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Abstract

An investigator who plans to conduct experiments with multiple independent variables must decide

whether to use a complete or reduced factorial design. This article advocates a resource management

perspective on making this decision, in which the investigator seeks a strategic balance between

service to scientific objectives and economy. Considerations in making design decisions include

whether research questions are framed as main effects or simple effects; whether and which effects

are aliased (confounded) in a particular design; the number of experimental conditions that must be

implemented in a particular design and the number of experimental subjects the design requires to

maintain the desired level of statistical power; and the costs associated with implementing

experimental conditions and obtaining experimental subjects. In this article four design options are

compared: complete factorial, individual experiments, single factor, and fractional factorial designs.

Complete and fractional factorial designs and single factor designs are generally more economical

than conducting individual experiments on each factor. Although relatively unfamiliar to behavioral

scientists, fractional factorial designs merit serious consideration because of their economy and

versatility.
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Suppose a scientist is interested in investigating the effects of k independent variables, where

k > 1. For example, Bolger and Amarel (2007) investigated the hypothesis that the effect of

peer social support on performance stress can be positive or negative, depending on whether

the way the peer social support is given enhances or degrades self-efficacy. Their experiment

could be characterized as involving four factors: support offered (yes or no), nature of support

(visible or indirect), message from a confederate that recipient of support is unable to handle
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the task alone (yes or no), and message that a confederate would be unable to handle the task

(yes or no).

One design possibility when k > 1 independent variables are to be examined is a factorial

experiment. In factorial research designs, experimental conditions are formed by

systematically varying the levels of two or more independent variables, or factors. For example,

in the classic two × two factorial design there are two factors each with two levels. The two

factors are crossed, that is, all combinations of levels of the two factors are formed, to create

a design with four experimental conditions. More generally, factorial designs can include k ≥
2 factors and can incorporate two or more levels per factor. With four two-level variables, such

as in Bolger and Amarel (2007), a complete factorial experiment would involve 2 × 2 × 2 × 2

= 16 experimental conditions. One advantage of factorial designs, as compared to simpler

experiments that manipulate only a single factor at a time, is the ability to examine interactions

between factors. A second advantage of factorial designs is their efficiency with respect to use

of experimental subjects; factorial designs require fewer experimental subjects than

comparable alternative designs to maintain the same level of statistical power (e.g. Wu &

Hamada, 2000).

However, a complete factorial experiment is not always an option. In some cases there may be

combinations of levels of the factors that would create a nonsensical, toxic, logistically

impractical or otherwise undesirable experimental condition. For example, Bolger and Amarel

(2007) could not have conducted a complete factorial experiment because some of the

combinations of levels of the factors would have been illogical (e.g. no support offered but

support was direct). But even when all combinations of factors are reasonable, resource

limitations may make implementation of a complete factorial experiment impossible. As the

number of factors and levels of factors under consideration increases, the number of

experimental conditions that must be implemented in a complete factorial design increases

rapidly. The accompanying logistical difficulty and expense may exceed available resources,

prompting investigators to seek alternative experimental designs that require fewer

experimental conditions.

In this article the term “reduced design” will be used to refer generally to any design approach

that involves experimental manipulation of all k independent variables, but includes fewer

experimental conditions than a complete factorial design with the same k variables. Reduced

designs are often necessary to make simultaneous investigation of multiple independent

variables feasible. However, any removal of experimental conditions to form a reduced design

has important scientific consequences. The number of effects that can be estimated in an

experimental design is limited to one fewer than the number of experimental conditions

represented in the design. Therefore, when experimental conditions are removed from a design

some effects are combined so that their sum only, not the individual effects, can be estimated.

Another way to think of this is that two or more interpretational labels (e.g. main effect of

Factor A; interaction between Factor A and Factor B) can be applied to the same source of

variation. This phenomenon is known as aliasing (sometimes referred to as confounding, or

as collinearity in the regression framework).

Any investigator who wants or needs to examine multiple independent variables is faced with

deciding whether to use a complete factorial or a reduced experimental design. The best choice

is one that strikes a careful and strategic balance between service to scientific objectives and

economy. Weighing a variety of considerations to achieve such a balance, including the exact

research questions of interest, the potential impact of aliasing on interpretation of results, and

the costs associated with each design option, is the topic of this article.

Collins et al. Page 2

Psychol Methods. Author manuscript; available in PMC 2010 September 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Objectives of this article

This article has two objectives. The first objective is to propose that a resource management

perspective may be helpful to investigators who are choosing a design for an experiment that

will involve several independent variables. The resource management perspective assumes that

an experiment is motivated by a finite set of research questions and that these questions can

be prioritized for decision making purposes. Then according to this perspective the preferred

experimental design is the one that, in relation to the resource requirements of the design, offers

the greatest potential to advance the scientific agenda motivating the experiment. Four general

design alternatives will be considered from a resource management perspective: complete

factorial designs and three types of reduced designs. One of the reduced designs, the fractional

factorial, is used routinely in engineering but currently unfamiliar to many social and behavioral

scientists. In our view fractional factorial designs merit consideration by social and behavioral

scientists alongside other more commonly used reduced designs. Accordingly, a second

objective of this article is to offer a brief introductory tutorial on fractional factorial designs,

in the hope of assisting investigators who wish to evaluate whether these designs might be of

use in their research.

Overview of four design alternatives

Throughout this article, it is assumed that an investigator is interested in examining the effects

of k independent variables, each of which could correspond to a factor in a factorial experiment.

It is not necessarily a foregone conclusion that the k independent variables must be examined

in a single experiment; they may represent a set of questions comprising a program of research,

or a set of features or components comprising a behavioral intervention program. It is assumed

that the k factors can be independently manipulated, and that no possible combination of the

factors would create an experimental condition that cannot or should not be implemented. For

the sake of simplicity, it is also assumed that each of the k factors has only two levels, such as

On/Off or Yes/No. Factorial and fractional factorial designs can be done with factors having

any number of levels, but two-level factors allow the most straightforward interpretation and

largest statistical power, especially for interactions.

In this section the four different design alternatives considered in this article are introduced

using a hypothetical example based on the following scenario: An investigator is to conduct a

study on anxiety related to public speaking (this example is modeled very loosely on Bolger

and Amarel, 2007). There are three factors of theoretical interest to the investigator, each with

two levels, On or Off. The factors are whether or not (1) the subject is allowed to choose a

topic for the presentation (choose); (2) the subject is taught a deep-breathing relaxation exercise

to perform just before giving the presentation (breath); and (3) the subject is provided with

extra time to prepare for the speech (prep). This small hypothetical example will be useful in

illustrating some initial key points of comparison among the design alternatives. Later in the

article the hypothetical example will be extended to include more factors so that some

additional points can be illustrated.

The first alternative considered here is a complete factorial design. The remaining alternatives

considered are reduced designs, each of which can be viewed as a subset of the complete

factorial.

Complete factorial designs

Factorial designs may be denoted using the exponential notation 2k, which compactly expresses

that k factors with 2 levels each are crossed, resulting in 2k experimental conditions (sometimes

called “cells”). Each experimental condition represents a unique combination of levels of the

k factors. In the hypothetical example a complete factorial design would be expressed as 23 (or
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equivalently, 2 × 2 × 2) and would involve eight experimental conditions. Table 1 shows these

eight experimental conditions along with effect coding. The design enables estimation of seven

effects: three main effects, three two-way interactions, and a single three-way interaction.

Table 1 illustrates one feature of complete factorial designs in which an equal number of

subjects is assigned to each experimental condition, namely the balance property. A design is

balanced if each level of each factor appears in the design the same number of times and is

assigned to the same number of subjects (Hays, 1994;Wu & Hamada, 2000). In a balanced

design the main effects and interactions are orthogonal, so that each one is estimated and tested

as if it were the only one under consideration, with very little loss of efficiency due to the

presence of other factors1. (Effects may still be orthogonal even in unbalanced designs if certain

proportionality conditions are met; see e.g. Hays, 1994, p. 475.) The balance property is evident

in Table 1; each level of each factor appears exactly four times.

Individual experiments

The individual experiments approach requires conducting a two-condition experiment for each

independent variable, that is, k separate experiments. In the example this would require

conducting three different experiments, involving a total of six experimental conditions. In one

experiment, a condition in which subjects are allowed to choose the topic of the presentation

would be compared to one in which subjects are assigned a topic; in a second experiment, a

condition in which subjects are taught a relaxation exercise would be compared to one in which

no relaxation exercise is taught; in a third experiment, a condition in which subjects are given

ample time to prepare in advance would be compared to one in which subjects are given little

preparation time. The subset of experimental conditions from the complete three-factor

factorial experiment in Table 1 that would be implemented in the individual experiments

approach is depicted in the first section of Table 2. This design, considered as a whole, is not

balanced. Each of the independent variables is set to On once and set to Off five times.

Single factor designs in which the factor has many levels

In the single factor approach a single experiment is performed in which various combinations

of levels of the independent variables are selected to form one nominal or ordinal categorical

factor with several qualitatively distinct levels. West, Aiken, and Todd (1993; West & Aiken,

1997) reviewed three variations of the single factor design that are used frequently, particularly

in research on behavioral interventions for prevention and treatment. In the comparative

treatment design there are k+1 experimental conditions: k experimental conditions in which

one independent variable is set to On and all the others to Off, plus a single control condition

in which all independent variables are set to Off. This approach is similar to conducting separate

individual experiments, except that a shared control group is used for all factors. The second

section of Table 2 shows the four experimental conditions that would comprise a comparative

treatment design in the hypothetical example. These are the same experimental conditions that

appear in the individual experiments design.

By contrast, for the constructive treatment design an intervention is “built” by combining

successive features. For example, an investigator interested in developing a treatment to reduce

anxiety might want to assess the effect of allowing the subject to choose a topic, then the

incremental effect of also teaching a relaxation exercise, then the incremental effect of allowing

extra preparation time. The third section of Table 2 shows the subset of experimental conditions

from the complete factorial shown in Table 1 that would be implemented in a three-factor

constructive treatment experiment in which first choose is added, followed by breath and then

1Assuming orthogonality is maintained, adding a factor to a factorial experiment does not change estimates of main effects and
interactions. However, the addition of a factor does change estimates of error terms, so hypothesis tests can be slightly different.
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prep. The constructive treatment strategy typically has k+1 experimental conditions but may

have fewer or more. The dismantling design, in which the objective is to determine the effect

of removing one or more features of an intervention, and other single factor designs are based

on similar logic.

Table 2 shows that both the comparative treatment design and the constructive treatment design

are unbalanced. In the comparative treatment design, each factor is set to On once and set to

Off three times. In the constructive treatment design, choose is set to Off once and to On three

times, and prep is set to On once and to Off three times. Other single factor designs are similarly

unbalanced.

Fractional factorial designs

The fourth alternative considered in this article is to use a design from the family of fractional

factorial designs. A fractional factorial design involves a special, carefully chosen subset, or

fraction, of the experimental conditions in a complete factorial design. The bottom section of

Table 2 shows a subset of experimental conditions from the complete three-factor factorial

design that constitute a fractional factorial design. The experimental conditions in fractional

factorial designs are selected so as to preserve the balance property.2 As Table 2 shows, each

level of each factor appears in the design exactly twice.

Fractional factorial designs are represented using an exponential notation based on that used

for complete factorial designs. The fractional factorial design in Table 2 would be expressed

as 23−1. This notation contains the following information: (a) the corresponding complete

factorial design is 23, in other words involves 3 factors, each of which has 2 levels, for a total

of 8 experimental conditions; (b) the fractional factorial design involves 23−1 = 22 = 4

experimental conditions; and (c) this fractional factorial design is a 2−1 = 1/2 fraction of the

complete factorial. Many fractional factorial designs, particularly those with many factors,

involve even smaller fractions of the complete factorial.

Aliasing in the individual experiments, single factor, and fractional factorial designs

It was mentioned above that reduced designs involve aliasing of effects. A design's aliasing is

evident in its effect coding. When effects are aliased their effect coding is perfectly correlated

(whether positively or negatively). Aliasing in the individual experiments approach can be seen

by examining the first section of Table 2. In the experiment examining choose, the effect codes

are identical for the main effect of choose and the choose × breath × prep interaction (−1 for

experimental condition 1 and 1 for experimental condition 4), and these are perfectly negatively

correlated with the effect codes for the choose × breath and choose × prep interactions. Thus

these effects are aliased; the effect estimated by this experiment is an aggregate of the main

effect of choose and all of the interactions involving choose. (The codes for the remaining

effects, namely the main effects of breath and prep and the breath × prep interaction, are

constants in this design.) Similarly, in the experiment investigating breath, the main effect

and all of the interactions involving breath are aliased, and in the experiment investigating

prep, the main effect and all of the interactions involving prep are aliased.

The aliasing in single factor experiments using the comparative treatment strategy is identical

to the aliasing in the individual experiments approach. As shown in the second section of Table

2, for the hypothetical example a comparative treatment experiment would involve

experimental conditions 1, 2, 3, and 5, which are the same conditions as in the individual

2In the social and behavioral sciences literature the term “fractional factorial” has sometimes been applied to reduced designs that do not
maintain the balance property, such as the individual experiments and single factor designs. In this article we maintain the convention
established in the statistics literature (e.g. Wu & Hamada, 2000) of reserving the term “fractional factorial” for the subset of reduced
designs that maintain the balance property.
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experiments approach. The effects of each factor are assessed by means of the same

comparisons; for example, the effect of choose would be assessed by comparing experimental

conditions 1 and 5. The primary difference is that only one control condition would be required

in the single factor experiment, whereas in the individual experiments approach three control

conditions are required.

The constructive treatment strategy is comprised of a different subset of experimental

conditions from the full factorial than the individual experiments and comparative treatment

approaches. Nevertheless, the aliasing is similar. As the third section of Table 2 shows, the

effect of adding choose would be assessed by comparing experimental conditions 1 and 5, so

the aliasing would be the same as that in the individual experiment investigating choose

discussed above. The cumulative effect of adding breath would be assessed by comparing

experimental conditions 5 and 7. The effect codes in these two experimental conditions for the

main effect of breath are perfectly (positively or negatively) correlated with those for all of

the interactions involving breath, although here the effect codes for the interactions are

reversed as compared to the individual experiments and comparative treatment approaches.

The same reasoning applies to the effect of prep, which is assessed by comparing experimental

conditions 7 and 8.

As the fourth section of Table 2 illustrates, the aliasing in fractional factorial designs is different

from the aliasing seen in the individual experiments and single factor approaches. In this

fractional factorial design the effect of choose is estimated by comparing the mean of

experimental conditions 2 and 3 with the mean of experimental conditions 5 and 8; the effect

of breath is estimated by comparing the mean of experimental conditions 3 and 8 to the mean

of experimental conditions 2 and 5; and the effect of prep is estimated by comparing the mean

of experimental conditions 2 and 8 to the mean of experimental conditions 3 and 5. The effect

codes show that the main effect of choose and the breath × prep interaction are aliased. The

remaining effects are either orthogonal to the aliased effect or constant. Similarly, the main

effect of breath and the choose × prep interaction are aliased, and the main effect of prep and

the choose × breath interaction are aliased.

Note that each source of variation in this fractional factorial design has two aliases (e.g.

choose and the breath × prep interaction form a single source of variation). This is

characteristic of fractional factorial designs that, like this one, are 1/2 fractions. The

denominator of the fraction always reveals how many aliases each source of variation has.

Thus in a fractional factorial design that is a 1/4 fraction each source of variation has four

aliases; in a fractional factorial design that is a 1/8 fraction each source of variation has eight

aliases; and so on.

Aliasing and scientific questions

An investigator who is interested in using a reduced design to estimate the effects of k factors

faces several considerations. These include: whether the research questions of primary

scientific interest concern simple effects or main effects; whether the design's aliasing means

that assumptions must be made in order to address the research questions; and how to use

aliasing strategically. Each of these considerations is reviewed in this section.

Simple effects and main effects

In this article we have been discussing a situation in which a finite set of k independent variables

is under consideration and the individual effects of each of the k variables are of interest.

However, the question “Does a particular factor have an effect?” is incomplete; different

research questions may involve different types of effects. Let us examine three different
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research questions concerning the effect of breath in the hypothetical example, and see how

they correspond to effects in a factorial design.

Question 1: “Does the factor breath have an effect on the outcome variable when the factors

choose and prep are set to Off?”

Question 2: “Will an intervention consisting of only the factors choose and prep set to On be

improved if the factor breath is changed from Off to On?”

Question 3: “Does the factor breath have an effect on the outcome variable on average across

levels of the other factors?”

In the language of experimental design, Questions 1 and 2 concern simple effects, and Question

3 concerns a main effect. The distinction between simple effects and main effects is subtle but

important. A simple effect of a factor is an effect at a particular combination of levels of the

remaining factors. There are as many simple effects for each factor as there are combinations

of levels of the remaining factors. For example, the simple effect relevant to Question 1 is the

conditional effect of changing breath from Off to On, assuming both prep and choose are set

to Off. The simple effect relevant to Question 2 is the conditional effect of changing breath

from Off to On, assuming both other factors are set to On. Thus although Questions 1 and 2

both are concerned with simple effects of breath, they are concerned with different simple

effects.

A significant main effect for a factor is an effect on average across all combinations of

levels of the other factors in the experiment. For example, Question 3 is concerned with the

main effect of breath, that is, the effect of breath averaged across all combinations of levels

of prep and choose. Given a particular set of k factors, there is only one main effect

corresponding to each factor.

Simple effects and main effects are not interchangeable, unless we assume that all interactions

are negligible. Thus, neither necessarily tells anything about the other. A positive main effect

does not imply that all of the simple effects are nonzero or even nonnegative. It is even possible

(due to a large interaction) for one simple effect to be positive, another simple effect for the

same factor to be negative, and the main (averaged) effect to be zero. In the public speaking

example, the answer to Question 2 does not imply anything about whether an intervention

consisting of breath alone would be effective, or whether there would be an incremental effect

of breath if it were added to an intervention initially consisting of choose alone.

Research questions, aliasing, and assumptions

Suppose an investigator is interested in addressing Question 1 above. The answer to this

research question depends only upon the particular simple effect of breath when both of the

other factors are set to Off. The research question does not ask whether any observed

differences are attributable to the main effect of breath, the breath × prep interaction, the

breath × choose interaction, the breath × prep × choose interaction, or some combination of

the aliased effects. The answer to Question 2, which also concerns a simple effect, depends

only upon whether changing breath from Off to On has an effect on the outcome variable

when prep and choose are set to On; it does not depend on establishing whether any other

effects in the model are present or absent. As Kirk (1968) pointed out, simple effects “represent

a partition of a treatment sum of squares plus an interaction sum of squares” (p. 380). Thus,

although there is aliasing in the individual experiments and comparative treatment strategies,

these designs are appropriate for addressing Question 1, because the aliased effects correspond

exactly to the effect of interest in Question 1. Similarly, although there is aliasing in the

constructive treatment strategy, this design is appropriate for addressing Question 2. In other
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words, although in our view it is important to be aware of aliasing whenever considering a

reduced experimental design, the aliasing ultimately is of little consequence if the aliased effect

as a package is of primary scientific interest.

The individual experiments and comparative treatment strategies would not be appropriate for

addressing Question 2. The constructive treatment strategy could address Question 1, but only

if breath was the first factor set high, with the others low, in the first non-control group. The

conclusions drawn from these experiments would be limited to simple effects and cannot be

extended to main effects or interactions.

The situation is different if a reduced design is to be used to estimate main effects. Suppose an

investigator is interested in addressing Question 3, that is, is interested in the main effect of

breath. As was discussed above, in the individual experiments, comparative treatment, and

constructive treatment approaches the main effect of breath is aliased with all the interactions

involving breath. It is appropriate to use these designs to draw conclusions about the main

effect of breath only if it is reasonable to assume that all of the interactions involving

breath up to the k-way interaction are negligible. Then any effect of breath observed using

an individual experiment or a single factor design is attributable to the main effect.

The difference in the aliasing structure of fractional factorial designs as compared to individual

experiments and single factor designs becomes particularly salient when the primary scientific

questions that motivate an experiment require estimating main effects as opposed to simple

effects, and when larger numbers of factors are involved. However, the small three-factor

fractional factorial experiment in Table 2 can be used to demonstrate the logic behind the choice

of a particular fractional factorial design. In the design in Table 2 the main effect of breath is

aliased with one two-way interaction: prep × choose. If it is reasonable to assume that this

two-way interaction is negligible, then it is appropriate to use this fractional factorial design

to estimate the main effect of breath. In general, investigators considering using a fractional

factorial design seek a design in which main effects and scientifically important interactions

are aliased only with effects that can be assumed to be negligible.

Many fractional factorial designs in which there are four or more factors require many fewer

and much weaker assumptions for estimation of main effects than those required by the small

hypothetical example used here. For these larger problems it is possible to identify a fractional

factorial design that uses fewer experimental conditions than the complete design but in which

main effects and also two-way interaction are aliased only with interactions involving three or

more factors. Many of these designs also enable identification of some three-way interactions

that are to be aliased only with interactions involving four or more factors. In general, the

appeal of fractional factorial designs increases as the number of factors becomes larger. By

contrast, individual experiments and single factor designs always alias main effects and all

interactions from the two-way up to the k-way, no matter how many factors are involved.

Strategic aliasing and designating negligible effects

A useful starting point for choosing a reduced design is sorting all of the effects in the complete

factorial into three categories: (1) effects that are of primary scientific interest and therefore

are to be estimated; (2) effects that are expected to be zero or negligible; and (3) effects that

are not of primary scientific interest but may be non-negligible. Strategic aliasing involves

ensuring that effects of primary scientific interest are aliased only with negligible effects. There

may be non-negligible effects that are not of scientific interest. Resources are not to be devoted

to estimating such effects, but care must be taken not to alias them with effects of primary

scientific interest.
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Considering which, if any, effects to place in the negligible category is likely to be an

unfamiliar, and perhaps in some instances uncomfortable, process for some social and

behavioral scientists. However, the choice is critically important. On the one hand, when more

effects are designated negligible the available options will in general include designs involving

smaller numbers of experimental conditions; on the other hand, incorrectly designating effects

as negligible can threaten the validity of scientific conclusions. The best bases for making

assumptions about negligible effects are theory and prior empirical research. Yet there are few

areas in the social and behavioral sciences in which theory makes specific predictions about

higher-order interactions, and it appears that to date there has been relatively little empirical

investigation of such interactions. Given this lack of guidance, on what basis can an investigator

decide on assumptions?

A very cautious approach would be to assume that each and every interaction up to the k-way

interaction is likely to be sizeable, unless there is empirical evidence or a compelling theoretical

basis for assuming that it is negligible. This is equivalent to leaving the negligible category

empty and designating each effect either of primary scientific interest or non-negligible. There

are two strategies consistent with this perspective. One is to conduct a complete factorial

experiment, being careful to ensure adequate statistical power to detect any interactions of

scientific interest. The other strategy consistent with assuming all interactions are likely to be

sizeable is to frame research questions only about simple effects that can reasonably be

estimated with the individual experiments or single factor approaches. For example, as

discussed above the aliasing associated with the comparative treatment design may not be an

issue if research questions are framed in terms of simple effects.

If these cautious strategies seem too restrictive, another possibility is to adopt some heuristic

guiding principles (see Wu & Hamada, 2000) that are used in engineering research for

informing the choice of assumptions and aliasing structure and to help target resources in areas

where they are likely to result in the most scientific progress. The guiding principles are

intended for use when theory and prior research are unavailable; if guidance from these sources

is available it should always be applied first. One guiding principle is called Hierarchical

Ordering. This principle states that when resources are limited, the first priority should be

estimation of lower order effects. Thus main effects are the first investigative priority, followed

by two-way interactions. As Green and Rao (1971) noted, “…in many instances the simpler

(additive) model represents a very good approximation of reality” (p. 359), particularly if

measurement quality is good and floor and ceiling effects can be avoided. Another guiding

principle is called Effect Sparsity (Box & Meyer, 1986), or sometimes the Pareto Principle in

Experimental Design (Wu & Hamada, 2000). This principle states that the number of sizeable

and important effects in a factorial experiment is small in comparison to the overall number of

effects. Taken together, these principles suggest that unless theory and prior research

specifically suggest otherwise, there are likely to be relatively few sizeable interactions except

for a few two-way interactions and even fewer three-way interactions, and that aliasing the

more complex and less interpretable higher-order interactions may well be a good choice.

Resolution of fractional factorial designs

Some general information about aliasing of main effects and two-way interactions is conveyed

in a fractional factorial design's resolution (Wu & Hamada, 2000). Resolution is designated

by a Roman numeral, usually either III, IV, V or VI. The aliasing of main effects and two-way

interactions in these designs is shown in Table 3. As Table 3 shows, as design resolution

increases main effects and two-way interactions become increasingly free of aliasing with

lower-order interactions. Importantly, no design that is Resolution III or higher aliases main

effects with other main effects.
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Table 3 shows only which effects are not aliased with main effects and two-way interactions.

Which and how many effects are aliased with main effects and two-way interactions depends

on the exact design. For example, consider a 26−2 fractional factorial design. As mentioned

previously, this is a 1/4 fraction design, so each source of variance has four aliases; thus each

main effect is aliased with three other effects. Suppose this design is Resolution IV. Then none

of the three effects aliased with the main effect will be another main effect or a two-way

interaction. Instead, they will be three higher-order interactions.

According to the Hierarchical Ordering and Effect Sparsity principles, in the absence of theory

or evidence to the contrary it is reasonable to make the working assumption that higher-order

interactions are less likely to be sizeable than lower-order interactions. Thus, all else being

equal, higher resolution designs, which alias scientifically important main effects and two-way

interactions with higher-order interactions, are preferred to lower resolution designs, which

alias these effects with lower-order interactions or with main effects. This concept has been

called the maximum resolution criterion by Box and Hunter (1961).

In general higher resolution designs tend to require more experimental conditions, although

for a given number of experimental conditions there may be design alternatives with different

resolutions.

Relative resource requirements of the four design alternatives

Number of experimental conditions and subjects required

The four design options considered here can vary widely with respect to the number of

experimental conditions that must be implemented and the number of subjects required to

achieve a given statistical power. These two resource requirements must be considered

separately. In single factor experiments, the number of subjects required to perform the

experiment is directly proportional to the number of experimental conditions to be

implemented. However, when comparing different designs in a multi-factor framework this is

not the case. For instance, a complete factorial may require many more experimental conditions

than the corresponding individual experiments or single factor approach, yet require fewer total

subjects.

Table 4 shows how to compute a comparison of the number of experimental conditions required

by each of the four design alternatives. As Table 4 indicates, the individual experiments, single

factor and fractional factorial approaches are more economical than the complete factorial

approach in terms of number of experimental conditions that must be implemented. In general,

the single factor approach requires the fewest experimental conditions.

Table 4 also provides a comparison of the minimum number of subjects required to maintain

the same level of statistical power. Suppose a total of k factors are to be investigated, with the

smallest effect size among them equal to d, and that a total minimum sample size of N is required

in order to maintain a desired level of statistical power at a particular Type I error rate. The

effect size d might be the expected normalized difference between two means, or it might be

the smallest normalized difference considered clinically or practically significant. (Note that

in practice there must be at least one subject per experimental condition, so at a minimum N

must at least equal the number of experimental conditions. This may require additional subjects

beyond the number needed to achieve a given level of power when implementing complete

factorial designs with large k.) Table 4 shows that the complete factorial and fractional factorial

designs are most economical in terms of sample size requirements. In any balanced factorial

design each main effect is estimated using all subjects, averaging across the other main effects.

In the hypothetical three-factor example, the main effects of choose, breath and prep are each

based on all N subjects, with the subjects sorted differently into treatment and control groups
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for each main effect estimate. For example, Table 2 shows that in both the complete and

fractional factorial designs a subject assigned to experimental condition 3 is in the Off group

for the purpose of estimating the main effects of choose and prep but in the On group for the

purpose of estimating the main effect of breath.

Essentially factorial designs “recycle” subjects by placing every subject in one of the levels of

every factor. As long as the sample sizes in each group are balanced, orthogonality is

maintained, so that estimation and testing for each effect can be treated as independent of the

other effects. (The idea of “balance” here assumes that each level of each factor is assigned

exactly the same amount of subjects, which may not hold true in practice; however, the benefits

associated with balance hold approximately even if there are slight imbalances in the number

of subjects per experimental condition.) Because they “recycle” subjects while keeping factors

mutually orthogonal to each other, balanced factorial designs make very efficient use of

experimental subjects. In fact, this means that an increase in the number of factors in a factorial

experiment does not necessarily require an increase in the total sample size in order to maintain

approximately the same statistical power for testing main effects. This efficiency applies only

to main effects, though. For example, given a fixed sample size N, the more experimental

conditions there are, the fewer subjects will be in each experimental condition and the less

power there will be for, say, pairwise comparisons of particular experimental conditions.

By contrast, the individual experiments approach sometimes requires many more subjects than

the complete factorial experiment to obtain a given level of statistical power, because it cannot

reuse subjects to test different orthogonal effect estimates simultaneously as balanced factorial

experiments can. As Table 4 shows, if a factorial experiment with k factors requires an overall

sample size of N to achieve a desired level of statistical power for detecting a main effect of

size d at a particular Type I error rate, the comparable individual experiments approach requires

kN subjects to detect a simple effect of the same size at the same Type I error rate. This is

because the first experiment requires N subjects, the second experiment requires another N

subjects, and so on, for a total of kN. In other words, in the individual experiments approach

subjects are used in a single experiment to estimate a single effect, and then discarded. The

extra subjects provide neither increased Type I error protection nor appreciably increased

power, relative to the test of a simple effect in the single factor approach or the test of a main

effect in the factorial approach. Unless there is a special need to obtain results from one

experiment before beginning another, the extra subjects are largely wasted resources.

As Table 4 shows, if a factorial experiment with k factors requires an overall sample size of

N to achieve a desired level of statistical power for detect a main effect of size d at a particular

Type I error rate, the comparable single factor approach requires a sample size of (k + 1)(N/2)

to detect a simple effect of the same size at the same Type I error rate. This is because in the

single factor approach, to maintain power each mean comparison must be based on two

experimental conditions including a total of N subjects. Thus N/2 subjects per experimental

condition would be required. However, this single factor experiment would be adequately

powered for k simple effects, whereas the comparable factorial experiment with N subjects,

although adequately powered for k main effects, would be underpowered for k simple effects.

This is because estimating a simple effect in a factorial experiment essentially requires selecting

a subset of experimental conditions and discarding the remaining conditions along with the

subjects that have been assigned to them. This would bring the sample size considerably below

N for each simple effect.

Subject, condition, and overall costs

In order to compare the resource requirements of the four design alternatives it is helpful to

draw a distinction between per-subject costs and per-condition overhead costs. Examples of

subject costs are recruitment and compensation of human subjects, and housing, feeding and
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care of laboratory animals. Condition overhead costs refer to costs required to plan, implement,

and manage each experimental condition in a design, beyond the cost of the subjects assigned

to that condition. Examples of condition overhead costs are training and salaries of personnel

to run an experiment, preparation of differing versions of materials needed for different

experimental conditions, and cost of setting up and taking down laboratory equipment. Thus,

the overhead cost associated with an experimental condition may be either more or less than

the cost of a subject. Because the absolute and relative costs in these two domains vary

considerably according to the situation, the absolute and relative costs associated with the four

designs considered here can vary considerably as well.

One possible scenario is one in which both per-condition overhead costs and per-subject costs

are low. For example, consider a social psychology experiment in which experimental

conditions consist of different written materials, the experimenters are graduate students on

stipends, and a large departmental subject pool is at their disposal. This represents the happy

circumstance in which a design can be chosen on purely scientific grounds with little regard

to financial costs. Another possible scenario is one in which per-condition overhead costs are

low but per-subject costs are high, as might occur if an experiment is to be conducted via the

Internet. In this study perhaps adding an experimental condition is a fairly straightforward

computer programming task, but substantial cash incentives are required to ensure subject

participation. Another example might be an experiment in which individual experimental

conditions are not difficult to set up, but the subjects are laboratory animals whose purchase,

feeding and care is very costly. Per-condition costs might roughly equal per-subject costs in a

similar scenario in which each experimental condition involves time-intensive and complicated

reconfiguring of laboratory equipment by a highly-paid technician. Per-condition overhead

costs might greatly exceed per-subject costs when subjects are drawn from a subject pool and

are not monetarily compensated, but each new experimental condition requires additional

training of personnel, preparation of elaborate new materials, or difficult reconfiguration of

laboratory equipment.

Comparing relative estimated overall costs across designs

In this section we demonstrate a comparison of relative financial costs across the four design

alternatives, based on the expressions in Table 4. In the demonstration we consider four

different situations: effect sizes of d = .2 or d = .5 (corresponding to Cohen's (1988) benchmark

values for small and medium, respectively), and k = 6 or k = 10 two-level independent variables.

The starting point for the cost comparison is the number of experimental conditions required

by each design, and the sample sizes required to achieve statistical power of at least .8 for

testing the effect of each factor in the way that seemed appropriate for the design. Specifically,

for the full and fractional factorial designs, we calculated the total sample size N needed to

have a power of .80 for each main effect. For the individual experiments and single factor

designs, we calculated the N needed for a power of .80 for each simple effect of interest. These

are shown in Table 5. As the table indicates, the fractional factorial designs used for k = 6 and

k = 10 are both Resolution IV.

A practical issue arose that influenced the selection of the overall sample sizes N that are listed

in Table 5. Let Nmin designate the minimum overall N required to achieve a desired level of

statistical power. In the cases marked with an asterisk the overall N that was actually used

exceeds Nmin, because experimental conditions cannot have fractional numbers of subjects.

Let n designate the number of subjects in each experimental condition, assuming equal n's are

to be assigned to each experimental condition. In theory the minimum n per experimental

condition for a particular design would be Nmin divided by the number of experimental

conditions. However, in some of the cases in Table 5 this would have resulted in a non-integer

n. In these cases the per-condition n was rounded up to the nearest integer. For example,
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consider the complete factorial design with k=10 factors and d = .2. In theory a per-factor power

of ≥ .8 would be maintained with Nmin = 788. However, the complete factorial design required

1024 experimental conditions, so the minimum N that could be used was 1024. All cost

comparisons reported here are based on the overall N listed in Table 5.

For purposes of illustration, per-subject cost will be defined here as the average incremental

cost of adding a single research subject to a design without increasing the number of

experimental conditions, and condition overhead cost will be defined as the average

incremental cost of adding a single experimental condition without increasing the number of

subjects. (For simplicity we assume per subject costs do not differ dramatically across

conditions.) Then a rough estimate of total costs can be computed as follows, providing a basis

for comparing the four design alternatives:

Figure 1 illustrates total costs for experiments corresponding to the situations and designs in

Table 5, for experiments in which per-subject costs equal or exceed per-condition overhead

costs. In order to compute total costs on the y-axis, per-condition costs were arbitrarily fixed

at $1. Thus the x-axis can be interpreted as the ratio of per-subject costs to per-condition costs;

for example, the “4” on the x-axis means that per-subject costs are four times per-condition

costs.

In the situations considered in Figure 1, fractional factorial designs were always either least

expensive or tied with complete factorial designs for least expensive. As the ratio of per-subject

costs to per-condition costs increased, the economy of complete and fractional factorial designs

became increasingly evident. Figure 1 shows that when per-subject costs outweighed per-

condition costs, the single factor approach and, in particular, the individual experiments

approach were often much more expensive than even complete factorial designs, and fractional

factorials were often the least expensive.

Figure 2 examines the same situations as in Figure 1, but now total costs are shown on the y-

axis for experiments in which per-condition overhead costs equal or exceed per-subject costs.

In order to compute total costs, per-subject costs were arbitrarily fixed at $1. Thus the x-axis

represents the ratio of per-condition costs to per-subject costs; in this figure the “40” on the

x-axis means that per-condition costs are forty times per-subject costs.

The picture here is more complex than that in Figure 1. For the most part, in the four situations

considered here the complete factorial was the most expensive design, frequently by a wide

margin. The complete factorial requires many more experimental conditions than any of the

other design alternatives, so it is not surprising that it was expensive when condition costs were

relatively high. It is perhaps more surprising that the individual experiments approach, although

it requires many fewer experimental conditions than the complete factorial, was usually the

next most expensive. The individual experiments approach even exceeded the cost of the

complete factorial under some circumstances when the effect sizes were small. This is because

the reduction in experimental conditions afforded by the individual experiments approach was

outweighed by much greater subject requirements (see Table 4). Figure 2 shows that the least

expensive approaches were usually the single factor and fractional factorial designs. Which of

these two was less expensive depended on effect size and the ratio of per-condition costs to

per-subject costs. When the effect sizes were large and the ratio of per-condition costs to per-

subject costs was less than about 20, fractional factorial designs tended to be more economical;

the single factor approach was most economical once per-condition costs exceeded about 20
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times per-subject costs. However, when effect sizes were small, fractional factorial designs

were cheaper until the ratio of per-condition costs to per-subject costs substantially exceeded

100.

A brief tutorial on selecting a fractional factorial design

In this section we provide a brief tutorial intended to familiarize investigators with the basics

of choosing a fractional factorial design. The more advanced introduction to fractional factorial

designs provided by Kirk (1995) and Kuehl (1999) and the detailed treatment in Wu and

Hamada (2000) are excellent resources for further reading.

When the individual experiments and single factor approaches are used, typically the choice

of experimental conditions is made on intuitive grounds, with aliasing per se seldom an explicit

basis for choosing a design. By contrast, when fractional factorial designs are used aliasing is

given primary consideration. Usually a design is selected to achieve a particular aliasing

structure while considering cost. Although the choice of experimental conditions for fractional

factorials may be less intuitively obvious, this should not be interpreted as meaning that the

selection of a fractional factorial design has no conceptual basis. On the contrary, fractional

factorial designs are carefully chosen with key research questions in mind.

There are many possible fractional factorial designs for any set of k factors. The designs vary

in how many experimental conditions they require and the nature of the aliasing. Fortunately,

the hard work of determining the number of experimental conditions and aliasing structure of

fractional factorial designs has largely been done. The designs can be found in books (e.g. Box

et al., 1978; Wu & Hamada, 2000) and on the Internet (e.g. National Institute of Standards and

Technology/SEMATECH, 2006), but the easiest way to choose a fractional factorial design is

by using computer software. Here we demonstrate the use of PROC FACTEX (SAS Institute,

Inc., 2004). Using this approach the investigator specifies the factors in the experiment, and

may specify which effects are in the Estimate, Negligible and Non-negligible categories, the

desired design resolution, maximum number of experimental conditions (sometimes called

“runs”), and other aspects relevant to choice of a design. The software returns a design that

meets the specified criteria, or indicates that such a design does not exist. Minitab (see Ryan,

Joiner, & Cryer, 2004; Mathews, 2005) and S-PLUS (Insightful Corp., 2007) also provide

software for designing fractional factorial experiments.

To facilitate the presentation, let us increase the size of the hypothetical example. In addition

to the factors (1) choose, (2) breath, and (3) prep, the new six-factor example will also include

factors corresponding to whether or not (4) an audience is present besides just the investigator

(audience); (5) the subject is promised a monetary reward if the speech is judged good enough

(stakes); and (6) the subject is allowed to speak from notes (notes). A complete factorial

experiment would require 26 = 64 experimental conditions. Three different ways of choosing

a fractional factorial design using SAS PROC FACTEX are illustrated below.

Specifying a desired resolution

One way to use software to choose a fractional factorial design is to specify a desired resolution

and instruct the software to find the smallest number of experimental conditions needed to

achieve it. For example, suppose the investigator in the hypothetical example finds it acceptable

to alias main effects with interactions as low as three-way, and to alias two-way interactions

with other two-way interactions and higher-order interactions. A design of Resolution IV will

meet these criteria and may be requested as follows:

PROC FACTEX;
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  FACTORS breath audience choose prep notes stakes;

  SIZE DESIGN=MINIMUM;

  MODEL RESOLUTION=4;

  EXAMINE ALIASING(6) DESIGN;

  OUTPUT OUT=dataset1;

RUN;

SAS will find a design with these characteristics if it can, print information on the aliasing and

design matrix, and save the design matrix in the dataset dataset1. The ALIASING(6) command

requests a list of all aliasing up to six-way interactions, and DESIGN asks for the effect codes

for each experimental condition in the design to be printed.

Table 6 shows the effect codes from the SAS output for this design. The design found by SAS

requires only 16 experimental conditions; that is, the design is a 26−2, or a one-quarter fractional

factorial because it requires only 2−2 = 1/4 = 16/64 of the experimental conditions in the full

experiment. In a one-quarter fraction each source of variance has four aliases. This means that

each main effect is aliased with three other effects. Because this is a Resolution IV design, all

of these other effects are three-way interactions or any higher-order interactions; they will not

be main effects or two-way interactions. Similarly, each two-way interaction is aliased with

three other effects. Because this is a Resolution IV design, these other effects may be any

interactions.

Different fractional factorial designs, even those with the same resolution, have different

aliasing structures, some of which may appeal more to an investigator than others. SAS simply

returns the first one it can find that fits the desired specifications. There is no feature in SAS,

to the best of our knowledge, that automatically returns multiple possible designs with the same

resolution, but it is possible to see different designs by arbitrarily changing the order in which

the factors are listed in the FACTORS statement. Another possibility is to use the MINABS

option to request a design that meets the “minimum aberration” criterion, which is a

mathematical definition of least-aliased (see Wu & Hamada, 2000).

Specifying which effects are in which categories

The above methods of identifying a suitable fractional factorial design did not require

specification of which effects are of primary scientific interest, which are negligible, and which

are non-negligible, although the investigator would have to have determined this in order to

decide that a Resolution IV design was desired. Another way to identify a fractional factorial

design is to specify directly which effects fall in each of these categories, and instruct the

software to find the smallest design that does not alias effects of primary interest either with

each other or with effects in the non-negligible category. This method enables a little more

fine-tuning.

Suppose in addition to the main effects, the investigator wants to be able to estimate all two-

way interactions involving breath. The remaining two-way interactions and all three-way

interactions are not of scientific interest but may be sizeable, so they are designated non-

negligible. In addition, one four-way interaction, breath × prep × notes × stakes might be

sizeable, because those factors are suspected in advance to be the most powerful factors, and

so their combination might lead to a floor or ceiling effect, which could act as an interaction.

This four-way interaction is placed in the non-negligible category. All remaining effects are

designated negligible. Given these specifications, a design with the smallest possible number

of experimental conditions is desired. The following code will produce such a design:
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PROC FACTEX;

  FACTORS breath audience choose prep notes stakes;

  SIZE DESIGN=MINIMUM;

  MODEL ESTIMATE = (breath audience choose prep notes stakes

   breath*audience breath*choose breath*prep

   breath*notes breath*stakes);

  NONNEGLIGIBLE = (breath | audience | choose

   | prep | notes | stakes @ 3 breath*prep*notes*stakes);

*ABOVE SPECIFIES ALL 3-WAY INTERACTIONS AND BELOW. IF EFFECTS
INCLUDED IN;

*BOTH ESTIMATE AND NONNEGLIGIBLE, ESTIMATE CATEGORY TAKES
PRECEDENCE;

  EXAMINE ALIASING(6) DESIGN;

  OUTPUT OUT=dataset2;

RUN;

The ESTIMATE statement designates the effects that are of primary scientific interest and

must be aliased only with effects expected to be negligible. The NONNEGLIGIBLE statement

designates effects that are not of scientific interest but may be sizeable; these effects must not

be aliased with effects mentioned in the ESTIMATE statement. It is necessary to specify only

effects to be estimated and those designated non-negligible; any remaining effects are assumed

negligible.

The SAS output (not shown) indicates that the result is a 26−1 design, which has 32 experimental

conditions, and that this design is Resolution VI. Because this design is a one-half fraction of

the complete factorial, each source of variation has two aliases, or, in other words, each main

effect and interaction is aliased with one other effect. The output provides a complete account

of the aliasing, indicating that each main effect is aliased with a five-way interaction, and each

two-way interaction is aliased with a four-way interaction. This aliasing is characteristic of

Resolution VI designs, as was shown in Table 3. Because the four-way interaction breath ×

prep × notes × stakes has been placed in the non-negligible category, the design aliases it with

another interaction in this category, audience × choose, rather than with one of the two-way

interactions in the Estimate category.

Specifying the maximum number of experimental conditions

Another way to use software to choose a design is to specify the number of experimental

conditions in the design, and let the software return the aliasing structure. This approach may

make sense when resource constraints impose a strict upper limit on the number of experimental

conditions that can be implemented, and the investigator wishes to decide whether key research

questions can be addressed within this limit. Suppose in our hypothetical example the

investigator can implement no more than eight experimental conditions; in other words, we

need a 26−3 design. The investigator can use the following code:

PROC FACTEX;

FACTORS breath audience choose prep notes stakes;

SIZE DESIGN=8;

* THIS SPECIFIES A DESIGN WITH 8 CONDITIONS;

MODEL RESOLUTION=MAXIMUM;
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* THIS SPECIFIES A DESIGN WITH HIGHEST RESOLUTION,;

* GIVEN THE OTHER SPECIFICATIONS;

EXAMINE ALIASING(6) DESIGN;

OUTPUT OUT=dataset3;

RUN;

In this case, the SAS output suggests a design with Resolution III. Because this Resolution III

design is a one-eighth fraction, each source of variance has eight aliases. Each main effect is

aliased with seven other effects. These effects may be any interaction; they will not be main

effects.

A comparison of results for several different experiments

This section contains direct comparisons among the various experimental designs discussed

in this article, based on artificial data generated using the same model for all the designs. This

can be imagined as a situation in which after each experiment, time is turned back and the same

factors are again investigated with the same experimental subjects, but using a different

experimental design.

Methods

Let us return to the hypothetical example with six factors (breath, audience, choose, prep,

notes, stakes), each with two levels per factor, coded -1 for Off and +1 for On. Suppose there

are a total of 320 subjects, with five subjects randomly assigned to each of the 64 experimental

conditions of a 26 full factorial design, and the outcome variable is a reverse-scaled

questionnaire about public speaking anxiety, that is, a higher score indicates less anxiety. Data

were generated so that the score of participant j in the ith experimental condition was modeled

as μi + εij where the μi are given by

(1)

and the errors are N(0, 22). Because the outcome variable in (1) is reverse-scored, helpful

(anxiety-reducing) main effects can be called “positive” and harmful ones can be called

“negative.” The standard deviation of 2 was used so that the regression coefficients above can

also be interpreted as Cohen's d's despite the -1/+1 metric for effect coding. Thus, the main

effects coefficients in (1) represent half the long-run average raw difference between

participants receiving the Off and On levels of the factor, and also represent the normalized

difference between the -1 and +1 groups.

The example was deliberately set up so as not to be completely consistent with the investigator's

ideas as expressed in the previous section. In the model above, anxiety is reduced on average

by doing the breathing relaxation exercise, by being able to choose one's own topic, by having

extra preparation time, and by having notes available. There is a small anxiety-increasing effect

of higher stakes. The audience factor had zero main effect on anxiety. The first two positive

two-way interactions indicate that longer preparation time intensified the effects of the

breathing exercise or notes, or equivalently, that shorter preparation time largely neutralized

their effects (as the subjects had little time to put them into practice). The third interaction

indicates that higher stakes were energizing for those who were prepared, but anxiety-
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provoking for the less prepared. The first pair of negative two-way interactions indicate that

the breath intervention was somewhat redundant with the more conventional aids of having

notes and having one's choice of topic, or equivalently that breathing relaxation was more

important when those aids were not available. There follow several other small higher-order

nuisance interactions with no clear interpretability, as might occur in practice.

Data were generated using the above model for the following seven experimental designs:

Complete factorial; individual experiments; two single factor designs (comparative treatment

and constructive treatment); and the Resolution III, IV, and VI designs arrived at in the previous

section. The total number of subjects used was held constant at 320 for all of the designs. For

the individual experiments approach, six experiments, each with either 53 or 54 subjects, were

simulated. For the single factor designs, experiments were simulated assigning either 45 or 46

subjects to each of seven experimental conditions. The comparative treatment design included

a no-treatment control (i.e. all factors set to Off) and six experimental conditions, each with

one factor set to On and the others set to Off. The constructive treatment design included a no-

treatment control and six experimental conditions, each of which added a factor set to On in

order from left to right, e.g. in the first treatment condition only breath was set to On, in the

second treatment condition breath and audience were set to On and the remaining factors

were set to Off, and so on until in the seventh experimental condition all six factors were set

to On. To simulate data for the Resolution III, IV, and VI fractional factorial designs, 40, 20,

and 10 subjects, respectively, were assigned to each experimental condition. In simulating data

for each of the seven design alternatives, the μi's were recalculated accordingly but the vector

of ε's was left the same.

Results

ANOVA models were fit to each data set in the usual way using SAS PROC GLM. For example,

the code used to fit an ANOVA model to the data set corresponding to the Resolution III

fractional factorial design was as follows:

PROC GLM DATA=res3;

MODEL y = breath audience choose prep notes stakes;

RUN;

This model contained no interactions because they cannot be estimated in a Resolution III

design. An abbreviated version of the SAS output corresponding to this code appears in Figure

3. In the comparative treatment strategy each of the treatment conditions was compared to the

no-treatment control. In the constructive treatment strategy each treatment condition was

compared to the condition with one fewer factor set to On; for example, the condition in which

breath and audience were set to On was compared to the condition in which only breath was

set to On.

Table 7 contains the regression coefficients corresponding to the effects of each factor for each

of the seven designs. For reference, the true values of the regression coefficients used in data

generation are shown at the top of the table.

In the complete factorial experiment, breath, choose, prep, and notes were significant. The

true main effect of stakes was small; with N = 320 this design had little power to detect it.

Audience was marginally significant at α = .15, although the data were generated with this

effect set at exactly zero. In the individual experiments approach, only choose was significant,

and breath was marginally significant. The results for the comparative treatment experiment

were similar to those of the individual experiments approach, as would be expected given that

the two have identical aliasing. An additional effect was marginally significant in the
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comparative treatment approach, reflecting the additional statistical power associated with this

design as compared to the individual experiments approach. In the constructive treatment

experiment none of the factors were significant at α = .05. There were two marginally

significant effects, breath and notes.

In the Resolution III design every effect except prep was significant. One of these, the

significant effect of audience, was a spurious result (probably caused by aliasing with the

prepare × stakes interaction). By contrast, results of the Resolution IV and VI designs were

very similar to those of the complete factorial, except that in the Resolution VI design

stakes was significant. In the individual experiments and single factor approaches, the

estimates of the coefficients varied considerably from the true values. In the fractional factorial

designs the estimates of the coefficients tended to be closer to the true values, particularly in

the Resolution IV and Resolution VI designs.

Table 8 shows estimates of interactions from the designs that enable such estimates, namely

the complete factorial design and the Resolution IV and Resolution VI factorial designs. The

breath × prep interaction was significant in all three designs. The breath × choose interaction

was significant in the complete factorial and the Resolution VI fractional factorial but was

estimated as zero in the Resolution IV design. In general the coefficients for these interactions

were very similar across the three designs. An exception was the coefficient for the breath ×

choose interaction, and, to a lesser degree, the coefficient for the breath × notes interaction.

Discussion

Differences observed among the designs in estimates of coefficients are due to differences in

aliasing plus a minor random disturbance due to reallocating the error terms when each new

experiment was simulated, as described above. In general, more aliasing was associated with

greater deviations from the true coefficient values. No effects were aliased in the complete

factorial design, which had coefficient estimates closest to the true values. In the Resolution

IV design each effect was aliased with three other effects, all of them interactions of three or

more factors, and in the Resolution VI design each effect was aliased with one other effect, an

interaction of four or more factors. These designs had coefficient estimates that were also very

close to the true values. The Resolution III fractional factorial design, which aliased each effect

with seven other effects, had coefficient estimates somewhat farther from the true values. The

coefficient estimates associated with the individual and single factor approaches were farthest

from the true values of the main effect coefficients. In the individual experiments and single

factor approaches each effect was aliased with 15 other effects (the main effect of a factor was

aliased with all the interactions involving that factor, from the two-way up to the six-way). The

comparative treatment and constructive treatment approach aliased the same number of effects

but differed in the coding of the aliased effects (as can be seen in Table 2), which is why their

coefficient estimates differed.

Although the seven experiments had the same overall sample size N, they differed in statistical

power. The complete and fractional factorial experiments, which had identical statistical

power, were the most powerful. Next most powerful were the comparative treatment and

constructive treatment designs. The individual experiments approach was the least powerful.

These differences in statistical power, along with the differences in coefficient estimates, were

reflected in the effects found significant at various levels of α across the designs. Among the

designs examined here, the individual experiments approach and the two single factor designs

showed the greatest disparities with the complete factorial.

Given the differences among them in aliasing, it is perhaps no surprise that these designs

yielded different effect estimates and hypothesis tests. The research questions that motivate

individual experiments and single factor designs, which often involve pairwise contrasts
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between individual experimental conditions, may not require estimation of main effects per

se, so the relatively large differences between the coefficient estimates obtained using these

designs and the true main effect coefficients may not be important. Instead, what may be more

noteworthy is how few effects these designs detected as significant as compared to the factorial

experiments.

General discussion

Some overall recommendations

Despite the situation-specific nature of most design decisions, it is possible to offer some

general recommendations. When per-subject costs are high in relation to per-condition

overhead costs, complete and fractional factorials are usually the most economical designs.

When per-condition costs are high in relation to per-subject costs, usually either a fractional

factorial or single factor design will be most economical. Which is most economical will

depend on considerations such as the number of factors, the sample size required to achieve

the desired statistical power, and the particular fractional factorial design being considered.

In the limited set of situations examined in this article, the individual experiments approach

emerged as the least economical. Although the individual experiments approach requires many

fewer experimental conditions than a complete factorial and usually requires fewer than a

fractional factorial, it requires more experimental conditions than a single factor experiment.

In addition, it makes the least efficient use of subjects of any of the designs considered in this

article. Of course, an individual experiments approach is necessary whenever the results of one

experiment must be obtained first in order to inform the design of a subsequent experiment.

Except for this application, in general the individual experiments approach is likely to be the

least appealing of the designs considered here. Investigators who are planning a series of

individual experiments may wish to consider whether any of them can be combined to form a

complete or fractional factorial experiment, or whether a single factor design can be used.

Although factorial experiments with more than two or three factors are currently relatively rare

in psychology, we recommend that investigators give such designs serious consideration. All

else being equal, the statistical power of a balanced factorial experiment to detect a main effect

of a given size is not reduced by the presence of other factors, except to a small degree caused

by the reduction of error degrees of freedom in the model. In other words, if main effects are

of primary scientific interest and interactions are not of great concern, then factors can be added

without needing to increase N appreciably.

An interest in interactions is not the only reason to consider using factorial designs;

investigators may simply wish to take advantage of the economy these designs afford, even

when interactions are expected to be negligible or are not of scientific interest. In particular,

investigators who undergo high subject costs but relatively modest condition costs may find

that a factorial experiment will be much more economical than other design alternatives.

Investigators faced with an upper limit on the availability of subjects may even find that a

factorial experiment enables them to investigate research questions that would otherwise have

to be set aside for some time. As Oehlert (2000, p. 171) explained, “[t]here are thus two times

when you should use factorial treatment structure—when your factors interact, and when your

factors do not interact.”

One of the objectives of this article has been to demonstrate that fractional factorial designs

merit consideration for use in psychological research alongside other reduced designs and

complete factorial designs. Previous authors have noted that fractional factorial designs may

be useful in a variety of areas within the social and behavioral sciences (Landsheer & van den

Wittenboer, 2000) such as behavioral medicine (e.g. Allore, Peduzzi, Han, & Tinetti, 2006;
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Allore, Tinettia, Gill, & Peduzzi, 2005), marketing research (e.g. Holland & Cravens, 1973),

epidemiology (Taylor et al., 1994), education (McLean, 1966), human factors (Simon &

Roscoe, 1984), and legal psychology (Stolle, Robbennolt, Patry, & Penrod, 2002). Shaw

(2004) and Shaw, Festing, Peers, & Furlong (2002) noted that factorial and fractional factorial

designs can help to reduce the number of animals that must be used in laboratory research.

Cutler, Penrod, and Martens (1987) used a large fractional factorial design to conduct an

experiment studying the effect of context variables on the ability of participants to identify the

perpetrator correctly in a video of a simulated robbery. Their experiment included 10 factors,

with 128 experimental conditions, but only 290 subjects.

An important special case: Development and evaluation of behavioral interventions

As discussed by Allore et al. (2006), Collins, Murphy, Nair, and Strecher (2005), Collins,

Murphy, and Strecher (2007), and West et al. (1993), behavioral intervention scientists could

build more potent interventions if there was more empirical evidence about which intervention

components are contributing to program efficacy, which are not contributing, and which may

be detracting from overall efficacy. However, as these authors note, generally behavioral

interventions are designed a priori and then evaluated by means of the typical randomized

controlled trial (RCT) consisting of a treatment group and a control group (e.g. experimental

conditions 8 and 1, respectively, in Table 2). This all-or-nothing approach, also called the

treatment package strategy (West et al., 1993), involves the fewest possible experimental

conditions, so in one sense it is a very economical design. The trade-off is that all main effects

and interactions are aliased with all others. Thus although the treatment package strategy can

be used to evaluate whether an intervention is efficacious as a whole, it does not provide direct

evidence about any individual intervention component. A factorial design with as many factors

as there are distinct intervention components of interest would provide estimates of individual

component effects and interactions between and among components.

Individual intervention components are likely to have smaller effect sizes than the intervention

as a whole (West & Aiken, 1997), in which case sample size requirements will be increased

as compared to a two-experimental-condition RCT. One possibility is to increase power by

using a Type I error rate larger than the traditional α = .05, in other words, to tolerate a somewhat

larger probability of mistakenly choosing an inactive component for inclusion in the

intervention in order to reduce the probability of mistakenly rejecting an active intervention

component. Collins et al. (2005, 2007) recommended this and similar tactics as part of a phased

experimental strategy aimed at selecting components and levels to comprise an intervention.

In this phased experimental strategy, after the new intervention is formed its efficacy is

confirmed in a RCT at the conventional α = .05. As Hays (1994, p. 284) has suggested, “In

some situations, perhaps, we should be far more attentive to Type II errors and less attentive

to setting α at one of the conventional levels.”

One reason for eschewing a factorial design in favor of the standard two-experimental-

condition RCT may be a shortage of resources needed to implement all the experimental

conditions in a complete factorial design. If this is the primary obstacle, it is possible that it

can be overcome by identifying a fractional factorial design requiring a manageable number

of experimental conditions. Fractional factorial designs are particularly apropos for

experiments in which the primary objective is to determine which factors out of an array of

factors have important effects (where “important” can be defined as “statistically significant,”

“effect size greater than d,” or any other reasonable empirical criterion). In engineering these

are called screening experiments. For example, suppose an investigator is developing an

intervention and wishes to conduct an experiment to ascertain which of a set of possible

intervention features are likely to contribute to an overall intervention effect. In most cases an

approximate estimate of the effect of an individual factor is sufficient for a screening
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experiment, as long as the estimate is not so far off as to lead to incorrect inclusion of an

intervention feature that has no effect (or, worse, has a negative effect) or incorrect exclusion

of a feature that makes a positive contribution. Thus in this context the increased scientific

information that can be gained using a fractional factorial design may be an acceptable tradeoff

against the somewhat reduced estimation precision that can accompany aliasing. (For a Monte

Carlo simulation examining the use of a fractional factorial screening experiment in

intervention science, see Collins, Chakroborty, Murphy, & Strecher, in press.)

It must be acknowledged that even very economical fractional factorial designs typically

require more experimental conditions than intervention scientists routinely consider

implementing. In some areas in intervention science, there may be severe restrictions on the

number of experimental conditions that can be realistically handled in any one experiment. For

example, it may not be reasonable to demand of intervention personnel that they deliver

different versions of the intervention to different subsets of participants, as would be required

in any experiment other than the treatment package RCT. Or, the intervention may be so

complex and demanding, and the context in which it must be delivered so chaotic, that

implementing even two experimental conditions well is a remarkable achievement, and trying

to implement more would surely result in sharply diminished implementation fidelity (West

& Aiken, 1997). Despite the undeniable reality of such difficulties, we wish to suggest that

they do not necessarily rule out the use of complete and, in particular, fractional factorial

designs across the board in all areas of intervention science. There may be some areas in which

a careful analysis of available resources and logistical strategies will suggest that a factorial

approach is feasible. One example is Strecher et al. (2008), who described a 16-experimental-

condition fractional factorial experiment to investigate five intervention components in a

smoking cessation intervention. Another example can be found in Nair et al. (2008), who

described a 16-experimental-condition fractional factorial experiment to investigate five

features of decision aids for women choosing among breast cancer treatments. Commenting

on the Strecher et al. article, Norman (2008) wrote, “The fractional factorial design can provide

considerable cost savings for more rapid prototype testing of intervention components and will

likely be used more in future health behavior change research” (p. 450). Collins et al. (2005)

and Nair et al. (2008) have provided some introductory information on the use of fractional

factorial designs in intervention research. Collins et al. (2005, 2007) discussed the use of

fractional factorial designs in the context of a phased experimental strategy for building more

efficacious behavioral interventions.

One interesting difference between the RCT on the one hand and factorial and fractional

factorial designs on the other is that as compared to the standard RCT, a factorial design assigns

a much smaller proportion of subjects to an experimental condition that receives no treatment.

In a standard two-arm RCT about half of the experimental subjects will be assigned to some

kind of control condition, for example a wait list or the current standard of care. By contrast,

in a factorial experiment there is typically only one experimental condition in which all of the

factors are set to Off. Thus if the design is a 23 factorial, say, seventh-eighths of the subjects

will be assigned to a condition in which at least one of the factors is set to On. If the intervention

is sought-after and assignment to a control condition is perceived as less desirable than

assignment to a treatment condition, there may be better compliance because most subjects

will receive some version of an intervention. In fact, it often may be possible to select a

fractional factorial design in which there is no experimental condition in which all factors are

set to Off.
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Investigating interactions between individual characteristics and experimental factors in

factorial experiments

Investigators are often interested in determining whether there are interactions between

individual subject characteristics and any of the factors in a factorial or fractional factorial

experiment. As an example, suppose an investigator is interested in determining whether

gender interacts with the six independent variables in the hypothetical example used in this

article. There are two ways this can be accomplished; one is exploratory, and the other is a

priori (e.g. Murray, 1998).

In the exploratory approach, after the experiment has been conducted gender is coded and

added to the analysis of variance as if it were another factor. Even if the design was originally

perfectly balanced, such an addition nearly always results in a substantial disruption of balance.

Thus the effect estimates are unlikely to be orthogonal, and so care must be taken in estimating

the sums of squares. If a reduced design was used, it is important to be aware of what effects,

if any, are aliased with the interactions being examined. In most fractional factorial experiments

the two-way interactions between gender and any of the independent variables are unlikely to

be aliased with other effects, but three-way and higher-order interactions involving gender are

likely to be aliased with other effects.

In the a priori approach, gender is built into the design as an additional factor before the

experiment is conducted, by ensuring that it is crossed with every other factor. Orthogonality

will be maintained and power for detecting gender effects will be optimized if half of the

subjects are male and half are female, with randomization done separately within each gender,

as if gender were a blocking variable. However, in blocking it is assumed that there are no

interactions between the blocking variable and the independent variables; the purpose of

blocking is to control error. By contrast, in the a priori approach the interactions between

gender and the manipulated independent variables are of particular interest, and the experiment

should be powered accordingly to detect these interactions. As compared to the exploratory

approach, with the a priori approach it is much more likely that balance can be maintained or

nearly maintained. Variables such as gender can easily be incorporated into fractional factorial

designs using the a priori approach. These variables can simply be listed with the other

independent variables when using software such as PROC FACTEX to identify a suitable

fractional factorial design. A fractional factorial design can be chosen so that important two-

way and even three-way interactions between, for example, gender and other independent

variables are aliased only with higher-order interactions.

How negligible is negligible?

To the extent that an effect placed in the negligible category is nonzero, the estimate of any

effect of primary scientific interest that is aliased with it will be different from an estimate

based on a complete factorial experiment. Thus a natural question is, “How small should the

expected size of an interaction be for the interaction to be placed appropriately in the negligible

category?”

The answer depends on the field of scientific endeavor, the value of the scientific information

that can be gained using a reduced design, and the kind of decisions that are to be made based

on the results of the experiment. There are risks associated with assuming an effect is negligible.

If the effect is in reality non-negligible and positive, it can make a positive effect aliased with

it look spuriously large, or make a negative effect aliased with it look spuriously zero or even

positive. If an effect placed in the negligible category is non-negligible and negative, it can

make a positive effect aliased with it look spuriously zero or even negative, or make a negative

effect aliased with it look spuriously large.
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Placing an effect in the negligible category is not the same as assuming it is exactly zero. Rather,

the assumption is that the effect is small enough not to be very likely to lead to incorrect

decisions. If highly precise estimates of effects are required, it may be that few or no effects

are deemed small enough to be eligible for placement in the negligible category. If the potential

gain of additional scientific information obtained at a cost of fewer resources offsets the risk

associated with reduced estimation precision and the possibility of some spurious effects, then

effects expected to be nonzero, but small, may more readily be designated negligible.

Some limitations of this article

The discussion of reduced designs in this article is limited in a number of ways. One limitation

of the discussion is that it has focused on between-subjects designs. It is straightforward to

extend every design here to incorporate repeated measures, which will improve statistical

power. However, all else being equal, the factorial designs will still have more power than the

individual experiments and single factor approaches. There have been a few examples of the

application of within-subjects fractional designs in legal psychology (Cutler, Penrod, & Dexter,

1990; Cutler, Penrod, & Martens, 1987; Cutler, Penrod, & Stuve, 1988; O'Rourke, Penrod,

Cutler, & Stuve, 1989; Smith, Penrod, Otto, & Park, 1996) and in other research on attitudes

and choices (e.g., van Schaik, Flynn & van Wersch, 2005; Sorenson & Taylor, 2005; Zimet et

al., 2005) in which a fractional factorial structure is used to construct the experimental

conditions assigned to each subject. In fact, the Latin squares approach for balancing orders

of experimental conditions in repeated-measures studies is a form of within-subjects fractional

factorial. Within-subjects fractional designs of this kind could be seen as a form of planned

missingness design (see Graham, Taylor, Olchowski, & Cumsille, 2006).

Another limitation of this article is the focus on factors with only two levels. Designs involving

exclusively two-level factors are very common, and factorial designs with two levels per factor

tend to be more economical than those involving factors with three or more levels, as well as

much more interpretable in practice, due to their simpler interaction structure (Wu & Hamada,

2000). However, any of the designs discussed here can incorporate factors with more than two

levels, and different factors may have different numbers of levels. Factors with three or more

levels, and in particular an array of factors with mixed numbers of levels, adds complexity to

the aliasing in fractional factorial experiments. Although this requires careful attention, it can

be handled in a straightforward manner using software like SAS PROC FACTEX.

This article has not discussed what to do when unexpected difficulties arise. One such difficulty

is unplanned missing data, for example, an experimental subject failing to provide outcome

data. The usual concerns about informative missingness (e.g. dropout rates that are higher in

some experimental conditions than in others) apply in complete and reduced factorial

experiments just as they do in other research settings. In any complete or reduced design

unplanned missingness can be handled in the usual manner, via multiple imputation or

maximum likelihood (see e.g. Schafer & Graham, 2002). If experimental conditions are

assigned unequal numbers of subjects, use of a regression analysis framework can deal with

the resulting lack of orthogonality of effects with very little extra effort (e.g. PROC GLM in

SAS). Another unexpected difficulty that can arise in reduced designs is evidence that

assumptions about negligible interactions are incorrect. If this occurs, one possibility is to

implement additional experimental conditions to address targeted questions, in an approach

often called sequential experimentation (Meyer, Steinberg, & Box, 1996).

The resource management perspective: Strategic weighing of resource requirements and

expected scientific benefit

According to the resource management perspective, the choice of an experimental design

requires consideration of both resource requirements and expected scientific benefit; the
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preferred research design is the one expected to provide the greatest scientific benefit in relation

to resources required. Although aliasing may sometimes be raised as an objection to the use

of fractional factorial designs, it must be remembered that aliasing in some form is inescapable

in any and all reduced designs, including individual experiments and single factor designs. We

recommend considering all feasible designs and making a decision taking a resource

management perspective that weighs resource demands against scientific costs and benefits.

Paramount among the considerations that drive the choice of an experimental design is

addressing the scientific question motivating the research. At the same time, if this scientific

question can be addressed only by a very resource-intensive design, but a closely related

question can be addressed by a much less resource-intensive design, the investigator may wish

to consider reframing the question to conserve resources. For example, when research subjects

are expensive or scarce, it may be prudent to consider whether scientific questions can be

framed in terms of main effects rather than simple effects so that a factorial or fractional

factorial design can be used. Or, when resource limitations preclude implementing more than

a very few experimental conditions, it may be prudent to consider framing research questions

in terms of simple effects rather than main effects. When a research question is reframed to

take advantage of the economy offered by a particular design, it is important that the

interpretation of effects be consistent with the reframing, and that this consistency be

maintained not only in the original research report but in subsequent citations of the report, as

well as integrative reviews or meta-analyses that include the findings.

Resource requirements can often be estimated objectively, as discussed above. Tables like

Table 5 may be helpful and can readily be prepared for any N and k. (A SAS macro to perform

these computations can be found on the web site http:\\methodology.psu.edu.) In contrast,

assessment of expected scientific benefit is much more subjective, because it represents the

investigator's judgment of the value of the scientific knowledge proffered by an experimental

design in relation to the plausibility of any assumptions that must be made. For this reason,

weighing resource requirements against expected scientific benefit can be challenging.

Because expected scientific benefit usually cannot be expressed in purely financial terms, or

even readily quantified, a simple benefit to cost ratio is unlikely to be helpful in choosing among

alternative designs. For many social and behavioral scientists, the decision may be simplified

somewhat by the existence of absolute upper limits on the number of subjects that are available,

number of experimental conditions that can be handled logistically, availability of qualified

personnel to run experimental conditions, number of hours shared equipment can be used, and

so on. Designs that would exceed these limitations are immediately ruled out, and the preferred

design now becomes the one that is expected to provide the greatest scientific benefit without

exceeding available resources. This requires careful planning to ensure that the design of the

study clearly addresses the scientific questions of most interest.

For example, suppose an investigator who is interested in six two-level independent variables

has the resources to implement an experiment with at most 16 experimental conditions. One

possible strategy is a “complete” factorial design involving four factors and holding the

remaining two factors constant at specified levels. Given that six factors are of scientific

interest, this “complete” factorial design is actually a reduced design. This approach enables

estimation of the main effects and all interactions involving the four factors included in the

experiment, but these effects will be aliased with interactions involving the two omitted factors.

Therefore in order to draw conclusions either these effects must be assumed negligible, or

interpretation must be restricted to the levels at which the two omitted factors were set. Another

possible strategy is a Resolution IV fractional factorial design including all six factors, which

enables investigation of all six main effects and many two-way interactions, but no higher-

order interactions. Instead, this design requires assuming that all three-way and higher-order

interactions are negligible. Thus, both designs can be implemented within available resources,
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but they differ in the kind of scientific information they provide and the assumptions they

require. Which option is better depends on the value of the information provided by each

experiment in relation to the research questions. If the ability to estimate the higher-order

interactions afforded by the four-factor factorial design is more valuable than the ability to

estimate the six main effects and additional two-way interactions afforded by the fractional

factorial design, then the four-factor factorial may have greater expected scientific benefit. On

the other hand, if the investigator is interested primarily in main effects of all six factors and

selected two-way interactions, the fractional factorial design may provide more valuable

information.

Strategic use of reduced designs involves taking calculated risks. To assess the expected

scientific benefit of each design, the investigator must also consider the risk associated with

any necessary assumptions in relation to the value of the knowledge that can be gained by the

design. In the example above, any risk associated with making the assumptions required by

the fractional factorial design must be weighted against the value associated with the additional

main effect and two-way interaction estimates. If other, less powerful reduced designs are

considered, any increased risk of a Type II error must also be considered. If an experiment is

an exploratory endeavor intended to determine which factors merit further study in a

subsequent experiment, the ability to investigate many factors may be of paramount importance

and may outweigh the risks associated with aliasing. A design that requires no or very safe

assumptions may not have a greater net scientific benefit than a riskier design if the knowledge

it proffers is meager or is not at the top of the scientific agenda motivating the experiment. Put

another way, the potential value of the knowledge that can be gained in a design may offset

any risk associated with the assumptions it requires.
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Figure 1.

Costs of different experimental design options when per-subject costs exceed per-condition

overhead costs. Total costs are computed with per-condition costs fixed at $1.
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Figure 2.

Costs of different experimental design options when per-condition overhead costs exceed per-

subject costs. Total costs are computed with per-subject costs fixed at $1.
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Figure 3.

Partial output from SAS PROC GLM for simulated Resolution III data set.
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Table 3

Resolution of Fractional Factorial Designs and Aliasing of Effects

Design resolution Main effects not aliased with Two-way interactions not aliased with

Resolution III main effects —

Resolution IV main effects and two-way interactions main effects

Resolution V main effects, two-way interactions and three-way
interactions

main effects and two-way interactions

Resolution VI main effects, two-way interactions, three-way interactions
and four-way interactions

main effects, two-way interactions and three-way
interactions
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Table 4

Aliasing and Economy of Four Design Approaches with k 2-level Independent Variables

Number experimental conditions Number subjects

Complete factorial 2k
N *

Individual experiments 2k kN

Single factor k + 1

(k + 1) 
N

2

Fractional factorial 2k−1 or fewer N

*
N = total sample size required to maintain desired level of power in complete factorial design.
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