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Logarithmic number system (LNS) is an attractive alternative to realize 	nite-length impulse response 	lters because of
multiplication in the linear domain being only addition in the logarithmic domain. In the literature, linear coe
cients are directly
replaced by the logarithmic equivalent. In this paper, an approach to directly optimize the 	nite word length coe
cients in the
LNS domain is proposed.�is branch and bound algorithm is implemented based on LNS integers and several di�erent branching
strategies are proposed and evaluated. Optimal coe
cients in the minimax sense are obtained and compared with the traditional
	nite word length representation in the linear domain as well as using rounding. Results show that the proposed method naturally
provides smaller approximation error compared to rounding. Furthermore, they provide insights into 	nite word length properties
of FIR 	lters coe
cients in the LNS domain and show that LNS FIR 	lters typically provide a better approximation error compared
to a standard FIR 	lter.

1. Introduction

Finite-length impulse response (FIR) 	lters constitute a class
of digital 	lters commonly used for their stability properties
and the ability to obtain a linear phase response. �e transfer
function of an�th-order FIR 	lter is

�(�) = �∑
�=0
ℎ��−�, (1)

where ℎ� are the impulse response coe
cients.
�e 	lter order and, therefore, the number of multi-

plications and additions for a straightforward realization
grows approximately inversely proportional to the transition
bandwidth of the magnitude response [1, 2]. As multiplica-
tions traditionally have a larger area complexity and power
consumption compared to additions, much work has focused
on reducing the number of multiplications in FIR 	lter
realizations by using sparse 	lters or frequency response
masking 	lters [3–5]. Work has also been done to reduce the
complexity of each multiplication, for example, by introduc-
ing 	lter coe
cients easily realizable using shis, additions,

and subtractions, sometimes referred to as multiplierless
realizations [6–8].

Furthermore, the representation of data and coe
cients
a�ects both the switching activity and implementation com-
plexity which, in turn, a�ects power consumption as well.
Commonly, a 	xed-point two’s complement number rep-
resentation is used to represent data in DSP systems, but
other number representations have also been investigated as
an e
cient way of data representation for such systems [9–
11]. Among them is the logarithmic number system (LNS)
[12], which over the past few decades has been studied
as an alternative to 	xed-point number systems. �e main
motivation for doing so is the inherent simpli	cation of basic
arithmetic operations as multiplication, division, roots, and
powers, due to its properties, which are reduced to addition,
subtraction, multiplications, and divisions, respectively.�ey
also have interesting numerical properties as higher dynamic
range compared to 	xed-point representations for a given
number of bits [13] and better round-o� noise perfor-
mance than �oating-point arithmetic for a given number of
bits [14–16].
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With LNS reducing multiplication to an addition, it
	nds application in low power signal processing systems,
including digital 	lters [13, 17–23]. In [18, 19] LNS has also
been proposed to reduce power dissipation in hearing aid
devices [24], subband coding [25], and video processing [26].
It has been shown that LNS requires a reduced data word
length to achieve the same SNR when compared to 	xed-
point representations [21, 23], with a reported power saving
of nearly 60% in some cases. However, no discussion about
the coe
cient word length was included nor how to obtain
	nite word length coe
cients.

Most e�orts towards utilizing LNS for digital have
focused on either implementing the nonlinear conversion to
and fromLNS, selecting the logarithmbasis, or implementing
the LNS addition and subtraction e
ciently [12, 23, 27–30].
�e 	nite word length 	lter design has to the best of the
authors’ knowledge not been considered but instead relied
on rounding the obtained coe
cients to the nearest LNS
number.

In this work, an integer linear programming (ILP)
approach to design optimal 	nite word length linear-phase
FIR 	lters in the LNS domain is proposed. Here, instead
of optimizing 	lters in the linear domain and converting
them into LNS with rounding in the LNS, we optimize the
	lter directly in the LNS domain with 	nite word length
constraints in the LNS domain. By optimizing the 	lters
directly in the LNS domain it is also possible to compare the
requiredword lengths to obtain further insights regarding the
e
ciency of LNS.

�e rest of the paper is outlined as follows. In the next sec-
tion LNS numbers are reviewed. In Section 3 ILP is reviewed
and the issues involved by performing it in the LNS domain
are discussed. �is section also includes the formulation
and the proposed variable selection and branching direction
strategies. Finally, Sections 4 and 5 present the results and
conclusions, respectively.

2. The Logarithmic Number System (LNS)

�e LNS takes advantage of the fact that multiplications
become additions, however, at the cost of increased com-
plexity to implement addition. �e LNS representation of a
number� consists of a tripletX as follows [12]:

X = (��, 	�, 
�) , (2)

where �� is a one-bit �ag to indicate if� is zero, 	� is the sign
of�, and
� = log�|�| is the base-� logarithm of the absolute
value of � [21]. Representation capabilities, computational
complexity, and conversion to and fromLNS numbers greatly
depend on the choice of the base [10].

As stated before, the motivation behind using LNS is the
simplicity of implementing the multiplication of X and Y
which is reduced to the computation of the tripletZ [21]:

Z = (��, 	�, 
�) , (3)

where �� = �� or ��; that is, the zero �ag of the output, 	� =	�xor 	�; that is, the sign of the output and the output itself,
� = 
� + 
�.
�e addition and subtraction are more complex and are

given by (4)

add = max (
�, 
�) + log� (1 + �−|��−��|) ,
sub = max (
�, 
�) + log� (1 − �−|��−��|) .

(4)

In case of FIR 	lters, the 	lter coe
cients are typically
between −1 and 1. Representing the coe
cients in LNS
means that all the exponents in the LNS domain will be
negative. �is means that the larger the magnitude in LNS
domain, the smaller it is in the linear domain. As the coe
-
cients become smaller, the LNS number magnitude becomes
larger and reaches themaximumnumber representable using

� integer and � fractional bits, given by ±2−(2�−2−�). Important
to note is that since the LNS numbers will always be negative
for (most) FIR 	lter coe
cients, there is no need to use a sign
bit to represent the exponent in this case.

Any number smaller than this is not representable. �is
phenomenon is shown on a linear scale in Figure 1 where two
scales are shown for one and two integer bits, respectively.
As expected, the logarithmic numbers are unevenly spaced.
However, there is a gap between the smallest nonzero number
and zero which is much larger than the distance between the
smallest and second smallest nonzero numbers. Any number
that lies within this space is rounded to either zero or the
smallest number. Hence, the number of integer bits will have
an impact on the smallest number that can be represented.

2.1. Finite Word Length E�ects. It is well established that
coe
cient quantization results in a static deviation of the
transfer function, while data quantization results in round-
o� noise [1, 2]. In the linear domain the quantization happens
aer the multiplications, as the fractional word length is
increased there. However, in the LNS domain, the fractional
word length is not increased aer the multiplications, as
this corresponds to an addition. Instead, the quantization
occurs in the addition, because addition, as shown in (4),
requires look-up tables and cannot be represented exactly
[15]. In the linear domain, the multiplier complexity grows
linearly with the coe
cient word length, while the adder
complexity is independent of the coe
cient word length. In
the LNS domain, the multiplier complexity is dependent on
the smallest of the data and coe
cient word lengths, while
the adder complexity is dependent on the largest of those.

3. Proposed Integer Linear Programming
Design in the LNS Domain

3.1. Integer Linear Programming. Integer linear programming
(ILP) is a class of linear programming where some or all the
variables are restricted to have integer values [31]. Generally,
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Figure 1: Distribution of smallest logarithmic values using base 2: (a) one integer bit and three fractional bits and (b) two integer bits and
three fractional bits.
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h5 ≥ ⌈ĥ5⌉h5 ≤ ⌊ĥ5⌋

Figure 2: Example branch and bound tree for LNS FIR 	lter design.

the standard form to express a linear programming problem
is given by

maximize �	�
subject to �� ≤ �� ≥ 0�, � ∈ R�, � ∈ R�, � ∈ R�×�,

(5)

where � is the number of variables and 
 is the number of
constraints.

However, some real world problems require the result
to be integers. �is requirement is incorporated into the
programming model by having an additional constraint � ∈
Z
�. �ere are two important algorithms for solving ILPs:

branch and bound (BB) and cutting plane. (Naturally, for FIR
	lters the “integers” are 	xed-point values with a fractional
part. However, to keep the standard nomenclature we select
to denote any 	xed-point value with integer.)

In this work we use the branch and bound (BB) algorithm
which is a general algorithm for 	nding optimal solutions to
integer or combinatorial problems. It consists of enumerating
all candidate solutions and discarding candidates by using
upper and lower bounds of the quantity being optimized.

ILP problems are nondeterministic polynomial (NP)
hard. In order to solve them the integer constraint is relaxed
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Figure 3: Example solution space for ILP with LNS (⬦) and linear
(×) integers with three fractional bits with valid region in gray and
the line representing the pareto front.

and the variables are allowed to take noninteger values.
�is, and subsequent, LP-relaxations provide a bound on the
best possible solution without the integer constraint. One
noninteger variable is selected and branched on by forming
two subproblems. One where the variable is restricted to be
at least as large as the next higher integer value and one
where it is restricted to be at most as large as the next lower
integer value. �is is illustrated in Figure 2, where the top
node represents the LP-relaxation, variable ℎ5 is selected to
branch on, and two subproblems are formed by adding the
constraint on the edges. �is procedure continues until any
of the following happens.

(1) �e subproblem is infeasible, as any possible further
branching will not change that.

(2) �e subproblem results in a solution where all coe
-
cients are integers.
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Figure 4: Number of visited nodes (solved subproblems) for speci	cation 6: (a)� = 20, �(3, �), (b) � = 20, �(4, �), (c) � = 34, �(3, �),
and (d)� = 34, �(4, �).

(3) �e solution of the subproblem is worse than the
best obtained integer solution, and, hence, no further
subproblems generated from that node can possibly
have better values.

In any of these cases the algorithm returns to the previous
node and selects another subproblem to solve until all
possibilities are exhausted and the optimal integer solution
is obtained.

�e nontrivial challenge in ILP is to know which variable
to branch on and inwhich order.Wewill suggest and evaluate
a number of branching schemes in later sections.

3.2. Linear Programming Design of FIR Filters. Linear-phase
FIR 	lters can be designed to be linear and are a good
candidate for linear programming optimization.�e work by
Rabiner [32] is one of the earliest papers using this technique

to solve digital FIR 	lter problems. However, this technique
has its limitations when 	nite word length restriction is
imposed [33].

In ILP, the FIR optimization problem is the same as in
the linear programming case. A general FIR optimization
problem can be stated as the followingminimization problem
[1]:

minimize �
subject to −� ≤ � (�
�) ≤ �, � = 1, 2, . . . , �, (6)

where � is the approximation error, � is the number of
frequency points, and

� (��) =  (��) [�� (��) − " (��)] , �� ∈ Ω, (7)

where Ω is the union of the passband and stopband
regions and is a dense set of frequency samples taken from
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the passbands and stopbands, including the band edges."(��) is the desired function to be approximated by��(��).
For a standard low-pass 	lter,"(��) is given by [1]

" (��) = {1, �� ∈ [0, ���]0, �� ∈ [��, &] . (8)

�e weighting function  (��) speci	es the cost of the
deviation from the desired function.�is basicallymeans that
by using this weighting function, one can obtain di�erent
deviations in ripples in di�erent frequency bands. �e larger
the weighting function, the smaller the relative ripple. For a
standard low-pass 	lter, the weighting function can be given
as [1]

 (��) = {{{
1, �� ∈ [0, ���]��� , �� ∈ [��, &] .

(9)

��(��) is the real zero-phase frequency response, which
is related to the frequency response as [1]

�(/��	) = /�Θ(�	)�� (��) . (10)

�emagnitude response of�(/��	) is equal to themagni-
tude of��(��). However,��(��) can take on negative val-

ues where |�(/��	)| is a nonnegative function. �e resulting
	lter will be optimized in the Chebyshev or minimax sense.
Such 	lters are also called equiripple 	lters because all the
ripples will be of equal size, subject to the weighting function
[1].

�e linear relaxation obtainedwithout integer constraints
will be the same minimax solution obtained using other
FIR 	lter design techniques, such as the Remez exchange
algorithm. �erefore, in later results the linear relaxation is

used as a lower bound. Introducing integer constraints will
constrain the solution space and increase the approximation
error. Furthermore, the resulting 	lters may no longer be
equiripple.

3.3. ILP Design of FIR Filters in the LNS Domain. In the LNS
domain, our proposed design method focuses on 	nding the
LNS equivalent of the coe
cient values and implementing a
branch and bound tree based on LNS integer values. In the
branch and bound tree, the coe
cients are, when picked as
the branching variable, constrained to be LNS integers.

�e solution space for an LNS ILP problem is di�erent
from that of an ILP problem using linear representation. An
example of this is shown in Figure 3, clearly showing the
di�erence between the two spaces.

In the LNS branch and bound tree, aer solving a node,
some of the coe
cients will be LNS integers and some not.
�e linear relaxation of a noninteger coe
cient, if selected,
would be rounded up and down.

�e 	rst proposed branch variable selection scheme,
named as Scheme 1, is to scan all the noninteger coef-
	cients and pick the noninteger variable which has the
largest absolute value. �is may be e
cient since this will
introduce the largest quantization error in the linear domain,
and, hence, possibly reduce the convergence time. Another
scheme, denoted as Scheme 2, instead selects the coe
cient,
aer scanning all noninteger coe
cients, which is farthest
from being an integer in the LNS domain.�is is again based
on the idea of introducing large quantization errors early.

For both schemes described above, both combinations
of branching direction are evaluated. �is means that for
both schemes, the di�erence is calculated between the linear
relaxation of the selected variable and its upper and lower
bounds. In one implementation, the branching variable is
constrained to the bound which gives the least di�erence 	rst
and then upon returning to that node constraining it to the
other bound. In the other implementation, this selection is
reversed.

A third scheme is proposed, denoted as Scheme 3, where
the branching direction was limited to the bound with the
least di�erence. In this scheme, all noninteger coe
cients are
scanned and the minimum distance to each of its bounds
for each variable is calculated. �e coe
cient having the
maximum of these minimum distances is selected as the
branching variable.

All the above schemes either picked up the �oor or
ceiling value of the linear relaxation for the next branch
without actually knowing whether that would produce a
lower approximation error. �e 	nal proposed approach,
Scheme 4, uses the same variable selection scheme as Scheme
3 but both subproblems are evaluated before the selection is
done on which path to continue along. �e decision is based
on the most promising path, that is, the one with the smallest
approximation error.

All these branch variable selection schemes are for locat-
ing the best variable to branch on. Apart from these schemes,
the rest of the algorithm is the same for all cases. However, an
error threshold is allowed while testing each coe
cient for
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Figure 6: E�ect of changing integer and fractional word length on approximation error: (a) spec. 3,� = 34, (b) spec. 6,� = 34, and (c) spec.6,� = 22.

being an LNS integer, which means that the coe
cient need
not be exactly an LNS integer. Any number within a de	ned
threshold of the corresponding LNS integer is taken as an
LNS integer. �is is a standard procedure in ILP solving as
numerical errors in the computations may lead to noninteger
values in the optimal solution, even though they in practice
should be considered integers [31].

4. Results

For the results a number of low-pass 	lter speci	cations were
devised arbitrarily to cover both narrow-band andwide-band
	lters.�e passband and stopband edges are shown in Table 1
and the weighting function  (��) is 1 for both passband

and stopband. Unless otherwise stated the logarithm base is
selected as � = 2. Regarding word length, �(�, �) indicates
the number of integer bits, � and fractional bits, � is used for
the LNS integer, and �(�) denotes � fractional bits for the
linear integers.

4.1. Comparison of Branching Schemes. A number of opti-
mization runswere carried outwith di�erent alternatives.�e
purpose was to see the e
ciency of each scheme and see the
impact of word length on di�erent 	lters.

Table 2 shows the number of nodes visited (subproblems
solved) for the 	rst two schemes with di�erent branch-
ing directions. “L” denotes that the branching direction is
determined on the closest integer, while “H” then denotes
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Figure 7: Approximation error as a function of coe
cient word length for proposed method and direct rounding of the linear relaxation: (a)
spec. 3,� = 34, (b) spec. 6,� = 34, and (c) spec. 6,� = 22.

Table 1: Filter speci	cations considered.

Filter spec. Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5 Spec. 6

���, rad 0.2& 0.2& 0.2& 0.2& 0.1& 0.75&
��, rad 0.3& 0.35& 0.4& 0.5& 0.25& 0.9&

the integer with the largest di�erence from the relaxed value.
�e number of integer and fractional bits is four and six,

respectively, that is,�(4, 6). Table 2 establishes that branching
on the direction based on the least di�erence gives the best
result. Also, Scheme 1 proves superior to Scheme 2.

Scheme 1 is further compared with Schemes 3 and 4 and
the results are shown in Table 3, again with�(4, 6). �is table
shows them to be comparable, apart from the case when the
	lter length is 64.�is shows that Scheme 1 does not converge

quickly when 	lter length is increased. �is behavior is
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Figure 8: Approximation error as a function of 	lter length: (a) spec. 5, (b) spec. 6, and (c) spec. 3.

further observed in numerous optimization runs. For various
integer and fractional bits and 	lter lengths, Scheme 3 gives,
on average, the best convergence time. Scheme 1 appears to
perform better when given a narrow transition band and
small 	lter length.

�e e�ect of word length is further studied and results
are shown in Figure 4. In Figures 4(a) and 4(b), the number
of nodes required to solve spec. 6, � = 20, for three and
four integer bits, respectively, while the number of fractional
bits varying from 5 to 14 is shown. Similarly, Figures 4(c)
and 4(d) show the same for spec. 6, � = 34. When the
	lter length is 20, Scheme 1 converges in the least amount of
time. Decreasing integer word length to three did not alter
the e
ciency of this scheme. However, as the 	lter length was

increasedwhile keeping the passband and stopband edges the
same, one can see that decreasing the integer word length
from four to three had a major impact on the convergence
time of Scheme 1. Further optimization runs show the same
e�ect. Table 4 shows, for a few cases, the number of nodes
needed by each of these three schemes.

�e 	gures and tables clearly show that if either (a) the
transition bandwidth is increased or (b) the 	lter length is
increased, Scheme 1 converges very slowly. �is e�ect is
magni	ed when the integer word length is decreased. �is
can be seen in the table in the case of spec. 4 with � = 20,
where, in relation to spec. 6,� = 20, the 	lter length is kept
the same but the transition bandwidth is increased.�e same
e�ect is seen for narrow band 	lters as well. Based on these
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Figure 9: Approximation error as a function of 	lter length for proposed method and direct rounding of the linear relaxation: (a) spec. 5, (b)
spec. 6, and (c) spec. 3.

observations, one can conclude that either Scheme 3 or 4 is
on average the best alternative to solve the given optimization
problem.

4.2. E�ect of Word Length. Next, the e�ect of changing the
integer and fractionalword length on themagnitude response
and approximation error was studied. Optimization runs
were carried out for a number of speci	cations given in
Table 1. For various optimization runs, either the integerword
length was 	xed and fractional word length varied or vice-
versa. In Figure 5, the magnitude responses for 	lters with
speci	cation 3 are shown. �e integer word length has been
	xed at four while the fractional word length takes on values
of one, six, ten, and fourteen.

To study the e�ect of changing integer and fractional
word length on the approximation error in more detail
for speci	cation 3, the approximation error is plotted in
Figure 6. In these 	gures, there are 	ve curves, one showing

the optimal approximation error for continuous coe
cients
(linear relaxation) and one shows the approximation error
for linear integers, while the other three curves are for LNS
integer word length three, four, and 	ve, respectively, with
total word length changing from four to 20 for each curve. All
these 	gures give a detailed picture of the impact of changing
integer and fractional word length (the largest coe
cient
value, and, hence, the number of most signi	cant bits needed
for the coe
cients in the linear domain is also a function
of 	lter speci	cation. For a narrow-band low-pass 	lter, one
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Figure 10: Magnitude response of 	nite word length LNS and linear
coe
cients for spec. 3,� = 40.

Table 2: Comparison of 	rst two variable selection schemes.

(a)

Scheme
Branching
direction

Number of nodes

Spec. 1� = 64 Spec. 2� = 42 Spec. 3� = 34
1

L 30704 1410 948

H 11113942 238320 20494

2
L 82336 5990 1088

H 3887918 458974 12342

(b)

Scheme
Branching
direction

Number of nodes

Spec. 4� = 20 Spec. 5� = 34 Spec. 6� = 26
1

L 378 1334 210

H 4256 38650 13352

2
L 365 1940 356

H 3710 37248 17190

would require less number of bits than awide-band 	lter.�is
can be realized by considering Mth band (or Nyquist) 	lters
where a 	lter with band with &/8 rad will have a maximum
coe
cient value of 1/8. However, for simplicity, this aspect
is ignored in the comparisons in this paper).

As shown in Figure 6, the LNS 	lters converge to opti-
mum with both four and 	ve integer bits. However, if the
optimal approximation error is small, approximately less than40 dB, 	lters with three integer bits also converge. Clearly,
the number of fractional bits also has a large impact on
the resulting approximation error. It is also shown that the
linear domain 	nite word length 	lters are always beaten by
an LNS 	lter.

Table 3: Comparison of variable selection schemes 1, 3, and 4 with�(4, 6).
(a)

Scheme
Number of nodes

Spec. 1� = 64 Spec. 2� = 42 Spec. 3� = 34
1 30704 1410 948

3 8986 4814 1010

4 10240 1618 1092

(b)

Scheme
Number of nodes

Spec. 4� = 20 Spec. 5� = 34 Spec. 6� = 26
1 378 1334 210

3 366 1800 290

4 164 3312 258

Table 4: Comparison of variable selection schemes 1, 3, and 4.

Spec. Filter length �(�, �) Scheme Nodes

4 20 �(4, 7)
1 250

3 178

4 96

4 20 �(3, 7)
1 4056864

3 1150

4 84

6 20 �(4, 10)
1 1948

3 2128

4 1982

6 20 �(3, 10)
1 1948

3 2128

4 1982

3 34 �(4, 3)
1 690

3 962

4 1442

3 34 �(3, 3)
1 305490

3 4880

4 4694

1 64 �(4, 6)
1 30704

3 8986

4 10240

Results on comparing against plainly rounding the coe
-
cients are shown in Figure 7. As expected, results obtained by
our proposed optimization method gives a smaller approx-
imation error than obtained by rounding the real valued
coe
cients for the same speci	cation. �is means that it
is possible to reduce the coe
cient word length using
the proposed technique and still meet the speci	cation,
hence, reducing the complexity of the arithmetic operators
as discussed earlier. Also, by using the proposed method,
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Figure 11: Approximation error as a function of logarithm base. ((a), (b)) Spec. 3,�(3, �),�(4, �). ((c), (d)) Spec. 6,�(3, �),�(4, �).� = 34.

monotonic results are obtained; that is, increasing the word
length always improves the performance.

To further compare the performance of LNS against
linear integers, approximation error as a function of 	lter
length is plotted in Figure 8. �e 	gure shows that for the
same number of total bits, LNS gives a better approximation
error. �is improvement increases as the 	lter length is
increased. To strengthen the argument made earlier that
	lters optimized with word length constraints in the LNS
domain give better results than just rounding the linear
relaxation, Figure 9 compares the approximation error of
optimized 	lters with that of direct rounding, as a function of
	lter length.�e plot further establishes the advantage of our
proposed optimization over results obtained by rounding the
real valued coe
cients. In this case, the optimization leads
to that a lower 	lter order can be reduced, and, hence, fewer

arithmetic operators. Again, the proposed design method
leads to monotonically decreasing approximation errors.

Finally, a comparison of the magnitude response of
speci	cation three for a 	lter length of 40 is shown in
Figure 10. �is further shows that LNS gives better results
as compared with linear integers as well as illustrates the
bene	t of actually optimizing to obtain 	nite word length
coe
cients.

4.3. Changing the Base. Earlier works have indicated that the
selection of logarithm base has an impact on the round-o�
noise performance. Hence, several 	lters are designed with
varying bases. In addition, it was earlier shown that the num-
ber of integer bits is limiting the obtainable approximation
error in some cases and changing the base can be seen to
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Figure 12: Approximation error as a function of logarithmic base with di�erent word length. ((a), (b)) Spec. 3,�(3, 4),�(4, 4). ((c), (d)) Spec.6 �(3, 4), �(4, 3).� = 34.

give a similar e�ect as having a noninteger number of integer
bits. For example, using three integer bits and using a base
larger than two will reduce the amplitude of the smallest
representable number (compare to Figure 1).

In Figure 11 the approximation error for speci	cations 3
and 6 are shown using three and four integer bits. As seen,
the above mentioned e�ect is clear; as for the three integer
bit cases, the approximation error decreases when increasing
the base (and increases when decreasing the base). For four
integer bits, the e�ect of the base is not so clear. However, for
short word lengths, it can be seen that there is some impact
of the base.

To further illustrate the e�ect of selecting base the same
	lters were redesigned with a total word length of seven bits,

that is, �(3, 4) and �(4, 3), but with a larger range of base
values. �e results are shown in Figure 12. Here, the same
trend is clear and it is also evident that a base of at least two
should be selected. However, it should be noted that the word

length is rather small and that the same clear e�ect may be
seen for a longer word length.

5. Conclusion

In this paper, a method for designing 	nite word length
linear-phase FIR 	lters in the LNS domain was presented.
Several branch variable selection and branching direction
schemes were suggested and evaluated. �e scheme where
the branching variable was selected based on 	nding the
largest minimum distance from the closest integer variable
and branching in that direction was found to be the best
on average among those suggested. �e resulting 	lters are
optimal in the minimax sense under 	nite word length
conditions.

It was illustrated by examples that three or four integer
bits were the best selection, with three being applicable for
larger approximation errors. As opposed to 	nite word length
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coe
cients in the linear domain, the number of integer
bits in the LNS domain determines the smallest nonzero
coe
cient that can be represented. Using a di�erent and
larger logarithm base than two can reduce the amplitude of
the smallest representable number and slightly improve the
results, especially when using three integer bits.

An interesting topic for further studies is the relation
between coe
cient word length (determining the magnitude
response) and the data word length (determining the round-
o� noise). While these are completely disconnected in the
linear scenario as well [1], the impact is di�erent when LNS
numbers are considered. Assuming that the data word length
is shorter than the coe
cientword length, the least signi	cant
bits of each multiplication will be independent of the data
and vice-versa for the longer data word length.�e impact of
this on an architectural level may be interesting to investigate
further.
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