## Design of Experiments for Engineers and Scientists

Jiju Antony



۰ ۰

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

## Contents

| Preface |      |                                                         |     |
|---------|------|---------------------------------------------------------|-----|
| Ac      | know | ledgements                                              | xii |
| 1       | Intr | 1                                                       |     |
|         | 1.1  | Introduction                                            | 1   |
|         | 1.2  | Some fundamental and practical issues in                |     |
|         |      | industrial experimentation                              | 3   |
|         | 1.3  | Summary                                                 | 5   |
|         |      | rcises                                                  | 5   |
|         | Refe | erences                                                 | 5   |
| 2       | Fun  | 6                                                       |     |
|         | 2.1  | Introduction                                            | 6   |
|         | 2.2  | Basic principles of Design of Experiments               | 7   |
|         |      | 2.2.1 Randomization                                     | 8   |
|         |      | 2.2.2 Replication                                       | 9   |
|         |      | 2.2.3 Blocking                                          | 10  |
|         | 2.3  | Degrees of freedom                                      | 10  |
|         | 2.4  | Confounding                                             | 11  |
|         | 2.5  | Design resolution                                       | 12  |
|         | 2.6  | 2.6 Metrology considerations for industrial designed    |     |
|         |      | experiments                                             | 12  |
|         |      | 2.6.1 Measurement system capability                     | 13  |
|         |      | 2.6.2 Some tips for the development of a                |     |
|         |      | measurement system                                      | 14  |
|         | 2.7  | 2.7 Selection of quality characteristics for industrial |     |
|         |      | experiments                                             | 15  |
|         | Exe  | 15                                                      |     |
|         | Refe | erences                                                 | 16  |
| 3       | Und  | lerstanding key interactions in processes               | 17  |
|         | 3.1  | 17                                                      |     |
|         | 3.2  | Alternative method for calculating the two              |     |
|         |      | order interaction effect                                | 20  |
|         | 3.3  | Synergistic interaction vs antagonistic interaction     | 22  |
|         | 3.4  | Scenario 1                                              | 23  |
|         |      |                                                         |     |

-

|   | 3.5                  | Scenar    | rio 2                                                    | 25         |  |  |
|---|----------------------|-----------|----------------------------------------------------------|------------|--|--|
|   | 3.6                  | Summ      | nary                                                     | 27         |  |  |
|   | Exer                 | Exercises |                                                          |            |  |  |
|   | Refe                 | rences    |                                                          | 28         |  |  |
| 4 | A sy                 | stemat    | ic methodology for Design of Experiments                 | 29         |  |  |
|   | 4.1                  | Introd    |                                                          | 29         |  |  |
|   | 4.2                  | Barrie    | rs in the successful application of DOE                  | 29         |  |  |
|   | 4.3                  |           | ctical methodology for DOE                               | 31         |  |  |
|   |                      | 4.3.1     | Planning phase                                           | 31         |  |  |
|   |                      | 4.3.2     | Designing phase                                          | 33         |  |  |
|   |                      |           | Conducting phase                                         | 33         |  |  |
|   |                      |           | Analysing phase                                          | 34         |  |  |
|   | 4.4                  |           | tical tools of DOE                                       | 34         |  |  |
|   |                      | -         | Main effects plot                                        | 34         |  |  |
|   |                      |           | Interactions plots                                       | 35         |  |  |
|   |                      |           | Cube plots                                               | 36         |  |  |
|   |                      |           | Pareto plot of factor effects                            | 36         |  |  |
|   |                      |           | Normal Probability Plot of factor effects                | 36         |  |  |
|   |                      |           | Normal Probability Plot of residuals                     | 37         |  |  |
|   |                      | 4.4.7     | •                                                        | 38         |  |  |
|   | 4.5                  | Mode      | l building for predicting response function              | 40         |  |  |
|   | 4.6                  |           | dence interval for the mean response                     | 41         |  |  |
|   | 4.7                  | Summ      | -                                                        | 42         |  |  |
|   | Exe                  | rcises    |                                                          | 42         |  |  |
|   | Refe                 | erences   |                                                          | 43         |  |  |
| 5 | Screening designs 44 |           |                                                          |            |  |  |
| - | 5.1                  | -         | uction                                                   | 44         |  |  |
|   | 5.2                  |           | etric and non-geometric P-B designs                      | 44         |  |  |
|   | 5.3                  | Summ      |                                                          | 52         |  |  |
|   |                      | rcises    | ,                                                        | 53         |  |  |
|   | Refe                 | erences   |                                                          | 53         |  |  |
| 6 | Full                 | factor    | ial designs                                              | 54         |  |  |
| Ŷ | 6.1                  |           | luction                                                  | 54         |  |  |
|   | 6.2                  |           | ple of a $2^2$ full factorial design                     | 54         |  |  |
|   |                      | 6.2.1     | Objective 1: Determination of main/interaction           |            |  |  |
|   |                      | 0.2.1     | effects which influence mean plating thickness           | 55         |  |  |
|   |                      | 6.2.2     | Objective 2: Determination of main/interaction           | •••        |  |  |
|   |                      |           | effects which influence variability in plating thickness | 57         |  |  |
|   |                      | (0)       | Objective 4: How to achieve a target plating             | <i>~</i> · |  |  |
|   |                      | 0.2.3     |                                                          |            |  |  |
|   |                      | 6.2.3     |                                                          | 58         |  |  |
|   | 6.3                  |           | thickness of 120 units?                                  | 58<br>60   |  |  |
|   | 6.3                  |           |                                                          | 58<br>60   |  |  |

٩.

|   |            | 6.3.2   | Objective 2: To identify the significant main/        |                |
|---|------------|---------|-------------------------------------------------------|----------------|
|   |            |         | interaction effects which affect the variability in   |                |
|   |            |         | process yield                                         | 63             |
|   |            | 6.3.3   | Objective 3: What is the optimal process              |                |
|   |            |         | condition?                                            | 64             |
|   | 6.4        | Exam    | ple of a 2 <sup>4</sup> full factorial design         | 65             |
|   |            | 6.4.1   | Objective 1: Which of the main/interaction            |                |
|   |            |         | effects affect mean crack length?                     | 66             |
|   |            | 6.4.2   | Objective 2: Which of the main/interaction            |                |
|   |            |         | effects affect variability in crack length?           | 66             |
|   |            | 6.4.3   | Objective 3: What is the optimal process condition to |                |
|   |            |         | minimize mean crack length?                           | 69             |
|   | 6.5        | Summ    | ary                                                   | 70             |
|   | Exer       | rcises  |                                                       | 71             |
|   | Refe       | erences |                                                       | 72             |
|   |            |         |                                                       |                |
| 7 | Fra        | ctional | factorial designs                                     | 73             |
|   | 7.1        | Introd  | luction                                               | 73             |
|   | 7.2        |         | ruction of half-fractional factorial designs          | 73             |
|   | 7.3        | Exam    | ple of a $2^{(7-4)}$ factorial design                 | 76             |
|   | 7.4        | An ap   | plication of 2-level fractional factorial design      | 80             |
|   | 7.5        | Exam    | ple of a $2^{(5-1)}$ factorial design                 | 85             |
|   |            | 7.5.1   | Objective 1: To identify the factors which            |                |
|   |            |         | influence the mean free height                        | 86             |
|   |            | 7.5.2   |                                                       |                |
|   |            |         | variability in the free height of leaf springs        | 87             |
|   |            | 7.5.3   | 1 0                                                   |                |
|   |            |         | minimize variability in free height?                  | 89             |
|   | 7.6        | Summ    | nary                                                  | 90<br>90<br>90 |
|   | Exercises  |         |                                                       |                |
|   | References |         |                                                       |                |
|   |            |         |                                                       |                |
| 8 |            |         | ıl and practical tips for making your industrial      |                |
|   | -          |         | ts successful                                         | 93             |
|   | 8.1        |         | luction                                               | 93             |
|   |            | 8.1.1   | 0 1                                                   | 94             |
|   |            | 8.1.2   | <b>· · ·</b>                                          | 94             |
|   |            | 8.1.3   | Conduct exhaustive and detailed brainstorming         |                |
|   |            |         | session                                               | 95             |
|   |            | 8.1.4   | Teamwork and selection of a team for                  |                |
|   |            |         | experimentation                                       | 96             |
|   |            | 8.1.5   | Select the continuous measurable quality              |                |
|   |            |         | characteristics or responses for the experiment       | 96             |
|   |            | 8.1.6   | Choice of an appropriate Experimental Design          | 98             |
|   |            | 8.1.7   | •                                                     | 98             |
|   |            | 8.1.8   | Randomize the experimental trial order                | 99             |

## x Contents

9

|      | 8.1.9                     | Replicate to dampen the effect of noise or          |     |
|------|---------------------------|-----------------------------------------------------|-----|
|      |                           | uncontrolled variation                              | 99  |
|      | 8.1.10                    | Improve the efficiency of experimentation           |     |
|      |                           | using blocking strategy                             | 101 |
|      | 8.1.11                    | Understanding the confounding pattern of            |     |
|      |                           | factor effects                                      | 101 |
|      | 8.1.12                    | Perform confirmatory runs/experiments               | 102 |
| 8.2  | Summa                     | ary                                                 | 102 |
| Exer | cises                     |                                                     | 103 |
| Refe | rences                    |                                                     | 103 |
| Case | e studies                 |                                                     | 105 |
| 9.1  | Introdu                   | -                                                   | 105 |
|      | Case st                   |                                                     | 105 |
|      | 9.2.1                     | Optimization of a radiographic quality welding      | 100 |
|      | <i>,</i>                  | of cast iron                                        | 105 |
|      | 9.2.2                     | Reducing process variability using Experimental     | 100 |
|      | 2.2.2                     | Design technique objective of the experiment        | 110 |
|      | 9.2.3                     | Slashing scrap rate using fractional factorial      |     |
|      | 21210                     | experiments                                         | 114 |
|      | 9.2.4                     | Optimizing the time of flight of a paper helicopter | 117 |
|      | 9.2.5                     | Optimizing a wire bonding process using             | 117 |
|      | 7.2.5                     | Design of Experiments                               | 123 |
|      | 9.2.6                     | Training for Design of Experiments using            | 145 |
|      | <i>J.</i> 2.0             | a catapult                                          | 127 |
|      | 9.2.7                     | Optimization of core tube life using designed       | 121 |
|      | <i></i>                   | experiments                                         | 132 |
|      | 9.2.8                     | Optimization of a spot welding process using        | 152 |
|      | 9.2.0                     | Design of Experiments                               | 141 |
| 9.3  | Summe                     | •                                                   | 141 |
|      | 0.3 Summary<br>References |                                                     |     |
| Rele | achees                    |                                                     | 148 |
| Inde | x                         |                                                     | 149 |
|      |                           |                                                     |     |

۰,