
Please do not remove this page

Design of formal languages and interfaces:
"formal" does not mean "unreadable".
Spichkova, Maria
https://researchrepository.rmit.edu.au/discovery/delivery/61RMIT_INST:ResearchRepository/12246871290001341?l#13248356880001341

Spichkova. (2014). Design of formal languages and interfaces: “formal” does not mean “unreadable”. In
Emerging Research and Trends in Interactivity and the Human-Computer Interface (pp. 301–313). IGI
Global. https://doi.org/10.4018/978-1-4666-4623-0.ch015

Published Version: https://doi.org/10.4018/978-1-4666-4623-0.ch015

Document Version: Published Version

Downloaded On 2022/08/05 16:46:53 +1000
© 2014 by IGI Global
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

Thank

Citat io

See th

Version

Copyri

Link to

you for do

on:

is record i

n:

ght Statem

o Published

wnloading

in the RMI

m ent : ©

d Version:

 this docum

I T Researc

ment from

ch Reposit

the RMIT R

ory at :

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

Spichkova, M 2014, 'Design of formal languages and interfaces: "formal" does not mean
"unreadable".' in K. Blashki and P. Isaias (ed.) Emerging Research and Trends in
Interactivity and the Human-Computer Interface, IGI Global, Hershey, US, pp. 301-314.

https://researchbank.rmit.edu.au/view/rmit:22854

Published Version

 2014 by IGI Global

http://dx.doi.org/10.4018/978-1-4666-4623-0.ch015

http://researchbank.rmit.edu.au/

Emerging Research and
Trends in Interactivity and
the Human-Computer
Interface

Katherine Blashki
Noroff University College, Norway

Pedro Isaias
Portuguese Open University, Portugal

A volume in the Advances in Human and
Social Aspects of Technology Book Series
(AHSAT) Book Series

Published in the United States of America by

Information Science Reference (an imprint of IGI Global)

701 E. Chocolate Avenue

Hershey PA 17033

Tel: 717-533-8845

Fax: 717-533-8661

E-mail: cust@igi-global.com

Web site: http://www.igi-global.com

Copyright © 2014 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in

any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or

companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data

A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the

authors, but not necessarily of the publisher.

 For electronic access to this publication, please contact: eresources@igi-global.com.

Emerging research and trends in interactivity and the human-computer interface /Katherine Blashki and Pedro Isaias,

editors.

 pages cm

 Includes bibliographical references and index.

 Summary: “This book addresses the main issues of interest within the culture and design of interaction between humans

and computers,exploring the emerging aspects of design, development, and implementation of interfaces”-- Provided by

publisher.

 ISBN 978-1-4666-4623-0 (hardcover) -- ISBN 978-1-4666-4624-7 (ebook) -- ISBN 978-1-4666-4625-4 (print & perpetual

access) 1. Human-computer interaction. 2. Human-computer interaction--Research. I. Blashki, Kathy, 1961- II. Isaias,

Pedro.

 QA76.9.H85E479 2014

 004.01’9--dc23

 2013025032

This book is published in the IGI Global book series Advances in Human and Social Aspects of Technology (AHSAT)

(ISSN: 2328-1316; eISSN: 2328-1324)

Managing Director:

Editorial Director:

Production Manager:

Publishing Systems Analyst:

Development Editor:

Acquisitions Editor:

Typesetter:

Cover Design:

Lindsay Johnston

Myla Merkel

Jennifer Yoder

Adrienne Freeland

Allyson Gard

Kayla Wolfe

Christina Barkanic

Jason Mull

301

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 15

DOI: 10.4018/978-1-4666-4623-0.ch015

Design of Formal Languages
and Interfaces:

“Formal” Does Not Mean “Unreadable”

ABSTRACT

This chapter provides an introduction to a work that aims to apply the achievements of engineering

psychology to the area of formal methods, focusing on the specification phase of a system development

process. Formal methods often assume that only two factors should be satisfied: the method must be

sound and give such a representation, which is concise and beautiful from the mathematical point of

view, without taking into account any question of readability, usability, or tool support. This leads to

the fact that formal methods are treated by most engineers as something that is theoretically important

but practically too hard to understand and to use, where even some small changes of a formal method

can make it more understandable and usable for an average engineer.

INTRODUCTION

There are many definitions of human factors,

however most of them are solely oriented on

human-machine operations in terms of system

and program usability, i.e. on those parts that are

seen by the (end-)user, but not by the requirements,

specification and verification engineers. Neverthe-

less, many problems during the engineering phase

are completely the same as by using the final ver-

sion of a system just because of a simple fact that

many people sometimes forget: engineers, even

those who are working on verification or formal

specification, are humans too and have the same

human abilities and weaknesses as people work-

ing in any other areas, from arts to construction.

Moreover, developing safety-critical systems using

formal methods means much harder constraints

and stress than using a completed version of

software application (e.g., using an entertain-

ment software, typing a personal e-mail using

a smartphone, etc.) because of consequences of

Maria Spichkova
RMIT University, Australia

302

Design of Formal Languages and Interfaces

any mistake: a typo in an e-mail can lead to mis-

understanding which is easy to clear up, where a

specification or verification error by developing of

a safety-critical system, like a fly-by-wire system

for airlines or pre-crash safety functionality for

vehicles, can cost many human lives.

Nowadays, the research of human factors

and of Human Computer Interface (HCI) mostly

concentrates on the development of entertainment

or every-day applications, but it was initiated and

elaborated exactly because of mistakes in usage

and development of safety-critical systems. For

example, one of the widely cited HCI-related

accidents in safety-critical systems are the ac-

cidents involved massive radiation overdoses by

the Therac-25 (a radiation therapy machine used

in curing cancer) that lead to deaths and serious

injuries of patients which received thousand times

the normal dose of radiation (Miller, 1987; Leve-

son & Turner, 1993). The causes of these accidents

were software failures as well as problems with

the system interface.

The Therac-25 was an extension of the two

previous models, the Therac-6 and the Therac-20,

but the upgrade was unsafe: the software was not

correctly updated and adapted to the elaborated

extensions in the system architecture. In this

model, in comparison to the previous ones, the

company tried to mix two system modes, a low-

energy mode and a high-energy mode, together.

In the high-energy mode the filter plate must be

placed between the patients and the X-ray machine,

so that a radiation beam is used in a correct way.

Because of some software failures the high-energy

mode was used in the Therac-25 without the filter

plate. This kind of failures occurred also in the old

models, but it did not lead to overdosed accidents

due to hardware interlocks. In the Therac-25 the

company replaced the hardware interlocks with

software checks, this result in a deathly overdosed

treatment.

The HCI-related problem with this machine

was that the Therac-25 in some cases displayed

system states incorrectly and showed just some

error codes instead of full warning or error mes-

sages, and, moreover, these codes were not even

well documented. As the result, the operator of the

Therac-25 was not able to recognise a dangerous

error situation and continued the treatment even af-

ter the machine showed warning messages, which

did not look like a warning or a signal to stop the

treatment. Together with very little training, this

caused the operators not aware of the importance

of keeping the safety guideline and as a result, they

violated many of the safety guidelines. In some

case, the operators conducted the treatment even

when the video and audio monitoring, which were

the only method to observe the patient in separated

room, were not working. These accidents have

shown that studying the human errors and their

causation should be a significant part of software

and system engineering at least in the case of

safety-critical systems.

An appropriate system interface which allows

a correct human computer interaction is just as

important as correct, errorfree behaviour of the

developed system: even if the system we develop

behaves in an ideal correct way, this does not help

much in the case the system interface is unclear

to the user or is too complicated to be used in a

proper way. According to statistics presented in

(Dhillon, 2004), the human is responsible for 30%

to 60% the total errors which directly or indirectly

lead to the accidents, and in the case of aviation

and traffic accidents, 80% to 90% of the errors

were due to human. Thus, it is necessary to take

human factors into account by developing safety-

critical systems.

The fundamental goal of human factors engi-

neering, as claimed in (Wickens, Hollands 2000),

is to reduce errors, increase productivity and

safety when the human interacts with a system.

Engineering psychology applies psychological

perspective to the problems of system design and

focuses on the information-processing capacities

of humans. The goals of formal methods are almost

the same: to reduce errors, increase productivity

and safety of the developed systems, however,

303

Design of Formal Languages and Interfaces

the formal methods does not focus on the user

of the system and the interface between the user

and the system – they focus on the system itself,

but only in very rare cases they take into account

information-processing capacities of engineers.

In our approach Human Factors of Formal

Methods, HF2M, we focus on human factors in

formal methods used within formal specification

phase of a system development process (Feilkas

et al., 2011; Feilkas et al., 2009): on (formal) re-

quirements specification and on the developing of

a system architecture that builds a bridge between

requirements and the corresponding system.

The main ideas of the approach are language

and framework independent, but for a better

readability and for better understanding of these

ideas we show them based on formal specifica-

tion presented in the Focus (Broy & Stølen,

2001), a framework for formal specifications

and development of interactive systems.1 We can

also see this methodology as an extension of the

approach “Focus on Isabelle” (Spichkova, 2007)

integrated into a seamless development process,

which covers both specification and verification,

starts from informal specification and finishes by

the corresponding verified C code (Hölzl et al.,

2010; Spichkova et al., 2012).

BACKGROUND

There are many applications of formal methods

to analyse human computer interaction and to

construct user interfaces, e.g., (Shackel & Rich-

ardson, 1991; Følstad et al., 2012), as well as a

number of approaches on the integrating human

interface engineering with software engineering,

e.g., (Volpert, 1991; Heumann, 2002; Constantine,

2003), but the field of application of human factors

to the analysis and to the optimization of formal

methods area is still almost unexplored. To our

best knowledge there are no other works on this

field, the nearest area is only the application of

human factors to the development of engineering

tools, however, there are many achievements in

the HCI research that could be applicable within

the formal languages as well as verification and

specification engineering tools, for example,

the ideas of the usage-centered approach for

presentation and interaction design of software

and Web-based applications were introduced in

(Constantine & Lockwood, 1999; Constantine &

Lockwood, 2002).

Speaking of any kind of science and research,

one can say that a lot of new ideas are just well

forgotten old ones, and a lot of newly developed

methodologies are, in fact, the reinvention of the

wheel. Leaving the research results solely in the

area they are introduced, or just forgetting them

does not have any benefit, vice versa, application

of old ideas on a new field brings them to a new

level and gives them new power to improve safety

or, even more general, living standards.

Unfortunately, we should acknowledge that

dealing with formal methods often assumes that

only two factors must be satisfied: the method must

be sound and give such a representation, which is

concise and beautiful just from the mathematical

point of view, without taking into account any

question of readability, usability, or tool support.

This leads to the fact that formal methods are

treated by most engineers as “something that is

theoretically important but practically too hard to

understand and to use”, and, moreover, the term

“formal” is for many people just some kind of

synonym for “unreadable”, however, even small

syntactical changes of a formal method can make

it more understandable and usable for an average

engineer.

Looking on the matter from a different stand-

point, we can see that most of programming

languages have a formal background, even if this

is not mentioned to programmers and engineers

explicitly. For example, the Structured Query Lan-

guage (SQL) is nowadays a standard for managing

data in relational database management systems,

however it is originally based upon relational

algebra and relational calculus – this side of the

304

Design of Formal Languages and Interfaces

programming language is generally unimportant

to the SQL-programmers, being an important

feature for the developers of the language itself.

Using natural languages, e.g., English, to

specify a system we profit by their flexibility and

power, we do not have any special learning efforts,

because we can write the specification directly,

without encoding. These advantages sounds very

attractive, but considering a specification of a

safety-critical system, their all are exceeded by the

disadvantage that a natural language is ambigu-

ous, vague, and imprecise. A formal language,

even if it requires an initial learning effort and

uses a notation unfamiliar to an average engineer,

is unambiguous and precise, and, moreover,

due a predefined syntax and semantics a formal

language is machine processible, i.e. using such

a specification we could do some development

steps (semi-)automatically.

Because of this image of formal methods, some

approaches try to cover the fact they have formal

background and “simulate” the appearances of

informal representation to look user-friendly. In

some cases it implies that the approach becomes

semiformal or introduces extra specification

ambiguity. For example, controlled natural lan-

guages (CNL) try to avoid disadvantages of both

natural and formal languages and being a subset

of a natural language have a well-defined syntax

and semantics (Macias & Pulman,1993; Fuchs &

Schwitter,1995). Their syntax is unambiguous,

but engineers can interpret the semantics of some

sentences in wrong way just because the language

looks like a natural one and this gives a feeling

it can be also used according to all rules of the

natural language, i.e. the restriction can be ignored

through lack of attention which is “provoked”

by the visual similarity to the natural language.

A famous example of the misinterpretation is

the sentence “I see the girl with the telescope”. In

English, this sentence allows not only the interpre-

tation “I see the girl via the telescope” but also the

interpretation “I see the girl which has a telescope”.

Which one should be correct in the case of CNL?

If we want to have an unambiguous syntax, we

should take a choice. E.g., in Attempto Controlled

English (Kuhn, 2010; Fuchs & Schwitter, 2007)

only the first interpretation is allowed, but read-

ing such a specification it is very easy to forget

this rule. Moreover, looking at the specification

in controlled language, an engineer can consider

that he does not need to know any rules, because

he consider he can understand the specification

without spending time on any additional training,

whereas he misunderstand it.

Specifying safety-critical systems, it is not

enough to use controlled languages and semiformal

languages – the precise formal specification is es-

sential to ensure that the safety properties of the

system really hold. Speaking about human factors

according to the safety-critical systems we focus

mostly on technical aspects; this idea, applied to

the formal methods, is often called Engineering

Error Paradigm (Redmill & Rajan, 1997). Hu-

man factors that are targeted by the Engineering

Error Paradigm typically include the design of

HCI as well as the corresponding automatiza-

tion: by this paradigm humans are seen as they

are almost equivalent to software and hardware

components in the sense of operation with data and

other components, but at the same time humans

are seen as “the most unreliable component” of

the total system. This implies also that designing

humans out of the main system actions through

automatization of some system design steps is

considered as a proposal for reducing risk. In

the case of design of safety-critical systems, this

means automatic translation from one representa-

tion kind to another one, e.g., between two formal

languages or between two internal representation

within some tools.

Another important view of the Engineering

Error Paradigm is that human errors often occur

as a result of mismatch in HCI and overestimation

of physical capabilities of a person. With other

words, human performance and reliability need to

be considered in the design process (Klare, 2000);

in our case, we have to focus on clearness – up to

obviousness – and readability of formal specifica-

tions. For these reasons we have to analyse the

305

Design of Formal Languages and Interfaces

achievements of HCI approaches to apply their

ideas on another kind of HCI – interface between

(verification, software) engineer and the applied

formal method or tool. The Individual Error Para-

digm (Redmill & Rajan, 1997) focuses on under-

standing the reasons why people make mistakes

or commit unsafe acts, and then tries to eliminate

those reasons. The same idea should be applied

to analyse the syntax of a formal method: Which

kind of specification mistakes and misreading is

prevailing? How can we prevent them? Can we do

it automatically or, at least, semi-automatically?

HUMAN FACTORS + FORMAL
METHODS = HF2M

One of the common mistakes by writing a system

specification, particularly writing a requirement

specification, is the omission of assumptions about

the system’s environment. The concentration on

the question “What we want our system can do?”

is very natural, but it leads to the point that the

question “Under which constraints the correct

work of the system can be ensured?” is ignored,

however, the answer to this question gives us a

crucial property of the system. To make this kind

of mistake is even easier if we have additional ef-

forts through concentration on a formal syntax,

but it is also even more disappointing in this case,

after devoting much effort in the precise and un-

ambiguous specification. However, the solution

to this problem can be really simple and uses the

same principle as enriching an email client by an

alert like “The attachment keyword is found. Do

you want to add the attachment now or should we

remind you later?”

Specifying a system formally we should have

special alerts that remind us to cover this part of

the system description. In the case of the Focus

specification language this means to restrict all the

specification styles (both textual and graphical)

to the variants using the Assumption/Guarantee

representation, where a component is specified in

terms of an assumption and a guarantee: whenever

input from the environment behaves in accordance

with the assumption, the specified component is

required to fulfil the guarantee. Thus, it will be

impossible to overlook the question about the

necessary properties of the environment, and if

the system does not have any constraints under

which it provides the correct functionality, the

corresponding field of the specification should

be filled out by the constraint “true” representing

the property that the system should work cor-

rectly in any environment. The probability that

an engineer signs this property without checking

the corresponding system constraints is much

smaller than in the case the engineer do not get

any reminder to check these constraints.

As mentioned in our previous work (Spich-

kova, 2007), during requirements specification

phase and the phase of a system architecture

development we need to care about later phases

(modelling, simulation, testing, formal verifica-

tion, implementation) already doing the formal or,

even, semiformal specification of a system – that

is, choosing an appropriate abstraction and mod-

elling technique. A crucial question is here how

we can optimize the formal representation and

formal methods with respect to human factors. In

our approach we focus on the following aspects:

• Representation of the formal specification

in more readable way, optimisation of the

specification layout/formatting.

• Unification of the representation of differ-

ent specification views and artefacts by us-

ing an integrated specification language.

• Automatization of several aspects of the

specification and verification process.

Let discuss these issues in more detail.

Layout/Formatting of a
Formal Specification

The main aspect of HF2M is the representation,

i.e. layout/formatting and visualization including

graphical representation, of formal specification.

306

Design of Formal Languages and Interfaces

The first results of visual optimization of specifi-

cations are presented in (Spichkova, 2011b). That

work covers all specification styles of the Focus

framework – from textual to graphical representa-

tion, also covering on the timing aspects of the

specification. The notion of time takes central

stage for many kinds of safety-critical systems,

especially in the case of embedded real-time ones:

abstracting from the timing aspects we may lose

the core properties of a system we represent, e.g.

the causality property. To help an engineer to

concentrate on the timing properties of the system

to be specified and verified, we introduced so-

called timed state transition diagrams (TSTDs).

Specifying system behaviour by TSTD we can

use three specification styles: classical diagram

(automaton), table and also textual style. Inter alia,

we suggest to simplify the timed specification

in the way to get shorter specifications that are

more readable and clear: specifying a component

we have often such a case where for some time

intervals both conditions hold: local variables are

still unchanged and there is no output. This can

occur, e.g., if at this time interval the component

gets no input or if some preconditions don’t hold.

In classical Focus, as well as in Isabelle/HOL, we

need to specify such cases explicitly otherwise

we get an underspecified component that has no

information how to act in these cases.

In many cases even not very complicated

optimization changes of a specification method

can make it more understandable and usable.

Moreover, taking into account the Individual Error

Paradigm, we can extend specification templates

in order to get not only more readable, but also

more correct specification, e.g. by introducing an

obligatory assumption-part of the specification.

The simplest optimization steps are often

overlooked just because of their obviousness,

and it would be wrong to ignore the possibility

to optimize the language without much effort.

For example, simply adding an enumeration to

the formulas in a large formal specification as

well as extending the specification template by

general rules makes its validation on the level of

specification and discussion with co-operating

experts much easier.

Figure 1 presents an example of this kind of

optimisation. The first (basic) specification lay-

out leads to the situation where even a very short

specification is hardly readable. In the example we

have a specification which guarantee-part consists

of just six properties, where even in middle-size

case studies an average size of the guarantee-part

is at least thirty properties; it is easy to imagine

how unreadable could be a large formal specifica-

tion written using this kind of layout. The second

specification has only tiny modifications in for-

matting vs. the first one, but even adding empty

lines between properties of different kind makes

the guarantee-part of the specification more

readable. In the third specification we number all

properties in the guarantee-part with the aim not

only to improve the readability but also to make

the discussion of the specification more concrete

and free of misunderstandings.

1. Basic specification layout.

2. Specification layout with tiny optimizations.

3. Optimized specification layout.

In the HF2M approach, we see a formal

specification as a ground to the discussion of the

system properties, requirements, and structure,

therefore the specification itself plays here a role

of an interface between engineers of different

disciplines (e.g., software and electrical engineers)

and dealing with requirements, system, software,

architecture, verification and many other aspects

of the development. Thus, applying one of the

basic design rules to a formal specification we get

very similar results as in the case of development

of webpages, interfaces, newspapers, etc. because

of the nature of the problem that we are aiming to

solve: problems in the information representation

are very similar in any area, and the solutions

from one area could be adopted to another one.

307

Design of Formal Languages and Interfaces

Unification of the Representation

Another point, which is seen as obvious if we are

speaking about interfaces and interaction, is the

unification of the representation of any information

we are dealing with (cf. also Figure 2). Specifying

components and system in a formal language is

helpful to have a possibility to change the view on

the system or the kind of its description to cover

several problem areas by a single specification

language: this helps to simplify representation of

different views on a system as well as to switch

between them. However, it does not make any

sense to extend the core of a (formal) language/

framework, because this can decrease readability

of a specification – an overflow of additional in-

formation, which is not really needed to specify a

concrete system on a concrete level, can distract

Figure 1. Comparing different specifications layouts

308

Design of Formal Languages and Interfaces

from the important properties and aspects. Thus,

we need another solution of this problem. Instead

of the reinvention of existing approaches, it is more

sufficient to reuse within the formal methods some

successful ideas from other areas. Analysing the

similar problems within general software engineer-

ing, we can see that one of the effective ways is

an extension of the core framework by a number

of several add-ons covering different application

areas and different functionality. According to

this idea, we made the following “add-ons like”

extension of the Focus formal language:

• Specification of processes and matching to

the representation of components.

• Specification of security-critical systems

with respect to secrecy properties.

Specifying systems in a formal language, we

often need to present not only components but also

processes within the system. Even if the common

practice to describe system parts is to use a compo-

nent view, the representation of system processes

becomes more and more important: nowadays the

process view and the data flow representation are

a typical part of the development of interactive

or reactive systems. Specifying both components

and processes within the same language, without

changing the framework, we not only increase the

readability of a system specification but also can

easier ensure consistency among these different

views on a system: this extension of the language

functionality allows us to have more precise and

at the same time more flexible representation of

the system.

For these reasons we extend the formal lan-

guage Focus by the theory of processes described

in (Leuxner, 2010). A process is understood there

as “an observable activity executed by one or sev-

eral actors, which might be persons, components,

technical systems, or combinations thereof”. Each

process has one entry (activation, start) point and

one exit (end) point. An entry point is a special kind

of input signal/channel that activates the process,

while an exit point is a special kind of output signal/

channel that is used to indicate that the process

is finished. We treat a process as a special kind

of a Focus component having additionally two

channels (one input and one output channel) of a

special kind. These channels represent the entry

and exit points of the process.

Dealing with security-critical systems we have

another question in the foreground: how we can

combine system components that each enforce a

particular security requirement in a way that al-

lows us to predict which properties the combined

system will have (Apostolopoulos et al., 1999).

Formal verification of software systems and es-

Figure 2. Unification of the information representation on the level of languages

309

Design of Formal Languages and Interfaces

pecially reasoning about compositional properties

is a challenge in particular important in the area

of security-critical systems: combining system

components which have a number of security/

secrecy properties, the most important and the

most difficult question is to predict which of

these properties the composed system will have.

For this purpose we introduced in (Spichkova,

2012) a representation methodology for crypto-

based software, such as cryptographic protocols,

and their composition properties. Having such a

formal representation, one can argue about the

protocol properties as well as the composition

properties of different cryptographic protocols in

a methodological way and make a formal proof

of them using a theorem prover.

Using these extensions, on the one hand, we

do not need to switch between languages, the rep-

resentation is unified to make the communication

between different development team easier and

the accurate specifications of different system’s

parts more understandable, on the other hand, if,

for example, the representation of cryptographic

properties is irrelevant for the system we specify

and verify, the engineer do not need to study

the aspects of the formal language related to the

security-critical systems. Extending the formal

language in the add-ons manner we increase

the specifications’ readability without the rapid

increase of learning effort required by the formal

language.

Automatization

Last but not least point in of HF2M is an appropri-

ate automatization of a number of steps within the

specification and verification process, because

the automatization not only saves time but also

excludes (at least partially) the human element

as the most “unreliable” in failure, according

to the Engineering Error Paradigm (Redmill &

Rajan, 1997). As the next step of or research, we

are currently proving all the theoretical ideas of

HF2M practically, using the AutoFocus CASE tool.

AutoFocus is a scientific prototype2 imple-

menting on top of the Eclipse platform3 a mod-

elling language based on a graphical notation.

This prototype uses a restricted version of the

formal semantics of the Focus specification and

modelling language (Schätz, 2004; Schätz &

Huber, 1999; Huber et al., 1996). Specifying a

system in AutoFocus, we obtain an executable

mode, which can be validated by means of the

AutoFocus simulator to get a first impression of

the system under development and possibly find

implementation errors that we introduced during

the transformation of the requirements into an

AutoFocus model.

The following extensions of the AutoFocus

CASE tool are in progress (Spichkova et al., 2013):

the add-ons that allow

• To generate formal Focus specification

from the CASE tool representation.

• To edit in the user-friendly4 way a (gener-

ated) Focus specification represented in

LaTeX.

• To write a specification using the pre-

defined templates.

The Focus generator produces a specification of

the model by representing the formal specification

in LaTeX according to the predefined templates

restricting all specification styles to the Assump-

tion/Guarantee variant to exclude the loss of the

constrains on the system’s environment. Using

this generator we can, on the one hand, get a

readable formal specification developed according

the suggested optimisations, on the other hand,

apply the HCI development methods within the

common application area, development of the

tools, focusing this time on the formal methods

are „hidden“ by the modelling tool.

310

Design of Formal Languages and Interfaces

Even a readable formal specification is hard to

keep up to date if the system model is frequently

changing during the modelling phase of the de-

velopment. This causes the situation where the

system documentation is often outdate and does

not describe the latest version of the system:

system requirements documents and the general

systems description are not updated according to

the system’s or model’s modifications, sometimes

because this update is overseen, sometimes on pur-

pose, because of the timing or costs constraints on

the project. This problem could be also be solved

by using this add-on: we simply generate new

(updated) formal specification from the model.

The current version of the editor inherits the most

of the functions an open source plugin TeXlipse5

(e.g., the syntax check of the specification as well

as syntax highlighting, code folding, etc.), and is

extended by additional features such as

• Focus operators as well as the main

Focus frames: component and function

specification.

• Several specification tables.

• Predefined data types and streams.

• Tool box for the predefined Focus opera-

tors, which allows a quick access to the

most important features of the formal

language.

This add-on is oriented on the features of the

Focus language, but it does not require any special

sophisticated knowledge, and this point leads us to

the next step of our research: how can we represent

the element of formal language in such a way that

the language learning effort is minimized.

FUTURE RESEARCH DIRECTIONS

As mentioned in the previous section, one of the

future research directions is to investigate the

possibilities of formal language optimization in

order not only to increase the readability of the

specification, but also to minimize the learning ef-

fort needed to be fluent using the formal language.

Another interesting direction is the tool-support

of the methodology “Focus on Isabelle” (Spich-

kova, 2007). This methodology allows verifying

properties of the system using the semi-automat-

ical theorem prover Isabelle/HOL. Using “Focus

on Isabelle” we can influence the complexity of

proofs and their reusability already during the

specification phase, because the specification and

verification/validation methodologies are treated

here as a single joint methodology with the main

focus on the specification part. Moreover, using

it we can perform automatic correctness proofs of

syntactic interfaces for specified system compo-

nents. Having an automatic translation of formal

specifications from Focus to Isabelle/HOL we

can apply the methodology not only in theory

but also in practice.

CONCLUSION

In our work “Human Factors of Formal Methods”

we aim to apply the engineering psychology

achievements to the design of formal methods,

focusing on the specification phase of a system

development process. The main ideas discussed

in this chapter are language independent, but for

better readability and for better understanding of

these ideas we show them on the base of formal

specifications presented in the Focus specifica-

tion framework.

According to the Engineering Error Paradigm

we optimize representation of formal specification,

which corresponds to the classical HCI design, as

well as add a corresponding automatization of a

number specification and verification steps of sys-

tem design. This approach demonstrates that even

small changes within a formal method can make it

much more understandable, usable, and also safe.

Moreover, in many cases it is sufficient to reuse

within the formal methods some successful ideas

from other areas where the similar representation

or design problems were already solved.

311

Design of Formal Languages and Interfaces

REFERENCES

Apostolopoulos, G., Peris, V., & Saha, D. (1999).

Transport layer security: How much does it really

cost? In Proceedings of the Conf. on Computer

Communications (IEEE Infocom). IEEE Computer

Society.

Broy, M., & Stølen, K. (2001). Specification

and development of interactive systems: Focus

on streams, interfaces, and refinement. Berlin:

Springer. doi:10.1007/978-1-4613-0091-5.

Constantine, L. (2003). Canonical abstract pro-

totypes for abstract visual and interaction design.

In Proceedings of Interactive Systems: Design,

Specification, and Verification (Vol. 2844). Ber-

lin: Springer. doi:10.1007/978-3-540-39929-2_1.

Constantine, L. L., & Lockwood, L. A. D. (1999).

Software for use: A practical guide to the models

and methods of usage-centered design. Reading,

MA: Addison-Wesley.

Constantine, L. L., & Lockwood, L. A. D. (2002).

Usage-centered engineering for web applications.

In Proceedings of IEEE Software. IEEE.

Dhillon, B. (2004). Engineering usability: Funda-

mentals, applications, human factors, and human

error. American Scientific Publishers.

Feilkas, M., Hölzl, F., Pfaller, C., Rittmann, S.,

Schätz, B., Schwitzer, W., et al. (2011). A refined

top-down methodology for the development of

automotive software systems – The keylessentry

system case study (Technical Report TUM-I1103).

Munich, Germany: TU München.

Feilkas, M., Fleischmann, A., Hölzl, F., Pfaller, C.,

Scheidemann, K., Spichkova, M., & Trachtenherz,

D. (2009). A top-down methodology for the devel-

opment of automotive software (Technical Report

TUM-I0902). Munich, Germany: TU München.

Følstad, A., Law, E., & Hornbæk, K. (2012).

Analysis in practical usability evaluation: A survey

study. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems. ACM.

Fuchs, E. N., & Schwitter, R. (1995). Specifying

logic programs in controlled natural language. In

Proceedings CLNLP 95, ELSNET/COMPULOG-

NET/EAGLES Workshop on Computational Logic

for Natural Language Processing. Edinburgh, UK:

University of Edinburgh.

Fuchs, E. N., & Schwitter, R. (2007). Web-anno-

tations for humans and machines. In Proceedings

of the 4th European Semantic Web Conference

(ESWC 2007), (LNCS). Berlin: Springer.

Heumann, J. (2002). Use cases, usability require-

ments, and user interfaces. In Proceedings of

Object-Oriented Programming, Systems, Lan-

guages, and Applications (OOPSLA 2002). ACM.

Huber, F., Schätz, B., Schmidt, A., & Spies, K.

(1996). AutoFocus - A tool for distributed systems

specification. In Proceedings of of FTRTFT’96,

(LNCS) (Vol. 1135). Berlin: Springer.

Hölzl, F., & Spichkova, M. & Trachtenherz. D.

(2010). Safety-critical system development meth-

odology (Technical Report TUM-I1020). Munich,

Germany: TU München.

Klare, G. R. (2000). Readable computer documen-

tation. ACM Journal of Computer Documentation,

24(3), 148–168. doi:10.1145/344599.344645.

Kuhn, T. (2010). Controlled English for knowl-

edge representation. (PhD Thesis). University of

Zurich, Zurich, Switzerland.

Leuxner, C., Sitou, W., & Spanfelner, B. (2010).

A formal model for work flows. In Proceedings

of the 8th IEEE International Conference on

Software Engineering and Formal Method (pp.

135–144). IEEE.

312

Design of Formal Languages and Interfaces

Leveson, N. G., & Turner, C. S. (1993). An investi-

gation of the therac-25 accidents. IEEE Computer,

26(7), 18–41. doi:10.1109/MC.1993.274940.

Macias, B., & Pulman, S. (1993). Natural language

processing for requirements specifications. In F.

Redmill, & T. Anderson (Eds.), Safety-Critical

Systems, Current Issues, Techniques and Stan-

dards. London: Chapman & Hall.

Miller, E. (1987). The therac-25 experience. In

Proceedings of the Conf. State Radiation Control

Program Directors. IEEE.

Redmill, F., & Rajan, J. (1997). Human factors

in safety-critical systems. London: Butterworth-

Heinemann.

Schätz, B. (2004). Mastering the complexity of

reactive systems: The AUTOFOCUS approach.

In Formal Methods for Embedded Distributed

Systems: How to Master the Complexity (pp.

215–258). Boston: Kluwer Academic Publishers.

doi:10.1007/1-4020-7997-4_7.

Shackel, B., & Richardson, S. J. (1991). Human

factors for informatics usability. Cambridge, UK:

Cambridge University Press.

Spichkova, M. (2007). Specification and seamless

verification of embedded real-time systems: Focus

on isabelle. (PhD Thesis). Munich, Germany: TU

München.

Spichkova, M. (2011). Architecture: Requirements

+ decomposition + refinement. Softwaretechnik-

Trends, 32(4).

Spichkova, M. (2011). Focus on processes (Tech-

nical Report TUM-I1115). Munich, Germany:

TU München.

Spichkova, M. (2012). Component composition:

Formal specification and verification of crypto-

graphic properties (Technical Report TUM-I124).

Munich, Germany: TU München.

Spichkova, M., Hölzl, F., & Trachtenherz, D.

(2012). Verified system development with the

autofocus tool chain. In Proceedings of the 2nd

Workshop on Formal Methods in the Development

of Software (WS-FMDS). WS-FMDS.

Spichkova, M., Zhu, X., & Mou, D. (2013). Do

we really need to write documentation for a

system? CASE tool add-ons: Generator+editor

for a precise documentation. In Proceedings of

the International Conference on Model-Driven

Engineering and Software Development (MOD-

ELSWARD’13). MODELSWARD.

Volpert, W. (1991). Work design for human

development. In C. Floyd et al. (Eds.), Software

Development and Reality Construction. Berlin:

Springer-Verlag.

Wickens, C. D., & Hollands, J. G. (2000). En-

gineering psychology and human performance.

Englewood Cliffs, NJ: Prentice Hall.

ADDITIONAL READING

Abrial, J.-R. (1996). The b-book: Assign-

ing programs to meanings. Cambridge, UK:

Cambridge University Press. doi:10.1017/

CBO9780511624162.

Broy, M. (1991). Towards a formal foundation

of the specification and description language

SDL. Formal Aspects of Computing, 3(1), 21–57.

doi:10.1007/BF01211434.

Broy, M., Fox, J., Hölzl, F., Koss, D., Kuhrmann,

M., Meisinger, M., & Wild, D. (2007). Service-

oriented modeling CoCoME with focus/autofocus.

In The Common Component Modeling Example:

Comparing Software Component Models (LNCS)

(Vol. 5153, pp. 177–206). Berlin: Springer.

doi:10.1007/978-3-540-85289-6_8.

313

Design of Formal Languages and Interfaces

Bauer, V., Broy, M., Irlbeck, M., Leuxner, C.,

Spichkova, M., Dahlweid, M., & Santen, T. (2013).

Survey of modeling and engineering aspects of

self-adapting & self-optimizing systems (Techni-

cal Report TUM-I130307). Munich, Germany:

TU München.

Campetelli, A., Hölzl, F., & Neubeck, P. (2011).

User-friendly model checking integration in

model-based development. In Proceedings of

International Conference on Computer Applica-

tions in Industry and Engineering. IEEE.

Dekker, S. (2006). The field guide to understand-

ing human error (2nd ed.). Lund, Sweden: Lund

University School of Aviation.

Dekker, S. (2011). Drift into failure. London:

Ashgate.

DeMarco, T. (1979). Structured analysis and

system specification. Englewood Cliffs, NJ:

Prentice Hall.

Dhillon, B. S. (2009). Human reliability,

error, and human factors in engineering

maintenance: with reference to aviation and

power generation. Boca Raton, FL: CRC Press.

doi:10.1201/9781439803844.

Dhillon, B. S. (2012). Safety and human error in

engineering systems. Boca Raton, FL: CRC Press.

doi:10.1201/b12534.

Fuchs, N. E., & Schwertel, U. (2003). Reasoning

in attempt to controlled English. In F. Bry, N.

Henze, & J. Maluszynski (Eds.), Principles and

Practice of Semantic Web Reasoning, Interna-

tional Workshop PPSWR (LNCS), (Vol. 2901).

Berlin: Springer.

Kaljurand, K. (2009). Paraphrasing controlled

english texts. In Proceedings of the CEUR Work-

shop. CEUR.

Klein, C., Prehofer, C., & Rumpe, B. (1997).

Feature specification and refinement with state

transition diagrams. In P. Dini (Ed.), Fourth IEEE

Workshop on Feature Interactions in Telecom-

munications Networks and Distributed Systems.

Boca Raton, FL: IOS-Press.

Kuhn, T. Royer, L., Fuchs, N. E., & Schroeder,

M. (2006). Improving text mining with controlled

natural language: A case study for protein inter-

actions. In U. Leser, B. Eckman, & F. Naumann

(Eds.), Proceedings of the 3rd International

Workshop on Data Integration in the Life Sciences

2006 (DILS’06), (LNBI). Berlin: Springer.

Kuhn, T. (2010). Codeco: A grammar notation for

controlled natural language in predictive editors.

In Proceedings CEUR Workshop. CEUR.

Kuhn, T. (2013). A principled approach to gram-

mars for controlled natural languages and predic-

tive editors. Journal of Logic Language and Infor-

mation, 22(1). doi:10.1007/s10849-012-9167-z.

Morgan, C. (1994). Programming from specifica-

tions. Englewood Cliffs, NJ: Prentice Hall.

Mosses, P. D. (1997). CoFI: The common frame-

work initiative for algebraic specification and

development. In M. Bidoit & M. Dauchet (Eds.),

Theory and Practice of Software Development

(TAPSOFT ‘97), 7th International Jiont Confer-

ence CAAP/FASE (LNCS), (Vol. 1214). Berlin:

Springer.

Potter, B., Sinclair, J., & Till, D. (1996). An intro-

duction to formal specification and Z. Englewood

Cliffs, NJ: Prentice Hall.

Ratiu, D. (2009). Intentional meaning of programs.

(PhD Thesis). Munich, Germany: TU München.

314

Design of Formal Languages and Interfaces

Schätz, B., & Giese, H. (2007). Models of re-

active systems: communication, concurrency,

and causality. In H. Giese, G. Karsai, E. Lee, B.

Rumpe, & B. Schätz (Eds.), Proceedings of the

2007 International Dagstuhl conference on Model-

based engineering of embedded real-time systems

(MBEERTS’07). Berlin: Springer.

Schätz, B. (2011). 10 years model-driven - What

did we achieve? In Proceedings of the 2011 Second

Eastern European Regional Conference on the

Engineering of Computer Based Systems (ECBS-

EERC ‘11). IEEE Computer Society.

Schwitter, R. (1998). Kontrolliertes Englisch für

anforderungsspezifikationen. (PhD thesis). Uni-

versity of Zurich, Zurich, Switzerland.

Spichkova, M. (2012). Towards focus on time. In

Proceedings of the 12th International Workshop

on Automated Verification of Critical Systems

(AVoCS’12). AVoCS.

Spichkova, M. (Ed.). (2012). Seminar: Human

factors in software engineering (Technical Report

TUM-I1216). Munich, Germany: TU München.

Spivey, M. (1988). Understanding Z: A specifi-

cation language and its formal semantics. Cam-

bridge, UK: Cambridge University Press.

KEY TERMS AND DEFINITIONS

Controlled Natural Language (CNL): A sub-

sets of a natural language, obtained by restricting

its grammar and vocabulary in order to eliminate

(or, at least, to reduce) ambiguity and complexity

of the specification written in this language.

Engineering Error Paradigm: A particular

kind of Human Error Paradigms, which focuses

on the technical aspect of the system and interact

between the human factor and the system. This

paradigm sees the human factor as one part of

the system.

Focus on Isabelle: A specification and

verification framework, which is the result of the

coupling of the formal specification framework

Focus in the generic theorem prover Isabelle/HOL.

Formal Method: A particular kind of tech-

niques (based on logic and mathematics) for the

specification, development and verification of

software and hardware systems.

Human Computer Interface (HCI): An

interface between a user and a (software and/or

hardware) system.

Readability: The ease in which text can be

read and understood without ambiguity and mis-

interpretation.

Safety-Critical System: A system which fail-

ure could result in loss of human life or damage

to the environment or valuable objects.

Specification: A system’s description repre-

senting the set of requirements to be satisfied by

the system.

ENDNOTES

1 See http://focus.in.tum.de.
2 http://af3.fortiss.org
3 http://www.eclipse.org
4 A “user” means here a “software engineer”.
5 http://texlipse.sourceforge.net

	Spichkova, M -n2006042851.pdf
	Iyer-Raniga, Usha- n2006046404- A greenhouse gas.pdf
	Abstract
	Introduction
	Method
	Unit of assessment and system boundary
	Inventory
	Impact assessment

	Results
	Discussion
	Limitations
	Exclusion of travel
	Partition methodology
	Stadium life time and attendance
	Exclusion of upstream construction processes

	Conclusion
	Acknowledgement
	Funding
	References

