
UC Berkeley
Research Reports

Title
Design Of Fault Tolerant Control Systems For Ahs

Permalink
https://escholarship.org/uc/item/3fs153cv

Authors
Sastry, S.
Horowitz, R.
Hedrick, K.

Publication Date
1998

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3fs153cv
https://escholarship.org
http://www.cdlib.org/

ISSN 1055-1425

April 1998

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

Report for MOU 288

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Design of Fault Tolerant Control
Systems for AHS

UCB-ITS-PRR-98-16
California PATH Research Report

S. Sastry, R. Horowitz, K. Hedrick
University of California, Berkeley

Design of Fault Tolerant Control Systems for AHS: Annual Report

for MOU 288 1

Principal Investigators: Prof. S. Sastry, Prof. R. Horowitz, Prof. K. Hedrick

1Research supported by CALTRANS MOU 288
2Please direct all correspondence concerning this manuscript to Prof. S. Sastry at EECS Dept., 261M Cory

Hall, University of California at Berkeley, Berkeley, Ph: (510) 642 3245, e-mail: sastry@eecs.berkeley.edu.

Abstract

This report describes the research work conducted under CALTRANS MOU 288 on fault detection
and handling for automated vehicles. The report describes fault detection and handling designs
used in the longitudinal control system of platooned automated vehicles. Results are presented on
experimental testing of the designs. During the course of the year the project has extended the
past work on fault handling to deal with several special fault classes. We have also designed a
consistent interface between the fault detection and handling modules and implemented it in the
SHIFT programming language for the speci�cation of hybrid systems. The report also describes
part of the modeling formalism required for the formal veri�cation of safety claims.

Keywords: fault management, automated vehicles

Contents

1 Executive Summary 5

2 An Interface Between Fault Handling and Detection Modules 7

2.1 Introduction . 7

2.2 AHS Fault Tolerant Structure . 7

2.3 Implementation of the capability structure in Shift 9

2.3.1 An example of the capability structure . 9

2.3.2 A generic capability structure implementation 12

2.3.3 A capability structure based on hierarchical sets 14

2.4 Coordination Supervisor . 18

2.4.1 Coordination regulator degraded mode maneuvers 18

2.4.2 Coordination Supervisor Strategies . 22

2.4.3 Mutual Exclusion and Priority . 22

2.4.4 Implementation . 24

3 A Complete Fault Diagnostic System for the Longitudinal Control of Automated
Vehicles 26

3.1 Introduction . 26

3.2 Simpli�ed Model for Control Design . 27

3.2.1 Simpli�ed Vehicle Model . 27

3.3 Controller Design . 28

3.4 Sensors and Actuators . 28

3.5 Analytical and Observer-based Redundant Signals . 29

3.5.1 Speed Sensor Redundancy . 29

3.5.2 Inter-car spacing . 30

3.5.3 Throttle Actuator or Throttle Angle Sensor and Manifold Mass Flow Rate
Sensor Faults . 31

3.5.4 Brake Actuator and Sensor Fault . 31

1

3.5.5 Vehicle Speed Estimation using Accelerometers and Markers 32

3.5.6 Communication fault . 32

3.6 A System for Automated Fault Diagnosis . 32

3.7 Simulation Results . 33

3.8 Experimental Results . 36

3.9 Conclusions . 38

4 A Diagnostic Protocol for Radar Faults 41

5 A Methodology for the Integration of Vehicle Failure Diagnostics 45

5.1 Introduction . 45

5.2 Problem Formulation . 47

5.3 Plant Modelling . 50

5.4 Diagnoser Construction and Diagnosability Veri�cation 52

5.5 Failure Diagnosis of an Automated Vehicle . 54

5.5.1 The Two Residue Illustration . 54

5.5.2 The Dependence of Residue on Control . 55

5.5.3 The Composite System . 55

5.6 Summary . 55

6 Future Work 64

2

List of Figures

2.1 Overview of fault tolerant control structure . 8

2.2 Capability and performance structure . 9

2.3 Logic structure of fault handling for normal mode AHS 10

2.4 Structure of implementation for fault handling in Shift 11

2.5 Simulation results of an example . 13

2.6 A proposed generic structure of fault handling in Shift 14

2.7 basic �nite state machines for the capability structure 15

2.8 Capabilities for physical layer. (1) Brake (actuator) (2) Throttle (actuator) (3) Steer-
ing (actuator) (4) Velocity sensor (5) Acceleration sensor (6) Relative distance sensor
(7) Relative velocity sensor (8) Magnetometers (9) Magnets sensor (10) Infrared (com-
munication) (11) Radio (communication) . 19

2.9 Capabilities for control laws (1) Lead law (2) Join law (3) Split law (4) Follow law (5)
Lane keep law (6) Lane change law (7) Catch up law (8) Platoon break up law (9)
Stop sign law (10) Acceleration to enter law (11) Deceleration law 20

2.10 Capabilities for maneuvers (1) Entry maneuver (2) Lead maneuver (3) Free agency
maneuver (4) Join maneuver (5) Split maneuver (6) Decelerate to change lane maneu-
ver (7) Follow maneuver (8) Move maneuver (9) Exit maneuver 21

2.11 Structure of fault handling and coordination supervisor 23

2.12 Implementation of coordination supervisor . 24

3.1 Fault Diagnosis Algorithm . 35

3.2 Inter-car spacing observer in the absence of faults . 36

3.3 Engine speed observer of Equations 3.10 and 3.11 in the absence of faults 36

3.4 Mass ow rate observer of Equations 3.10 and 3.11 in the absence of faults 37

3.5 Gear shifting during the maneuver . 38

3.6 Radar fault causes the inter-car spacing observer to diverge 38

3.7 Values of the di�erent residues of Table 3.4 during a radar sensor fault 39

3.8 Experimental Results on the use of the magnetic observer for radar faults 40

4.1 Diagnostic Protocol Finite State Machine . 44

3

5.1 Fault Management Architecture . 46

5.2 Component models M1, M7 and Mf . 56

5.3 Ms for residues 1 and 7 only . 57

5.4 Synchronous composition M1
N
M7
N
Mf . 58

5.5 Synchronous composition M1
N
M7
N
Mf

N
Ms . 59

5.6 Diagnoser Md for residues 1 and 7 only . 60

5.7 The dependence of residue 3 on control . 61

4

Chapter 1

Executive Summary

This document is an annual report describing the research and development work conducted under
Caltrans MOU 288 on the design of fault tolerant control systems for AHS during the period July
1996 to June 1997.

The project is proceeding on schedule and has provided the deliverables as speci�ed in the
proposal. The items due are as follows.

1. A working paper on proposal task # im1.3, Designing a consistent interface between fault
detection and fault handling modules. This working paper is chapter 2 of this report.

2. Software for proposal task # md2.1, Extending the monitoring scheme. The required software
has been developed by two subgroups. For software on diagnostics see chapter 3 and for that
on handling see chapter 2.

In addition to the required deliverables, we have included two chapters describing prelimi-
nary results on proposal task # md1.2, Development of algorithms for special fault classes. Chapter 3
describes the extensions required to design a complete diagnostic scheme for the longitudinal control
system of a platooned vehicle. Chapter 4 describes the inter-vehicle coordination protocol required
to diagnose radar range-rate measurement faults in a platoon follower vehicle. Chapter 5 describes
preliminary work on proposal task # vpa1, Formal Veri�cation of Safety Claims. The following
paragraps provide a brief summary of the material in each chapter.

Chapter 2 (An Interface Between Fault Handling and Detection Modules) describes a fault
handling scheme for the hierarchical PATH architecture. The scheme extends the fault tolerant AHS
design framework developed under Caltrans MOU 135. This design proposed two main structures:
capability and performance. The �rst structure, that is the focus of this chapter, deals with hard
faults that are due to sudden changes in a sensor or actuator performance. The occurrence of hard
faults can be detected by appropriate �lters, such as those developed by Speyer etal. under MOU
126 and by Hedrick etal. under MOU 101. An e�cient representation of the capability structure
in Shift has been selected after comparing several di�erent approaches. This is also gives us the
software corresponding to our design. In the approach selected, faults are coded by a hierarchical
structure of sets. The de�nition of such sets is easy to code in Shift and provides a exible and
extensible architecture modelled in a hybrid systems formalism. Since we model in a hybrid systems
formalism, the capability structure can be represented by a set of �nite states machines. This allows
logical veri�cation with the use of veri�cation tools such as COSPAN. In the second part of the

5

report, a coordination supervisor is designed and tested. This supervisor deals with both the normal
and degraded modes of operation of the AHS.

Chapter 3 (A Complete Fault Diagnostic System for the Longitudinal Control of Automated
Vehicles), describes a complete system for fault diagnostics of the longitudinal controllers in a
platoon of automated vehicles is developed. This extends past work to incorporate certain special
fault classes (task # md1.2). The diagnostic system is designed to provide automated monitoring and
fault identi�cation of all the sensors and actuators used in the longitudinal control system, including
radar sensors and inter-vehicle communication. The system uses several reduced- order nonlinear
observers constructed from a longitudinal dynamic model of the vehicle. Multiple estimates of
signals are obtained by designing each observer to utilize a di�erent sensor measurement. Di�erent
combinations of all the available sensor signals and the observer estimates are then processed to
construct a bank of 10 di�erent residues. We show analytically that a fault in any of the sensors
or actuators creates a unique subset of these residues to grow so as to enable exact identi�cation of
the faulty component. Both simulation and experimental results are described to demonstrate the
working of the fault diagnostic system in the presence of various faults.

Chapter 4 (A Diagnostic Protocol for Radar Faults), describes a inter-vehicle coordination
protocol for the diagnosis of failures in the radar range-rate measurement of a platoon follower
vehicle. This extends past work to incorporate certain special fault classes (task # md1.2). The radar
range-rate measurement is checked by di�erencing the inertial speed of the car and the car in front.
Therefore this di�erence can turn high if there is a fault in the inertial speed measurement sensors
of the car in front. An inter-vehicle coordination protocol is required to eliminate the possibility of
a fault in the speed measurement of the car in front before declaring a fault in the radar range-rate
measurement.

Chapter 5 (A Methodology for the Integration of Vehicle Failure Diagnostics), describes a
part of the modeling formalism required for the formal veri�cation of safety claims (proposal task
vpa1). It presents an architecture for the formal integration of diagnostics and degraded mode
control at the regulation and coordination layers and the interfaces between them. It also describes a
modeling formalism for the synthesis and veri�cation of diagnostic logic and presents some examples
that apply the formalism to the veri�cation of diagnostic logic used in the longitudinal control system.

6

Chapter 2

An Interface Between Fault Handling

and Detection Modules

2.1 Introduction

A scheme for the interface between fault detection and fault handling modules in the hierarchical
PATH architecture is proposed. The scheme is developed after the fault tolerant AHS design proposed
by Lygeros et al in [13] that proposes two main structures in a fault tolerant AHS: capability and
performance structures. The capability structure, that is the main focus of this chapter, deals with
hard faults, those that are due to sudden changes in a sensor or actuator performance. The occurrence
of hard faults can be detected by appropriate �lters, like those proposed by Speyer's or Hedrick's
research groups [3, 4]. An e�cient representation of the capability structure in Shift have been
selected after comparing several di�erent approaches. In the selected approach, system capabilities
are decided after the analysis of a hierarchical structure of sets. The input to the lower level in this
hierarchy matches the output of the fault detection module. There are two levels of outputs, directed
to the regulation and coordination layers of the PATH AHS architecture, respectively. By using these
outputs, the system decides on the availability of regulation layer control laws or coordination layer
maneuvers. The de�nition of the hierarchical sets for fault handling is easy to code in Shift and
provides a exible architecture, that will accommodate for changes, for example, in the sets of sensor
or actuators. Moreover, using the hybrid systems formalism, that forces to model the capability
structure as a set of �nite states machines, also allows for the logical veri�cation of the design with
the use of some other automatic veri�cation software, such as COSPAN [8]. The second part of
the chapter presents a coordination layer maneuver supervisor, whose design is base in the same
hierarchical structure of sets. This supervisor decides which maneuver a vehicle is able to perform
based on its current capabilities, for both the normal and degraded modes of operation of the AHS.

2.2 AHS Fault Tolerant Structure

In this section we follow the ideas presented in [13] for the design of a hierarchical fault tolerant AHS.
Lygeros et al [13] divide the problem of supervising the AHS operation into four major structures:
sensor, capability, performance and control. The information ow between these structures is de-
picted in Figure 2.1 The sensor structure encodes all the information that is sensed at the individual
vehicles level or at the roadside infrastructure level. The capability structure is designed to determine

7

discrete changes in the system capability due to faults in the vehicle and roadside hardware. The
performance structure objective is to decide on any gradual degradation in system performance due
to adverse environmental conditions and gradual wear of AHS components. The control structure,
�nally, decides on the control actions on the AHS based on the information encoded by the three
other structures. In this section we focus on the design of the capability and performance structures.

Control Structure
Capability Structure

Sensor Structure

Performance Structure

PLANT

Figure 2.1: Overview of fault tolerant control structure

The design proposed in [13] for the capability structure is in the form of a hierarchy of
binary logic predicates, while the performance structure is realized through a set of maps from the
causes of gradual performance degradation to the parameters that reect the performance of the
system. These maps can be realized on line. Figure 2.2 shows more details about the capability
structure and the performance structure suggested in [13].

The capability structure in Figure 2.2 assumes the existence of a set of signals coming
from a fault detection structure already in the appropriate format. The maps for the capability
structure in Figure 2.2 are:

FR - maps capabilities of the physical layer to the regulation layer.
FI - maps, in the regulation layer, capabilities from its regulator to its supervisor.
FC - maps capabilities of regulation layer, communication and neighbor

vehicles to the coordination layer supervisor.

The maps for the performance structure in Figure 2.2 are:

f : C �! P .
Ri : P �! f0, 1g; i = 1; : : : ; r.
C { causes of degradation and performance parameters.

8

Coordination

Supervisor

&

f
{0, 1}

{0, 1}

P

Performance structure

Capability structure

Capability info.

Parameters info.

Reg.
layer

regulator
predicate

Reg.
layer

supervisor
predicate

A set of A set ofA set of

Causes of
performance degradation

Controller
tuning

mappingsmappings mappings

Physical
layer
predicate

Communication capabilities

Regulation layer
capability of
neighboring vehicles

Ri

{(FR)i} {(FI)i} {(FC)i}

Figure 2.2: Capability and performance structure

P { set of performance parameters
P = PP [PS [PR [PC [PL [PN .

where the sub-indexes P , S, R, C, L and N stand for parameters related to the physical layer, sensor
structure, regulation, coordination link and network layers, respectively.

2.3 Implementation of the capability structure in Shift

In this section we discuss the implementation in Shift of the capability structure. We show an
example of this implementation for the normal mode of operation of the PATH AHS architecture.
This example uses a combination of C and Shift codes. We include some some plots that show
simulation results. We present a generic design for implementation that is only based on �nite states
machines coded in Shift. Plots illustrating simulation results produced with this code are also
included.

2.3.1 An example of the capability structure

We present an example, taken from [13], to illustrate the functioning of the capability structure
under the normal mode of operation. The control scheme for normal operating conditions relies
on a number of resources: sensors, actuators and communication devices, both on vehicles and on
the roadside. From an input-output point of view, the goal of the capability structure is to take
information from these resources and to determine the inuence of failures in any of them on the
ability of a vehicle to perform a given maneuver. To achieve this goal [13] proposed a design based
on a hierarchy of logical binary predicates. Figure 2.3 illustrate a logic structure for fault handling
in the normal mode. In Figure 2.3 each predicate will monitor a single functional capability and

9

Catch Up

&

1

1

1

1

1

Actuator capabilities

Sensor capabilities

break

throttle

steering

velocity

acceleration

relative distance

magnetometer

relative velocity

magnets

Communication capabilities

radio 1

1

1

1

1

1

Leader Law

Split law

Follower Law

Lane Change

Platoon Break Up

Stop Sign Law

Accel. to Enter

ENTRY

LEAD

FREE AGENT

JOIN

SPLIT

DECEL. TO CHANGE

FOLLOW

MOVE

EXIT

Lane Keep

Decelerate law

&

&

&

&

&

&

&

&

&
&

&

& Join Law

infrared

FR FC

Figure 2.3: Logic structure of fault handling for normal mode AHS

will return a \1" (True) if the system possesses a correct capability or a \0" (False) otherwise1.
The values returned by the predicates higher in the hierarchy depend, naturally, on the values of
predicates at lower levels of the hierarchy. The maps FR and FI can be denoted as:

FR : f0; 1gnact+nsen+ncomm �! f0; 1gnlong+nlat

FI : f0; 1gnlong+nlat �! f0; 1gnman

where nact, nsen and ncomm indicate the number of actuators, sensors and communication channels,
respectively. nlong and nlat the number of longitudinal and lateral control laws in the regulation
layer, respectively. Finally, nman denotes the number of maneuvers in the coordination layer.

An desired feature in the Shift implementation of any capability structure is that the
implementation is easy to expand and/or change. This is important when other sensors, actuators,
communication devices, or even control laws are added or modi�ed in the structure.

Figure 2.4 illustrates the structure adopted to implement this normal mode capability
structure in Shift. We de�ne three Shift types:

type Fault: Generates faults for simulation purposes.

type Laws: Relates faults and control laws at the regulation layer level.

type Maneuvers: Operates on control laws at the regulation layer level to produce maneuvers
capabilities at the coordination layer level.

1For this reason the logical predicates are processed by AND operators

10

Since there is no pointer-like data types in the current Shift release, we use array and
set to realize a dynamic data structure. For example, we use following code

law name cap arg := [[act cap [i]; sen cap [j]; com cap [k]]

: i in index act name;

j in index sen name;

k in index com name];

to code the availability of the law name regulation layer control law. By changing index fact, sen,

comg name, we can adapt for di�erent combinations and sizes of actuators, sensors and communication
channels sets, and by changing law name, for di�erent control laws.

Fault generator
(Type Fault)

Capabilities of control laws
(Type Laws)

Capabilities of maneuvers
(Type Maneuvers)

Info. of capabilities of maneuvers

Logic process

Logic process

Logic process

Figure 2.4: Structure of implementation for fault handling in Shift

Shift does not support functions, although a Shift program can refer to external C/C++
functions. In this example, logic and mathematical calculation are programmed using external C
functions. The main advantage to code this calculations in C is currently in the debbuging phase.
There are also some gains in the use of C libraries.

A Shift simulation results for the normal mode of operation capability structure example
is illustrated by Figure 2.5. The �rst plot, (a) in Fig. 2.5, shows the state of the magnet sensor and
the brake actuator. The second plot, (b) in Fig. 2.5, displays the capability of the leader law and
change-lane law in the regulation layer. Finally, the third plot, (c) in Fig 2.5, indicates the capability
of the Lead and Decel-to-change-lane maneuvers in the coordination layer. A magnet fault takes
place at t = 1:10 s, the corresponding sensor changes from \1" to \0". Because of the lack of lateral
position sensing, the capability of change-lane law also changes from \1" to \0" at the same time.
Notice that the capability of lead control law is still \1". However, since each maneuver consists at
least one lateral and one longitudinal control law, the Lead and Decel-to-change-lane maneuvers are
both unavailable, as is clearly indicated by the change from \1" to \0" in the third plot (c) in Fig 2.5.
A second fault, now a brakes fault, takes place at t = 1:10s. The immediate e�ect of this fault is to
make the lead control law unavailable. The brakes fault is then switched o�, on and o�, respectively
at t = 1:80 s, t = 2:30 s and t = 2:80 s. The e�ect on the leader control law of the regulation layer is
clearly following the capability state of the brakes actuator. The capability of both maneuvers, Lead
and Decel-to-change-lane, remains in \0" while the fault on the magnets is present. It is only after

11

the fault in the magnet is �nished, at t = 3:10 s, that the Lead and Decel-to-change-lane maneuvers
become again available.

A delay between the time faults happened and the capabilities changed can be noticed in
Fig 2.5. This delay has exactly the size of the simulation time step.

2.3.2 A generic capability structure implementation

The example in the previous section is limited, since it is only considering the conditions for the
normal mode of operation in AHS. In this section we adopt a more generic structure to implement the
fault handling scheme in Shift. Figure 2.6 shows a block diagram of a more general architecture for
the capability structure. We assume that the sets of sensors, actuators and communication channels
are ordered and �nite. Suppose, for example, that only some sensors are involved in determining
the capability of a regulation layer control law. Ordering the sets will imply that we only need to
know the position of those sensors in the ordered set of sensors. More speci�cally, if every sensor,
actuator and communication channel is associated with a power of two corresponding to its order in
the set, each combination of capabilities yields an unique number. Therefore, with this convention, in
this approach all the information related to the appropriate sensors, actuators and communications
involved in a given capability analysis is coded by a set of �ve numbers:

INDEX ACT a multiple pointer to the suitable elements from the actuator capability array.

INDEX SEN a multiple pointer to the suitable element from the sensor capability array.

INDEX COMM a multiple pointer to the suitable elements from the communication devices ca-
pability array.

INDEX OTHERS a multiple pointer to the suitable elements from other faults capability array,
such as \Out of Gas, Low on Gas, etc.".

INDEX SEC a multiple pointer to the suitable elements from the control laws capability array;

The two last pointers in the structure, INDEX OTHERS and INDEX SEC are added to provide
more exibility in the scheme and the possibility of intermediate calculations.

To explain the role of these multiple pointers, consider again the example in section 2.3.1.
The set of actuators is composed by the brakes, throttle and steering actuators. For the capability
of the lead control law, we require to check the availability of the break and throttle actuators, the
�rst and second elements in the set of actuators, respectively. Therefore we code the use of these
two actuators by making INDEX ACT= 3.

In [13] the process for the capability structure is assumed to be logic. A general structure
can consider other types of processes such as probabilistic, fuzzy logic, etc. The use of this kind of
post-processing can occur in addition or complementing the �ltering that is already applied in the
fault detection module [3, 4]. It is not the intention on this section to further discuss this issue of
post-processing. We only want propose an structure that will allow such implementation, if desirable.
The kind of process that is used to determine a given capability can be coded by

ID # a pointer to the suitable process for a particular capability.

12

sta_act_brake(Fault 0)
-vs-TimeClick

sta_sen_mag(Fault 0)
-vs-TimeClick

Capabilities of snesor (magnets) and actuator (brake)

Time (seconds)

1 2 3 4

Pr
ed

ic
at

es

0

0.2

0.4

0.6

0.8

1

(a) Capabilities for Brake and Magnets

law_cap_lead(Laws 0)
-vs-TimeClick

law_cap_lanechg(Laws 0)
-vs-TimeClick

Capabilities of control laws (lead and changelane)

Time (seconds)

1 2 3 4

Pr
ed

ic
at

es

0

0.2

0.4

0.6

0.8

1

(b) Capabilities for Lead and Change-lane control laws

man_cap_lead(Maneuvers 0)
-vs-TimeClick

man_cap_decelchg(Maneuvers 0)
-vs-TimeClick

Capabilities of maneuvers (Lead and Deceltochangelane)

Time (seconds)

1 2 3 4

Pr
ed

ic
at

es

0

0.2

0.4

0.6

0.8

1

(c) Capabilities for Lead and Decel-to-Change-Lane maneuvers

Figure 2.5: Simulation results of an example

13

Process Units

DECODE

LOGIC

PROB. ANALY.

CAPABILITIES (Output Info.)

DATA

TYPE Fault_handling

Input/Update

INDEX_ACT

INDEX_SEN

INDEX_COMM

Input Info.

ID #

INDEX_SEC

INDEX_OTHERS

ACT., SEN., COMM., OTHERS

Figure 2.6: A proposed generic structure of fault handling in Shift

We can implement this generic structure in Shift by creating a class-like type Fault handling

with a data storage. By using the data connection, we can input or update the capabilities of ac-
tuators, sensors and communication devices. Secondary capabilities, as the control laws capabilities
or any other regulator predicate in the regulation layer, can be updated by the output of the this
type Fault handling. By setting the values of the ID number, the suitable process is chosen. All
logic and probability analysis can be realized by C functions.

For the example in the section 2.3.1, assume we want to calculate the lead control law and
lead maneuver capabilities. The it is enough to code

Fault handling lead law cap := create(Fault handling; 3; 15; 0; 0;0;0);

Fault handling lead man cap := create(Fault handling; 0; 0; 1;0;17;0);

where the arguments in the example correspond to sensors, actuator, communications, other inputs2,
regulation layer laws and type of process.

The other maneuver capability processes given in Figure 2.3 can be implemented in a
similar fashion.

2.3.3 A capability structure based on hierarchical sets

In the previous sections, we presented two schemes to implement the capability structure that are
based on a mixture of C and Shift codes. In this section we present a full implementation in Shift
that also recovers the capability structure proposed in [13] and allows to take full advantage of the
hybrid systems formalism under which Shift was developed. Although there are clearly some gains
in the mixed coded implementations presented in the previous sections, we think that trying to
preserve signi�cant portions of the code in Shift will add to the robustness and exibility of the
design. In particular we will be able to exploit the veri�cation capabilities that are currently under

2This set is empty for the example.

14

development for Shift as well as the automatic generation of real time code, that will be possible
in future versions of this language.

This last approach is based on the use of the Set formalism of Shift. We de�ne two types
of sets, one for the capability of the regulation layer control laws and other to verify the capability of
the coordination layer maneuvers. When declaring these sets, the user will code a particular instance
of the capability structure. They are, however, the only piece of code that will be necessary to modify
in the capability structure that we are de�ning. Two examples of instances of these sets are shown
below

set(Fault generate) laws flawg set := fact brake, ..., com radiog;
set(Logic laws) mans fmaneuverg set := flead, ..., decelg;

Once these sets are de�ned, the capability structure is composed by a large number of
elementary �nite state machines (FSM). We designed three types of FSMs

� Fault generators.

� Logic laws.

� Logic mans.

Figure 2.7 show the three types of FSM.

01

0

0 1

1

Logic_mans

Logic_lawsFault_generators

havefaultnofault

(set)Fault_generators:nofault(all)
(set)Logic_laws:good(all) and

(set)Logic_laws:bad(one) and

(set)Fault_generators:nofault(all), good

Fault_detection:fault, havefault

Fault_detection: normal, nofault

(set)Fault_generators:havefault(one), bad

(set)Fault_generators:havefault(one)

Figure 2.7: basic �nite state machines for the capability structure

The Fault generators FSMs are the point of connection with the fault detection module.
These machines have two states: 0 and 1 that correspond to the nofault and have fault conditions,

15

respectively. Each FSM is associated with only one residue unit in the fault detection module.
Initially, the Fault generator FSM will be at the 0 state. Whenever the residue in the fault detection
unit changes from normal to fault, this transition will trigger a transition in the Fault generator
to the state 1. It will remain there until the fault detection units goes to a normal condition. Notice
that when in 0 the FSM will produce the nofault label and when in the 1 will produce a have fault
one.

Each one of the Logic law FSM, the second type in Figure 2.7, analyzes only one set of
Fault generator FSMs. The task of this FSM is to decide in the possibility to perform a regulation
layer control law. If any of the Fault generators that are members of this set produces a label
havefault, the Logic law FSM will have a transition to the state 0 and will produce the label bad
while in there. Only when all the Fault generators are in good condition, will the Logic law FSM
have a transition to the 1 state.

The last type of FSM described in Figure 2.7 is the Logic man FSM. Each one of these
FSMs is associated with two sets. The �rst set corresponds to a set of Faul generators FSMs and
the second set to a set of Logic man FSMs. The Login man FSM is designed to determine whether
a coordination layer maneuver is available. The conditions for the transitions in the Logic man
FSM are similar to those of the Logic law FSM: if any element in the two sets produces a bad or
have fault label the FSM will go to the state 0, indicating the inability to perform the associated
maneuver. The Logic man FSM will remain in the 0 state until all the associated FSM produce a
good or nofault label, in which case it will transition to the state 1.

It is very important to remark, that the capability structure can deal with simultaneous
faults. This is stated with the use of the one and all options for set-related transitions in Shift.

The following is a Shift pseudo-code example of the implementation of the sets and FSMs
described above.

set(Fault_generate) laws_{law}_set := {act_brake, ..., com_radio};
set(Logic_laws) mans_{maneuver}_set := {lead, ..., decel};

type Fault_generate
{
output symbol indicator_fault;

.

.

.
transition

normal -> fault{}
when ...
do{
indicator_fault := $havefault;

.

.

.
},

.

.

.

fault -> normal{}
when ...
do{

indicator_fault := $nofault;
.
.

16

.
},
}

type Logic_laws
{
output symbol indicator_law;

.

.

.
transition

state_1 -> state_0 {}
when exists Cp in laws_{laws}_set: indicator_fault(Cp) = $havefault
do{

.
indicator_law := $bad;
.
},

state_0 -> state_1 {}
when not(exists Cp in mans_{maneuvers}_set: indicator_fault(Cp)
= $havefault)
do{

.
indicator_law := $good;
.
};
}

type Logic_mans
{ .
.
.
transition

state_1 -> state_0 {}
when exists Cp in mans_{maneuvers}_set: indicator_law(Cp) = $bad
do{

.

.

.
},

state_0 -> state_1 {}
when not(exists Cp in mans_{maneuvers}_set: indicator_law(Cp) = $bad)
do{

.
.
.
};
}

To illustrate the implementation of the capability structure with hierarchical sets in Shift
we include results from a simulation in TkShift. Notice that we have to simulate the fault detection
module. In particular, we use the following expression to change the value of the predicates Pi of
Actuators, Sensors and Communication devices:

Pi =

(
1 (11k + 0:9i)s � t � (11k + 0:9i+ 0:5)s
0 otherwise

i = 1; 2; : : : ; 11; k 2 Z+

17

Figure 2.8 shows the resultant pattern of induced faults.

Figures 2.9 and 2.10 show the results for the regulation layer control laws and coordination
layer maneuvers. The control laws and maneuvers still correspond to the example in Figure 2.3.
Notice that the requirements for the coordination layer maneuvers are much stringent than those of
the regulation layer control laws. This is clearly indicated by the larger amount of 1 to 0 transitions
that one can notice when comparing Figures 2.9 and 2.10.

2.4 Coordination Supervisor

The intention of the extended or degraded mode AHS control architecture is to maintain a safe
operation while minimizing the impacts of abnormal conditions on the highway systems. In [13], the
extended coordination layer controller is divided into two levels. The �rst level, called coordination
regulator, controls the maneuvers protocols. The second level realizes strategic planning and is
called coordination supervisor. When a fault is detected a specialized monitors classi�es it into
a unique fault class. Then, the coordination supervisor selects a strategy that depends on three
factors:

1. The class/subclass of the fault.

2. The capabilities of the faulty vehicle.

3. The capabilities of the neighbor vehicles.

In [13], it is assumed that each degrade mode maneuver can be decomposed into a sequence of one
or more disjoint atomic maneuvers in such a way that the strategy also consist of the choice of
the atomic maneuvers to be executed by the coordination regulator. In this report, we denote
as strategies the composed maneuvers that are commanded by the coordination supervisor.

2.4.1 Coordination regulator degraded mode maneuvers

The coordination regulator maneuvers includes the following degraded mode atomic maneuvers

Forced Split: Similar to the normal mode split maneuver. It is used whenever a faulty vehicles
requires to split from a platoon to exit the AHS.

Emergency Lane Change: Similar to the normal mode lane change maneuver. It is used by a
free agent or a platoon in process to exit the AHS.

Front Dock: It is initiated by a platoon leader that has lost he capability to execute the leader
maneuver. The maneuver requires the vehicle in front of this leader to decelerate in order to
perform a reverse join.

Aided Stop: It is initiated by a follower that has developed a brakes-o� failure. The vehicle in
front will assist the follower to brake.

Gentle Stop: It is used by a faulty vehicle that is ordered to stop and can do so by using its own
brakes. The rate of braking is such that comfort levels are preserved during the execution of
the maneuver.

18

0 5 10 15
0

2

4

6

8

10

12

14

16

18

20

22

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Time (second)

P
re

d
ic

a
te

s

Fault generators ("1" stands for "fault", "0" stands for "O K")

Figure 2.8: Capabilities for physical layer. (1) Brake (actuator) (2) Throttle (actuator) (3) Steer-
ing (actuator) (4) Velocity sensor (5) Acceleration sensor (6) Relative distance sensor (7) Relative
velocity sensor (8) Magnetometers (9) Magnets sensor (10) Infrared (communication) (11) Radio
(communication)

19

0 5 10 15
0

2

4

6

8

10

12

14

16

18

20

22

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Time (second)

P
re

d
ic

a
te

s

Capability of control laws ("1" stands for "good", "0" stan ds for "bad")

Figure 2.9: Capabilities for control laws (1) Lead law (2) Join law (3) Split law (4) Follow law (5)
Lane keep law (6) Lane change law (7) Catch up law (8) Platoon break up law (9) Stop sign law
(10) Acceleration to enter law (11) Deceleration law

20

0 5 10 15
0

2

4

6

8

10

12

14

16

18

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Time (second)

P
re

d
ic

a
te

s

Capability of maneuvers ("1" stands for "available", "0" st ands for "unavailable")

Figure 2.10: Capabilities for maneuvers (1) Entry maneuver (2) Lead maneuver (3) Free agency
maneuver (4) Join maneuver (5) Split maneuver (6) Decelerate to change lane maneuver (7) Follow
maneuver (8) Move maneuver (9) Exit maneuver

21

Crash Stop: It is the same as Gentle Stop, although in this case maximum emergency braking is
applied.

The normal mode maneuvers: leader, follower, join, split and lane change [11] are also
used for fault handling purposes.

2.4.2 Coordination Supervisor Strategies

The following set of strategies are implemented in the coordination supervisor. These strategies
correspond to fault class/subclass described in [13] and are executed by using a prede�ned sequence
of basic or atomic normal/degraded maneuvers described in the previous section, depending on the
fault and capabilities of the faulty vehicle and its neighbors.

Gentle Stop (GS) The vehicle presents a serious fault and must stop. The vehicle can stop by
itself and the fault is not so severe. Comfort braking can be used.

Crash Stop (CS) The faulty vehicle has a serious fault and must stop as soon as possible. The
vehicle can stop by itself and does it by applying the maximum brake.

Aided Stop (AS) The fault is most severe, like brakes-o�. The vehicle can not stop by itself. The
vehicle must stop with the assistance of other vehicles.

Take Immediate Exit (TIE) A fault is detected that does not imply to stop the vehicle in the
AHS. The vehicle has lost some capability, although it is still able to exit the AHS by itself. It
must therefore exit the AHS as soon as possible.

Take Immediate Exit - Escorted (TIE-E) The fault in the vehicle requires its exit from the
AHS. The vehicle has lost capability of exiting by itself. Other vehicles must assist the faulty
vehicle to exit.

Take Immediate Exit - Normal (TIE-N) The conditions are almost same as TIE strategy. The
severity of the fault is smaller and therefore the normal exit maneuver is used to exit AHS.

Normal The vehicle has no fault, it executes Normal mode maneuvers.

Fig. 2.11 illustrates the combination of the capability structure and the coordination su-
pervisor, for the example in section 2.3.1.

2.4.3 Mutual Exclusion and Priority

In the degraded mode design every platoon is constrained to be engaged in only one maneuver at a
time. To achieve a fast response to a degraded condition of operation, it is necessary to interrupt
maneuvers whose execution delays a proper fault handling. Thus, a priority on the coordination
supervisor strategies has to be imposed to allow higher priority strategies to preempt lower priority
ones. The priority of a strategy depends on the severity of the faults, with higher priority assigned
to more severe fault. Following [13], the priority assigned to the di�erent strategies is:

AS) CS) GS) TIE �E) TIE) TIE �N) Normal

22

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

SPLIT

FREE AGENT

JOIN

LEAD

ENTRY

FOLLOW

DECEL. TO CHANGE

MOVE

EXIT

AIDED STOP

CRASH STOP

FORCED SPLIT

BACK UP

CATCH UP

FRONT DOCK

EMERG. LANECHG

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

Crash Stop

AND

AND

AND

AND

AND

AND

NOT

NOT

NOT

NOT

NOT

NOT

Aided Stop

Gentle Stop

TIE-E

TIE

TIE-N

Normal

GENTLE STOP

Leader Law

Join Law

Split Law

Follower Law

Lane Keep

Lane Change

Platoon Break Up

Stop Sign Law

Accel. to Enter

Decelerate Law

Crash Stop

Aided Stop

Forced Split

Emerg. Lanechg

Catch Up

Gentle Stop

No Computer Control

Uncontr. Obj. Ahead

Flat Tire

No Ctl of Trans/gears

Faults in Redut. Sen.

Low in Gas

Out of Gas

Radio

Infrared

Manifold Temp.

Mass Flow Rate

Brake Pressure

Manifold Pressure

Engine Speed

Magnets

Magnetometer

Relative Velocity

Relative Distance

Acceleration

Velocity

Steering

Throttle

Brake

Actuator Capabilities

Sensor Capabilities

Comm. Devices
Capabilities

Other Faults Info.

AND

AND

AND

AND

Communication with Neighboring Vehicle

Capabilities Based on Predicates

Control Strategies of Coordination Layer

Priority

Figure 2.11: Structure of fault handling and coordination supervisor

23

A lower priority strategy request will not be acknowledged while the vehicle is engaged
in a higher priority strategy. However, a higher priority maneuver request can interrupt the current
executing lower priority maneuvers.

2.4.4 Implementation

For implementation the coordination supervisor we propose a structure as shown in Figure 2.12.

Unit

Process

Coordination
Supervisor

Coordination Regulator

with neighbors
Communication

Sensor Info.

Parameter Info.

Capability Info.

Fault Info.

Clasification

Fault

Maneuver
#1

Maneuver Maneuver
#2 #3

Regulation Layer

Link Layer

Parameter Info.

Capability Info.

Sensor Info.

Figure 2.12: Implementation of coordination supervisor

Once a fault has been detected, specialized controllers will be invoked to ensure that the
impact of the fault on the system performance is minimized. Since the design complexity increases
exponentially with the number of faults, [13] proposed that faults and combinations of faults be
grouped into various classes/subclasses. Since each class/subclass of faults a�ects the system dy-
namics in a particular fashion, controllers can be designed for the entire class/subclass rather than
for individual fault. Thus, we can design only a �nite set of controllers. In Figure 2.12 we included
a fault classi�er module to perform this task. The process unit in the coordination supervisor is
the central unit. In the current stage we are assuming that there is only one fault in the highway.
Therefore the process unit becomes very simple { just invoking the strategy that corresponds to the
fault classi�cation. However, in a more general framework, the process unit should:

� Receive the information given by the fault classi�er module.

� Accept commands from Link Layer to know about the state of the roadside infrastructure.

� Communicate with neighboring vehicles to choose an optimal strategy when the system has
lost some capabilities;

24

� Invoke the proper strategy, depending on the maneuver capabilities of the faulty vehicle and
neighboring vehicles.

� Command to the coordination regulator the sequence of atomic maneuvers that corresponds
to the chosen strategy.

In the preliminary design of the coordination supervisor, shown in �gure 2.11, it is assumed
that there is only one fault at a time, or, that in the event of multiple faults they are isolated by a
su�ciently large distance [7]. Notice that the performance structure is not considered.

The normal mode coordination communication protocols were veri�ed in [11] and the
degraded mode protocols in [7]. They are both proved to have logic correctness, deadlock free and
completeness. It is important to mention that the veri�cation of the �nite state machines that
implement this coordination layer maneuvers does not guarantee the overall safety of the hybrid
system composed by the coordination and regulation layers. Di�erent approaches to guarantee this
safety are presented in [12] and [1].

25

Chapter 3

A Complete Fault Diagnostic System

for the Longitudinal Control of

Automated Vehicles

3.1 Introduction

The Automated Highway Systems (AHS) Program aims to reduce congestion on highways by closer
packing of automatically controlled vehicles into platoons. Studies of automatic control of the lon-
gitudinal and lateral motion of cars have been undertaken under the PATH program to establish
feasibility of the AHS concept [9, 23, 15]. These experimental studies have demonstrated the viability
of automatic driver-less control of cars so as to achieve high tra�c throughput on highways.

Studies have shown that over 90% of highway accidents occur due to driver-related errors.
The AHS system eliminates these accidents by eliminating the role of the driver. The reliability
and safe operation of the hardware is, however, of increased importance. This chapter deals with
automated monitoring and diagnostics of the all the sensors and actuators of the longitudinal control
system.

Classical results on the design of fault detection �lters for linear time-invariant systems
are available in [24]. Previous work on fault detection and fault tolerant control related to AHS have
been carried out by Speyer, et al [3], Patwardhan and Tomizuka [15] and Garg and Hedrick [5, 6].
The work of Speyer, et al [3] develops fault-detection �lters for both longitudinal and lateral sensors
using linearized models of vehicle dynamics. The performance of these detection �lters is then
simulated using the original nonlinear vehicle models. Radar range and range rate and inter-vehicle
communication are not included among the sensors considered in the fault detection scheme.

The work by Patwardhan and Tomizuka [15] also uses linear time-invariant dynamic mod-
els to design fault detection �lters for lateral control sensors. Lateral acceleration, lateral deviation
frommagnetic markers and yaw rate are measured and used in a fault detection scheme that identi�es
a fault in any of the three sensors.

The work by Garg and Hedrick [5, 6] on the other hand concentrates on the design of
nonlinear �lters which can be theoretically proven to identify faults in the original nonlinear system.
Application of such nonlinear �lters to longitudinal control is also studied and fault detection algo-
rithms are successfully developed for some of the actuators and sensors used in longitudinal control.

26

The algorithms, however, are not designed to work together to form a coherent fault diagnostic
system.

The work presented in this chapter also uses the original nonlinear model directly for the
fault detection �lter design process. All the sensors and actuators used in the longitudinal controller
for platooning are included in the fault monitoring system, including radar range and range rate and
inter-vehicle communication. The contribution of the present paper is a complete and automated
fault diagnostic system for the entire longitudinal control hardware.

3.2 Simpli�ed Model for Control Design

3.2.1 Simpli�ed Vehicle Model

The reader is referred to Cho, et al [2] and Swaroop, et al [22] for a detailed model of the car's
longitudinal dynamics. We present here the simpli�ed model used very e�ectively for control design
in [22].

Under the assumptions that there is no slip between the tire and the road and that the
torque converter is locked, the longitudinal velocity of the jth vehicle can be related to the angular
velocity of the engine through the gear ratio and tire radius as follows:

_xj = vj = (Rh!e)j (3.1)

where

R = gear ratio

h = tire radius

The dynamics relating engine speed !e to the pseudo-inputs "net combustion torque" Tnet,
brake torque Tbr, and aerodynamic losses can be modeled by

_!e =
Tnet � caR

3h3!2e � R(hFf + Tbr)

Je
(3.2)

where

Je = Ie + (Mh2 + Iw)R2 = the e�ective inertia reected on the engine side.

The pseudo-input Tnet is related to the throttle angle � (the actual control or actuator
input) by the following dynamics. Steady-state engine maps de�ne Tnet as a nonlinear function
of engine speed !e and the mass of air in the intake manifold ma, Tnet = Tnet(!e; ma) . These
steady-state maps are available for each car from the manufacturer.

The mass ow rate of air in the manifold is de�ned by

_ma = _mai + _mao(!e; ma) (3.3)

_mai =MAXTC(�)PRI(ma) (3.4)

where

MAX = a constant dependent on the size of the throttle body

TC(�) = a nonlinear invertible function of the throttle angle

27

PRI(ma) = the pressure inuence function which describes the choked ow relationship
which occurs through the throttle valve

_mao(!e; ma) = a nonlinear function describing the mass ow rate into combustion chamber

3.3 Controller Design

From equations 3.1 and 3.2, it is clear that the acceleration of the jth vehicle can be controlled to
any desired positive value by choosing the net combustion torque to be

(Tnet)j =
Je
Rh

uj + [caR
3h3w2

e � R(hFf + Tbr)]j (3.5)

By choosing the combustion torque to be the function described above in equations 3.3
and 3.4, the acceleration of the jth vehicle becomes

�xj = uj (3.6)

It is important to ensure "string stability" of the platoon [9, 22]. String stability is a term
which means that any error in spacing between the �rst and second cars of the platoon does not
result in increasing spacing errors between the other cars further down the platoon. The desired
acceleration for each car has to be determined so that a desired constant spacing is maintained
between the cars of the platoon and string stability of the platoon is also ensured. Swaroop, et
al [22] have shown that both string stability and robustness can be achieved even with very small
inter-car spacing if feedback information from all of the following information is used in determining
the desired acceleration of each vehicle:

� the car's own velocity

� distance to preceding car

� velocity of preceding car

� acceleration of preceding car

� acceleration of lead car of the platoon

� velocity of lead car of the platoon

Once the desired combustion torque has been determined from equation 3.5, the desired
mass of air in the intake manifold and consequently the throttle angle can be determined by using a
"multi-surface" sliding mode controller, as described in [22]. If the brake actuator needs to be used
for providing the desired synthetic acceleration, the desired brake torque can be calculated from
Equation 3.5 by setting the combustion torque to zero. Here we assume that the brake torque is an
actuator input to the system and can be directly speci�ed by the user.

3.4 Sensors and Actuators

Having reviewed the vehicle dynamics model and the controller, we now �nd that the following
sensors are needed for longitudinal control:

28

Table 3.1: Sensor and Actuator Characteristics
Sensor Fault Information Lost Noise Level

Radio Lead and previous vehicle's
velocity and acceleration

Radar Distance and relative velocity 1 inch
from preceding car

Accelerometer Acceleration 0.5 m=s2 bias
0.1 m=s2 noise

Wheel Speed Sensor Velocity 0.25 m/s

Throttle Angle Sensor Throttle angle 0:25o

Mass Flow Rate Sensor Mass air ow rate
into intake manifold

Brake Pressure Sensor Brake-line pressure 10 psi

Manifold Temperature Manifold temperature 0.25 Co

Sensor

Manifold Pressure Sensor Intake manifold pressure

Engine RPM Sensor Engine speed 1 rpm

The information lost due to a fault in any of these sensors is also indicated in the table.
The throttle actuator and the brake actuator are the two actuators used by the control system.
Throttle angle and brake torque are the actuator inputs used in the diagnostic system design.

3.5 Analytical and Observer-based Redundant Signals

If three measurements of the same variable are available, then the three residues obtained by the
three di�erent mutual pairs among these measurements can be used to determine exactly which of
the three sensors is at fault. This is demonstrated in section 3.5.1 and used to determine if the
wheel speed, engine speed, or range rate sensors are at fault. Once it is ensured that all three of
these sensors are operational, several observers are designed using the engine speed and wheel speed
measurements to detect faults in the actuators, the engine manifold mass ow rate sensor, and the
radar range sensor. Schemes for detecting faults in the accelerometer and the communications system
are also described.

3.5.1 Speed Sensor Redundancy

The longitudinal speed of the vehicle can be obtained by three di�erent methods, as described in [5].

1. Wheel speed sensor

Multiply the angular wheel speed by the tire radius to obtain longitudinal velocity. It is
assumed that there is no slip between the tire and the road.

2. Engine speed sensor

At speeds above 30 mph, the torque converter is locked. The engine speed is then directly
related to the wheel speed by the gear ratio.

29

3. Range rate sensor

The closing rate with the preceding vehicle (relative velocity) can be obtained using the radar
sensor. The speed of the preceding vehicle is obtained through radio communication. The two
variables can be algebraically summed to obtain longitudinal velocity.

The following three residues are then calculated by using di�erent combinations of the
above three longitudinal velocity signals.

R1 = wheel speed/engine speed residual

R2 = wheel speed/radar range rate residual

R3 = engine speed/radar range rate residual

Table 3.2 is provided as an illustration of how three similar signals can be used to determine
a fault in any of the three.

Table 3.2: Truth Table for Speed Sensor Fault Detection

Faulty Component Residual R1 Residual R2 Residual R3

Radar closing - rate sensor Low High High

Engine speed sensor High Low High

Wheel speed sensor High High Low

3.5.2 Inter-car spacing

We propose the following two methods to obtain inter-car spacing information.

1. Currently a radar sensor is used to measure the distance between the vehicle (i) and the
preceding vehicle (i-1)

�i = xi � xi�1 (3.7)

2. The following observer is proposed in this paper to obtain one more estimate of inter-car
spacing. This observer for the ith vehicle uses a magnetometer measurement to count the
number of magnetic markers passed by the ith and i-1th vehicles

_̂
�i = vi � vi�1 + ks[(ni�1 � ni)L+ �o � �̂i] (3.8)

where

(ni�1 � ni) = the di�erence in the number of markers passed by the previous and current
vehicle

L = the inter-marker spacing.

The estimation error using the given observer is

_~�i = �ks[(ni�1 � ni)L+ �o � ~�i] (3.9)

The variable [(ni�1�ni)L+�o��̂i] is equal to ~�i to within a resolution of Lmeters. The use
of this variable ensures that any drift associated with integrating the velocities vi�vi�1 is eliminated.
If the signal vi � vi�1 were perfect with no dc o�sets, the use of the signal [(ni�1 � ni)L + �o � �̂i]
would be unnecessary.

30

3.5.3 Throttle Actuator or Throttle Angle Sensor and Manifold Mass Flow Rate
Sensor Faults

In [5], two di�erent nonlinear detection �lters are proposed for the throttle actuator and the manifold
mass ow rate sensor fault detection. A �rst order detection �lter is constructed so as to estimate
engine speed asymptotically in the absence of throttle actuator fault. A fourth order detection �lter
that estimates manifold mass ow rate along with several other variables is also proposed for fault
diagnosis of the mass ow rate sensor.

We propose using one second order nonlinear observer to estimate both the engine speed
and manifold mass ow rate from engine speed measurements.

_̂!e =
Tnet(!̂e; ma;des)� caR

3h3!̂2e � RhFf
Je

+ l1(!e � !̂e) (3.10)

_̂ma =MAXTC(�des)PRI(m̂a)� _mao(!̂e; m̂a) + l2(!e � !̂e) (3.11)

This observer can be designed to be asymptotically stable in the absence of throttle ac-
tuator faults by proper choice of gains l1 and l2. The gains can be calculated using observer design
results from [17] assuming the nonlinear functions to be Lipschitz.

A throttle actuator fault will cause the residue between estimated and measured engine
speeds to grow. Assuming no fault in the engine speed measurement sensor, the growth in this residue
can then be used to diagnose a throttle actuator fault. If a throttle actuator fault has not occurred,
the residue between measured and estimated manifold mass ow rate can be used for diagnostics of
the mass ow rate sensor.

3.5.4 Brake Actuator and Sensor Fault

Under the action of brakes, the throttle is set to the idle position. Due to internal friction in the
engine and pumping losses, a negative Tnet is created which assists in slowing the vehicle. This
\engine braking" is typically one to two orders of magnitude smaller than the applied brake torque
Tbr, and can therefore be neglected in Equation 3.2. The following observer can then be used to
estimate the engine speed under the action of the braking actuator

_̂!e =
�caR

3h3!̂2e �R(hFf + Tbr;des)

Je
+ l1(!e � !̂e) (3.12)

The dynamics of the estimation error _~!e = !e � ~!e are then given by

_~!e = �a~!2e � l ~!e � c�(t) (3.13)

where

a = CaR
3h3

Je

c = R
Je

�(t) = nonzero only when there is a fault in the brake actuator.

Since the engine speed can never physically exceed 5000 rpm, the nonlinearity !2e can be
regarded as locally Lipschitz. Since the observer has access to a measurement of !e, the gain l can

31

be chosen larger than the Lipschitz constant of !2e in order to ensure stability of the estimation error
dynamics in the absence of faults.

3.5.5 Vehicle Speed Estimation using Accelerometers and Markers

The following observer using the accelerometer on the car and a magnetometer measurement to count
the number of magnetic markers passed by the cars can be used to estimate car velocity

_̂v = a+ kv(
�nL

T
� v̂) (3.14)

where

a = the vehicle acceleration

�n = the marker count of the vehicle over the time interval T

L = the inter-marker spacing

The estimation error using the given observer is

_~v = �kv(
�nL

T
� ~v) (3.15)

The variable (�nL
T

� ~v) is equal to ~v to within a resolution of L meters. The use of this
variable ensures that any drift associated with integrating the acceleration a is eliminated. If the
signal a were perfect with no dc o�sets, the use of the signal (�nL

T
� ~v) would be unnecessary.

3.5.6 Communication fault

Faults in the vehicle's communications system are detected as follows:

1. The car that communicates ensures that its sensors are not faulty.

2. If no packet is received, the information from the last packet is frozen till the next packet
arrives.

3. If no packet is received for more than 3 consecutive cycles, a communication fault is declared.

3.6 A System for Automated Fault Diagnosis

Table 3.3 summarizes 18 di�erent signals to be used in the fault detection and identi�cation scheme.
Some of the signals are directly measured while others are estimates obtained from the observers
discussed in the previous section.

Table 3.4 summarizes 10 di�erent residues calculated using combinations of the signals
from the previous table.

By processing the 10 residues, it is possible to identify a fault in any of the sensors or
actuators. Table 3.5 shows how a fault in any of the sensors or actuators causes a unique combination
of residues to grow.

32

Table 3.3: Bank of signals for fault diagnostics

Signal Description Sensor Observer

z1 = h!w vehicle speed wheel speed sensor

z2 = Rh!e engine speed engine speed
and gear ratio sensors

z3 = xi�1 � xi distance to preceding car (range) radar range signal

z4 = vi�1 � vi relative velocity of preceding car radar range rate signal

z5 = vi�1 velocity of preceding car communication

z6 = !e engine speed engine speed sensor

z7 = _ma mass ow rate of air in manifold mass ow rate sensor

z8 = ai acceleration accelerometer

z9 = ai�1 acceleration of preceding car communication

z10 = !̂e estimated engine speed observer of Eqns. 3.10 & 3.11

z11 = m̂a estimated ow rate in manifold observer of Eqns. 3.10 & 3.11

z12 = �des commanded throttle angle calculated by controller

z13 = � throttle angle throttle angle sensor

z14 = Tbr;des commanded brake torque calculated by controller

z15 = �̂i estimated distance to preceding car observer of Eqn. 3.8

z16 = v̂i estimated velocity observer of Eqn. 3.14

z17 = ui synthetic acceleration calculated by controller

z18 = !̂e estimated engine speed observer of Eqn. 3.12
during braking

To detect and identify faults, the algorithm depicted in Figure 3.1 can be used. The
algorithm has been obtained from Table 3.5 and is a systematic method of using Table 3.5 to
successively check for faults in each of the sensors and actuators.

3.7 Simulation Results

The fault detection system designed in the previous sections was simulated to test its performance
with a more realistic vehicle model incorporating a torque converter, wheel slip, tire radius variation,
sensor noise, etc. Details of the full vehicle simulation model are available in [9]. The noise levels
assumed for the sensor measurements are shown in Table 3.1 and are realistic estimates based
on experimental measurement. The marker spacing was assumed to be 1 m.

For the simulation, a 3 car platoon was assumed to be traveling with a spacing of 1 m at
a speed of 65 mph. At time t = 3 secs, the lead car begins the following velocity maneuver

vdes = 3:5[1� cos20�(t� 3)]

Figures 3.2 to 3.4 show the performance of the nonlinear observers designed in Section 3.5
in the absence of a fault. Figure 3.2 shows the convergence of the inter-car spacing observer and its
ability to track the actual radar measurement in the presence of noise and 1 m marker spacing.

Figures 3.3 and 3.4 show the performance of the 2nd order nonlinear observer of Equa-
tions 3.10 and 3.11. The engine speed and mass ow rate of air in the manifold are estimated well

33

Table 3.4: Calculation of residues
Residues Sensors & Acuators Involved

R1 = z1 � z2 wheel speed sensor
engine speed sensor

R2 = z5 � z4 � z1 radar range rate sensor
wheel speed sensor
communication

R3 = z5 � z4 � z2 radar range rate sensor
engine speed sensor
communication

R4 = z3 � z15 radar range sensor
wheel speed sensor
magnetometer
communication

R5 = z17 � z8 accelerometer

R6 = z16 � z1 accelerometer
markers
wheel speed sensor

R7 = z10 � z2 throttle actuator
engine speed

R8 = z12 � z13 throttle angle sensor
throttle actuator

R9 = z11 � z7 mass ow rate sensor
throttle actuator

R10 = z18 � z2 brake actuator
engine speed

Table 3.5: Behavior of Residues under Sensor/Actuator Faults

Faulty Sensor / Actuator R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

wheel speed sensor H H L H L L L L L L

engine speed sensor H L H L L L L L L L

radar range rate sensor L H H L L L L L L L

radar range sensor L L L H L L L L L L

accelerometer L L L L H H L L L L

magnetometer L L L H L H L L L L

throttle actuator L L L L L L H H H L

throttle angle sensor L L L L L L L H L L

mass ow rate sensor L L L L L L L L H L

brake actuator L L L L L L L L L H

34

Figure 3.1: Fault Diagnosis Algorithm

35

Figure 3.2: Inter-car spacing observer in the absence of faults

by the observer. The jumps in engine speed occur due to down-shifting from the 4th to the 3rd gear,
as shown in Figure 3.5.

Figure 3.3: Engine speed observer of Equations 3.10 and 3.11 in the absence of faults

In the presence of a radar fault, the inter-car spacing observer diverges distinctly from the
measured value, as shown in Figure 3.6. Here a fault in the radar was assumed to cause it to read
a constant value of 6 m. The observer estimate converges to a value of -4 m, thus ensuring that the
residue from the radar measurement is su�ciently big to identify the fault. Figure 3.7 shows the
values of all 10 residues of Table 3.5 during the radar fault. We see that only residue 4 is high which
clearly indicates from Table 3.4 that the radar sensor is the fault one.

3.8 Experimental Results

This section presents experimental results on the use of the magnetic observer of equations 3.8
and 3.9. The magnetic observer was implemented on the automated cars in the August 1997 NAHSC

36

demonstration. The observer was used both to detect faults in the radar range sensor and also to
replace the radar in the closed-loop controller in the event of a radar fault.

In the August 1997 NAHSC demonstration, passengers were allowed to ride in a platoon
of eight fully automated cars operating at close spacing. During the demonstration, the automated
vehicles performed a series of maneuvers, such as lane changes, splitting of the platoon, and merge
maneuvers to demonstrate the capabilities of the system. To guarantee the safety of the passen-
gers, a fault detection and management scheme was implemented to monitor the throttle and brake
actuators, the communications system, and the radar range sensor.

The magnetic observer played a very important role in ensuring safe automated operation
during the demonstration. Radar range sensor faults were detected and automatically replaced by
the magnetic observer on several occasions during the platoon runs.

Figure 3.8 is a good illustration of the ability of the magnetic observer to replace the radar
range sensor. To allow range measurement, a rectangular opening had been designed into the front
grill of each car. The radar was located behind this grill and below the hood of each car. In the
following test run, a mis-orientation of the grill mounting caused the radar to fail repeatedly on the
�fth car in the platoon. The readings of the radar jump from zero to the correct spacing value many
times during the run.

The magnetic observer worked well throughout this run and provided a fairly accurate
estimate of inter-car spacing. The fault detection system was triggered due to the 6 meter di�erence
in the actual and estimated values of range. In response to the radar fault, the spacing between
cars 5 and 4 was increased to 15 meters by the fault management system. The remainder of the run
continued at this larger spacing. The closed-loop controller used the magnetic observer estimate to
replace the radar range measurement in the calculation of synthetic acceleration. The recon�gured
controller was able to provide an excellent ride with a spacing variation of less than 1.3 meters. The
maximum errors in spacing occurred in the presence of uphill and downhill grades.

An error of one or two magnet spacing occured occasionally in the spacing estimate of
the magnetic observer due to the magnetometer system failing to detect the passing of a magnet on
the highway. To prevent a permanent bias in the observer estimate due to a missed magnet, the
following algorithm was used to detect if a magnet had been missed. If the time taken to detect the

Figure 3.4: Mass ow rate observer of Equations 3.10 and 3.11 in the absence of faults

37

Figure 3.5: Gear shifting during the maneuver

Figure 3.6: Radar fault causes the inter-car spacing observer to diverge

next magnet exceeded a threshold, it was assumed that the magnetometer had missed the detection
of a magnet. The threshold was determined as a function of the average velocity during that time

tnextmagnet >
1:5L

vaverage
(3.16)

This means that the magnetic observer could have errors of the order of 1 - 2 meters for
brief periods of time in the spacing estimate.

3.9 Conclusions

The fault diagnostic system developed in this chapter was shown to work well when simulated with
a detailed vehicle model incorporating realistic unmodeled dynamics. Experimental results using the
magnetic observer to detect radar faults and replace the radar sensor were shown to work extremely

38

e�ectively. The diagnostic system developed provides a methodology to continuously monitor all the
sensors and actuators of the longitudinal control system so as to ensure their health.

Related analytical results of interest include the development of su�cient and necessary
conditions as well as a systematic methodology to enable detection �lter design for nonlinear systems.

Figure 3.7: Values of the di�erent residues of Table 3.4 during a radar sensor fault

39

Magnetic Marker observer

Radar

100 150 200 250 300 350 400 450 500 550
0

5

10

15

20

25

time(sec)

sp
a

ci
n

g
(m

)

Figure 3.8: Experimental Results on the use of the magnetic observer for radar faults

40

Chapter 4

A Diagnostic Protocol for Radar

Faults

We are interested in the diagnosis of faults in the components of the longitudinal control system of a
platoon follower vehicle. It turns out that system level diagnostics for radar range rate measurements
requires inter-vehicle coordination. The following table describes a residue scheme for this purpose.
A residue is the di�erence of the signals from the information sources indicated in the table. The
information sources generating a residue are used to generate two independent estimates of the same
quantity. If the information sources are all normal then the two estimates should agree and the
residue should be zero. On the other hand if there is a fault in one of the information sources then
the estimates will disagree and the residue will be high.

Residue no. Information Sources Assumptions Quantity Estimated

R1 Wheel Speed Sensor Torque Converter Wheel Speed
Engine Speed Sensor Locked

R2 Observer using magnetometers, No slip Wheel Speed
accelerometer
Wheel Speed Sensor

R3 Radar Range-rate Sensor No slip Wheel Speed
Wheel Speed Sensor
Wheel Speed Sensor of the
vehicle in front

Table 4.1: Residue Table

The observer equation is similar to chapter 3 and is as follows:

_̂v = am + k(vm � v̂);

where,
v̂ = inertial velocity estimate from the observer,
am = longitudinal acclerometer measurement,
k = observer gain,
vm = is the velocity estimate from magnetometer measurements.

41

The residue truth table is as follows.

Fault R1 R2 R3

Normal L L L

WSS H H H

ESS H L L

ACC L H L

RRS L L H

WSS of vif L L H

ACC & WSS of vif L H H

ESS & WSS of vif H L H

Table 4.2: Residue Truth Table

In the subsequent development we assume that there is some independent means of val-
idating the low slip assumption. Then the methods developed in [16] may be used to diagnose
magnetometer failures. If the magnetometers have failed then the residues presented in table 4.2
should be ignored. Otherwise the residue values may be analyzed.

The torque converter locked assumption may be checked by checking the gear the car is
in. In third and fourth gears the torque convertor is locked. Therefore at lower gears the residues
should be ignored.

Assuming that there is no slip, the torque converter is locked, there is not more than one
fault per vehicle, there are no faults in the magnetometers, the truth table and the properties of the
associated observer indicate that a vehicle can detect failures in its wheel speed sensor(WSS), engine
speed sensor (ESS), and longitudinal accelerometer (ACC). The radar range rate sensor failure is
not separable from the wheel speed sensor failure of the vehicle in front (vif) without a diagnostic
protocol. We describe the protocol modeling formalism briey.

We assume that all protocol entities are modelled by �nite state machines. The following
de�nition of a FSM is adapted from [19]. A FSM is a 4-tuple

M = h�; Q; 0; �i;

where � is the alphabet or �nite set of events associated with the state transitions of the system,
Q is the set of states, 0 is the initial state, and � : � � Q ! Q is a partial function known as the
transition function. If �(�; x) = x0 it signi�es that if the system is in state x then the occurrence
of event � will cause the system to transition to the state x0: Note that since � is a partial function
transitions do not necessarily exist for all triples (�; x; x0) 2 � � Q � Q: This de�ntion is almost
identical to that in [19]. The only di�erence is that M has no marking function.

We will need a composition operator on �nite state machines. The following de�nition
of the synchronous composition operator is adopted from [19]. Let M1 = h�1; Q1; 01; �1i and M2 =
h�2; Q2; 02; �2i be two FSM's. We also de�ne a binary relation R � �1 � �2: This relation is
symmetric and transitive and means that if two events in two machines are related then they must
be executed together. We let R�1

and R�2
represent the projections of R on the sets �1 and �2

respectively. Formally the synchronous composition ofM1 andM2 is a FSMM = h�; Q; 0; �i de�ned
as follows.

� = (�1 �R�1
)[(�2 � R�2

) [R

42

Q = Q1 � Q2

0 = (01; 02)

The transtion function of M is de�ned by

�(�; (q1; q2)) = (�1(�; q1); q2) if � 2 �1 �R�1
;

�(�; (q1; q2)) = (q1; �2(�; q2)) if � 2 �2 �R�2
;

�((�; �0); (q1; q2)) = (�1(�; q1); �2(�0; q2) if (�; �0) 2 R;

and unde�ned otherwise.

Observe that though diagnosing the range rate sensor fault requires information on the
status of the wheel speed sensor of the vehicle in front, diagnosis of wheel speed sensor failures does
not require information from any other vehicle. Therefore if residue R3 turns high then the vehicle in
front should check that its wheel speed sensor is normal. If this is so then the follower vehicle knows
that its range-rate sensor has failed. This is reected in the following protocol. Figure 4.1 is the
diagnostic protocol �nite state machine of a vehicle. The events F WSS; F ESS; F ACC; F RRS
represent messages given to the control system indicating failures of the wheel speed sensor, engine
speed sensor, accelerometer, and radar range-rate sensor respectively. The event F : F WSS is a
message from the car in front indicating that its wheel speed sensor has failed. It is executed in
synchrony with the event F WSS in the �nite state machine of the car in front. The synchronous
composition of the �nite state machines indicates that if a radar range rate sensor fault occurs then
the appropriate message is generated. Moreover, the message is never generated without the fault
provided the assumptions stated earlier are valid. The residue events are represented by a triple of
symbols.

43

F_WSS F:F_WSS

F:F_WSS
F_WSS

F_ACC

F_ACC

F:F_WSS

F:F_WSS

F:F_WSS

F:F_WSSF_ESS

F_ESS

F_ESS

F_ACC

F_RRS

F:F_WSS

L,L,L

H,H,H

H,L,L

L,L,H

L,H,L

L,H,H

H,L,H

Figure 4.1: Diagnostic Protocol Finite State Machine

44

Chapter 5

A Methodology for the Integration of

Vehicle Failure Diagnostics

5.1 Introduction

We are interested in the diagnosis of failures that occur in the sensing, control, acutation, and
communication components of vehicles. Present day cars, trucks and buses are large-scale systems
equipped with many components and layers of control intelligence. Since failure diagnosis requires
either analytical or physical redundancy, diagnostic schemes cannot be designed component by com-
ponent, but must be designed for the system as a whole. This makes diagnostic design a complex
and large-scale problem that needs a systematic design procedure. We propose a model based design
method and demonstrate it by application to the design of diagnostics for the longitudinal control
system of a fully automated vehicle capable of operating in a platoon on an Automated Highway
System. However, we believe that the methods are generic enough to apply to partially automated
vehicles as well.

We will assume that the vehicle, hereafter referred to as the plant, is modelled in two
domains, i.e., a continuous model domain and a discrete event model (DEM) domain. Figure 5.1
illustrates the architectural organization associated with this modelling decomposition. The redun-
dancy necessary for diagnosis is created by including sensors and observers in the continuous domain.
The outputs of the sensors and observers are compared by generating residues. A residue is de�ned
in the continuous domain and is an algebraic expression in two or more variables, where each variable
is a real valued function of time and represents a sensor, control or observer output. We assume that
if the components generating the residue are normal then they will produce the same outputs, and
consequently the residue will have a low value. On the other hand if one of the components has failed,
then they will not produce the same outputs and the residue will have a high value. Formally, let R
be the set of residues. For each residue we assume the existence of a �nite set of symbols �r and a
map r : lR! �r: The function r maps the residue into �nitely many symbolic values. It is assumed
that r is onto and that the sets �r; r 2 R are pairwise disjoint. The set of symbols �R =]r2R�r

are called residue events. These symbols are incorporated into discrete event plant models. We do
not discuss the design of the interface between the continuous models and DEM's further. This
paper focusses on other aspects of the diagnostic problem. Note that in our architecture a discrete
event plant model is not a model of an uncontrolled plant. It is actually a model of a system with
sensors, observers and other continuous controllers, i.e., it is a model of a system that already has

45

intelligence instilled with control and possibly diagnostic requirements in mind. The DEM plant is
a model of the causal relationships between failures, residue values and control.

Plant

Sensors

Controllers

Actuators

Sensing Interface Control Interface

Control EventsResidue Events

Diagnoser

Observers

Controllers

Control SignalsResidues

Failure Events

Control Events

Control Events

Continuous

DEM

Figure 5.1: Fault Management Architecture

Since designing diagnostics requires analysis of a large scale system, it is desirable that
the design process have certain properties. First, it is desirable that there be a means of verifying
that a diagnostic scheme is correct. We believe, that it is non-trivial to ascertain whether a proposed
diagnostic scheme indeed diagnoses all the failures it was designed to diagnose as the vehicle passes
through multiple operating modes and environmental conditions. We are interested in ways to
formulate the failure diagnosis problem in the context of discrete event models. One of the advantages
of such an approach, is that given a formal speci�cation of a diagnostic requirement, a formal
speci�cation of a diagnostic design, and a DEM for the system, it is possible to develop algorithms for
certain types of formalisms that automatically verify whether a speci�ed scheme meets the speci�ed
requirement. Secondly, if a diagnostic scheme is veri�ed to be correct it is desirable to obtain a
speci�cation of the software or hardware needed to perform the diagnosis. Finally, for model based
methods, the modelling process should be modular. This ensures that if the components or control
schemes of the system changes, plant models and diagnostic designs may be re-constructed with
relative ease.

The diagnostic design methods proposed in this paper are derived from those presented in
[20, 21]. The proposed methods are intended to o�er partial solutions to the problems of modeling,
veri�cation, and the problem of specifying the software or hardware required to perform the diagnosis.
We assume that all our DEM plant models are �nite state machines (FSM's) [19]. This class of DEM's
appears adequate for the vehicle daignostic problems we have investigated so far. We introduce a
formalism for specifying a diagnostic requirement and a system property we call FH-diagnosability.
This property is based on the diagnosability property de�ned in [20]. The FH-diagnosability notion
is consistent with a more exible way of specifying diagnostic requirements. Though this is the case,
we have been able to de�ne the property in such a way that it is possible to map the veri�cation
of FH-diagnosability into the veri�cation of diagnosability by using the synchronous composition
operator [19]. The entity performing the diagnosis, hereafter called the diagnoser, is speci�ed in the
same way as [20].

46

The layout of the paper is as follows. Section 2 presents mathematical de�nition of the
required DEM's and compostion operators, the formal speci�cation of a diagnostic requirement and
the de�nition of FH-diagnosability. Section 3 presents our plant modeling method in detail and is
particularly concerned with the modular modelling. Section 4 describes the diagnoser construction
and the veri�cation methods. The material in this section is a summary of that in [20]. It is included
to enhance readability. Section 5 descibes the application of our methods to the design of diagnostics
for the longitudinal control system of a fully automated vehicle capable of operating in a platoon.
The continuous domain sensor, observer and residue design for the application is from [18]. Section
6 is a summary of the paper and a discussion of future work.

5.2 Problem Formulation

This section formalises the DEM's used to model the plant, the speci�cation of a diagnostic require-
ment, and the de�nition of FH-diagnosability.

We assume all DEM's modeling the behavior of the vehicle are deterministic �nite state
machines (FSM's). The following de�nition of a FSM is adapted from [19]. A FSM is a 4-tuple

M = h�; Q; 0; �i;

where � is the alphabet or �nite set of events associated with the state transitions of the system,
Q is the set of states, 0 is the initial state, and � : � � Q ! Q is a partial function known as the
transition function. If �(�; x) = x0 it signi�es that if the system is in state x then the occurrence
of event � will cause the system to transition to the state x0: Note that since � is a partial function
transitions do not necessarily exist for all triples (�; x; x0) 2 � � Q � Q: This de�ntion is almost
identical to that in [19]. The only di�erence is that M has no marking function.

L(M) denotes the set of all sequences of transitions generated by the FSM starting at the
initial state. L(M) is called the language generated by the FSM M: If � is the alphabet of M then
L(M) is a subset of �� (the kleene closure of � [10]). To de�ne the language generated by a FSM
formally, we introduce the extended transition function �� : �� � Q! Q de�ned by

��("; x) = x; for x 2 Q;
��(�; x) = �(�; x); for � 2 �; and �(�; x) is exists;
��(s�; x) = �(���(s; x)); for s 2 ��; � 2 �; and ��(s; q) exists;

and unde�ned otherwise. The symbol " 2 �� denotes the empty string. Then L(M) = fs 2 �� :
��(s; 0) is de�nedg: For s 2 �� if there exists u; v 2 �� such that uv = s then we say that u is a
pre�x of v and denote it by u � s: Note that the language generated by a FSM is always pre�x-
closed as per the de�nition of L(:): All languages in the subsequent development are assumed to be
pre�x-closed. It is also assumed that all the FSM's are accessible w.r.t. the initial state, i.e., for all
x 2 Q; there exists s 2 �� such that ��(s; 0) is de�ned and x = ��(s; 0):We will often use the unit
FSM M� = hf�g; f0�; 1�g; 0�; ��i; where ��(�; 0�) = 1�; and �� is unde�ned otherwise, as a building
blocks for larger FSM's.

It is assumed that the set of events � is the union of three disjoint sets, i.e., � = �F]
�R] �con: �F denotes the set of failure events and should be selected to represent all the failures
of interest. �R =]r2R�r is the set of residue events, as discusssed in the introduction. �con is the
set of all control events and is meant to represent control commands or messages. The examples
presented in section 5.5 demonstrate the use of these sets.

47

The set of events is also partitioned into observable and unobservable events, i.e., � =
�o]�uo:We assume �o = �con]�R; i.e., all control and residue events are observable, and �uo = �F ;
i.e., all failure events are unobservable.

We will need a composition operator on �nite state machines. The following de�nition
of the synchronous composition operator is adopted from [19]. Let M1 = h�1; Q1; 01; �1i and M2 =
h�2; Q2; 02; �2i be two FSM's. The synchronous composition ofM1 andM2 is a FSMM = h�; Q; 0; �i
de�ned as follows.

� = �1 [�2

Q = Q1 � Q2

0 = (01; 02)

The transtion function of M is de�ned by

�(�; (q1; q2)) = (�1(�; q1); q2) if � 2 �1 � �2;

�(�; (q1; q2)) = (q1; �2(�; q2)) if � 2 �2 � �1;
�(�; (q1; q2)) = (�1(�; q1); �2(�; q2) if � 2 �1 \ �2;

and ude�ned otherwise.

We use the symbol MP to denote the plant model in the DEM domain. The examples in
section 5.5 illustrate the construction of MP : MP models

� all sequences of failures that can happen in the system under consideration,

� the causal relationships between the failures, control commands and residue trajectories.

We assume that once a component fails it stays failed. Therefore it is meaningless for a component
to fail twice. It is assumed that in any sequence of events s 2 L(MP) has a particular failure event
in it at most once.

A diagnostic requirement is speci�ed using two formalisms. The �rst is a partition �F

�F =]i2I(�F)�F i;

on the set of failure events. I(�F) � Nl is an index set associated with the partition �F : The
partition represents the �neness with which the diagnostic scheme is required to pinpoint a failure.
For example, if a failure event � 2 �F i occurs then instead of being required to diagnose �; it is
deemed adequate for the diagnoser to diagnose that some event in the set �F i has occurred, i.e., a
failure of type i has occurred. Such a relaxation of diagnostic requirements may be useful because

� inadequate instrumentation may render it impossible to diagnose uniquely every possible fail-
ure,

� failure management control strategies may be the same for several failures. Thus it may not
be important to distinguish them for the purposes of control.

The �nest partition, �"
F =]�2�F f�g; represents the most stringent diagnostic requirement.

The second formalism is also a way of relaxing diagnostic requirements. For example,
it may be acceptable to do the diagnosis assuming that the system has no more than one failure

48

at any given time. Such an assumption may be justi�ed on the premise that the occurrence of two
simultaneous failures or the occurrence of a second failure before repair of the �rst are su�ciently rare
events. However, the plant model being non-probabilistic, does not distinguish sequences of failure
events that are likely from those that are not. It generates all the failures that can occur in various
possible orders. Nevertheless, the designer may consider it acceptable to exclude certain su�ciently
rare but troublesome conbinations of failures from the diagnoser synthesis and veri�cation exercise.
This is accomplised by de�ning the failure hypothesis FSMMF = h�F ; QF ; 0F ; �F i; and putting it in
synchronous composition withMP : Once again, it is assumed that any sequence of events s 2 L(MF)

has a particular failure event in it at most once. Note that there is a maximal M"
F =
�2�FM�: M

"
F

has the property L(MF
MP) � L(M"
F
MP) = L(MP) for all MF : It is assumed thatMF and MP

are so de�ned that MD = MF
MP is live [20], i.e., the transition function is de�ned for at least
one event out of every state. The FSM MF is a way of separating hypotheses on the occurrence of
failures from the plant models. This allows the same set of plant models to be re-used and veri�ed
under di�erent fault hypotheses for a given failure partition.

Before stating the de�ntion of diagnosability and FH-diagnosability we introduce some
more notation. Let s denote the pre�x-closure of any trace s 2 �� and L=s denote the postlanguage
of L after s, i.e.,L=s = ft 2 �� j st 2 Lg: We also de�ne the projection function P : �� ! ��

o in the
usual manner [19]:

P (�) = �

P (�) = � if � 2 �o

P (�) = � if � 2 �uo

P (s�) = P (s) P (�) s 2 ��; � 2 �: (5.1)

P is the projection onto the set of observable events and simply `erases' the unobservable events in
a trace. The inverse projection operator P�1 is de�ned as usual to be

P�1(y) = fs 2 �� : P (s) = yg: (5.2)

For all �0 � � we de�ne
	L(�

0) = fs� 2 L : � 2 �0g; (5.3)

i.e., 	L(�
0) denotes the set of all traces of L that end in an event belonging to the set �0: The

notation � 2 s denotes that � is an event in the trace s.

We present next the de�nition of FH-diagnosability. It is based on the de�nition of diag-
nosability in [20] which is stated next for reference.

De�nition 1 Let MF be a fault hypothesis FSM, �F a partition on �F ; P the projection function
on the set of observable events, and MP the plant FSM. MP is FH-diagnosable w.r.t fault hypothesis
MF ; projection P; and partition �F ; i� L(MP
MF) is diagnosable w.r.t. the projection P and the
partition �F on �F :

De�nition 2 A pre�x-closed and live language L is diagnosable with respect to the projection P
and the partition �F on �F if the following holds:

(8i 2 �F) (9ni 2 Nl) (8s 2 	(�F i)) (8t 2 L=s) [jjtjj � ni) D]

where the diagnosability condition D is:

! 2 P�1[P (st)] \ L) �F i 2 ! :

49

The de�nition of diagnosability means the following. A system is diagnosable if it cannot have two be-
haviors of arbitrarily long length that generate the same sequence of observations, though one behav-
ior contains a failure of type i and the other does not contain a failure of type i: FH�diagnosability
simply requires the same condition to be true for the system restricted by the fault hypothesis MF :
More speci�cally, let s be any trace generated by the system that ends in a failure event from the
set �F i and let t be any su�ciently long continuation of s. Condition D then requires that every
trace belonging to the language that produces the same record of observable events as the trace st
should contain in it a failure event from the set �F i: This implies that along every continuation t of
s one can detect the occurrence of a failure of the type Fi with a �nite delay; speci�cally in at most
ni transitions of the system after s. Alternately speaking, diagnosability requires that every failure
event leads to observations distinct enough to enable unique identi�cation of the failure type within
�nitely many transitions.

5.3 Plant Modelling

Modeling the causal relationships between faults, control modes, and residues for a system with
multiple components and control modes can result in models with thousands of states. Such models
are manageable only if they can be constructed in a modular fashion, i.e., by composing small
models. A compositional method for construction of the plant model also makes it relatively easier
to regenerate a new plant model if there are some changes in the constituent components. This
section describes our plant modeling method for the automated vehicle diagnostics application. We
start with a discussion of the modeling in a �xed control mode and then discuss the case where the
residue values may be dependent on the control mode.

We assume that the modeling process starts with a set of residues R; set of fault event
�F and a relation � on R��F : Thus if (r; �) is an element of the relation it signi�es that the fault
event � a�ects the value of the residue. We set �fr = f� 2 �F : (r; �) 2 �g:

Recall the map r; de�ned in the introduction, that maps the real values of residue r into
a residue event set �r. It is assumed that r(lR) = f(r; L); (r;H)g; i.e., the residue is either high
or low. Furthermore we use the following qualitative guidelines on the causal relationship between
residues and the related faults.

1. If none of the fault events in �r have occurred then only the (r; L) event will be observed.

2. If one and only one of the fault events in �r have occurred then only the (r;H) event will be
observed.

3. If two or more of the fault events related to the residue r have occurred then either the (r; L)
or (r;H) events may be observed.

The last assumption represents the fact that the sensors and observers are such that the value of the
residue r in the presence of multiple faults is uncertain.

Using these guidelines we can derive a �nite state machine for a single residue r: For all � 2
�fr consider the FSM M� de�ned previously. De�ne the FSM M 0

r =
�2�frM� = h�fr; Q
0
r; 0

0
r; �

0
ri:

The FSM Mr = h�fr] �r; Qr; 0r; �ri; is de�ned by Qr = Q0
r; 0r = 00r and the transition function is

50

as follows.

�r(�; :) = �0r(�; :); for � 2 �fr;

�r((r; L); 0r) = 0r;
�r((r;H); �r(�; 0r)) = �r(�; 0r); for � 2 �fr;

�r(�
0; x) = x; for �0 2 �r; and fx 2 Qr : x 6= 0r; x 6= �r(�; 0r); � 2 �frg;

and unde�ned otherwise. The set of all fault and residue event traces that may be generated by the
plant is the language L(
r2RMr): Let this FSM be denoted by M 0

P :

The FSM M 0
P allows failure events to occur one after the other without any observable

events being generated in between. This can make diagnosis very di�cult. We introduce one more
FSM that represents the assumption that after each failure event the relevant residue events will
be observed before the next failure event occurs. This FSM is denoted by Ms and constructed as
follows. The construction is complicated but modular.

De�ne the FSM ML =
r2RM(r;L): De�ne

Mrs = h�r; f0rs; 1rsg; 0rs; �rsi;M
0
rs = h�r; f0

0
rs; 1

0
rsg; 0

0
rs; �

0
rsi;

where

�rs(�; 0rs) = 1rs; � 2 �r;

�0rs(�0
0
rs) = 10rs; � 2 �r;

and unde�ned otherwise. Next de�ne MRs =
r2RMrs and M 0
Rs =
r2RM

0
rs: Finally de�ne the

FSM's Mfs and M 0
fs: The de�nitions are

Mfs = h�F ; f0fs; 1fsg; 0fs; �fsi;M
0
fs = h�F ; f0

0
fs; 1

0
fsg; 0

0
fs; �

0
fsi

where �fs(�; 0fs) = 1fs for � 2 �F ; unde�ned otherwise, and �0fs is de�ned similarly. Note that the
FSM's ML;MRs;M

0
Rs;Mfs and M 0

fs are acyclic. Moreover every path in each of these FSM's ends
at one unique state with respect to which the entire FSM is co-accessible ([19]). We denote these
unique �nal states by xL; xRs; x

0
Rs; xfs; x

0
fs respectively. Note also that the state sets of these FSM's

are all disjoint.

The machine Ms will be constructed by �rst building a non-deterministic FSM A with �

transitions in the manner described in section 2.4 of [10]. We let

�A = �R [�F [�con; QA = QL [QRs [Q0
Rs [Qfs [Q0

fs; 0A = 0L:

The transition function is de�ned to be equal to �L; �Rs; �0Rs; �fs; �
0
fs on the respective state sets and

in addition is augmented with the following ��transitions.

�A(�; xL) = 0L

�A(�; 0L) = 0fs

�A(�; xfs) = 0Rs

�A(�; xRs) = 00Rs
�A(�; x

0
Rs) = 00Rs

�A(�; 0
0
Rs) = 00fs

�A(�; x
0
fs) = 0Rs

Ms is de�ned to be the canonical ([10]) deterministic FSM generating the same language as A:

We may choose MP =M 0
P or MP =M 0

P
Ms:

51

5.4 Diagnoser Construction and Diagnosability Veri�cation

This section de�nes the diagnoser and presents the necessary and su�cient conditions for diagnos-
ability. Veri�cation is accomplished by con�rming that the FSM MP
MF satis�es the su�cient
conditions for partition �F and the partition � = �o] �uo: The development is similar to [20]:

We let MP = h�F [�con [�R; QP ; 0P ; �P i: The following additional notation is used in
this section. Let

Xo = f0P g [fx 2 QP : x has an observable event into itg:

L(G; x) denotes the set of all traces in FSM G that originate from state x: We de�ne

Lo(M;x) = fs 2 L(M;x) : s = u�; u 2 ��
uo ; � 2 �og

L�(M;x) = fs 2 Lo(M;x) : s = u�; u 2 Lo(M;x)g:

to be the set all traces that originate from state x and end at the �rst observable event, and the
set of all traces in Lo(M;x) that end with the particular observable event �; respectively. The set
of failure labels is denoted �f = fF1; F2; ::::Fmg where j�F j = m and the complete set of possible
labels is

� = fNg [2f�fg: (5.4)

Here N is to be interpreted as meaning \normal", and Fi; i 2 f1; mg as meaning that a failure of
the type Fi has occurred. We also de�ne the state set

Qo = 2Xo��:

The diagnoser for MP is the FSM

hMd = (�o; Qd; 0d; �di (5.5)

where Qd;�o; �d and 0d have the usual interpretation. The initial state of the diagnoser 0d is de�ned
to be f(0P ; fNg)g. The transition function �d of the diagnoser is constructed as explained below.
The state space Qd is the resulting subset of Qo composed of the states of the diagnoser that are
reachable from 0d under �d. Since the state space Qd of the diagnoser is a subset of Qo, a state qd of
Gd is of the form

qd = f(x1; `1); : : : ; (xn; `n)g

where xi 2 Xo and `i 2 �, i.e., `i is of the form `i = fNg, `i = fFi1Fi2 ; : : : ; Fikg; or `i =
fFi1Fi2 ; : : : ; Fikg where in the last two cases fi1; i2; : : : ; ikg � f1; 2; : : : ; mg:

An observer for MP (see [14]) gives estimates of the current state of the system after the
occurrence of every observable event. The diagnoser Md can be thought of as an extended observer
where we append to every state estimate a label of the form mentioned above. The labels attached
to the state estimates carry failure information and failures are diagnosed by checking these labels.
We assume the plant MP is normal to start with, hence we de�ne q0 = f0P ; fNg)g.

Before de�ning the transition function �d of the diagnoser, we de�ne the two functions
called the Label Propagation function LP , and the Range function R.

De�nition 3 The Label Propagation Function LP : Xo ��� �� ! �.
Given x 2 Xo; ` 2 �; and s 2 Lo(MP ; x), LP propagates the label ` over s, starting from x and
following the dynamics of MP , i.e., according to L(MP ; x). It is de�ned as follows:

LP (x; `; s) =

(
fNg if ` = fNg ^ 8i; s\	(�F i) = ;
fFi : Fi 2 ` _ s \	(�F i) 6= ;g otherwise.

52

De�nition 4 The Range Function R : Qo � �o ! Qo is de�ned as follows:

R(q; �) =
[

(x;`)2q

[
s2L�(MP ;x)

(�(x; s); LP (x; `; s)):

The transition function of the diagnoser �d : Qo � �o ! Qo is de�ned by

�d(�; q) =

(
R(q; �); if R(q; �) 6= ;
unde�ned otherwise

The veri�cation of diagnosability is done by checking for a speci�c type of cycle in the diag-
noser and plant model. We introduce the concepts of an Fi�uncertain state and a Fi�indeterminate
cycle. Fi�uncertain states are de�ned as follows.

De�nition 5 1. A state q 2 Qd is said to be Fi-certain if 8(x; `) 2 q; Fi 2 `.

2. A state q 2 Qd is said to be Fi-uncertain if 9(x; `); (y; `0) 2 q; such that Fi 2 ` and Fi =2 `0.

The de�ntion of an Fi�indeterminate cycle is as follows. A cycle in an FSMM is a sequence of states
x1; x2; : : : ; xn 2 X such that 9s 2 L(M;x1) such that s = �1�2 : : :�n and �(xl; �l) = x(l+1) mod n; l =
1; 2; : : : ; n:

Before stating the next de�ntion we introduce the FSM M 0
P = h�; Xo; 0P ; �

0
P i: M

0
P is in

general a non-deterministic FSM that generates the observable projection of L(MP): The transition
function �0P is de�ned as follows.

�0P (�; x) = x0 for �P (s; x) = x0; s 2 L�(MP ; x)

De�nition 6 A set of Fi-uncertain states q1; q2; : : : ; qn 2 Qd is said to form an Fi-indeterminate

cycle if

1. q1; q2; : : : ; qn form a cycle in Md with �d(ql; �l) = ql+1; l = 1; : : : ; n�1, �d(qn; �n) = q1; where
�l 2 �o; l = 1; : : : ; n; and

2. 9(xkl ; `
k
l); (y

r
l ;
~̀r
l) 2 ql; l = 1; : : : ; n, k = 1; : : : ; m; and r = 1; : : : ; m0 such that

(a) Fi 2 `kl ; Fi =2 ~̀r
l for all l; k; and r;

(b) The sequences of states fxkl g; l = 1; : : : ; n; k = 1; : : : ; m and fyrl g; l = 1; : : : ; n; r =
1; : : : ; m0 form cycles in M 0

P with

(xkl ; �l; x
k
(l+1)) 2 �M 0

P
; l = 1; : : : ; n� 1; k = 1; : : : ; m;

(xkn; �n; x
k+1
1) 2 �M 0

P
; k = 1; : : : ; m� 1; and

(xmn ; �n; x
1
1) 2 �M 0

P
;

and

(yrl ; �l; y
r
(l+1)) 2 �M 0

P
; l = 1; : : : ; n� 1; r = 1; : : : ; m;0

(yrn; �n; y
r+1
1) 2 �M 0

P
; r = 1; : : : ; m0 � 1; and

(ym
0

n ; �n; y
1
1) 2 �M 0

P
:

53

In other words, an Fi-indeterminate cycle in Gd is a cycle composed exclusively of Fi-uncertain states
for which there exist:

1. a corresponding cycle (of observable events) in M 0
P involving only states that carry Fi in their

labels in the cycle in Md (this is the sequence fxkl g) and

2. a corresponding cycle (of observable events) in M 0
P involving only states that do not carry Fi

in their labels in the cycle in Gd (this is the sequence fyrl g).

Observe that in the above de�nition, m and m0 denote the number of times the cycle q1; q2; : : : ; qn in
Gd is completed before the cycle in M 0

P is completed, i.e, nm and nm0 are the cycle lengths in M 0
P

for fxkl g and fy
r
l g respectively.

An Fi-indeterminate cycle in Md indicates the presence in L of two traces s1 and s2 of
arbitrarily long length, such that they both have the same observable projection, and s1 contains
a failure event from the set �fi while s2 does not. The notion of an Fi-indeterminate cycle is the
most crucial element in the development of necessary and su�cient conditions for diagnosability.
The theorem, quoted from [20], is as follows.

Theorem 1 A language L(MP
MF) is diagnosable if and only if there are no Fi-indeterminate
cycles in its diagnoser Gd, for all failure types in the partition �F :

Thus diagnosability and FH-diagnosability are veri�ed by checking for the existence of
such Fi-indeterminate cycles. We have constructed algorithms to check these conditions. Their use
is demonstrated in section 5.5.

5.5 Failure Diagnosis of an Automated Vehicle

In this section we illustrate the applicability of the previously developed theory. The continuous
domain, sensor, observer, and residue design is summarized in Tables 5.1 and 5.2 included from [18].
Table 5.1 summarizes 18 di�erent signals to be used in the fault detection and identi�cation scheme.
Some of the signals are directly measured while others are estimates obtained from the observers
discussed in [18]. Table 5.2 summarizes 10 di�erent residues calculated using combinations of the
signals from the previous table.

5.5.1 The Two Residue Illustration

In this section we illustrate the methods by considering residue 1 and 7 of table 5.2. The residues
are associated with failures in the wheel speed sensor, engine speed sensor and throttle actua-
tor components. We verify diagnosability under the single failure hypothesis and the partition
fF WSSg; fF ESSg; fF TAg: The diagnoser is also constructed. The component models are illus-
trated in �gure 5.2. The third model in the �gure is the fault hypothesis FSM MF representing the
single failure assumption.

The synchronous composition of M1
 M7
 Mf is shown in �gure 5.4. The machine
Ms representing the assumption that all residue values are read after a failure is shown in �gure
5.3. The �nal system to be veri�ed for diagnosability (M1

N
M7
N

Mf

N
Ms) is shown in �gure 5.5.

The diagnoser Md is shown in �gure 5.6. The diagnostic state for the engine speed sensor failure

54

is (2; 2; 2; F1) (residue sequence R1H, R7H), that for the wheel speed sensor failure is (3; 1; 2; F1)
(residue sequence R1H, R7L), and that for the the throttle actuator failure is (1; 3; 2; F1) (residue
sequence R1L, R7H).

5.5.2 The Dependence of Residue on Control

Residue 3 is generated by using intra-platoon communication. Such communication is available when
the vehicle is in platoon follower mode but not in the platoon leader mode. Thus the value of the
residue in platoon leader mode is indeterminate. Therefore in all states in which the vehicle is in
leader mode the residue values are either R3H or R3L, while in the follower mode the residue values
are always one or the other. The residue model for single faults is shown in �gure 5.7. The system
is not diagnosable by looking at a single residue.

5.5.3 The Composite System

We next applied the design methods to all sensors, actuators and their associated residues with and
without communications faults. Hence a machine, Mi, was constructed for each of the ten residues,
a failure events machine, Mf , consisting of two states and ten transitions and �nally the machine Ms

consisting of 2047 states. Ms was constructed algorithmically by the methods described in section
5.3. In the case when it was assumed that there are no faults in the communication system, the
system is determined to be diagnosable, i.e. no indeterminate cycles were found. The full set of
residue model �les is attached.

5.6 Summary

We have presented a systematic procedure for creating DEM's based on residues generated in the
continuous domain. The method is modular in the sense that the model of the integrated system is
built by composing unit models using mathematically well-de�ned operators. We provide a formal
way of de�ning a diagnostic requirement and thereafter proving whether a given diagnostic scheme
satis�es the requirement. We have also provided a means of generating a FSM speci�cation of the
residue processing software.

We have provided two examples to intuitively explain the working of the methods. We
have also established how the methods may be applied to the design of diagnostics for the longitudinal
control system of a fully automated vehicle.

We are interested in a more intensive investigation on the detection of communication
faults. We are also interested in the process of translating the FSM speci�cation of the diagnoser to
real-time diagnostic code.

55

1

2

3

4 1

2

3

4

1 2

F_ESS

F_ESS F_ESS

F_ESSF_WSS

F_WSS

F_TA

F_TA

F_ESS

F_WSS

F_TA

R1H

R1L

R1H

R1H

R1L

R7H

R7H

R7L

R7L R7H

Figure 5.2: Component models M1, M7 and Mf

56

F_ESS

F_WSS

F_TA

R1L

R1H

R7H

R7L

R7H

R7L

R1H

R1L

R1L

R7L

R1H

R7H

F1 F2

F21

F27

F11

F17

R7L

R1L

R1H

R7H

Figure 5.3: Ms for residues 1 and 7 only

57

R1L

R7L

R1H

R7H

R1H

R7L

R1L

R7H

F_WSS

F_ESS

F_TA

1

2

3

4

(1,1,1)

(2,2,2)

(3,1,2)

(1,3,2)

Figure 5.4: Synchronous composition M1
N

M7
N

Mf

58

F_ESS

F_WSS

F_TA

R1H

R7H

R1H

R7L

R1L

R7H

R7H

R7L

R7H

R1L

R7L

(1,1,1,F1)
(1,1,1,F11)

R1L

R7L

(1,1,1,F17)

(2,2,2,F2)

(3,1,2,F2)

(1,3,2,F2)

(2,2,2,F21)

(2,2,2,F27)

(3,1,2,F21)

(3,1,2,F27)

(1,3,2,F21)

(1,3,2,F27)

(2,2,2,F1)

(3,1,2,F1)

(3,1,2,F17)

(1,3,2,F1)

(1,3,2,F11)

R1H

R1H

R1L

R1H

R7H

R7H

R1H

(2,2,2,F11)

(2,2,2,F17)

R7H

R7H

R1H

R1H

(1,3,2,F17)

(3,1,2,F11)R7L

R1L

R1L

R7L

Figure 5.5: Synchronous composition M1
N

M7
N

Mf

N
Ms

59

R1L

R7L

R1H

R7H

R7H

R1H

R7L

R7H

R1L

R1H

R1L

R7L

R7L

R1L

R7H

R1L

R1H

R7H

R7L

R7H

R1H R7H

R1H

R1H

(1,1,1,F1) N

(1,3,2,F21)
(1,1,1,F11)

(1,1,1,F17)
(3,1,2,F27)

(2,2,2,F21)
(3,1,2,F21)

(2,2,2,F27)
(1,3,2,F27)

(1,3,2,F17)

(2,2,2,F11)

(2,2,2,F17) N

(3,1,2,F11)
F_WSS

(3,1,2,F17)
F_WSS

(1,3,2,F11)
F_TA

(1,3,2,F1)
F_TA

(3,1,2,F1)
F_WSS

(2,2,2,F1)
F_ESS

F_TA

F_ESS

Figure 5.6: Diagnoser Md for residues 1 and 7 only

60

leader_mode

follower_mode

leader_mode

leader_mode

leader_mode

follower_mode

follower_mode

F_RRS

F_ESS

F_COM

R3L

R3L

R3L

R3L

R3H

R3H

R3H

R3H

R3H

R3H

R3H
F_ESS

F_RRS

F_COM

R3L

follower_mode

initial state

Figure 5.7: The dependence of residue 3 on control

61

SIGNAL DESCRIPTION SENSOR/OBSERVER

z1 = h!w vehicle speed wheel speed sensor

z2 = Rh!e engine speed engine speed and gear ratio sensors

z3 = xi�1 � xi distance to preceding car (range) radar range signal

z4 = vi�1 � vi relative velocity of preceding radar range rate signal

z5 = vi�1 velocity of preceding car communication

z6 = !e engine speed engine speed sensor

z7 = _ma mass ow rate of air in manifold mass ow rate sensor

z8 = ai acceleration accelerometer

z9 = ai�1 acceleration of preceding car communication

z10 = !̂e estimated engine speed observer of eqns. (11)-(12) speed sensor

z11 = _̂ma estimated ow rate in manifold observer of eqns. (11)-(12) speed sensor

z12 = �c commanded throttle angle calculated by controller using eqn. (6)

z13 = � throttle angle throttle angle sensor

z14 = Tbr com commanded brake torque calculated by controller using eqn.(6)

z15 = �̂i estimated distance to preceding car observer of eqn. (9)

z16 = v̂i estimated velocity observer of eqn. (15)

z17 = asyn synthetic acceleration calculated by controller using eqn. (6)

z18 = !e br estimated engine speed during observer of eqn. (13)
braking

Table 5.1: Signals for automated vehicle longitudinal control system diagnostics

62

RESIDUES SENSORS/ACTUATORS INVOLVED

R1 = z1 � z2 wheel speed sensor
engine speed sensor

R2 = z5 � z4 � z1 radar range rate sensor
wheel speed sensor
communication

R3 = z5 � z4 � z1 radar range rate sensor
engine speed sensor
communication

R4 = z3 � z15 radar range sensor
wheel speed sensor
magnetometer
communication

R5 = z17 � z8 accelerometer

R6 = z16 � z1 accelerometer
markers
wheel speed sensor

R7 = z10 � z2 throttle actuator
engine speed

R8 = z12 � z13 throttle angle sensor
throttle actuator

R9 = z11 � z7 mass ow rate sensor
throttle actuator

R10 = z18 � z2 brake actuator
engine speed

Table 5.2: Residues and the associated components

63

Chapter 6

Future Work

During the following year we will focus on the formalisation of the architecture integrating diagnostics
and control at the regulation and coordination layers of the vehicle. The formalism should support
a deterministic and probabilistic theory of veri�cation. This formalization will serve to precisely
identify the assumptions under which the diagnostic designs developed by the project are expected
to function satisfactorily.

The fault diagnostic system has been proven through simulation and limited experimental
tests to be extremely e�ective at detecting faults in the longitudinal control system. However, further
experimental testing will be performed to validate the entire fault diagnostic system on the platooning
vehicles at PATH.

One limitation of the current fault diagnostic system is the neglection of the lateral control
sensors and steering actuator. For the development of a complete fault diagnostic system for auto-
mated vehicles, this limiation needs to be addressed, and is therefore the subject of further research.
Furthermore, the identi�cation logic developed in chapter 3 relies on the decision of a residual signal
being \high" or \low". These subjective ratings will need to be quanti�ed for each residual signal,
based on knowledge of sensor noise characteristics and modeling errors. In addition, an algorithm will
be required for experimental implementation of the decision logic and the complete fault diagnostic
system.

The project will continue to develop the interfaces between the fault detection and handling
and its implementation in the SHIFT hybrid systems programming language. In particular we will
concentrate on the following items.

1. Complete the implementation in Shift of the coordination layer supervisor.

2. Extend the design of the coordination layer supervisor to allow it to synchronize with more
than one capability structure.

3. Complete the design for the performance structure in the fault tolerant AHS.

4. Implement a performance structure design in Shift.

5. Perform extensive tests of the capability and performance structures.

6. Integrate the coordination layer supervisor with the capability and performance structures.

7. Perform simulations of the complete fault handling systems.

64

Bibliography

[1] L. Alvarez and R. Horowitz. Safe platooning in automated highway systems. Submitted as a
PATH research report, 1997.

[2] D. Cho and J.K. Hedrick. Automotive powertrain modeling for control. In ASME Transactions
on Dynamic Systems, Measurement and Control, volume 111, December 1989.

[3] R.K. Douglas and D.L. et al Speyer. Fault detection and identi�cation with application to
advanced vehicle control systems. Ucb-its-prr-95-26, California PATH Research Report, 1995.

[4] V. Garg. Fault Detection in Nonlinear Systems. PhD thesis, Department of Mechanical Engi-
neering, University of California at Berkeley, 1995.

[5] V. Garg. Fault Detection in Nonlinear Systems : An Application to Automated Highway Systems.
PhD thesis, Department of Mechanical Engineering, University of California at Berkeley, 1995.

[6] V. Garg and J.K. Hedrick. Fault detection �lters for a class of nonlinear systems. In Proceedings
of the 1995 American Control Conference, pages 1647{1651, June 1995.

[7] D. Godbole, J. Lygeros, E. Singh, A. Deshpande, and A.E. Lindsey. Towards a Fault Tolerant
AHS Design Part II: Design and Veri�cation of Communication Protocols. PATH Techni-
cal Report UCB-ITS-PRR-96-15, Institute of Transportation Studies, University of California,
Berkeley, 1996.

[8] Z. Har'El and R. P. Kurshan. COSPAN User's Guide. AT&T Bell Laboratories, Murray Hill,
NJ, 1987.

[9] J.K. Hedrick, D. McMahon, V.K. Narendran, and D. Swaroop. Longitudinal vehicle controller
design for ivhs systems. In Proceedings of the 1991 American Control Conference, volume 3,
pages 3107{3112, June 1991.

[10] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading, MA, 1979.

[11] A. Hsu, F. Eska�, S. Sachs, and P. Varaiya. Protocol Design for an Automated Highway System.
Discrete Event Dynamic Systems, 2(1):4{16, 1994.

[12] John Lygeros. Hierarchical, Hybrid Control of Large Scale Systems. PhD thesis, Department of
Electrical Engineering and Computer Sciences, University of California at Berkeley, 1996.

[13] John Lygeros, Datta Godbole, and Mireille Broucke. Towards a Fault Tolerant AHS Design
Part I: Extended Architecture. PATH Technical Report UCB-ITS-PRR-96-14, Institute of
Transportation Studies, University of California, Berkeley, 1996.

65

[14] C. M. �Ozveren and A. S. Willsky. Observability of discrete event dynamic systems. IEEE Trans.
Automatic Control, 35(7):797{806, July 1990.

[15] S. Patwardhan and M. Tomizuka. Robust failure detection in lateral control for ivhs. In Pro-
ceedings of the 1992 American Control Conference, June 1992.

[16] Satyajit N. Patwardhan. Fault detection and tolerant control for lateral guidance of vehicles in
automated highways. Tech. Rep. UCB-ITS-PRR-94-17, California PATH, University of Califor-
nia, Berkeley, 1994.

[17] R. Rajamani. Observer design for lipschitz nonlinear systems. to appear in IEEE Transactions
on Automatic Control, 1997.

[18] R. Rajamani, J.K. Hedrick, and A. Howell. A complete fault diagnostic system for longitudinal
control of automated vehicles. In Proc. of Symposium of Advanced Automotive Technologies,
1997 ASME International Congress, 1997.

[19] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes.
SIAM J. Control and Optimization, 25(1):206{230, January 1987.

[20] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosability
of discrete-event systems. IEEE Trans. Automatic Control, 40, September 1995.

[21] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Failure diagnosis
using discrete-event models. IEEE Trans. Control Systems Technology, 4, March 1996.

[22] D. Swaroop and et al Hedrick, J.K. A comparison of spacing and headway control laws for
automatically controlled vehicles. Vehicle System Dynamics Journal, 23, November 1994.

[23] M. Tomizuka and J.K. Hedrick. Automated vehicle control for ivhs systems. In Proceedings of
the IFAC Conference, Sydney, 1993.

[24] J.E. White and J.L. Speyer. Detection �lter design :spectral theory and algorithms. In IEEE
Transactions on Automatic Control, volume 32, pages 593{603, 1987.

66

