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Abstract—Reed-Solomon erasure codes (RS-EC) are widely 
used in packet communication and storage systems to recover 
erasures. When the RS-EC decoder is implemented on a Field 
Programmable Gate Array (FPGA) in a space platform, it will 
suffer Single Event Upsets (SEUs) that can cause failures. In this 
paper, the reliability of an RS-EC decoder implemented on an 
FPGA when there are errors in the user memory is firstly studied. 
Then a fault detection and localization scheme is proposed based 
on partial re-encoding for the faults in user memory of the RS 
decoder. Furthermore, check bits are added in the generator 
matrix to improve the fault location performance. Theoretical 
analysis shows that the scheme could detect most faults with small 
missing and false detection probability. Experimental results on a 
case study show that more than 90% faults on user memory could 
be tolerated by the decoder, and the all other faults can be detected 
by the fault detection scheme when the number of erasures is less 
than the correction capability of the code. Although false alarms 
exist (with probability smaller than 4%), they can be used to avoid 
faults accumulation. Finally, the fault location scheme could 
accurately locate all the faults. The theoretical estimates are very 
close to the experiment results, which verifies the correctness of 
the analysis done. 

Index Terms—Reed Solomon decoder, Single Event Upsets 
(SEUs), FPGA, reliability, fault detection and location 

I. INTRODUCTION

EED-Solomon (RS) codes are efficient error correction
codes that are widely used in communications and storage
systems [1],[2],[3]. For applications on which some data 

blocks are lost and their positions are known, a variant known 
as RS Erasure Codes (RS-EC), can be used for data recovery 
[2],[4]. For example, in IP based communication networks, a 
message is packed into a sequence of packets and transmitted 
through the network, and some of them may not arrive at the 
destination due to network congestion. In this case, an RS-EC 
code could be used to introduce redundant packets at the 
transmitter and recover the lost packets at the receiver based on 
the constraints among received packets [5],[6]. For large scale 
storage system, data is distributed in multiple storage units 
(disks or servers), and a RS-EC code is usually used to 
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introduce redundant data segments. When some of the storage 
units fail, the constraints among the available units could be 
used to recover the original data [7],[8],[9],[10].  

In recent years, space based Internet has become a hot topic 
due to its seamless global coverage and strong robustness to 
failures of terrestrial infrastructures [11],[12],[13],[14]. In 
space based Internet, data would be transmitted as IP packets 
and large amounts of data will be stored on the satellite platform 
[13],[14], so RS-EC could be widely used for reliable data 
transmission and storage. But differently from the application 
on terrestrial systems, cosmic radiation may cause the failure of 
the on-board digital electronic systems [15],[16], so the 
reliability of the RS encoder and decoder becomes an important 
problem, especially for the decoder whose complexity is much 
higher than the encoder. On the other hand, SRAM based 
FPGAs (SRAM-FPGAs) are a popular option for on-board 
digital processing due to their rich logic resources and good re-
configurability [17],[18]. However, SRAM-FPGAs are more 
sensitive to cosmic radiation, and Single Event Upsets (SEUs) 
are the most frequent events [18],[19]. SRAM-FPGAs can 
suffer two types of SEUs: errors on the configuration memory 
and errors on the user memory. The errors on the configuration 
memory may change the design and they are permanent unless 
the FPGA is reconfigured [19]. For user memory, e.g. registers 
and BRAMs, the SEU may modify the parameters and 
intermediate variables and corrupt the results. Therefore, if RS 
codes are implemented in an SRAM-FPGA on a space platform, 
the reliability of the decoder would be an important issue [20], 
and the protection of RS decoders against errors induced by 
SEUs becomes important.  

There are several works on the protection of the decoder for 
RS error correcting codes against SEUs. In [21], the traditional 
triple redundancy modular (TMR) method is applied to protect 
the flip-flops and the clock and reset signaling in the encoder 
and decoder. The authors in [22] proposed to detect faults in the 
RS decoder by checking whether the output is a valid codeword. 
Instead, the work presented in [23] discussed the same self-
checking property of RS decoder, and proposed to reduce the 
complexity of the fault detection logic with a small loss of the 
fault tolerance capability. However, as far as the authors know, 
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there is no research aiming at the SEU detection and 
localization for the decoder of RS-EC.  

In this paper, an efficient fault detection and localization 
scheme is proposed to detect the faults induced by SEUs and to 
locate their position in the user memory of the RS-EC decoder. 
The SEU detection and location information could be used by 
the fault management logic of the system for efficient recovery. 

The rest of the paper is organized as follows. In Section II, 
the principle of RS-EC encoder and decoder is introduced. In 
Section III, the reliability of the user memory in the RS-EC 
decoder to SEUs is analyzed theoretically and is verified by 
hardware based fault injection experiments. In Section IV, a 
scheme for fault detection and localization in the RS-EC 
decoder is proposed, and the evaluation is conducted in Section 
V. Finally, the paper is concluded in Section VI.

II. OVERVIEW OF AN RS ERASURE DECODER

In this section, a brief overview of the RS-EC encoder and 
decoder is provided, and then the matrix inversion in RS-EC 
decoder is briefly described. 

A. Encoder and Decoder for RS-EC
An (k, m) RS-EC is composed of k data symbols (𝒅 = [d1,

d2, …, dk]T) and m parity symbols (p = [p1, p2, …, pm]T). Each 
symbol is expressed as a w-bit word, and the combination of the 
k+m symbols is defined as a codeword c = [dT pT]T on the Galois 
Field GF(2w). Any combination of k symbols (data or parity) 
could be used to recover the original k data symbols [5]. In other 
words, the maximum number of erasures is m. 

In the encoder, the m parity symbols of RS-EC can be 
generated from k data symbols by matrix multiplication over 
GF(2w) [4] as follows: 

= ×p G d (1) 
where G is an m×k generator matrix defined over GF(2w), and 
is commonly constructed in the form of a Vandermonde matrix 
[24] as shown in the next equation.
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The decoder of an (k, m) RS-EC could recover data symbols 
as follows. For the case that e data symbols are erased (e ≤ m), 
we can construct an e×1 vector pe of e available parity symbols, 
a k×1 vector de of the available data symbols and 0s on the 
positions of erasures, an e×k matrix G’ with e rows from G 
corresponding to the e available parity symbols in pe, and an 
e×e matrix G” with e columns of G’ corresponding to the e 
erased data symbols. Then the vector of erased data symbols dr 
could be recovered according to equations (3) and (4) as 
explained in [6], and the process is shown in Fig. 1 for an (3, 3) 
RS-EC. 

= − ×I e ep p G' d (3) 
-1= ( ) ×r Id G" p (4) 

Since the code is defined over Galois Field GF(2w), the 
operation of addition (or subtraction) between elements is 
actually performed as XOR, and the multiplication (or division) 
operation is performed based on a logarithmic table (gflog) and 

an inverse logarithmic table (gfilog) on GF(2w) as explained in 
[8] and shown in the next equation.
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Fig.1. RS-EC decoding procedure (example for an (3,3) RS-EC) 

B. Matrix Inversion based on LU Decompostion
The main complexity of the RS-EC decoder comes from the

matrix inversion of G” in equation (4). In practice, LU 
decomposition is a commonly used method for matrix inversion 
[26]. As shown in equation (6), a nonsingular n×n square matrix 
A could be decomposed by LU decomposition into the form of 
A=L×U, where L is a unit lower triangular matrix and U is an 
upper triangular matrix  [27].  
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The elements in matrix L and U could be calculated as [27],[28]: 
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(7) 

Then the elements of U-1 can be obtained as [29]: 

1

1  ( 1,2, , );
1  ( 1, 2, 1; 1, , ).

ii ii

j
ij ik kjk i

ii

v u i n

v u v i n n j i n
u = +

= =



= − = − − = +



(8) 

Following the same procedure, we can get the inverse of LT (the 
transposed matrix of L), and then obtain L-1 according to: 

-1 1(( ) )T T−=L L (9) 
Finally, the inverse matrix of A can be calculated as: 

-1 -1 -1= ×A U L (10)
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III. RELIABILITY OF THE UNPROTECTED RS-EC DECODER
TO SEUS ON USER MEMORY 

In this section, a general FPGA implementation of an RS-
EC decoder is described and the reliability on each part of the 
user memory of the decoder is analyzed theoretically and 
evaluated by fault injection experiments. 

A. A general FPGA Implementation of RS-EC Decoder
A simplified decoder for the (k,m) RS-EC was implemented

using Verilog and mapped on a Xilinx Zynq 7000 SoC (xc7z 
030ffg676-1). The LU decomposition-based matrix inversion is 
applied for equation (4). As shown in Table I, the user 
memories of the RS-EC decoder include all the matrices and 
vectors for equations (2), (3) ~ (4) and (6) ~ (9), and are stored 
in Block RAMs and registers. An additional vector ped is used 
to hold the positions for the erased data symbols. The value of 
k, m and w could be set in the top module, and the space for all 
matrices and vectors is pre-allocated for the worst case of m 
erasures. From the table, the total user memory for the (k,m) 
RS-EC decoder includes N = k+4m+2mk+2(2w-1)+8m2 words 
over GF(2w), which corresponds to Nb = wN bits. Among all the 
memories, the generator matrix G, logarithmic table (gflog) and 
inverse logarithmic table (gfilog) are static and correspond to w 
(mk+2(2w-1)) bits, and others corresponding to w(k+4m+mk+ 
8m2) bits would be recalculated and refreshed for each decoding. 

TABLE I. USER MEMORY OF THE RS DECODER 
User Memory (x) Size (Sx) Notes 

G m×k Generator matrix 
Gflog 2w-1 Logarithm table 
Gfilog 2w-1 Inverse logarithm table 

ped m×1 Positions of erased data symbols 
de k×1 Data symbols with 0s for erased 
G’ m×k Subset of G 
pe m×1 Available parity symbols 
pI m×1 Intermediate vector 

G’’ m×m Subset of G’ 
(G’’)-1 m×m Inverse matrix of G’’ 

dr m×1 Recovered data symbols 

Matrix 
inversion 
based on 

LU 
decomposition 

L m×m Unit lower triangular matrix 
U m×m Upper triangular matrix 
LT m×m Transposed matrix of L 

(LT)-1 m×m Inverse matrix of LT 
L-1 m×m Inverse matrix of L 
U-1 m×m Inverse matrix of U 

B. Reliability Analysis of the User Memory of RS-EC decoder
In this paper, the reliability of RS-EC decoder against SEUs

on the user memory is evaluated by the SEU tolerance rate, 
which is the probability that a SEU on a bit would not change 
the decoding results for different inputs. The evaluation is 
performed for the case that the erased data symbols could be 
recovered correctly, so following two cases are not considered: 
1) no data symbols are erased (decoding is not needed); 2) the
number of erased symbols is larger than m. Defining the number
of erased symbols as E (1≤E≤m), including e data symbols and
ep parity symbols (E = e + ep), the reliability of each part of user
memory to SEUs is analyzed in the following.
(1) Analysis for SEUs on the generator matrix G

For e erased data symbols, e rows in the generator matrix G
will be selected to construct G’. Therefore, if a word in one of 

these e rows is corrupted by SEU, the decoding results would 
be wrong, and SEUs on other rows would not affect the results. 
Since the probability for e data symbols among E erasures is: 

( , )
pee

k m
E

k m m
E

C CP E e
C C+

=
−

(11) 

the SEU tolerance rate for the case of e erased data symbols 
could be expressed as: 

( ) ( ), ,t
m eP E e P E e

m
−

= (12) 

Then the average tolerance rate for SEUs on G for E erased 
symbols could be calculated as: 

( )
1

) ,( t

E
G

t
e

P E eP E
=
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The effect of SEUs on variables G’, pe, pI, dr and ped could 
be analyzed in the same way, and the corresponding average 
SEU tolerance rate can also be calculated based on formula (13). 
It should be noted that the estimated SEU tolerance rate is for 
the effective period of these matrix or vector, that is between 
the moment the matrix or vector is refreshed and the moment 
they have been used for decoding of the current input. Any SEU 
out of the effective period will not cause decoding errors. 
(2) Analysis for SEUs on logarithm table gflog

The reliability of the logarithm table gflog and the inverse
logarithm table gfilog depends on the number of different words 
that are used during the RS decoding process. Table gflog is 
used for the operands of the multiplication and division 
operation in equations (3) and (4) and the matrix inversion 
(G’’)-1 based on equations (7) and (8). The number of different 
operands for each of these equations is analyzed as follows.  

In equation (3), gflog is used for G’×de. For the case that e 
data symbols are erased, the number of non-zero symbols in de 
is Nd = k-e. As for the m×k matrix G’, e×k non-zero elements 
are used during the matrix multiplication, but only part of them 
need to be looked up in gflog because the first row and first 
column of G are all 1s. In this case, the number of elements in 
G’ that need to be looked up in gflog is related to the rows of G 
that are selected to form G’, and is mainly determined by 
whether the first data symbol (d1) and the first parity symbol (p1) 
is erased. There are four cases regarding whether d1 or p1 is 
erased. In Table II, the 3rd column lists the probability for each 
case (p), and the corresponding number of elements in G’ that 
need to be looked up from gflog (n) are listed in 4th column. 
Finally, the expected number of elements in gflog that would be 
used for G’ could be calculated as  

4
' 1
( , ) ( , )G i ii

N E e p E e n
=

= (14) 

TABLE II. SOME NUMBERS FOR ANALYSIS OF GFLOG AND GFILOG 
Idx 

i d1/p1 
Probability 

pi(E, e) 
Elements in (3) 

n 
Repeats (gflog) 

rlog 
Repeats (gfilog) 

rilog 

1 √ √ 1 1
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p
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ee
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C C
C C
− − (e-1)*(k-e-1)+1 3e-2 (5e2-3e+2)/2 
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p

ee
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ee
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−

− − e*(k-e-1)+1 e-1 0 

4 ×  × 
11
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ee
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C C
C C
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For equation (4), e elements in pI (Np = e) and e2 elements 
in (G”)-1 (NinvG’’ = e2) need to be looked up from gflog. For the 
matrix inversion (G”)-1, gflog is used for each element in matrix 
G”, L, U, L-1, and U-1. The number of gflog look-ups for each 
of these matrices is analyzed as follows.  
(a) The first row and first column of G” are used for

multiplication and division operations, so NG’’ = 2e-1
gflog look-ups are required.

(b) Matrix L has e(e+1)/2 non-zero elements. Except the 1s
on the diagonal, the number of elements that need to be
looked up from gflog is NL = e(e+1)/2-e = e(e-1)/2.

(c) Matrix U has e(e+1)/2 non-zero elements. Since the first row
is same to that of G’’, the number of elements that need to
be looked up from gflog is NU =e(e+1)/2-e = e(e-1)/2.

(d) Matrix L-1 has e(e+1)/2 non-zero elements, and the ones on
the diagonal are 1s, so the number of elements that need to
be looked up from gflog is NinvL = e(e+1)/2-e = e(e-1)/2.

(e) Matrix U-1 has e(e+1)/2 non-zero elements and is used to
multiply L-1 for (G”)-1. Since the e-th column of (G”)-1 is the
same as that of U-1 because the diagonal elements of L-1 are
1s, the number of gflog look-ups for this part should be NinvU
= e(e+1)/2-e = e(e-1)/2.
As a result, the total number of gflog look-ups during the

calculation of (G’’)-1 is Ninv = NG’’ + NL + NU + NinvL + NinvU = 
2e2-1. But some elements are counted several times, and the 
number is related to whether the first data symbol (d1) and the 
first parity symbol (p1) is erased. The numbers of repeats for the 
four possible combinations are listed in the 5th column of Table 
II (rlog), and the final number of gflog look-ups for the 
calculation of (G’’)-1 could be amended as:  

( ) ( )( )
4 log

1
, ,inv i inv ii

N E e p E e N r
=

 = − (15) 

In summary, the total number of different gflog look-ups 
during the decoding process with E erased symbols and e data 
erasures could be estimated as:  

( ) ( ) ( )log , , ,G invG invd pN E e N N E e N N N E e 
= ++ + + , (16) 

which is also the number of elements that SEUs on them would 
cause decoding errors. Since there are 2w-1 elements in gflog, 
the average SEU tolerance rate of gflog for E erased symbols 
can be estimated as:  

llog

1

og2 1
( ) ( ,

,
2 1

)
( )E

t
e

w

w

N E
P E P E

e
e

=

−

−
=

−
 .    (17) 

(3) Analysis for SEUs on inverse logarithm table gfilog
Table gfilog is used on the results for multiplication and

division operations in equations (3) and (4) and those used 
during the matrix inversion (G’’)-1. The number of gfilog look-
ups for each procedure is analyzed as follows. 

In equation (3), the vector de includes k-e non-zero elements 
for e data erasures, so e(k-e) multiplications are involved in 
G’×de, which is also the number of gfilog look-ups (N3 = e(k-
e)). Similarly, the produce of (G’’)-1 (with e2 non-zero elements) 
and pI (with e non-zero elements) requires e2 table look-ups 
from gfilog for equation (4) (N4= e2). 

To get the matrix inversion (G’’)-1, gfilog table is used for 
each element in matrix L, U, L-1, U-1 and (G’’)-1. According to 
formulas (7) and (8), the number of gfilog look-ups for each 
matrix is calculated as follows: 
(a) According to formula (7), the generation of the first column

of matrix L requires e-1 divisions. For another column c

(2≤c≤e-1), c-1 multiplications and 1 division are required. 
So the number of gfilog look-ups for matrix L can be 
expressed as: 

1

7
2

1 ( )
e

L
c

N e c e c
−

=

−− +=  (18) 

(b) According to formula (7), the elements of first row of matrix
U do not need to be calculated. For other columns, r-1
multiplications are required for e+1-r elements in the r-th
row (2≤r≤e). So the number of gfilog look-ups for matrix U
can be expressed as:

7
2
( 1)( 1 )

e

U
r

N r e r
=

= − + − (19) 

(c) According to formula (8), the diagonal elements of U-1 need
e divisions. For other elements, the one in the r-th row and
the c-th column (1≤r≤e-1, r+1≤c≤e) requires c-r
multiplications and 1 division. So, the number of gfilog
look-ups for matrix U-1 can be expressed as:

1

8
1 1

( 1)
e e

invU
r c r

N e c r
−

= = +

= + − + (20) 

(d) The calculation of L-1 is similar as that of U-1 except that the
diagonal elements are 1s, So the number of gfilog look-ups
for matrix L-1 is N8invL =N8invU – e.

(e) Both U-1 and L-1 are triangular matrices, so the number of
non-zero multiplications during U-1×L-1 is:

1 1

1(1 2 ( ) ) ( )
2

e e

iUiL
r r

rN r e r r e r
= =

−
= + + + + − = +  (21) 

As a result, the total gfilog look-ups during matrix inversion 
(G’’)-1 is Minv = N7L + N7U + N8invL + N8invU + NiUiL. Like that for 
gflog look-ups, the number of different gfilog look-ups needs to 
be amended according to whether the first data symbol and the 
first parity symbol is erased. The decrements for the four cases 
are listed in the last column of Table II (rilog), and the amended 
number of gfilog look-ups for (G’’)-1 is: 

( ) ( )( )
4 ilog

1
, ,inv i inv ii

M E e p E e M r
=

 = − (22) 

In summary, the total number of different gfilog look-ups 
during the decoding process with E erased symbols and e data 
erasures could be estimated as:  

( ) ( )3 4ilog , ,invN E e N N EM e+ += (23) 

Since there are 2w-1 elements in gfilog, the average SEU 
tolerance rate of gfilog for E erasures can be estimated as: 

ilog

1

ilog2 1 (
( ) ),(

, )
2 1

w

w

E

t
e

N E
P E P

e
E e

=

=
− −

−
 (24) 

(4) Analysis for SEUs on vector de

The vector de is the basis for recovery of the erased data
symbols. So SEU on any element in de will change the decoding 
results, and the SEU tolerance rate for de is 𝑃𝑡

𝑑𝑒= 0.
(5) Analysis for SEUs on matrix G” and (G”)-1

For e data erasures, both G” and (G”)-1 includes e2 non-zero
elements, and SEUs on other elements would not cause 
decoding errors. So, the average SEU tolerance rate for G” and 
(G”)-1 during their effective period could be estimated as:  

( ) ( )
2 2

'' ''
2

1
( , )

E
G invG

t t
e

m eP E P E P E e
m=

−
= =     (25) 

(6) Analysis for SEUs on intermediate matrices for (G”)-1
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There are 6 blocks of memories involved during the LU-
decomposition based matrix inversion (G”)-1, corresponding to 
matrix L, U, LT, L-1, U-1 and (LT)-1, respectively.  

For e data erasures, e2 non-zero elements in (G”)-1 need to 
be calculated, so the number of useful elements in L, U and LT 
are all e•(e+1)/2. SEUs on other elements would not cause 
decoding errors because they can be corrected during the 
triangular matrix inversion. Therefore, for a total of E erasures, 
the average SEU tolerance rate for these three matrices during 
their effective period can be expressed as:  

2

1
2 (( 1 2 )) ,

T
E

L U L
t t t

e

m e eP P P P E e
m=

−
=

+
= = (26) 

For triangular inverse matrices L-1, U-1 and (LT)-1, they all 
have e2 useful elements, so SEUs on other m2-e2 memory words 
would not cause decoding errors. Therefore, for a total of E 
erasures, the average SEU tolerance rate for these inversion 
matrices during their effective period can be expressed as:  

2 2

2
1

( , )
T

E
invL invU invL

t t t
e

P P P P E em e
m=

−
= = = (27) 

(7) Total average SEU tolerance rate
Based on above analysis, the total average tolerance rate for

SEUs on all the memories of the RS-EC decoder during the 
whole decoding period could be estimated as 

( ) ( )( )
1 1 1T x

t x x t
x

P E S q P
N

= − − (28) 

in which x denotes one part of the user memories listed in Table 
I, and Sx, 𝑃𝑡

𝑥  and qx denote the number of words, SEUs
tolerance rate during the effective period and the portion of the 
effective period over the whole decoding time, respectively. 

C. Fault Injection Experiment Results
To verify the theoretical analysis, fault injection experiments

were conducted on the decoder for an (6, 3) RS-EC over GF(28) 
(k = 6, m = 3, w = 8). In this case, the size of gflog and gfilog 
are both 255, and the total number of memory words (N) is 636 
according to the analysis in Section III.A. The fault injection 
platform and the test procedure will be introduced in detail in 
Section V.B. For each part of user memory, SEU injection is 
conducted separately for the case of 1, 2 or 3 erasures (E = 1, 2 
or 3). For each case, random inputs are generated for the 
encoder, and the erasure positions are randomly selected. For 
the SEU on a memory bit in each cycle, 100 runs of the 
decoding are performed for 100 different inputs to average the 
SEU fault tolerance rate. So for the memory x with Sx words, 
the total number of SEU injections is 𝑁𝐼

𝑥 = 3×100×Sx×8×Td,
where Td is the total decoding time in cycles and is different for 
different erasure cases. Then the SEU tolerance rate for 
memory x with E erasures is measured as 𝑂𝑡

𝑥(𝐸) = 𝑁𝑡
𝑥(𝐸)/𝑁𝐼

𝑥,
where 𝑁𝑡

𝑥(𝐸) is the number of injections on memory x that do
not change the decoding results. The experiment results of SEU 
tolerance rate for different number of erasures are listed in 
Table III, in which the total SEU tolerance rate in the last row 
is the weighted average over all memories as 1

𝑁
∑ 𝑆𝑥𝑂𝑡

𝑥(𝐸)𝑥 .
The theoretical estimations are also provided for comparison 
based on equation (28), in which the effective portion for 
memory x (qx) is measured based on the implementation and 
listed in Table IV. 

TABLE III. THEORETICAL AND EXPERIMENTAL SEU TOLERANCE RATES FOR 
USER MEMORY IN RS DECODER 

E 
Mem x 

1 2 3 
Theory Expe Theory Expe Theory Expe 

G 93.96% 93.96% 91.36% 91.40% 88.48% 88.45% 
gflog 97.08% 97.44% 95.25% 96.04% 92.70% 93.40% 
gfilog 97.82% 97.92% 96.24% 96.69% 92.84% 93.83% 

ped 97.11% 97.11% 95.09% 95.08% 91.90% 91.81% 
de 8.66% 9.04% 8.22% 8.57% 7.54% 7.66% 
G’ 98.95% 98.95% 96.39% 96.39% 91.90% 91.92% 
pe 93.96% 93.96% 89.35% 89.18% 82.86% 82.84% 
pI 78.74% 78.74% 68.50% 68.54% 54.70% 53.73% 

G’’ 92.83% 92.83% 82.74% 82.75% 65.68% 65.36% 
(G’’)-1 98.95% 98.95% 97.64% 97.70% 95.84% 95.83% 

dr 97.38% 97.38% 96.38% 96.44% 95.37% 95.30% 
L 98.51% 98.51% 97.10% 97.09% 94.82% 94.79% 
U 94.31% 94.31% 89.23% 89.22% 80.99% 80.66% 
LT 94.23% 94.23% 89.00% 88.97% 80.65% 80.49% 

(LT)-1 97.03% 97.03% 92.91% 92.97% 86.00% 85.97% 
L-1 96.15% 96.15% 90.95% 91.15% 82.52% 82.42% 
U-1 95.98% 95.98% 90.55% 90.38% 81.97% 82.25% 

Total 96.29% 96.47% 94.15% 94.65% 90.56% 91.22% 

TABLE IV. EFFECTIVE PORTION FOR USER MEMORY OF RS(6,3) DECODER 
E 

Mem x 1 2 3 

G 18.11% 17.82% 17.08% 
gflog 92.91% 93.27% 93.83% 
gfilog 92.91% 93.27% 93.83% 

ped 8.66% 10.13% 12.00% 
de 91.34% 91.78% 92.46% 
G’ 3.15% 7.44% 12.00% 
pe 18.11% 21.96% 25.41% 
pI 63.78% 64.98% 67.14% 

G’’ 64.57% 65.73% 67.83% 
(G’’)-1 9.45% 8.97% 8.23% 

dr 7.87% 7.47% 6.86% 
L 13.39% 13.66% 14.16% 
U 51.18% 50.80% 52.01% 
LT 51.97% 51.87% 52.94% 

(LT)-1 26.77% 27.00% 27.67% 
L-1 34.65% 34.48% 34.54% 
U-1 36.22% 35.97% 35.63% 

From Table III we can see that the theoretical estimations 
match the experimental results very well, and two important 
conclusions are revealed. First, the total SEU tolerance is higher 
than 90%, which means most of the SEUs on user memories 
could be tolerated by the RS-EC decoder itself. The main 
contribution to the overall high reliability comes from the 
logarithm table and the inverse logarithm table. These two 
tables account 80% of all the memories and are effective during 
over 90% of the decoding time. However, only very small 
portion of the elements in the tables are used for each decoding. 
Second, the reliability of the RS-EC decoder decreases when 
the number of erasures increases. This is reasonable because 
when the number of erasures increases, more elements in the 
two tables and the pre-assigned memory for the matrices and 
vectors would be effective, so the SEUs have higher probability 
to change the decoding results.  
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IV. DETECTION AND LOCALIZATION  OF SEUS ON USER
MEMORIES IN RS-EC DECODER 

This section describes the scheme proposed to detect and locate 
SEUs on the user memory. Detection is done by checking the 
consistency of the parity symbols by partial re-encoding and 
subsequently location is achieved by re-decoding. Finally, 
parity check bits are used to protect the generator matrix.   

A. Basic Fault Detection and Location Scheme
(1) Fault Detection based on Partial Re-encoding

Since the complexity of RS-EC encoder is much lower than
that of the decoder, we proposed to embed a partial RS-EC 
encoder in the decoder to detect the SEUs on the user memories. 
For the case that mr parity symbols 𝒑𝒓  are received at the
decoder (mr= m-ep), we only generate mr new parity symbols 
corresponding to the received parity symbols by 𝒑𝒓

′ = 𝑮𝒑 × 𝒅′,
where 𝒅′is the 𝑘 ×1 data symbol vector including the received
and recovered ones, and 𝑮𝒑 is a mr×k matrix formed by the
mr rows of G corresponding to the mr received parity symbols. 
Then the newly generated parity symbols 𝒑𝒓

′  are compared 
with the received ones 𝒑𝒓. If all the parity symbols are the same,
the RS-EC decoder is considered as fault-free. Otherwise, there 
should be an SEU on the user memory. The partial encoding 
uses the same user memory for generator matrix and gflog/ 
gfilog tables in the decoder. Initial analysis shows that this 
scheme is effective for detection of most SEUs on gflog/gfilog 
tables and all SEUs on the intermediate variables listed in Table 
I, but SEUs on the generator matrix and some SEUs on 
gflog/gfilog tables may cause missing detection or false alarm. 
For the former, when the corrupted element in the generator 
matrix or gflog/gfilog tables causes wrong recovered data 
symbols, it is possible to get the same parity symbol with the 
same wrong data symbols and corrupted elements in gflog or 
gfilog tables. The latter event mainly happens when a corrupted 
element in the generator matrix or gflog/gfilog tables is not used 
during decoding but used during re-encoding. In addition, the 
SEUs on 𝒑𝒓

′  may also cause false alarm.  
(2) Fault Location based on Re-decoding

As we introduced in Section III.A, among all the user
memories, the generator matrix G, logarithmic table gflog and 
inverse logarithmic table gfilog are static, and all other matrices 
and vectors would be refreshed for a new decoding. So, when a 
fault is reported by the detection scheme, we propose to repeat 
the decoding and compare the outputs with those of the first 
decoding. If the two outputs are different, we can confirm that 
SEUs happen on the intermediate memories during the first 
decoding. In this case, the outputs of the second decoding 
should be correct, and no repairing is needed. If the two outputs 
are the same, the fault should come from the static part of the 
memories. In this case, it cannot be further identified whether 
the fault is on the generator matrix or on gflog/gfilog tables, so 
the fault needs to be repaired by refreshing both two parts.   

B. Enhanced Scheme based on Parity Check Bits on
Generator Matrix

Based on the above analysis, SEUs on G are the main source
for missing detection and false alarm and are difficult to be 
distinguished from those on gflog/gfilog tables. Considering the 
size of G is usually quite small in practice, we propose to 

perform separate fault detection for G based on parity check bits. 
For the m×k generator matrix G, one parity bit is stored for each 
row based on the XOR operation, and then another check bit is 
stored for all the check bits. So totally m+1 parity bits are added. 
For each use of the generator matrix, the parity bit will be used 
to check the correctness of the elements in each row. If a 
mismatch is detected for any row, the parity bit of the row parity 
bits will be used to check whether the SEU happens on the 
parity bit of that row. The corrupted parity bit can be easily 
recovered by flipping, and the fault in the generator matrix can 
be recovered by refreshing the identified row. In addition, to 
avoid false alarm caused by SEUs on the recovered parity 
symbols, two copies of 𝒑𝒓

′  are stored as 𝒑𝒓𝟏
′  and 𝒑𝒓𝟐

′ .
With the separate fault detection for G and 𝒑𝒓

′ , the procedure 
of the fault detection and localization scheme is divided into 6 
steps as shown in Fig.2, and the logic is shown in Fig. 3. Step 
① is the check bits-based fault detection for generator matrix
G, and step ② is the first decoding with the received symbols.
For step ③, the decoding results d’ (including the received data
symbols and the recovered erasure symbols) are re-encoded to
generate new parity symbols (𝒑𝒓

′ ), which are compared with the
received ones (pr) for fault detection (④). If both copies of 𝒑𝒓

′

does not match pr, the decoding is repeated (⑤), and the new
recovered data symbols d” are compared with that of the first
decoding (d’) for fault location between gflog/gfilog tables and
intermediate variables (⑥). If faults are detection on generation
matrix or gflog/gfilog, they would be repaired by refreshing.
Otherwise, no repairing is needed.

gflog and gfilog

Intermediate variables

Check 
bitsGenerator matrix

RS Decoder

Partial RS Encoder

Fault Detection 
and Location1

2

3
4

5 6

User memory for decoder

Common
Memory

Fig.2. Structure of fault detection and location scheme

  = pr or     = pr? Fault-free

Faulty

NO

YES

Second decoding

d"= d' ?

gflog or gfilog

Intermediate 
variables

YES

NO

Refreshing

Check bit match?

Faulty
NO

YES

No Repairing

1rp 2rp

Fig. 3. Logic for fault detection and location 

C. Performance Analysis of the Enhanced Fault Detection
In this subsection, the performance of the enhanced fault

detection scheme is evaluated with the Missing Detection 
Probability (MDP) and the False Alarm Probability (FAP), 
respectively.  
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(1) MDP Analysis
The MDP is defined as the number of detected faults over the

total number of faults that cause wrong decoding results. For 
the re-encoding-based fault detection, all the SEUs on 
intermediate variables and look-up tables can be detected when 
the number of erasures is less than m. But when the number of 
erasures E equals m, if the corrupted elements in gflog or gfilog 
are used in both the decoder and encoder, the faults may not be 
recognized (missing detection, MD). The MDP for SEUs on 
gflog and gfilog, and the average MDP for SEUs on all the user 
memories are analyzed as follows, respectively. 
(a) MDP for SEUs on elements in gflog

For m erasures (E = m) with e data symbols, the total number
of gflog look-ups that can cause decoding errors can be 
estimated as 𝑁𝑙𝑜𝑔(𝑚, 𝑒) according to (16). Meanwhile, gflog
is used for G’×de in the decoder and 𝑮𝒑 × 𝒅′ in the encoder,
and the common gflog lookups include the elements in G’ 
( 𝑁𝐺′(𝑚, 𝑒)  according to equation (14)) and the non-zero
elements in de (Nd = k-e). SEUs on these 𝑁𝑑 + 𝑁𝐺′(𝑚, 𝑒)
elements will cause decoding errors and cannot be detected, so 
the MDP for SEUs on table gflog can be estimated as: 

log ' log
1 1
( ( , )) ( , ) / ( , ) ( , )

m m
MD

d G
e e

P N N m e P m e N m e P m e
= =

= +  , (29) 

in which P(m,e) is calculated based on equation (11) with 
m=E. 

(b) MDP for SEUs on elements in gfilog
For m erased symbols with e data symbols, the total number

of different gfilog look-ups during the decoding and partial re-
encoding are 𝑁𝑖𝑙𝑜𝑔(𝑚, 𝑒)  (according to (23)) and mr×k,
respectively, among which the number of common gfilog look-
ups would be N3 = e×(k-e) as defined in the third part of Section 
III.B. Then the MDP for SEUs on gfilog can be estimated as:

iloilog 3
1 1

g( , ) / ( , ) ( , )
m m

MD

e e
P N P m e N m e P m e

= =

=  (30) 

(c) Average MDP for SEUs on all user memories
Since the missing detections are only caused by SEUs on

gflog or gfilog, the average MDP for all the user memories can 
be estimated based on the fault tolerance probability (𝑃𝑡

𝑥) and
memory size (𝑆𝑥) for each part of the user memories as:

' 3
1
( ( , ) ) ( , ) / (1 ( ))

m
MD x

T d G x t
e x

P N N m e N P m e S P m
=

= + + −  (31) 

(2) FAP Analysis
The ‘false alarm’ in this paper is defined as the event that an

SEU happens and is detected, but the decoding result is correct. 
In other words, the fault is detected correctly, but the correct 
decoding result is mistaken to be wrong. In this case, ‘un-
necessary’ recovery process will be performed for the current 
decoding, which will introduce ‘un-necessary’ delay. However, 
faults accumulation is eliminated by the recovery process, so 
the ‘false alarm’ is beneficial in the long run. For the partial re-
encoding-based fault detection scheme, false alarm is only 
caused by the corrupted elements in gflog or gfilog that are only 
used during the re-encoding. The FAP for SEUs on these two 
tables and the average FAR for SEUs on all the user memories 
are analyzed as follows, respectively. 
(a) FAP for SEUs on elements in gflog

For E erasures with e data symbols, the number of elements
in gflog that would not cause decoding errors is 2𝑤−1 −

𝑁𝑙𝑜𝑔(𝐸, 𝑒). For partial re-encoding 𝑮𝒑 × 𝒅′, the gflog lookups
that are different from those used in the decoding include the 
ones for m-E rows of G and e recovered data symbols. Since the 
elements in first column of G are all 1s, the number of new gflog 
look-ups for partial re-encoding would be (m-E)(k-1)+e. SEUs 
on these elements in gflog table would not affect the decoding 
results but would cause encoding errors, so the FAP for SEUs 
on gflog table can be estimated as: 

log log
1 1
(( )( 1) ) ( , ) / (2 1 ( , )) ( , )

E E
FA w

e e
P m E k e P E e N E e P E e

= =

= − − + − −  (32) 

in which P(E,e) is calculated based on equation (11).
(b) FAP for SEUs on elements in gfilog

Following a similar approach for FAP for gflog, the total
number of elements in gfilog that would not cause decoding 
errors is 2𝑤 − 1 − 𝑁𝑖𝑙𝑜𝑔(𝐸, 𝑒), and the number of gfilog look-
ups for partial re-encoding that are different from those used in 
decoding is k(m-E)+e2. SEUs on these elements in gfilog table 
would not affect decoding results but would cause encoding 
errors, so the FAP for SEUs on gfilog can be estimated as: 

2
ilog ilog

1 1
( ( ) ) ( , ) / (2 1 ( , )) ( , )

E E
FA w

e e
P k m E e P E e N E e P E e

= =

= − + − −  (33) 

(c) Average FAP for SEUs on all user memories
Since the false alarms are only caused by SEUs on gflog or

gfilog, the average FAP for all the user memories can be 
estimated based on the fault tolerance probability (𝑃𝑡

𝑥 ) and
memory size (𝑆𝑥) for each part of the user memories as:

2

1
( +( )(2 1)) ( , ) / ( )

E
FA x

avg x t
e x

P e e m E k P E e S P E
=

= + − −      (34) 

V. EVALUATION OF THE PROPOSED FAULT TOLERANT RS 
DECODER 

This section presents the fault injection experiments and 
evaluates the proposed fault detection and location scheme for 
SEUs on the user memory in the RS-EC decoder. 

A. Resource and Time Overhead
The decoder for (6, 3) RS-EC with the proposed fault

detection and localization scheme was implemented using 
Verilog and mapped on the same target device, a Xilinx Zynq 
7000 SoC (xc7z030ffg 676-1). To improve the resource 
efficiency, the partial re-encoding (𝑮𝒑 × 𝒅′) reuses the module
for 𝑮′ × 𝒅𝒆 in the decoder, and the two copies of the newly
generated parity symbols ( 𝒑𝒓𝟏

′  and 𝒑𝒓𝟐
′ ) are stored in de

considering that k is usually larger than 2m. The usage of LUTs, 
registers and BRAMs of the original RS-EC decoder and that 
with the proposed fault detection and location scheme are listed 
in Table V. As we can see, the proposed RS-EC decoder 
consumes additional 73 LUTs and 50 registers (for partial re-
encoding and parity bit check for generation matrix G), thus the 
resource overhead is about 1.03 times of that of the original 
decoder. The decoding time in cycles is compared in Table VI. 
The time overhead of the proposed solution is about 1.16 and 
2.17 times of that of the original decoder for the cases without 
and with fault, respectively.  
TABLE V. RESOURCE USAGE OF UNPROTECTED AND PROPOSED RS DECODER 

LUTs Registers BRAMs 
Unprotected 2458 1238 1 

Proposed 2518 (1.02x) 1311(1.04x) 1 
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TABLE VI. TIME OF UNPROTECTED AND PROPOSED RS DECODER IN CYCLES 
Erasures 1 2 3 

Unprotected 178 187 204 

Proposed Free 206 (1.16x) 216 (1.15x) 232 (1.14x) 
Fault 387 (2.17x) 407 (2.17x) 439 (2.15x) 

B. Platform for SEUs Injection Experiments
To assess the effectiveness of the proposed scheme to detect

and locate faults in the user memory of RS decoder, SEUs have 
been injected using an adapted version of the fault injection tool 
in [30] and implemented on a Zedboard. The experimental 
setup for injection on the unprotected and proposed RS decoder 
with fault detection and location is shown in Fig. 5. The 
injection platform consists of the Processing System (PS) and 
the Programmable Logic (PL). The PS consists of the ARM 
Cortex-A9 processor and dedicated controllers for different 
peripherals e.g. DDR memory controller, SD controller, UART 
controller etc. The DDR controller is responsible for storing the 
list of bits in the registers and the BRAMs. The list is generated 
during the compile time in Vivado and is used by the injection 
algorithm for reliability evaluation of the original decoder and 
the performance evaluation of the fault detection and location 
scheme. The UART module in the PS is responsible for logging 
results to the PC. The PL part consists of two copies of the RS-
EC decoder i.e. Golden and Design Under Test (DUT). 
Moreover, a comparator and a synchronizer block are also 
present in the PL part. These modules are responsible for 
concurrent error detection in the Golden and DUT RS-EC 
decoders, and the mismatches are recorded by ARM. The 
synchronizer module is responsible for controlling the clock to 
DUT and Golden copies of the RS-EC decoder. Furthermore, 
the RS-EC decoder receives inputs from the ARM processor in 
the PS part, so the test patterns are totally software-controlled. 
Another important module housed by the PL part is the Internal 
Configuration Access Port (ICAP) module, which allows the 
ARM processor to access the user memory related to the DUT 
decoder in run-time for error injection. The modules in the PL 
region are connected to the PS region through AXI buses. 

The ARM processor runs the software that controls the fault 
injection process. The fault injection starts by freezing the clock 
to the RS-EC decoder in the PL part (through the synchronizer 
module). This is followed by reading back the target bit from a 
register/BRAM through the ICAP port. The address of the user 
memory bits for fault injection is extracted from the fault list 
stored in DDR memory. The read back values are corrupted by 
inserting a bit flip for SEU emulation and written back. This is 
followed by resuming the design’s clock. For reliability 
evaluation of original RS-EC decoder, the mismatches between 
the Golden and DUT decoders are collected by ARM and 
communicated to PC through UART interface. For the 
performance evaluation of the proposed scheme, the fault 
detection and location results are also collected. 

ARM 
Cortex-

A9

DDR 
Memory 

Controller

UART

RS Decoder 
(Golden)

Comparator

Synchronizer

RS Decoder 
(DUT)

HWICAP

AXI Slave

AXI Slave

AXI Slave
Clock Control

Clock Control

Processing System (PS) Programmable Logic (PL)

Fig. 5. Fault injection platform of RS Decoder 

C. Performance Evaluation of Proposed Fault Detection and
Location Scheme for RS-EC Decoder

The MDP and FAP of the proposed fault detection scheme
are tested based on the fault injection experiments for each part 
of the user memory, and the accuracy of the fault location 
scheme is also evaluated correspondingly.  

Similar to the reliability evaluation of original decoder, 100 
RS-EC codewords are generated randomly for the fault 
injection experiments on each bit for each case of E = 1, 2, or 3. 
To speed up the experiments, SEUs are only injected during the 
effective period of each part of memories, so the total number 
of SEU injections on user memory x is 𝑁𝐼

𝑥  = 100×Sx×8 for
each case of E, where Sx is the number of words for memory x. 
Then the number of SEUs that cause decoding errors (on critical 
bits) are recorded as 𝑁𝑒𝑟𝑟

𝑥 , among which the missing detections
are counted as 𝑁𝑀𝐷

𝑥 . For the SEUs that do not cause decoding
errors ( 𝑁𝑓𝑟𝑒𝑒

𝑥 = 𝑁𝐼
𝑥 − 𝑁𝑒𝑟𝑟

𝑥 ), the number of false alarms is
recorded as 𝑁𝐹𝐴

𝑥 . Finally, we can get the total number of SEU
injections as 𝑁𝐼

𝑇 = ∑ 𝑁𝐼
𝑥

𝑥 , the total number of SEUs causing
decoding errors as 𝑁𝑒𝑟𝑟

𝑇 = ∑ 𝑁𝑒𝑟𝑟
𝑥

𝑥 , and the total number of
missing detections as 𝑁𝑀𝐷

𝑇 = ∑ 𝑁𝑀𝐷
𝑥

𝑥 .
(1) Testing results of MDP

The total MDP is measured as 𝑃𝑇
𝑀𝐷 = 𝑁𝑀𝐷

𝑇 /𝑁𝑒𝑟𝑟
𝑇  for E = 1,

2 or 3, respectively, and the MDP for user memory x is 
measured as 𝑃𝑥

𝑀𝐷 = 𝑁𝑀𝐷
𝑥 /𝑁𝑒𝑟𝑟

𝑥 . The testing results for total
MDP are listed in Table VI, and the theoretical estimates are 
also provided for comparison. As expected, for E = 1 or 2, all 
the SEUs that will cause decoding errors are detected (𝑃𝑇

𝑀𝐷 =
0). For E = 3, we have 𝑃𝑇

𝑀𝐷 =13.07%, and further analysis
shows that all the missing detections are caused by the SEUs on 
gflog and gfilog tables. As shown in Table VII, about 46% and 
39% of the SEUs on critical bits of gflog or gfilog tables cannot 
be detected by the proposed scheme, respectively. This means 
that large portion of the critical bits in the gflog or gfilog tables 
are used in both the decoder and the partial encoder when the 
number of erasures achieves the recovery limit of RS-EC. 
Assuming all the detected faults can be recovered by refreshing 
and re-decoding, the reliability of the RS-EC decoder can be 
further improved from 96.47%, 94.65% and 91.22% (in Table 
III) to 100%, 100% and 98.9% (1-(1-91.22%)×13.07%) for E =
1, 2 or 3, respectively, which indicates the effectiveness of the
fault detection scheme. In addition, the theoretical estimates are
very close to the experiment results in Table VI and Table VII,
which verify the correctness of the analysis approach.

TABLE VI. MISSING DETECTION PROBABILITY FOR ALL USER MEMORIES 
𝑁𝐼

𝑇 𝑁𝑒𝑟𝑟
𝑇 𝑁𝑀𝐷

𝑇 𝑃𝑇
𝑀𝐷(Expe) 𝑃𝑇

𝑀𝐷(Theory) 
E = 1 508800 34191 0 0 0 
E = 2 508800 53271 0 0 0 
E = 3 508800 84766 11077 13.07% 15.13% 

TABLE VII. MISSING DETECTION PROBABILITY FOR GFLOG/GFILOG (E=3) 
NI Nerr NMD 𝑃𝑥

𝑀𝐷(Expe) 𝑃𝑥
𝑀𝐷(Theory) 

gflog 204000 12821 5936 46.30% 45.90% 
gfilog 204000 13476 5141 38.15% 39.01% 

(2) Testing results of FAP
FAP is measured as 𝑃𝑥

𝐹𝐴 = 𝑁𝐹𝐴
𝑥 /𝑁𝑓𝑟𝑒𝑒

𝑥 for gflog and 
gfilog, respectively, and the results are listed in Table VIII, in 
which the theoretical estimates are also provided for 
comparison. Based on the testing results, the FAP for gflog and 
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gfilog are about 3.2% and 4.1%, respectively, for single erasure, 
and decreases to 1% and 1.65%, respectively, for 3 erasures. 
This is expected because more elements in these tables are used 
for decoding for more erasures, then the ones only used in re-
encoding becomes fewer. If weighted by the memory size, the 
FAP for all the memories in the decoder can be calculated based 
on equation (34), and the results are listed in Table IX. Since 
gflog and gfilog dominates the user memory of the decoder, the 
average FAP is just slightly smaller and the trend is similar for 
different erasures. Again, the theoretical estimates are also 
close to the testing results.  

TABLE VIII. FALSE ALARM PROBABILITY FOR GFLOG AND GFILOG 
Number 
erasures 

1 2 3 
Theory Expe Theory Expe Theory Expe 

gflog 4.45% 3.19% 2.67% 2.10% 0.86% 1.01% 
gfilog 5.22% 4.11% 3.42% 2.64% 1.93% 1.65% 

TABLE IX. AVERAGE FALSE ALARM PROBABILITY FOR ALL USER MEMORY 
E=1 E=2 E=3 

Theoretical 4.05% 2.62% 1.25% 
Experimental 3.06% 2.04% 1.19% 

(3) Fault location accuracy
The fault location accuracy is measured by the ratio of the

number of correctly located faults over the number of detected 
faults. The evaluation is performed for each part of the memory. 
As expected, all the faults can be located correctly, which 
proves the completeness of the proposed scheme. 

VI. CONCLUSIONS

In this paper, the reliability on the user memory of RS-EC 
decoder implemented on FPGAs is first studied by theoretical 
analysis and fault injection experiments, and the results show 
that the decoder itself has strong fault tolerance against SEUs. 
Then a fault detection scheme based on partial re-encoding and 
a fault localization scheme based on re-decoding are proposed 
to protect the RS decoder. To further enhance the performance 
of the basic fault detection and localization scheme, generator 
matrix is protected separately by parity check bits, and the 
probability of missing detection and false alarm of the final 
scheme is analyzed. Fault injection experiments show that 1) 
the fault detection scheme could detect all the faults if the 
number of erasures is less than m, and missing detections appear 
for m erasures with a very small probability; 2) false alarms 
exist with a small probability, but they only introduce a 
decoding overhead and are also beneficial to avoid faults 
accumulation. 3) the fault location scheme could locate all the 
detected faults on intermediate variables, generator matrix and 
two look-up tables, with accuracy of 100%. 
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