 Check if Qi

0 is achievable for all NT .
4 if All slots can achieve Qi

0 then
5 Set SP1 = 0; j = 1.
6 else if QL

0 is not achievable then
7 Set SP1 = L+ 1; j = 1. See Fig. 3.6
8 end
9 for i← SPj to NT − 1 do

10 for j ← 1 to N − 1 do
11 if Qi

j is achievable between SPj and NT − 1 then
12 Set SPj+1 = SPj. See Fig. 3.7(a).
13 else if QM

j is not achievable then
14 if QM

j−1 is also achievable then
15 Set SPj+1 = M + 1. See Fig. 3.7(b).
16 else Set SPj+1 = M + 1; Trigger the restoring back

process. See Fig. 3.7(c-d).
17

18 end
19 end
20 end



Chapter 4

Self-sustained UWB Sensing: A Link and Energy

Adaptive Approach

In this chapter, we present a link and energy adaptive UWB-based sensing tech-

nique to improve the detection time coverage and detection range coverage for

self-sustained embedded applications. The basic idea is derived from the fact

that domain-specific information in such applications is often available. Thus, by

jointly exploiting the link information between the transmitter and receiver of the

UWB pulse radar, and the non-deterministic characteristics of the renewable en-

ergy, the proposed technique dynamically adjusts the pulse repetition frequency of

the UWB radar to enhance the sustainable operation under the unreliable energy

supply. The overhead of the proposed technique is negligible as compared with

the overall energy consumption of the UWB pulse radar. It was demonstrated

that the proposed technique can achieve much better detection time coverage

and detection range coverage than the conventional UWB radar. The proposed

technique is also insensitive to many practical issues such as the limited battery

81



82

capacity.

4.1 Introduction

Ultra-wideband (UWB) radar has become a promising technology for short-range

sensing [76], detection [77], and wireless communications [78,48]. The unique

properties of narrow UWB pulses allow accurate measuring and offer robust sig-

naling against the multi-path fading in wireless channels. The pulsed UWB signal

inherently has a low duty cycle, which naturally enables low-power operations.

Furthermore, UWB features low-complexity transceiver structure and unlicensed

communications by FCC regulations [79], all of which make it a good candidate

for embedded applications.

Due to these advantages, UWB technique have been widely adopted in many

emerging applications, including positioning [80], object recognition [81], and wire-

less body area network (WBAN) [82]. In [83], a low-complexity and low-power

UWB transceiver is proposed for health monitoring in WBAN. In [84], a UWB

pulse radar IC is developed to track and range the target for respiratory rate mon-

itoring. In outdoor environments, UWB-based radar can be used for short-range

and high time resolution applications, such as tracking and ranging in agricul-

ture environments [85], or used as the vehicle radar [86]. It should be noted that

most of the existing work assume the operation of UWB radar under stable and

sufficient power supply.
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Among the above mentioned applications, low-power embedded sensing is

a new area where the benefits of UWB pulse radar can be effectively reaped.

However, a critical issue in embedded sensing is the lack of sustainable power

supply. While most of embedded systems can be powered by batteries, frequent

recharge and maintenance is costly if not impossible. For this reason, exploit-

ing renewable natural resources (e.g., solar radiation, wind, ocean wave, etc.) to

power autonomous and distributed sensor devices has become a promising alter-

native [4,35,1,49,3]. It was reported in recent literature [87] that solar cells can

harvest solar energy up to the power density of 15mW/cm2, and the latest energy

harvesting circuit can convert the power output of photovoltaic (PV) panels with

an efficiency around 93%. The improved efficiency and cost reduction in energy

harvesting techniques have spurred significant interests in deploying self-sustained

embedded systems [11,12,2]. However, different from the battery-powered sys-

tems [54,88,89,7], most renewable energy sources are non-deterministic with large

variations that characterize the energy harvesting process. This requires a new

approach to the design of self-sustained embedded sensing systems, where stable

and robust performance needs to be maintained through the synergy of energy

characteristics and sensing operations.

In this chapter, we develop a link and energy adaptive UWB-based embed-

ded sensing technique powered by renewable energy sources such as solar radia-

tion. Distinct from the existing UWB sensing techniques, the proposed technique
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deliberately exploits the varying link gains and non-deterministic energy charac-

teristics in a coherent manner to improve the sensing performance and coverage.

Specifically, the proposed technique dynamically adjusts the UWB pulse repe-

tition frequency in accordance with the available renewable energy level as well

as the wireless link condition. It is shown that by making the UWB transceiver

link and energy adaptive, better detection time coverage and performance trade-

offs can be achieved. The fact that the energy overhead imposed by the proposed

technique is minor makes our technique well-suited to resource/energy constrained

sensing applications. We also consider some practical issues such as the capacity

of rechargeable batteries. Simulation results demonstrate the advantages of the

proposed technique over conventional UWB sensing techniques. Note that the

link information has been extensively utilized for different system design goals,

such as low power design [90] and enhanced security design [91,92]. While most

of these systems are adjusted according to the channel conditions only, our work

tunes the system based on the composite effects of the channel and the harvested

energy.

The rest of this chapter is organized as follows. In Section 4.2, we describe

the model of self-sustained UWB pulse radar for sensing applications. We also

discuss the limitations of conventional UWB sensing techniques when powered

by renewable energy sources. In Section 4.3, we develop the link and energy

adaptive UWB sensing technique, derive an analytical approach to explore the
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Fig. 4.1: Model of a self-sustained UWB-based sensing transceiver.

interplay between energy characteristics and sensing performance, and investigate

the related practical issues such as battery capacity. In Section 4.4, we present

the system architecture of the proposed technique with detailed discussion on the

induced overhead. The evaluation of the proposed technique is provided in Section

4.5, and the conclusion is given in Section 4.6.

4.2 Model of UWB Pulse Radar for Sensing Applications

In this section, we present the model of UWB-based sensing systems. The pro-

posed technique exploits this model to develop adaptive mechanisms based on the

link and energy conditions.

4.2.1 Self-sustained UWB Pulse Radar

Figure 4.1 shows the model of a UWB-based sensing system. Under the scope of

this work, we consider that the transceiver is powered by renewable energy that

is drawn from the ambient sources by the energy harvesting unit (EHU). Since
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UWB pulses have a very low duty cycle, most of the time the transceiver will

stay in silence thereby consuming a very low level of power. Thus, a recharge-

able battery is needed to store the harvested energy for future use. The power

management unit (PMU) collects the key parameters from the transceiver at run-

time. These parameters, including the available energy in the battery Eb, average

harvested energy Eh, and the signal-to-noise ratio (SNR) at the receiver, will be

utilized to determine a suitable set of operation configurations to deal with the

non-deterministic energy source and the varying target range (see Section 4.3).

Figure 4.2 shows the detailed block diagram of the UWB transceiver for

sensing applications. UWB pulses with a repetition frequency Rp are generated

by the pulse generator in the transmitter. These pulses are then transmitted

directly to the target through the wireless link, which introduces non-ideal effects

such as path loss and multi-path fading. After being reflected by the target, the

pulses will be collected by the receiver. The received signals are first amplified

by a low-noise amplifier (LNA) and then enter the two parallel processing units.

The first unit, shown within the dashed frame in Fig. 4.2, correlates the received

signals with the delayed local UWB pulses to estimate the delay time between the

radar and the target, so that the distance to the target can be determined. Note

that the target is assumed to be slow-moving and the detection range is relatively

small. Under these conditions, the moving target is detectable using the coherent

method. To improve the sensing performance such as the signal-to-noise ratio
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Fig. 4.2: UWB pulse radar transceiver for sensing applications.

(SNR), an integrator is employed after the correlator to accumulate the signal

power of multiple received UWB pulses for coherent signal detection. The SNR

at the receiver is estimated by the energy detector [93] in the second processing

unit.

4.2.2 System Specifications

The sensing performance of the UWB pulse radar is quantified by the SNR γ at

the receiver, which is expressed in decibels as

γ = α + Pt − Pn, (4.1)

where α, Pt, and Pn are the total link gain between the transmitter and the

receiver, the transmitted UWB pulse power, and wireless channel noise power,

respectively. In this work, the UWB pulse power Pt is pre-determined (e.g., reg-

ulated by FCC to be below -41.3dBm/MHz), and the channel noise power Pn is
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assumed to be slow-changing because the UWB pulse radar is typically used for

short range sensing. In order to meet a specific SNR requirement, it is necessary

to tune the link gain α, which consists of path gain Gd, multi-path fading gain

Gf , and the processing gain Gp of the integrator in the receiver, i.e.,

α = Gd +Gf +Gp, (4.2)

where the multi-path fading gain Gf is related to the reflection of UWB pulses

in the outdoor environment. Due to the natural property of fine time resolution

in UWB pulses, Gf is relatively small as compared with the path gain Gd [94],

and thus can be considered as a constant that is independent of the distance to

the target. On the other hand, the path gain Gd is distance-dependent, which is

determined by

Gd(d) = G0 − 10n log10(
d

d0

), (4.3)

where d is the signal propagation distance between the transmitter and receiver,

d0 is the reference distance, and G0 is the path gain at d0. The propagation

exponent n equals 2 in the air medium.

To improve the time resolution, the integrator in the UWB transceiver (see

Fig. 4.2) will update the detection result I times every second (e.g., update rate

I = 100Hz). Within each update period, the UWB transceiver transmits and

integrates N pulses (e.g., N = 105) to improve the SNR. As a result, the UWB
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pulse repetition frequency Rp can be expressed as

Rp = I ·N, (4.4)

where Rp represents the number of UWB pulses transmitted per second.

The processing gain Gp in (4.2) at the receiver is related to the integral of

N received UWB pulses during one update period, defined as

Gp = 10 log10(N). (4.5)

Substituting (4.2)–(4.5) into (4.1), we can recast the SNR expression as

γ = G0 − 10n log10(
d

d0

) +Gf + 10 log10(
Rp

I
) + Pt − Pn, (4.6)

where G0, Gf , Pt, and Pn can be considered as distance-independent. Thus, the

SNR in (4.6) can be further simplified as

γ = 10 log10(
Rp

I
)− 10n log10(

d

d0

) + C, (4.7)

where C = G0 + Gf + Pt − Pn. Clearly, for a given Rp, the receiver SNR γ will

increase as d reduces, i.e, when the target moves closer to the UWB transceiver.

Rearranging (4.7), we obtain

Rp = I · ( d
d0

)n10(γ−C)/10. (4.8)

In the conventional UWB pulse radar, pulse repetition frequency Rp is deter-

mined by the maximum detection range under a pre-specified SNR requirement.
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Assuming a pre-specified SNR γs, the pulse repetition frequency Rp,c of the con-

ventional UWB radar can be calculated from (4.8) as

Rp,c = I · (dmax
d0

)n10(γs−C)/10, (4.9)

where dmax represents the maximum detection range.

Note that the conventional UWB technique employs a fixed pulse repetition

frequency Rp,c based on the maximum detection range dmax without considering

the varying link condition and energy availability. When the link gain increases

due to the movement of the target within dmax, the UWB transceiver operating at

the Rp,c will consume more energy than necessary. Thus, the conventional UWB

transceiver works best when the energy supply is sufficient and stable.

4.3 Link and Energy Adaptive UWB Sensing

In this section, we develop a link and energy adaptive UWB-based sensing tech-

nique to exploit renewable energy sources. Since renewable energy sources are

non-deterministic, the proposed technique dynamically adjusts the pulse repeti-

tion frequency at the transmitter by jointly considering the link gain and available

energy to maximize the detection range and time coverage. We will first discuss

the motivation and then present the details of the proposed technique.
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4.3.1 Motivation

In natural environments, the target under the detection is unlikely to stay still,

while the pulse repetition frequency of the conventional UWB radar is determined

by the worst case scenario (i.e., the maximum detection range, see (4.9)) under a

pre-specified SNR γs requirement. As the distance d between the UWB transceiver

and the target is smaller than dmax, the receiver SNR γ in (4.7) will go above the

pre-specified γs if Rp is fixed, i.e., the UWB radar is overperforming. On the other

hand, the energy consumed by the UWB transceiver within each update period

can be expressed as

Et =
Rp(Ep + Ecirc)

I
, (4.10)

where I is the update rate and Ep denotes the energy consumption of one UWB

pulse, which includes the transmitter energy consumption in generating the pulse

and the receiver energy consumption in processing the pulse. The standby energy,

denoted by Ecirc, which generally includes the energy for waiting the pulse to

come, only accounts for a very small portion of the total energy consumption in

the UWB system (around 2% on average [84], [95]). Thus it is ignored without

affecting the results of the proposed technique. From (4.10), Et in each update

period is proportional to Rp. As a result, the UWB transceiver operating at the

fixed Rp,c for d < dmax unnecessarily consumes more energy, as the receiver SNR

is larger than the pre-specified requirement.

While not being a problem for conventional UWB sensing systems powered
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by stable energy sources, this can significantly affect the sustainable operation in

the device powered by renewable energy. As renewable energy sources are scarce,

the transceiver is expected to often operate under the limited and even insufficient

power supply. Using a fixed Rp regardless of the link gain may adversely affect

the detection range and time coverage of the UWB radar. Note that both the

detection range and time coverage are important performance metrics that are

directly associated with the energy supply. For a given SNR γs, if the pulse

repetition frequency Rp can be adaptively tuned with respect to the link gain

(primarily determined by the distance between the transceiver and the target),

large energy savings are possible. This can significantly improve the robustness

of self-sustained UWB sensing. For example, the saved energy in the above case

can be utilized later when the renewable energy level is low, or when the target

is moving away from the UWB transceiver thereby requiring a higher Rp and

thus a larger power budget. As a result, making Rp link adaptive is necessary for

self-sustained UWB sensing.

In addition to the link gain, the non-determinism inherent in most renewable

energy sources is another constraint for self-sustained UWB sensing. Consider

solar radiation as an example. The harvested energy changes with time as well

as other factors such as rain, cloud, and shadow, which introduce uncertainties

to the available energy that can be utilized by the UWB radar. If the renewable

energy (including the energy saved in the rechargeable battery) is not sufficient
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due to the variations in environmental conditions, the pulse repetition frequency

Rp may not be sustained at the desired level. Hence, it is important to develop

a scheme that can improve the detection range and time coverage of UWB-based

sensing systems by adaptively adjusting the pulse repetition frequency based on

a composite effect of link gain and renewable energy level.

4.3.2 The Proposed Technique

Based on the above observations, we propose a link and energy adaptive technique

for self-sustained UWB sensing applications. The proposed technique works as

follows.

At the beginning of the ith transceiver update period, the pulse repeti-

tion frequency Ri
p is determined by the link gain and renewable energy level.

From (4.9), if the actual distance di between the UWB sensing transceiver and

the target is smaller than dmax while the transceiver still sends pulses at the fre-

quency of Rp,c, then the receiver output SNR γi (which can be estimated by the

energy detector in Fig. 4.2) will be larger than the pre-specified γs. This situation

is reflected by the following expression,

Rp,c = I · ( di
d0

)n10(γi−C)/10

= I · (dmax
d0

)n10(γs−C)/10,

(4.11)

where di < dmax and thus γi > γs.

In this case, we can reduce the pulse repetition frequency to Ri
p so that the
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pre-specified γs is just met, i.e,

Ri
p = I · ( di

d0

)n10(γs−C)/10. (4.12)

Combining (4.11) and (4.12), we derive the pulse repetition frequency Ri
p

for the ith update period as

Ri
p = Rp,c10(γs−γi)/10, (4.13)

where Ri
p is related with the actual SNR γi, which is a function of the distance

between the target and UWB transceiver. As the target moves, the proposed

technique will adjust the pulse repetition frequency Ri
p accordingly at runtime to

save energy.

In (4.13), to determine the pulse repetition frequency Ri
p, we need to know

the maximum pulse repetition frequency Rp,c, which is a function of the maximum

detection range dmax under the pre-specified SNR requirement (see (4.9)). Note

that the detection range is not a constant but changes with the available harvested

energy. Thus, it is reasonable to consider the detection range as a random variable

because renewable energy sources are usually modeled in a statistical way.

To find out the dmax, we assume that the renewable energy level is estimated

by the PMU in Fig. 4.1 at the frequency of 1/Ts (e.g., the time slot Ts = 0.5 hour

for solar energy). Ideally, the UWB transceiver should fully utilize the harvested

energy and the energy stored in the rechargeable battery during every time slot;
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e.g., for the jth time slot, we have

Ej
h + Ej

b =
k=M−1∑
k=0

Ek
t

=

∑k=M−1
k=0 Ek

t

M
·M

= Ēt ·M,

(4.14)

where M = I ·Ts is the number of update periods during each time slot Ts, and Ēt

is the average energy consumption of the UWB transceiver in each update period,

i.e., the average value of Et in (4.10). Substituting the average value of Et in

(4.10) into (4.14), we obtain

Ej
h + Ej

b = R̄p(Ep + Ecirc)Ts, (4.15)

where R̄p is the average pulse repetition frequency in each time slot. Consider

that the object moves randomly in the range of di ∈ [0, dmax], then

R̄p =

∫ dmax

0

fdi ·Ri
p · d(di), (4.16)

where Ri
p is a function of di, as expressed in (4.12), and fdi is the probability

density function (PDF) of di, which is the distance between the UWB transceiver

and the target during each update period. Note that the object moving beyond

dmax is undetectable; thus there is no need to determine the pulse repetition

frequency for this case. This condition, however, will be relaxed in the next

subsection when we deal with some practical design issues.

To illustrate with a simple example, we consider the commonly used ran-

dom walk model for the object movement. This model has been widely used in



96

mobile ad-hoc networks [96,97] to accurately reflect the statistical characteristics

of moving objects in real situations. It was shown [96] that if the position and

moving direction of the object is uniform at the beginning of the detection, then

the position of the object will continue to follow the uniform distribution. Thus,

the PDF of di is fdi = 1/dmax. Substituting this into (4.16), the average pulse

repetition frequency R̄p can be obtained as

R̄p =

∫ dmax

0

1

dmax
·Ri

p · d(di)

=
I

n+ 1
·
(
dmax
d0

)n
· 10(γs−C)/10.

(4.17)

Combining (4.15) and (4.17), the maximum detection range dmax can be

obtained as

dmax =

{
(Ej

h + Ej
b )(n+ 1)

IRp(Ep + Ecirc)Ts10(γs−C)/10

} 1
n

· d0. (4.18)

From (4.18), a higher renewable energy level enables a larger detection range.

Rearranging (4.18), (4.11), and (4.13), the pulse repetition frequency Ri
p in the

ith update period can be expressed as

Ri
p =

(Ej
h + Ej

b )(n+ 1)

Rp(Ep + Ecirc) · Ts
10(γs−γi)/10, (4.19)

where we can tune the pulse repetition frequency Ri
p according to the link gain γi

and the available energy level Ej
h + Ej

b at runtime.

Note that while the above discussion is based on the random walk model,

the proposed technique is a general technique that does not depend upon any

specific model.
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4.3.3 Consideration of Practical Issues

Note that (4.19) is derived based on the estimated renewable energy at the be-

ginning of the time slot. Since the renewable energy is non-deterministic, it is

possible that the actual available energy is different from the estimated value.

Thus, the calculated Rp may be occasionally larger than that the UWB radar

can be actually operated. This happens when the harvested energy is less than

the energy required by the UWB transceiver for several update periods. To deal

with this problem, we will take different approaches to meet the performance re-

quirement. Note that the energy consumption Ei
t of the UWB transceiver in the

ith update period can be determined by substituting Ri
p into (4.10). From the

PMU, the available energy Ei
a in the current update period is the sum of renew-

able energy Ei
h and the energy in the battery Ei

b. If the available energy does not

support the UWB transceiver to transmit at Ri
p, i.e., Ei

a < Ei
t , then two options

are available. The first option, similar to the conventional UWB technique, is

to simply shut down the UWB radar for the current update period. Note that

the overall performance of the proposed technique under this option is still better

than the conventional technique (see results in Section 4.5.2). The second and

more rational option is to reduce the pulse repetition frequency to accommodate

the available Ei
a, i.e.,

Ri
p =

Ei
aI

Ep + Ecirc
. (4.20)

In this case, a degradation in the output SNR is expected but the time
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coverage is maintained. This is important for many sensing applications where

full time coverage is critical while SNR performance is usually compromisable.

On the other hand, when the available energy is larger than the energy

demanded by the UWB transceiver, i.e., Ei
a ≥ Ei

t , the pulse generator will be

tuned to generate pulses at the frequency of Ri
p. Since the transceiver is now

consuming less energy, the unused harvested energy, if any, will be stored in the

rechargeable battery for future use. Note that in practice, the battery always has

a limited capacity, and thus battery overflow may occur. However, the proposed

technique is relatively insensitive to the battery capacity. This is because the

renewable energy can be more efficiently utilized thereby achieving better sensing

performance than conventional UWB techniques under the same battery capacity

(see results in Section 4.5.4).

4.4 System Design

In this section, we present the detailed design of the proposed technique. Consid-

ering the fact that energy harvesting is a non-deterministic process, it is reasonable

to divide the whole day into several time slots (e.g., 0.5 hour/slot for solar energy

harvesting) and estimate the renewable energy level at the beginning of each time

slot. To achieve link and energy adaptive UWB sensing, the Rp of the UWB radar

needs to be adjusted at each update period in the time slot.

The link and energy adaptive UWB sensing operation is summarized in
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Fig. 4.3: Architecture of PMU in the proposed UWB transceiver.

Algorithm 4. The PMU (see Fig. 4.1) will be initialized with all the necessary

information such as the pulse energy consumption Ep, time slot duration Ts, the

pre-specified SNR requirement γs, available energy (Eh+Eb), and the receiver SNR

γi from the energy detector (see Fig. 4.2). Note that many of these parameters,

such as Ep, Ts, and γs, can be considered as constants, while the available energy

(Eh+Eb) and the receiver output SNR γi will need to be updated at the beginning

of each update period. The collected parameters are used to determine the pulse

repetition frequency Rp according to (4.19) in the following update period of the

same time slot.

Compared with the conventional UWB system, the proposed technique re-

quires only a few new components such as the power management unit (PMU)

(see Fig. 4.1 ) and the energy detector (see Fig. 4.2). The function of the PMU

is to determine the proper pulse repetition frequency Ri
p at runtime based on the

link and energy information, as expressed in (4.19). As shown in Fig. 4.3, the



100

PMU consists of three components: Rp generator, Rp selector, and control signal

generator. The Rp generator determines the pulse repetition frequency at the

beginning of each update period. The available energy (Eh + Eb) of each time

slot is first summed up and then scaled by the parameters Ep, and Ts. Note that

the renewable energy Eh can be estimated accurately by employing existing low-

complexity energy prediction algorithms [16,69]. Similarly, the battery status Eb

can be detected by the battery monitoring unit [39]. The scaled (Eh +Eb) is then

multiplied with the value from the lookup table (LUT), addressed by the differ-

ence between γs and γi, to obtain the pulse repetition frequency Ri
p. The LUT

is utilized here to avoid the complicated exponential computation in (4.19). The

calculated Ri
p passes through the Rp selector, which adjusts the pulse repetition

frequency for the current update period. Note that the Work Mode signal selects

the different options when Ei
t > Ei

a as discussed in Section 4.3.3. Finally, the

control signal generator enables the pulse generator in Fig. 4.3 to generate UWB

new pulses with the selected Ri
p.

The second component, the energy detector, estimates the SNR γi at the

receiver based on the reflected pulses. The technique proposed in [93] can be em-

ployed to implement the energy detector, of which the major components include

a squarer (multiplying the pulse by itself) cascaded with an integrator (accumu-

lating the energy of multiple pulses). Note that the energy detector is activated as

long as the receiver has pulse input, while the PMU works only at the beginning
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of each update period. As a result, the energy overhead of the proposed technique

comes mainly from the energy detector.

4.5 Evaluations

In this section, we evaluate the proposed link and energy adaptive UWB sens-

ing technique. The performance results are based on Matlab simulations, and

the energy parameters are obtained from the transceiver as discussed in Section

4.4, synthesized in a 90nm CMOS process, and powered by real-world measured

solar energy as discussed in the next subsection. Practical issues, such as the

battery capacity, are investigated to assess their impacts on the performance of

the proposed technique.

4.5.1 Setup

Two commonly used solar energy models are utilized to obtain the repetitive

yet non-deterministic solar energy patterns. The first model is based on the

measured results from the National Climatic Data Center (NCDC), which provides

the environmental measurements collected from various monitoring stations across

the United States. The energy profile used in this work is obtained from its

Renewable Energy Data Source database [47]. The solar energy radiation for a

half year is shown in Fig. 4.4. This model captures both short-term (daily) and

long-term (seasonal) variations in solar radiation.
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Fig. 4.4: Solar power from the field measurements by the National Climatic

Data Center.

The second model is a statistical model [45,46] that describes the daily solar

radiation as

Ph(t) = |10 ·N(t) · cos(
t

70π
) · cos(

t

100π
)|, (4.21)

where N(t) is a normally distributed random variable with zero mean and unit

variance. Figure 4.5 shows the results generated from this model, where the solar

energy profile of ten days is depicted. Note that (4.21) describes the short-term

(daily) variations in solar energy; it does not consider the long-term seasonal pat-

terns. Both models will be applied to investigate the performance of the proposed

link and energy adaptive UWB sensing technique based on the time period of six

months. Note that the solar energy is converted by the solar panel of 10cm×10cm

with an efficiency of 20%.
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Fig. 4.5: Solar power from the statistical model.

The channel-related parameters such as the multi-path fading gain Gf =

−3dB and wireless channel noise power Pn = −75dBm are obtained from the

experimental results [98,99]. The reference distance d0 is set at 2m, the pre-

specified SNR requirement γs is 5dB, and each update period is set at 1/I =

0.01sec. The gain G0 at the reference distance d0 can be tuned by adjusting

the gain of LNA at the receiver, so that the UWB pulses are sent to meet the

pre-specified SNR. The average energy consumption of the radar per pulse is

about 42.9pJ when the pulse width is 350ps. The standby energy consumption

between two consecutive UWB pulses is around 1pJ . The position of the target is

described by the random walk model, which has been proved to accurately reflect

the statistical characteristics of moving objects in the field [96,97]. Note that the

range of object movement is not limited.
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Fig. 4.6: Comparison of detection time coverage and range coverage under the

statistical energy model.

4.5.2 Sensing Performance

The results in Fig. 4.6 are obtained by using the statistical solar energy

model (4.21). These results compare the detection time coverage as a function

of the detection range. The detection time coverage is defined as the portion of

operation time within a day, during which the UWB transceiver has sufficient

energy to support pulse transmission and collection. Note that the conventional

UWB technique transmits UWB pulses at a fixed Rp,c determined by (4.9). Both

the conventional and the proposed UWB transceivers are powered down when

the available energy is not sufficient to support the required Rp at the given γs

(i.e., the proposed technique uses the first option in Section 4.3.3 in dealing with

Ei
a < Ei

t). Note that this may cause battery overflow when the unused harvested
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Fig. 4.7: Comparison of detection time coverage and range coverage under the

measured energy results.

energy in the UWB transceiver is larger the battery capacity. Under such a cir-

cumstance, the extra energy will be lost. The battery capacity corresponding to

these results is 20%, normalized by the average harvested energy of one day, and

the battery has an average efficiency of 0.9 with 50% initial energy. The evalua-

tion on different battery capacities will be presented in Section 4.5.4. As shown,

the proposed technique significantly improves the detection range and time cov-

erage by making the pulse repetition frequency link and energy adaptive; i.e., the

detection range dmax increases from 1.5m for the conventional technique to about

3m for the proposed technique. At d = 3m, the conventional technique can only

achieve about 45% of the time coverage (i.e., being powered down during 55%

of the time due to insufficient energy). In contrast, the proposed technique can
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reach 100% of the time coverage without incurring any SNR degradation.

Figure 4.7 shows the performance comparison under the measured solar en-

ergy results [47]. It can be seen that the performance is worse than that in Fig. 4.6.

This is because the solar energy is obtained from field measurements, reflecting

both short-term (daily) and long-term (seasonal) variations in solar radiation.

Nevertheless, the proposed technique still achieves better performance than the

conventional technique. Note that the detection time coverage will drop as d in-

creases beyond dmax. However, achieving full time coverage may be needed in

certain mission-critical sensing applications. To tradeoff SNR performance with

the detection time coverage, we evaluate the second option in Section 4.3.3 in

dealing with Ei
a < Ei

t . In this case, the pulse repetition frequency is further re-

duced to accommodate the available energy in order to keep the UWB transceiver

operating at a lower SNR. In Fig. 4.8, 100% detection time coverage is maintained

subject to the SNR degradation. Note that most embedded sensing applications

can accept a moderate level of performance degradation. Thus, the proposed tech-

nique offers an effective solution that enables tradeoffs between performance and

energy availability.

4.5.3 Energy Efficiency

We synthesized the PMU using Synopsys Design Compiler in a 90nm CMOS

process, and estimated the energy consumption to be about 0.2µJ using Synopsys
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Fig. 4.8: Performance of the proposed technique to achieve 100% detection time

coverage.

PrimeTime. In the proposed technique, the update period I = 100Hz of the

PMU is fixed, which results in an energy overhead equal to 4.7% of the total

system. All the other components such as the energy detector [93] are the standard

components in a UWB sensing system. Their energy consumptions have been

included in the simulations.

Figure 4.9 compares the energy consumption within one update period un-

der the different detection ranges between the conventional technique and the

proposed technique. As the detection range increases, the energy consumption of

the conventional technique increases at a much larger rate than the proposed tech-

nique. This is because the conventional UWB technique is based on the worst-case

design, i.e., transmitting UWB pulses at a fixed Rp,c, while the proposed technique
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Fig. 4.9: Comparison of average energy consumption within one update period

(normalized by the energy consumption of the conventional technique

at d = 1m).

is more energy-efficient due to its adaptive nature.

4.5.4 Battery Capacity

We now evaluate some practical issues related to the limited battery capacity.

Figure 4.10 shows the average detection time coverage under different values of

the battery capacity (normalized by the average harvested energy of one day

using measured solar energy results [47]). The detection range is selected to be

[0, 2m]. As the battery capacity decreases (e.g., due to the battery aging effect),

the conventional technique will suffer a large degradation in the detection time

coverage. In contrast, the proposed technique is relatively less sensitive to the
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Fig. 4.10: Comparison of detection time coverage under different battery capac-

ities.

battery capacity effect. This is because our technique adaptively adjusts the

pulse repetition frequency of the UWB radar according to different energy/batter

conditions. For example, if the battery capacity reduces, our technique will use a

smaller pulse repetition frequency for continuous detection coverage, whereas the

conventional technique using a fixed pulse repetition frequency will have to stop

frequently due to the insufficient energy supply.

4.6 Conclusion

In this chapter, we propose a new link and energy adaptive UWB sensing tech-

nique to improve the sustainable operation of embedded sensing systems powered

by renewable energy sources. The proposed technique allows the UWB radar to ef-
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fectively deal with the limited and non-deterministic energy supply with negligible

overheads. The maximum detection time coverage and detection range coverage

are improved by exploiting the link information of the UWB radar and the non-

deterministic renewable energy in a coherent manner. The proposed technique

also enables good tradeoffs between detection time coverage and performance

when a moderate performance degradation is acceptable, which is the case in

most embedded sensing applications. Further work is being directed towards the

hardware implementation of the proposed technique, applications of the proposed

technique for multiple targets tracking, and extension to other applications, such

as emergency management systems.
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Algorithm 4: Link and energy adaptive operations for self-sustained
UWB sensing.

Input:
Ep (One pulse energy consumption)
Ts (Energy harvest time slot duration)
γs (SNR requirement of UWB receiver)
γi (SNR output of UWB receiver at ith update period)
Eb (Battery energy)
Eh (Harvested energy)
Output:
dmax (Maximum detection range)
Rp,c (Maximum pulse repetition frequency)
Ri
p (Adaptive pulse repetition frequency)

1 begin
2 % assuming L time slots in one day;
3 for j ← 1 to L do
4 % estimate Eh and Eb;
5 % initialize the Rp ;
6 % initialize the Rp ;
7 % determine dmax ;
8 Calculate dmax with (4.18);
9 % obtain Rp,c ;

10 Calculate Rp,c with (4.11) and transmit at the initialization;
11 % find out the following Rp ;
12 % assuming U update periods in one time slot;
13 for i← 1 to U − 1 do
14 % estimate Ei

h and Ei
b and sum up to obtain Ei

a;
15 % collect γi and calculate Ri

p Calculate Ri
p with (4.19);

16 % calculate plan-to-use energy Ei
t

17 Calculate Ei
t with (4.10);

18 if Ei
t > Ei

a then
19 Option 1: Power off transceiver;
20 Option 2: Transmit at a lower Ri

p determined by (4.20);
21 else
22 Transmit at the calculated Ri

p.
23 end
24 end
25 end
26 end



Chapter 5

Low-Power LDPC Decoder Design Exploiting Memory

Error Statistics

This chapter presents a low-power LDPC decoder design by exploiting inherent

memory error statistics due to voltage scaling. By analyzing the error sensitivity

to the decoding performance at different memory bits and memory locations in

the LDPC decoder, the scaled supply voltage is applied to memory bits with high

algorithmic error-tolerance capability to reduce the memory power consumption

while mitigating the impact on decoding performance. We also discuss how to

improve the tolerance to memory errors by increasing the number of iterations in

LDPC decoders, and investigate the energy overheads and the decoding through-

put loss due to extra iterations. Simulation results of the proposed low-power

LDPC decoder technique demonstrate that, by deliberately adjusting the scaled

supply voltage to memory bits in different memory locations, the memory power

consumption as well as the overall energy consumption of the LDPC decoder can

be significantly reduced with negligible performance loss.

112
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5.1 Introduction

Low Density Parity-Check (LDPC) codes offer excellent decoding performance and

have been adopted by several digital communication standards, such as 802.11n,

802.16e and DVB-S2. However, the high power consumption of LDPC decoders

due to the iterative decoding complexity has become the bottleneck in low-power

applications of LDPC, such as wireless mobile devices. In the last decade, various

low-power LDPC decoder techniques have been proposed at different levels of

the design hierarchy. In [100], a technique was proposed to early terminate the

computation when the convergence of the LDPC decoding is achieved. In [101],

a memory-bypassing scheme was developed to reduce the amount of accesses to

the memory that stores messages in the LDPC decoder. The layered decoding

algorithm [102] speeds up the decoding convergence from the conventional flooding

schedule, thereby reducing the power consumption.

Due to the iteration nature of LDPC decoders, a large amount of mem-

ory accesses are required. In WiMAX LDPC decoders, the memory accesses

in one LDPC decoding iteration can reach up to 32, 800 [103]. It was also re-

ported [104,105] that the power consumption of memory accesses accounts for

more than 50% of the total power consumption in LDPC decoders. Therefore,

reducing memory power consumption in LDPC decoders becomes a priority in low-

power LDPC decoder design. Recently, aggressive voltage scaling techniques [88]

have been applied as an effective way to reduce memory power consumption, espe-
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cially for image processing [106] and wireless communications [107] applications.

In [106], the low-order and high-order memory bits are powered by the scaled

voltage and nominal supply voltage, respectively. This technique can reduce the

memory power consumption with minor image quality degradation. In [107], the

supply voltage of the memory is reduced when the wireless receiver experiences

a relatively high channel gain. Note that both applications exploit the inherent

error tolerance in the system, and the memory errors due to voltage scaling can

be tolerated by the algorithm.

In LDPC decoders, some memory errors can be tolerated, while many will

propagate through the iterative decoding process and thus deteriorate the decod-

ing performance. Therefore, it is more challenging to employ voltage scaling on

the memory in LDPC decoders. In this work, we propose to exploit memory er-

ror statistics to the design of low-power LDPC decoders. By analyzing the error

sensitivity to the decoding performance at different memory bits and memory lo-

cations, the scaled supply voltage is applied to memory bits with high algorithmic

error-tolerance capability to reduce the memory power consumption while mit-

igating the impact on decoding performance. We also discuss how to improve

the tolerance to memory errors by increasing the number of iterations in LDPC

decoders, and evaluate the resulted energy overheads and the decoding through-

put loss due to extra iterations. Simulation results of the proposed low-power

LDPC decoder technique demonstrate that, by deliberately adjusting the scaled
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supply voltage to memory bits in different memory locations, the memory power

consumption as well as the overall energy consumption of the LDPC decoder can

be significantly reduced with negligible performance loss.

The rest of the chapter is organized as follows. Section 5.2 briefly discusses

the background of LDPC decoders. Section 5.3 studies the memory error statistics

and the performance impact of different memory bits and different memory loca-

tions. Then, a low-power LDPC decoder design technique is developed to exploit

memory error statistics for power reduction. Simulation results are evaluated in

Section 5.4, and the conclusion is given in Section 5.5.

5.2 Background of LDPC decoders

Figure 5.1 shows a generic LDPC decoder, which consists of multiple processing

units and the associated memory blocks. Two groups of processing units, namely

variable nodes units (VNU) and check node units (CNU), exchange messages

according to the pre-defined connections in the sparse parity-check matrix of the

corresponding LDPC code. These messages are defined as the belief measurement

of the received bit information in the form of the log-likelihood ratio (LLR).

Among all LDPC decoders, the min-sum (MS) decoder [108] is the most

commonly used due to its hardware simplicity and good performance. One full

iteration of MS decoding consists of two phases: check node update and variable

node update. In the check node update, the CNU reads all the neighbouring VNU
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Fig. 5.1: A generic architecture of the LDPC decoder.

outputs from the VNU memory, and performs the MIN operation as,

Ri
mn =

( ∏
n′∈N(m)\n

sign(Qi−1
n′m)

)
min

n′∈N(m)\n
|Qi−1

n′m|, (5.1)

where Qi
nm and Ri

mn are the message from VNU n to CNU m and the message

from CNU m to VNU n in the i-th iteration, respectively, and the sign( ) operation

returns the MSB (i.e., the sign bit) of the message. Then, the outputs of CNU

will be written back into the the associated CNU memory.

During the variable node update, the VNU will access the CNU output from

the associated CNU memory as well as the received symbols from the channel

memory, and then conduct the SUM operation as,

Qi
mn = Ln +

∑
m′∈M(n)\m

Ri
m′n, (5.2)

where Ln is the initial LLR message for VNU n from the received symbol. The

outputs of VNU will then be stored into the associated VNU memory. A decoding
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Fig. 5.2: Memory supply voltage vs error rate.

decision will be made at the end of each iteration as,

xi = sign(Ln +
∑

m∈M(n)

Ri
mn), (5.3)

where only the signs of the messages will be utilized for decoding.

The decoding will continue iteratively in the same manner until the maxi-

mum iterations are reached, or the early termination mechanism [100] is evoked

when all the errors are eradicated before the maximum iterations. It is worth

mentioning that the memory accesses required in the computations in (5.1)–(5.3)

contribute to most of the power consumption of the LDPC decoder. It was re-

ported [104,105] that memory accesses account for more than 50% of the total

power consumption in the LDPC decoder. Therefore, reducing memory power

consumption is critical for low-power LDPC decoder design.
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5.3 Low-power LDPC decoder exploiting memory error statistics

With technology scaling, on-chip memory circuits experience large process vari-

ations such as random dopant fluctuation (RDF) [109], which make memory bit

upsets easy to occur. This is particularly a problem when voltage scaling is ap-

plied as a common practice to reduce memory power consumption [110,111]. More

specifically, reducing the supply voltage in memory will lead to spatially random

uniform bit flipping. This phenomenon has been observed in [107] as shown in

Fig. 5.2. In this work, we will exploit the underlying memory error statistics to

reduce the power consumption of LDPC decoders.

5.3.1 Memory error models for LDPC decoders

As shown in Fig. 5.3, memory errors may be introduced due to lowering the

supply voltage of all memory blocks in the LDPC decoder. Memory errors in

the channel memory, VNU memory, and CNU memory can all be modeled as an

additive random variable with the error probability Perr. Note that the channel

memory will keep the received symbols unchanged until the end of the decoding

process. Thus, any bit errors in the channel memory will manifest at the same

bit locations in the received symbols. Therefore, the LDPC decoder will treat the

channel memory errors as the errors in the received symbols. On the other hand,

the contents in the VNU/CNU memory will be updated at the end of each iteration

in LDPC decoding. This makes the decoding process more exposed to the errors
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Fig. 5.3: Memory error model for LDPC decoders.

from the VNU/CNU memory. This is because VNU and CNU memory errors can

propagate, accumulate, and generate more errors under some conditions. Even

though the LDPC decoder can naturally tolerate some of these errors [112], many

errors that cannot be tolerated will propagate to the subsequent iterations.

To illustrate the error occurrence in the Min-Sum LDPC decoder, a sim-

plified message exchange process is shown in Fig. 5.4. Note that in Fig. 5.4 the

number pairs separated by a slash represent the message value without and with

memory errors, respectively. Quantized to 5 bits with a 1-bit fractional part, the

maximal and minimal message values are 7.5 and −8, respectively. Figures 5.4(a)–

(b) show the case that an memory error occurs at the 2nd LSB of the 5-bit message.

As shown, the message value from VNU3 (V3) will be erroneously changed from

7 to 6 when CNU1 (C1) reads these memory cells due to the bit flipping at the

2nd LSB. After the CNU update (see (5.1)) in Fig. 5.4(a), the messages returned

back to the neighbouring VNUs still remain the correct values. This shows the
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case that the memory errors can be completely tolerated and thus have no impact

on the following operations. Similarly, in Fig. 5.4(b), though an error occurring

in the message from C3 to V1 will propagate to the next iteration after V1 up-

date (see V1 → C2), the sign of the message does not change. So the errors in

Figs. 5.4(a)–(b) can be tolerated by the LDPC decoding algorithm and there is

not performance loss.

Figures 5.4(c)–(d) show the opposite situation. An error occurring at the

2nd MSB in the message changes the message value from 7 to 3. In Fig. 5.4(c), the

error in the message from V3 to C1 will propagate and multiply into two message

errors (see C1 → V1 and C1 → V2). This trend appears in the VNU update (see

(5.2)) in a similar way. As a result, the LDPC decoder is not immune to these

errors and significant degradation in the decoding performance is expected. In

sections 5.3.2 and 5.3.3, we will explain more details related to Fig. 5.4.

The above two different situations can be characterized statistically as fol-

lows.

• Memory error tolerance: Perr > ∆BER, where ∆BER denotes the increase

in the LDPC decoder bit-error rate (BER) due to the additional memory

errors with a probability Perr. If the induced ∆BER is much less than Perr,

the LDPC decoder can mitigate the memory error impact by itself. Note

that a smaller ∆BER indicates a better error tolerance.

• Memory error propagation: Perr < ∆BER. In many cases, the change in
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the BER is larger than Perr, indicating that memory errors are multiplied

due to the feedback of the iterative decoding process.

In view of these features, factors affecting the decoding performance will

be investigated in the following subsections, and the guideline of the proposed

low-power LDPC decoder design will be derived.

For the purpose of illustration, the LDPC decoder performance is analyzed

for the N = 1008, K = 504, dv = 3, and dc = 6 regular LDPC code, which can be

accessed online [113]. This implies that the LDPC decoder has 1008 VNUs and

504 CNUs; and each VNU (CNU) is connected with 3 (6) CNUs (VNUs). Every

LDPC message is quantized to 5 bits. Note that while the numerical results may

vary for different LDPC codes, the trend of error statistics remains more or less

the same.

5.3.2 Errors at different memory bits

As previously discussed, the outputs of the LDPC decoder are based on the sign

bits of messages. As long as memory errors do not upset the sign bits, the perfor-

mance of LDPC decoder will not be affected. Thus, it is important to protect the

most significant bits (MSB) of messages, as they are more sensitive to memory

errors. Considering that the LDPC decoder will accumulate the messages (SUM

operations in VNU) and compare the messages (MIN operations in CNU), it is

possible that a memory error occurring at the lower bit location (e.g., the least
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significant bit (LSB)) can eventually flip the MSB due to message accumulation

and comparison through multiple iterations. However, the probability of these

events is much smaller than those due to memory errors directly at the MSBs.

Therefore, reducing the supply voltage of lower bits in the memory is expected to

have a smaller impact on decoder performance. This is also illustrated in Fig. 5.4,

where the error at the higher bit location (2nd MSB) (see Figs. 5.4(c)–(d)) can

propagate and generate more errors than the error at the lower bit location (2nd

LSB) (see Figs. 5.4(a)–(b)). In other words, the LDPC decoder is more vulnerable

to memory errors at higher bit locations.

To assess the impact of supply voltage scaling on LDPC decoder perfor-

mance, we simulate the decoding process with the memory error probability

Perr = 0.0027 when the supply voltage is lowered from the nominal voltage 1V

to 0.65V . Note that Perr of single bit has an order of 10−3, thus the chance of

multiple bit errors in one LDPC symbol is negligible. More specifically, although

supply voltage scaling can be applied to the arbitrary bits in the memory, only

one bit error occurs in every LDPC symbol with the error location varying in the

symbol. The value of Perr is obtained from Fig. 5.2. The maximum iteration is

set at 10. Note that supply voltage scaling is only applied to the memory cells

corresponding to the last four bits of the message. The memory cells storing the

MSBs are always powered by the nominal supply voltage. As shown in Fig. 5.5,

lowering the supply voltage of the last 3 bits in the messages will only incur minor
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performance loss due to the inherent error tolerance; but the memory power sav-

ings can be as high as 31% compared with the decoder under the nominal supply

voltage. Note that all the comparisons in Fig. 5.5 and hereafter are performed

across different input LDPC signal qualities in terms of the signal-to-noise ra-

tio (Eb/N0) from 1.8dB to 3dB. To the first order of approximation, the overall

memory power consumption can be expressed by

Pmem = P (VL)× bits(VL) + P (VH)× bits(VH), (5.4)

where P (VL) and P (VH), obtained from Fig. 5.2, denote the power consumption

under the scaled supply voltage and the nominal supply voltage, respectively;

bits(VL) and bits(VH) are the number of memory bits with the scaled supply

voltage and the nominal supply voltage, respectively. In the above example, the

decoder with the scaled supply voltage consumes about 69% of the memory power

under the nominal supply voltage. Furthermore, when the scaled supply voltage is

applied to the last 4 bits, the memory power savings will increase to 42%; however,

this also induces about 0.1dB performance loss due to memory error propagation.

5.3.3 Errors at different memory locations

During the LDPC iterative decoding process, the CNU and VNU demonstrate

different characteristics in terms of error tolerance and propagation. Compared

with the MIN operation (see (5.1)) in CNU, the SUM operation (see (5.2)) in VNU

is more sensitive to memory errors because an error in the operands of the SUM
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operation can easily propagate to the MSBs of the output messages, which are used

to determine the final codeword (see (5.3)). The sign change (MSB bit-flipping)

in the message will deteriorate the LDPC decoder performance. Therefore, the

errors occurring at the CNU memory, which stores the operands for VNU update,

can potentially cause larger performance loss than the errors in the VNU memory.

This is also shown in Figs. 5.4(d), where the message error (7 is upset to 3) after

the VNU update changes the sign bit of the output message (2 becomes −2).

Figure 5.6 further compares the performance impact of errors at different

memory locations. The sizes of VNU memory, CNU memory, and channel mem-

ory are 1008×3×5 bits, 504×6×5 bits, 1008×5 bits, respectively. The simulation

is based on the memory error probability Perr = 0.0027 and the maximum itera-

tions being 10. Memory errors are assumed to occur at the last 4 bits in the 5-bit

messages. As shown, errors occurring uniformly at all memory locations (CNU

memory, VNU memory, and channel memory) cause the largest performance loss,

among which the CNU memory errors are the biggest contributor to the perfor-

mance loss. The overall memory power consumption without any performance

loss, e.g., scaling the supply voltage of the last 4 bits of the messages in the VNU

memory and channel memory from 1V to 0.65V , reduces to 76% of the memory

power under the nominal supply voltage.

The fact that different memory bits and locations have different error char-

acteristics in the LDPC decoder motivates us to consider applying voltage scaling
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in accordance with memory error sensitivity. In Fig. 5.6, the LDPC decoder with

the last 2 bits at the CNU memory and last 4 bits at the VNU/channel memory

subject to voltage scaling induced errors can maintain the BER performance very

well. The memory power consumption are then obtained as,

Pmem =
3∑
i=1

(
P (VL)× bitsi(VL) + P (VH)× bitsi(VH)

)
, (5.5)

where bitsi(VL) and bitsi(VH) denote the number of memory bits under the scaled

voltage and nominal voltage, and i ranging from 1 to 3 represents CNU memory,

VNU memory, and channel memory in the LDPC decoder, respectively. According

to (5.5), the LDPC decoder in this case only consumes about 67.3% of the total

memory power consumption under the nominal supply voltage.

5.3.4 Reducing memory error impact by increasing iterations

The performance of the LDPC decoder can benefit from increasing the number

of iterations. This can be applied to mitigate the performance loss due to scaling

memory supply voltage. In Fig. 5.7, the LDPC decoder with a maximum iteration

number of 11 can mitigate the memory errors, particularly for the received symbols

with high Eb/N0 (e.g., 3 dB), where all the memory errors, including those from

the CNU memory, can be completely corrected. Further increase of iteration

number to 12 can correct the errors from the memory as well as the errors from

the received symbols.

To mitigate the performance loss due to memory errors stemmed from supply
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voltage scaling, one can increase the number of iterations at the cost of decoder

throughput and some energy overhead. Thus, an optimal LPDC decoder design

should ensure that the power savings obtained from memory voltage scaling can

easily offset the energy overhead due to increased iterations. To evaluate the

total energy consumption of the LDPC decoder, assume that the total energy

consumption of the LDPC decoder under the nominal voltage and the scaled

voltage is Etotal and Enew
total, then

Etotal = (Pmem + Plogic)×Niter, (5.6)

and

Enew
total = (P new

mem + Plogic)× (Niter + ∆Niter), (5.7)

where Pmem, Plogic and Niter are the memory power consumption under the nom-

inal supply voltage, logic core power consumption, and the average number of

iterations; P new
mem and ∆Niter are the memory power consumption under the scaled

supply voltage and the increased iterations. Note that P new
mem can be determined

by (5.5), and Niter and ∆Niter are obtained from Fig. 5.8.

5.3.5 Summary of the proposed technique

To exploit the above memory error statistics, the proposed low-power LDPC de-

coder design involves finding the solution that enables the minimal energy con-

sumption Enew
total as expressed in (5.7) under a given set of performance constraints

(e.g., SNR, throughput). It starts with assigning the scaled supply voltage to all
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bits except for the MSB in all memories. If performance constraints are not satis-

fied, the higher bits of the CNU memory will be powered by the nominal voltage

or an increased iteration number is adopted. This is because CNU memory errors

have a greater impact on the decoder performance, while a small increase in itera-

tions is able to correct most of the memory errors. This procedure continues until

the minimal Enew
total is achieved subject to the performance constraints. Note that

this procedure can be run off-line until the optimal bit numbers under the scaled

supply voltage in different memories are determined. Once the optimal allocation

about the scaled supply voltage is obtained, it can be stored in the lookup table

(LUT) for future use.

Note that in [106] a reconfigurable SRAM architecture was proposed that

can dynamically assign two different supply voltages on an SRAM array. The

hardware implementation of the proposed technique can leverage this SRAM ar-

chitecture. In Fig. 5.9, the modified SRAM array groups the same bits of different

words into sub array bits 0-4 for separate power supplies. The supply voltage is

selected between the nominal voltage Vnorm and the scaled voltage Vlow via the

pull-up networks. Note that as aforementioned, the MSB (Sub array bit 4) is

directly connected with Vnorm to reduce the performance impact. The selection

signals (sel0 − sel3) will be retrieved from the LUT before the normal LDPC de-

coding. Consider the fact that the estimated reconfiguration time is in the order

of nanosecond [106], and reconfiguration is only required when the LDPC input
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SNR changes, the reconfiguration impact is minimal. Also as will be shown in the

next section, the power savings of our proposed technique are noticeable, which

can easily compensate for the power overhead incurred by the extra components

(e.g., LUT and pull-up networks) in Fig. 5.9.

5.4 Simulation Results

In this section, we will evaluate the proposed low-power LDPC decoder design.

The memory error statistics is exploited by assigning the scaled supply voltage to

different memory bits as well as different memory locations of the LDPC decoder

according to their impacts on decoder performance.

The sizes of VNU memory, CNU memory, and channel memory are 1008×

3 × 5 bits, 504 × 6 × 5 bits, 1008 × 5 bits, respectively. Several configurations

of the scaled voltage in different memories are listed in Table I. Note that the

digits in the first 3 columns represent the bit numbers under the scaled supply

voltage, and the bit numbers are counted from the LSB in the message. The scaled

voltage and the nominal voltage are 0.65V and 1.0V , respectively. Memory power

consumption is 0.48 normalized by the total decoder power consumption under

the nominal voltage, based on the 6T SRAM in 65 nm proces technology [107].

The memory bit error probability Perr = 0.0027 at 0.65V based on Fig. 2. The

memory errors are modeled as a spatially uniform random variable. Note that the

memory read/write speed remains the same as supply voltage scaling is applied
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only to memory cells. Thus, cells with more delay than the maximum access time

due to the lower supply voltage will generate errors.

Table 5.1: Configuration of memory bits with scaled voltage in different memo-

ries.

CNU

memory

VNU

memory

Channel

memory

Maximum

iterations

Case 0 0 0 0 10

Case 1 4 4 4 10

Case 2 2 4 4 10

Case 3 4 4 4 11

Case 4 3 4 4 11

Table II compares the performance loss ∆SNR, the increased average iter-

ations ∆Niter, normalized memory power consumption, and total LDPC energy

consumption. Note that case 0 is the baseline without memory voltage scaling,

which targets 10−3 bit-error rate. The required SNR and average iterations for

the baseline are 2.72 dB and 7.59 when the maximum number of iterations is set

as 10. Note that the memory power consumption and overall energy consumption

in Table II are determined by (5.5) and (5.7). In (5.7), Plogic = 0.5 normalized

the overall power consumption. In most LDPC decoders, Plogic is comparable to

Pmem. According to Tables I and II, Case 1 where the last 4 bits in all memories
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are powered by the scaled voltage consumes the lowest memory power as well as

overall energy. However, it will incur about 0.11dB SNR loss. Case 2 can reduce

the SNR loss with only 2 bits in CNU memory powered by the scaled voltage, but

it will introduce extra iterations, which will decrease the LDPC decoder through-

put and incur more overall energy consumption compared with Case 1. In Cases

3 and 4, maximum iterations of 11 are conducted to reduce the SNR loss. As

shown, memory power consumption can still remain unchanged, while the overall

energy consumption will rise due to the increased average iterations ∆Niter. From

these results, the proposed low-power LDPC decoder design offers a variety of

options for power-performance tradeoffs, which are essential for a wide range of

applications.

Table 5.2: Comparison of performance and power consumption for different de-

sign options.

∆SNR ∆Niter

Memory power

consumption

Overall energy

consumption

Case 0 0 0 1 1

Case 1 0.11 0 0.584 0.792

Case 2 0.02 0.06 0.673 0.843

Case 3 0.05 0.35 0.584 0.829

Case 4 -0.03 0.42 0.628 0.859
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5.5 Conclusions

In this chapter, we developed a low-power LDPC decoder design by applying

the aggressive voltage scaling technique on the memory. We discussed the error

sensitivity of different memory bits to the LDPC decoder performance, and pro-

posed to reconfigure the scaled supply voltage to the memory bits with higher

error tolerance capability to mitigate the memory error impact. We also eval-

uated the energy overhead and the decoding throughput loss due to increased

iterations in LDPC decoder. Simulation results demonstrate that the proposed

technique can significantly reduce the energy consumption of LDPC decoder with

minimal performance loss. Future work is directed towards developing an optimal

design framework incorporating the proposed technique and other memory error

mitigation methods to further improve the error tolerance and energy efficiency.
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Fig. 5.4: Illustration of memory error tolerance and error propagation in LDPC

decoders. (a) Check node update with an error at the 2nd LSB memory

bit, (b) variable node update with an error at the 2nd LSB memory

bit, (c) check node update with an error at the 2nd MSB memory bit,

and (d) variable node update with an error at the 2nd MSB memory

bit.
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Fig. 5.5: Performance comparisons for memory errors at different bit locations.
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Fig. 5.7: Impact of the number of iterations.
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Fig. 5.9: Implementation of the proposed technique.



Chapter 6

Summary

In this dissertation, we have proposed to improve the energy efficiency of the

embedded systems by jointly exploiting the properties of the power supply and the

domain-specific information in the design of the embedded systems. We identify

four power-hungry signal processing units, which are commonly employed in most

of the embedded systems, and develop the corresponding algorithms to make full

use of the energy when the power supply can not be regarded as a fixed source or

provide normal voltage to the system.

In Chapter 2, we first analyze the challenges experienced by the RF circuits

in the embedded systems under renewable energy, i.e., the time-varying wireless

channel and the non-deterministic energy harvesting processes, and then develop

an energy-adaptive modulation technique to maximize the data rate of the RF

circuits by dynamically selecting the optimal modulation schemes according to

the energy level and the channel conditions.

In Chapter 3, we investigate the non-linear relationship between signal pro-

cessing performance and the required energy, which is usually available in most

136
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signal processing systems, such as image and video signal processing. By con-

sidering this unique relationship between performance and energy consumption

and the available renewable energy, we develop a progressive performance tuning

method to allocate the energy among different harvested time slots to maximize

the system performance.

In Chapter 4, we propose a novel link and energy adaptive UWB sens-

ing technique to dynamically adjust the pulse repetition frequency in the UWB

transceiver by considering the variable link gains of the UWB radar and the un-

stable renewable energy. The proposed adaptive technique can achieve better

detection time coverage and range coverage due to the utilization of link and

energy information.

In Chapter 5, we develop a low power LDPC decoder by exploiting inherent

memory error statistics due to voltage overscaling. By analyzing the error sen-

sitivity of the LDPC decoding algorithm at different memory bits and memory

locations, we propose to apply the scaled supply voltage to memory bits with

high algorithmic error-tolerance capability to achieve the low power design with

minimal performance loss.
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