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Abstract  –  High-power PWM inverters for medium voltage
applications operate at switching frequencies below 1 kHz to
keep the dynamic losses of the power devices at permitted level.
Also the sampling rate of the digital signal processing system is
then low, which introduces considerable signal delays. These
have adverse effects on the dynamics of the current control sys-
tem and introduce undesired cross-coupling between the cur-
rent components id and iq.

To overcome this problem, complex state variables are used
to derive more accurate models of the machine and the invert-
er. From these, a novel current controller structure employing
single-complex zeroes is synthesized.

Experimental results demonstrate that high dynamic perfor-
mance and zero cross-coupling is achieved even at very low
switching frequency.

Keywords: Induction motor, current control, medium voltage
inverters, low switching frequency, complex state variables, root
locus techniques

I. INTRODUCTION

The dynamic analysis of induction motors is traditionally based
on state equations, with the d- and q-axis components of the
stator currents and the rotor flux linkage as state variables [1].
The electromagnetic subsystem of the machine is usually mod-
eled as a 4th-order dynamic system in terms of scalar state vari-
ables. Although the root locus plot is easily obtained in this ap-
proach, it appeared difficult so far to utilize this powerful tool
of dynamic system analysis for the design of current controllers
in ac drives. Root locus techniques are indeed being considered
being hardly useful for this purpose. It is frequently commented
in the literature that the obstacle is the dynamic complexity of
the induction motor [2]. The design of the current control sys-
tem of an induction motor drive is therefore commonly based on
an approximation: the intercoupled 4th-order system is replaced
by two independent 1st-order systems, one for each current com-
ponent.

This paper uses space vector state variables to model the in-
duction motor. A rigorous approach enables a root locus based
design of the current control system and facilitates the defini-
tion of new control structures. A comparison is made between
conventional and the new complex current controllers. The im-
provements are documented by experiments.

II. MACHINE MODELS

A. Scalar versus complex machine model
The complex state variable approach for the dynamic analy-

sis of ac machines was presented in two earlier publications, [3]
and [4]. It was demonstrated that the complex eigenvalues of
the system represent dynamically independent components of
transient energy. The definition of transient energy of an ac ma-
chine is given in [4]. Not considering the mechanical inertia, the
transient energy of an induction motor is stored in its magnetic
fields. There are only two dynamically independent entities of
magnetic energy. Physically, these relate to the main flux and
the leakage fluxes, respectively. Given the predominantly sinu-
soidal distribution in space of the magnetic fields, each entity is
characterized by an amount of energy and its spatial orientation,
being represented by the amplitude of a sinusoidal flux density
distribution and its phase angle. It appears stringent, therefore,
to use space vectors as the state variables to represent the total
transient energy. The electromagnetic subsystem of an induc-
tion machine is thus modeled as a 2nd-order system in terms of
two complex state variables [3].

Subsequent linear transformations permit representing the
main flux and the leakage fluxes by the respective space vectors
of the stator flux linkage and the rotor flux linkage, or the stator
current and the rotor flux linkage, or other appropriate space
vectors.

Modelling of ac machines in terms of complex space vectors
has been previously reported in the literature. Many authors con-
sider the complex vector representation by a 2nd-order model
equivalent to the scalar representation of a 4th-order model, ar-
guing that both models give the same results [5]. It is indeed a
very straightforward mathematical operation that converts a 2nd-
order complex vector model of the machine to the scalar 4th-
order model, and vice versa. Although apparently mathemati-
cally correct, the operation changes the physical significance of
the system eigenvalues. This is a strong argument against the
equivalence of the two models. It is in fact only the complex
state variable model that permits a physical interpretation of tran-
sient machine behavior, as its two eigenvalues refer directly to
the two entities of transient energy inside the machine [4].
Against this, the 4th-order scalar model must be considered an
approximation. It replaces the spatially distributed magnetic en-
ergy by the energy of concentrated inductors. These form the
elements of coupled, lumped-parameter circuits [1]. The response
to a transient excitation is time-dependent oscillations, while the
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aaaoriginal dynamic process is commanded by the interaction be-
tween distributed magnetic energies which results in their spa-
tial displacement.

To understand the difference between the scalar model and
the complex state-variable model, a more rigorous definition is
needed of a space vector than that originally given by Kovács
and Rácz [6]. Neglecting space harmonics, the flux density dis-
tribution in the airgap of an ac machine is sinusoidal. According
to the original concept, such sinusoidal distribution is uniquely
described by a space vector. It was found convenient to use the
flux linkages of the distributed machine windings for machine
analysis instead of the distributed flux densities, which is equiv-
alent. Current and voltage space vectors were subsequently de-
fined with reference to the respective phase currents and phase
voltages, thus introducing scalar circuit parameters. The two-
axis-transformation [l] eliminates the zero-sequence component
of a three phase system, representing the three phase currents by
their two orthogonal d- and q-components. However, two scalar
components cannot be considered an equivalent to a complex
space vector. The use of scalar components as state variables
entails a division in two portions of the continuous spatial dis-
tributions that represent the transient state of the system only as
a whole.

Following from this, a space vector is not just a complex vari-
able which could be formally separated in two independent or-
thogonal components; instead, it is an entity of its own class,
which describes a continuous, sinusoidal distribution in space.
It is the total energy assigned to such distribution that represents
the transient system state; this energy is inherently indivisible.

To elaborate on this, a current shall be considered that flows
in one distributed phase winding, while the other phase wind-
ings are deenergized. Since space harmonics are neglected, the
winding conductors are necessarily arranged in a spatially sinu-
soidal density pattern. Hence the phase current under consider-
ation generates a sinusoidal current density distribution, thus de-
fining a current space vector of determined magnitude and phase
angle. The phase angle is fixed in space as the winding axis is
fixed. The resulting magnetic field represents the associated en-
ergy.

Expanding on this, there is no basic difference when all phase
currents in a polyphase winding are nonzero. The current densi-
ty distributions of the individual phase currents superimpose to
form a resulting distribution, which is again spatially sinusoi-
dal; it is described by the space vector of the polyphase current
system. The resulting magnetic field establishes a spatial distri-
bution of magnetic energy. The magnitude and spatial orienta-
tion of this distribution can assume any values, depending on
the respective magnitudes of the phase currents.

Also voltage vectors are representatives of sinusoidal distri-
butions. The resistive voltage drop in a distributed winding ar-
rangement of sinusoidal winding density exhibits necessarily a
sinusoidal variation in space. The same is true for the induced
voltage, which is also distributed in space; it is proportional to
the local winding density.

B. The complex state variable model
The spatial information is accurately conserved when the com-

plex state variable approach is followed. The state equations of
the electromagnetic subsystem of an induction motor are writ-
ten as
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where the normalized space vec-
tors is of the stator current and yr
of the rotor flux linkage are the
two state variables of a 2nd-or-
der system. wm is the mechani-
cal angular velocity of the motor
shaft. The parameters in (1) are
t 's = sls/rs, rs = rs + kr

2 rr, and
kr = lm/lr, where s = 1 – lm2/lslr
is the total leakage coefficient.
The angular velocity of the refer-
ence frame is denoted by a gen-
eral value wk. It is assumed that
the mechanical time constant of
the motor is much larger than the
transient time constants of the
electromagnetic subsystem, and
hence wm = const. is a valid ap-
proximation. Note that time is
also normalized: t = ws Rt, where
ws R is the nominal stator frequen-
cy.

A visual representation of (1)
is the signal flow graph Fig. 1,
where uir is the rotor induced voltage in the stator winding. The
significance of complex signal flow graphs is detailed in [3].

When designing the current control system, us is considered
as the input, and is is the output variable of the motor. The trans-
fer function of the induction motor is derived from (1) choosing
synchronous coordinates, wk = ws,
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where Us(s) = L{ us(t)} and Is(s) = L{ is(t)} are the respective
Laplace transforms, wr = ws – wm is the electrical rotor fre-
quency, and k1 = kr lm /(rstr) is a constant machine parameter.
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Fig. 1  Signal flow graph
of an induction motor
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Fm(s) in boldface notation underlines the complex nature of
this transfer function. This property is owed to the existence of
complex coefficients.

As the dynamics of the load are not modelled, wr = 0 is as-
sumed throughout. The solution of the characteristic equation of
(2) defines the locations in the complex plane of the two single-
complex poles pl(w) and p2(w), and the numerator contributes a
zero zl. These are plotted in Fig. 2 in stationary coordinates, wk
= 0, as functions of the angular velocity wm of the rotor. The
zeroes of the transfer function (2) are marked by circles. A phys-
ical interpretation given in [4] assigns a particular distribution
in space of transient magnetic energy to each pole. The rate of
energy decay is determined by the respective real part. The imag-
inary part defines the direction and angular velocity at which
the magnetic energy displaces during a transient process with
respect to the chosen reference frame. This definition of the an-
gular velocity is unique as eigenvalues of complex state vari-
ables have only one imaginary part. Contrasting to this, the eigen-
values of the scalar machine model result as conjugate complex
pairs that do not define a particular direction of rotation. This is
one of the deficiencies of the scalar model.

A transformation of the root loci to synchronous coordinates
can be done by simply substracting the respective ws-values from
the imaginary component of all roots as indicated in the lower
portion of Fig. 2, and exemplified by arrows. The resulting curves
are the root loci in synchronous coordinates, wk = ws. The same
result is obtained by letting wk = ws in (1) and subsequently
computing the system eigenvalues.

The graphs demonstrate that the transient magnetic fields, char-
acterized by the poles pl(w) and p2(w), rotate in a positive di-
rection in the stationary reference frame, and in a negative di-
rection in synchronous coordinates, [4]. The constant zero zl = –
1/tr in stator coordinates gets expanded to the trajectory zl(ws)
= –1/tr – jws when the system is viewed in synchronous coordi-
nates.

C. Complex transfer functions
Having introduced complex state variables to analyze the dy-

namics of the induction motor and its control, the pertaining trans-
fer functions have complex coefficients and hence are also com-
plex in general. This can be easily seen from the transfer func-
tion (2) of the induction motor.

The complex transfer function of the closed loop current con-

trol system can be written as
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where Is(s) and Is*(s) are the respective Laplace transforms of
is(t) and is*( t). The transfer function (3) shall be used to assess
the dynamic performance of the current control system.

In a transient process, the adjustment of the current space vec-
tor to a change of its reference value is retarded by various de-
lays. These are caused by the eigenbehavior of the machine, and
by the delay of the inverter and the time-discrete sampling of
the digital control. It is important that the trajectory of the cur-
rent space vector gets adjusted such that both the commanded
torque and magnetic excitation of the machine are established at
minimum time delay. Contra-productive to this aim is the com-
plex nature of the transfer function (3). It causes the adverse
effect that the output vector of the system moves in a different
spatial direction than the exciting input vector. As an example,
Fig. 3 shows how the current control can react on a commanded
change of only the imaginary current component iq. While id is
expected to maintain its commanded value, it gets heavily dis-
turbed; it temporarily even reverses its polarity. The effect is
amplified by a low value of switching frequency which is 500
Hz in this example.

A figure of merit to evaluate such undesired cross-coupling
between the current components is developed next.

D. Cross frequency response
It is easily seen from (3) that the cross-coupling is formally

introduced by the complex factor j. In general, it is the imagi-
nary component Im{ F(s)} of a complex transfer function that
determines the amount of cross-coupling of a dynamic system
F(s). To obtain the percentage of cross-coupling, Im{ F(s)} shall
be referred to the term Re{ F(s)} that defines the direct through-
put of the input signal. Of particular interest is the frequency
response, s = jw, which leads to the definition of the normalized
frequency response of cross-coupling
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c
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as a figure of merit to express the amount of cross-coupling.
Applying (4) to the transfer function (2) yields the cross fre-

quency response of an induction motor. It is displayed in Fig. 4
for different mechanical angular rotor velocities wm.
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Fig. 3  Cross-coupling between the current components in a PI-
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Hz switching frequency (simulation)
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These characteristics can be explained by examining the root
loci of the motor, Fig. 2. A particular situation is wm = 0, where
both roots are real-valued since ws = wm = 0. Since also the zero
of (2) is a real-valued constant, the transfer function has no imag-
inary component at wm = 0. This indicates that no cross-cou-
pling exists. Such situation does not reflect in Fig. 4 since zero
values cannot be displayed in a logarithmic scale. As the veloc-
ity wm of rotation increases, both roots move into the 3rd quad-
rant of the complex plane; their imaginary parts increase in mag-
nitude. This lets the imaginary component of the cross frequen-
cy response (2) increase, and the magnitude of the cross fre-
quency response (4), at given frequency w of excitation, rises in
proportion to wm.

 The variation with frequency of these curves is explained
looking at the poles pi and zeros zi of (2), the locations of which
are shown in Fig. 2. The magnitude of Fxy(jw)IM is constant at
low frequencies and changes to a –20-dB/decade decline at w >
– |p1|. The slope increases slightly around w = – |z1|, while read-
justing to –20 dB/decade at higher frequency. This is because p2
≈ z1which almost cancels their effect. The cross frequency re-
sponse is then dominated by p1.

It is an adverse property of this system that the cross-cou-
pling gain is high over most of the frequency range, peaking up
to about 34 dB at low excitation frequency and rated speed, wm
= 1.

The problem persists, in principle, when the machine is oper-
ated at closed-loop current control. Existing current controllers
exhibit real-valued roots and zeroes and thus do not satisfactori-
ly manipulate the single-complex eigenvalues of the machine
and the inverter. It is only by virtue of the zero steady-state error
property of PI controllers that the existing cross-coupling gets
compensated when the transients have died out. It depends on
the bandwidth of the current control system how fast the tran-
sient error is eliminated. The dynamic error is tolerable when
the control bandwidth is much higher than the eigenfrequencies
of the machine. The critical margin however narrows

• when the control bandwidth reduces, as in high-power in-
verters that operate at low switch-
ing frequency, or

• when the machine eigenfrequen-
cies increase, which happens at
higher speed in the field weaken-
ing range.

Both conditions tend to increase the
undesired cross-coupling.

State-of-the-art current control tech-
niques [7] cannot handle this problem
in a satisfying manner. Before develop-
ing an improved strategy, the existing
current control methods will be evalu-

ated against the performance requirements.

III. M ETHODS OF CURRENT CONTROL

A. Hysteresis current control
A hysteresis controller instantaneously applies high ampli-

tude voltages to the machine terminals whenever a preset error
margin in space in exceeded, thus forcing the stator current vec-
tor to return close to the neighborhood of its reference vector.
The high stator voltages completely override the machine dy-
namics which makes hysteresis current control an extremely ro-
bust approach. Cross-coupling is also eliminated. The drawback
of this method is the high harmonic content of the machine cur-
rents which renders hysteresis control inapplicable at medium
and low switching frequency [8]. Hence it is mostly preferred to
use linear current controllers and to generate the switching se-
quence by a pulsewidth modulator.

B. PI current controller with real-valued time constant
The most common implementation uses Pl current control-

lers in synchronous coordinates for the two current components
in field coordinates, id and iq. The complex notation merges the
two controllers into a single controller having the transfer func-
tion

Fr o
i

i
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s
s

τ
τ

+( )1
, (5)

where the controller time constants ti are real-valued, ko = rsgo
is a coefficient and go is the open loop gain. The complex signal
flow graph of the PI controller is shown in the left of Fig. 5.

A first order delay td models the PWM inverter and the time
delays that result from processing the signals as sampled data.
The sampling delay is commonly represented by
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where td =1.5/2fs is the delay time, 2fs is the sampling frequen-
cy of the microprocessor, and fs is the switching frequency of
the inverter.

Neglecting the inverter and sampling delay [5], [9] is only
permitted if the switching frequency is much higher than the
characteristic eigenfrequencies of the motor.

The design of the controller is normally based on a simplified
open loop transfer function. It is obtained from Fig. 5 with ref-
erence to (5) and (6)
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Fig. 6  Signal flow graph of the current control system

Fig. 5  Pl current control system; simplified machine model
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The controller time con-
stant t i in (7) is determined
with reference to the per-
phase equivalent circuit of
the machine, in which the
stator current dynamics are
dominated by the transient
time constant ts'. Such ap-
proximation neglects the
imaginary parts of the co-
efficients in (2). Accord-
ingly, all cross-coupling
links in Fig. 1 disappear in
Fig. 5. The PI controllers
for the respective current
components id and iq then
operate independently
from each other. Their
time constants are select-
ed as t i  = ts' , which
makes the sampling fre-

quency 1/td determine the controller bandwidth. The open loop
gain go is set for a given damping D of the closed loop system.
Choosing D = 1/2 2  yields go = t 's/2td.

The performance of the simplified system is analyzed using
the accurate machine model Fig. 1. Synchronous coordinates are
selected, wk = ws. The resulting signal flow graph of the current
control system is shown in Fig. 6.

The delays introduced by the PWM inverter and the time-dis-
crete sampling are approximated by a first-order system

τ τd
s

s

(S)
(S) (S)d

d
u

u u+ = * , (8)

where u*  is the reference voltage vector generated by the cur-
rent controller. The variables are marked by the superscript (S)

as being referred to in stationary coordinates.
Equation (8) is multiplied by the unity vector rotator

exp(–jwst) to effect a transformation to synchronous coordinates

τ τ ω τd
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s d sj
d
d
u

u u+ +( ) =1 * . (9)

Space vectors referred to in synchronous coordinates are not
specifically marked in the following.

A transformation of (9) to the frequency domain yields the

transfer function of the inverter and sampling delay
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where Us(s) = L{ us(t)} and Us*(s) = L{ us*(t)} are the respec-
tive Laplace transforms of the input and the output signal. Note
that Fd(s) is a transfer function having complex coefficients.

The open loop transfer function of the current control system
is obtained from (2) and (10),
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where Fr(s) is the transfer function (5) of the current controller.
Fo(s) is of 4th order in terms of complex state variables. With a
view towards high power applications, the switching frequency
is chosen as fs = 500 Hz which corresponds to a normalized
time constant td = 0.35. The time constant of the current con-
troller Fr(s) is again chosen as t i = t 's, which positions the zero
z2 in Fig. 7. This plot shows the locations of the 4 poles and 2
zeros in the base speed range. Only at zero speed gets the
machine pole p2 canceled by the numerator term of the control-
ler (zero z2), although not exactly.

Fig. 8 shows the root loci of the closed loop system. As per
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the design, the roots p1 and p2 are critically damped at zero speed,
being located symmetrically at ±45° with respect to the negative
real axis. The situation is much different at nonzero speed. The
complex nature of the state variables is then reflected in asym-
metric pole locations with respect to the real axis. Pole positions
having unbalanced imaginary parts indicate that cross-coupling
between the current components exists. The cross frequency re-
sponse function (4) then becomes nonzero, which makes the cur-

rent space vector deviate
from its commanded trajec-
tory as in Fig. 3. A balance
between the imaginary
parts of the single-complex
poles in Fig. 8 exists only
at wm = 0 where p1 = p2*
form what looks like a con-
jugate complex pair, and p3
and p4 are real-valued.

The particular situation
p1 = p2* is different from
what is normally known as
a conjugate complex pair
l1 = a + jb = l2* = (a –
jb)*, being roots of a char-
acteristic equation with real
coefficients. Such roots l1,
l2 are scalars. Against this,
each of the roots p1, p2 is
single-complex. Only at
wm = 0 do these roots hap-
pen to have equal imagi-
nary parts of opposed sign
for the system under con-
sideration. They do not
form a pair in the sense that
l1, l2 do.

The cross-coupling fre-
quency response |Fxy(jw)|
Fig. 9 shows reduced gain

at frequencies below 5 Hz (100 → wsR = 314 s-1) as compared
with the behavior of the uncontrolled machine, Fig. 4.

Experimental results were obtained from a 30-kW induction
motor drive operating at the relatively high switching frequency
of 1100 Hz. The machine was run in a current controlled mode
at nominal speed and nominal excitation. The load torque was
first set to its nominal positive value, and the iq-command was
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Fig. 13  Cross frequency response of the closed loop system, Pl
controller with feedforward compensation

then reversed to its nominal negative value. Fig. 10 shows
how the stator current trajectory deviates from its com-
manded track as id temporarily also reverses. It takes
about 10 ms until the undesired cross-coupling is com-
pensated.

The controlling microprocessor was programmed to
acquire the respective current values in field coordinates.
The data were passed through D/A converters to be visu-
alized on an oscilloscope. It is for this reason that time-
discrete values are seen in Fig. 10 which occurs at a sam-

pling rate of 2fs = 2.2 kHz.

C. PI current controller with feedforward compensation
An improved model of the induction motor reflects the fact,

that cross-coupling exists in the stator winding when synchro-
nous coordinates are used, Fig. 11. A feedforward compensa-
tion signal jwsŝlsis is added to the PI controller. The voltage
jwsŝls.is is intended to cancel the internal, motion induced volt-
age –jwsts'.rs is in the stator winding. Note that sls== rs ts'. The
method works well at high switching frequency where the in-
verter and sampling delay  is negligible. The compensation sig-
nal is retarded at low switching frequency by a large inverter
and sampling delay td; the compensation is then erroneous and
cross-coupling  persists. Another source of uncompensated cross-
coupling is the voltage u ir that the rotor induces in the stator
winding, Fig. 11.

The performance of feedforward compensation is studied by
inserting the compensated PI controller of Fig. 11 into the cur-
rent control system Fig. 6. The resulting closed loop transfer
function is shown in (12) below. The root locus plot Fig. 12 was
computed for 500 Hz switching frequency. There is still a clear
tendency of the three single-complex roots to show unbalanced
imaginary parts as the angular mechanical velocity wm increas-
es. Moreover, the system gets unstable at higher speed. The rea-
son is that the feedforward decoupling is counteracted by the
phase shift of the inverter at higher frequencies. The performance
is not improved as compared with that of the PI-controlled sys-
tem, nor is the cross-coupling response at nominal speed Fig. 13
much better than that of Fig. 9.

The oscillograms taken experimentally at 1100 Hz switching

Fig. 11  Pl current control with feedforward compensation
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frequency confirm these re-
sults. The current trajectory
in Fig. 14 still deviates from
the desired path. An added
problem is the inherent pa-
rameter sensitivity of feed-
forward control. A 20% er-
ror of the leakage induc-
tance ŝls leads to the much
higher deviation shown in
Fig. 15.

D. Current controller with
single-complex poles

The foregoing analysis of
established current control
schemes has served to pro-
vide a better understanding
of the dynamic properties of

ac machines. This is owed to the use complex state variable mod-
els. The root loci of the resulting single-complex system eigen-
values have been introduced as a valuable tool in this respect.

This technique is now expanded to create a novel class of con-

trollers. Such controller is constructed using single-complex
poles so as to better correspond to the unique dynamic proper-
ties of ac machines.

The components of the current control system are modeled
without approximation. Referring to the signal flow graph Fig.
6, an open loop transfer function is derived from (2) and (10),
considering no-load, wr = 0, and k1 = kr lm /(rstr)

  

F Fo r
d s d

r

s r 1 m r

( ) = ( )
j

j j

(13)s s
s

s r
s s k

1
1

1
1 1 1

τ τ

τ
τ τ τ τ

+ +( )

⋅ +( )
+ +( ) +( ) − −( )

w

w w
σ

σ σ' '

where Fr(s) is the controller to be designed. Its transfer func-
tion is constructed such that the single-complex eigenvalues of
the plant are displaced onto the real axis of the complex plane.
The current controller
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meets this requirement. The choice of the time constants
τ τ τ τ τ τi1 i2 r i3 d= , = , =σ' (15)

is appropriate. ko = rsgo is a coefficient and go is the open loop
gain.

The visualization of (14) in the left of the signal flow graph
Fig. 16 illustrates how the complex current controller mirrors
the system roots into its poles. The original signal flow graph of
the induction motor Fig. 1 appears in the right of  Fig. 16 in a
rearranged layout. This serves for a better understanding of the
elements of the complex controller in the left. The structure in
the lower right of the current controller box in Fig. 16 compen-
sates the complex inverter and sampling delay td. It generates
the chain of zeroes shown in the left of Fig. 17 at –1/td –jws as
function of ws, thus replacing the chain of poles by a single pole
at –1/td on the real axis.

The portion in the center aims at compensating the eigenbe-
havior of the stator. Its contributions are a chain of zeroes at
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Fig. 16  Current control system using a controller with single-complex poles. The induction motor is represented in the right.
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–1/t r –jws as function of ws, and an added pole p1 in the origin
which serves as an error integrator. The isolated transfer func-
tion of this portion is
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An additional signal from the upper structure of the complex
controller models the rotor, and in combination with (16), the
dynamic interaction between the stator and the rotor of the ma-
chine. It adds a chain of zeroes –1/t r –jwm as function of wm,
and a pole at –1/t r. In its interaction with (16), it displaces the
zeroes of (16) and its own zeroes to be exactly located on the
two typical single-complex eigenvalues Fig. 2 of the induction
motor. These are then seen eliminated in the right of the root
locus plot Fig. 17. The added pole eliminates the zero of (13).

With all single-complex zeroes in the third quadrant of the
root locus plane being cancelled, the open loop transfer function
resulting from (13), (14) and (15)

Fk o
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s s

1
1τ τσ' +( ) (17)

has no more complex coefficients; cross-coupling is thus elimi-
nated. The location of the two real roots of (17) is shown in Fig.
18.

The closed loop system is designed for critical damping D =
1/2 2  which determines the open loop gain go = t 's/2td.

The step response Fig. 19 obtained from the experimental setup
shows the current trajectory moving on the shortest trajectory
between the two reference points.

SUMMARY

State-of-the-art current controllers perform unsatisfactorily if
applied to PWM controlled voltage source inverters operated at
very low switching frequency. The reason is that the dynamics
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Fig. 19  Recorded step response of the current control system,
complex current controller, fs = 1100 Hz

of the drive motor and the inverter are inaccurately modelled.
The penalty is a high degree of cross-coupling between the
torque-building and the field-generating current component of a
vector controlled drive. The common remedy of feedforward
compensation of the stator cross-coupling gives little improve-
ment at very low switching frequency.

Modelling the induction motor and the inverter in terms of
complex state variables provides a better insight in the dynam-
ics of controlled ac drives. The roots and poles of the respective
transfer functions then have the property of being single-com-
plex; the root loci become physically interpretable. It is shown
that the sources of cross-coupling are reflected in the unbalanced
imaginary parts of three single-complex system roots. The com-
plete elimination of cross-coupling is enabled by a novel type of
current controller having three single-complex zeroes. The the-
ory is confirmed by experimental results.
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