
This is a postprint version of the following published document:

Gao, Z., Zhang, L., Cheng, Y., Guo, K., Ullah, A. &
Reviriego, P. (2021). Design of FPGA-Implemented
Reed–Solomon Erasure Code (RS-EC) Decoders With
Fault Detection and Location on User Memory. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 29(6), pp. 1073–1082.

DOI: 10.1109/tvlsi.2021.3066804

 © 2021 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

https://doi.org/10.1109/tvlsi.2021.3066804

1

Abstract—Reed-Solomon erasure codes (RS-EC) are widely
used in packet communication and storage systems to recover
erasures. When the RS-EC decoder is implemented on a Field
Programmable Gate Array (FPGA) in a space platform, it will
suffer Single Event Upsets (SEUs) that can cause failures. In this
paper, the reliability of an RS-EC decoder implemented on an
FPGA when there are errors in the user memory is firstly studied.
Then a fault detection and localization scheme is proposed based
on partial re-encoding for the faults in user memory of the RS
decoder. Furthermore, check bits are added in the generator
matrix to improve the fault location performance. Theoretical
analysis shows that the scheme could detect most faults with small
missing and false detection probability. Experimental results on a
case study show that more than 90% faults on user memory could
be tolerated by the decoder, and the all other faults can be detected
by the fault detection scheme when the number of erasures is less
than the correction capability of the code. Although false alarms
exist (with probability smaller than 4%), they can be used to avoid
faults accumulation. Finally, the fault location scheme could
accurately locate all the faults. The theoretical estimates are very
close to the experiment results, which verifies the correctness of
the analysis done.

Index Terms—Reed Solomon decoder, Single Event Upsets
(SEUs), FPGA, reliability, fault detection and location

I. INTRODUCTION

EED-Solomon (RS) codes are efficient error correction
codes that are widely used in communications and storage
systems [1],[2],[3]. For applications on which some data

blocks are lost and their positions are known, a variant known
as RS Erasure Codes (RS-EC), can be used for data recovery
[2],[4]. For example, in IP based communication networks, a
message is packed into a sequence of packets and transmitted
through the network, and some of them may not arrive at the
destination due to network congestion. In this case, an RS-EC
code could be used to introduce redundant packets at the
transmitter and recover the lost packets at the receiver based on
the constraints among received packets [5],[6]. For large scale
storage system, data is distributed in multiple storage units
(disks or servers), and a RS-EC code is usually used to

Manuscript received on Nov.10, 2020. This work was supported in part by
the National Natural Science Foundation of China (61501321), in part by the
China Postdoctoral Science Foundation and Luoyang Newvid Technology Co.,
Ltd,, and in part by the ACHILLES project PID2019-104207RB-I00 funded by
the Spanish Ministry of Science and Innovation.

Z. Gao, L. Zhang, Y. Cheng and K. Guo are with the Tianjin University,
Tianjin 300072, China (e-mail: {zgao, zhangllling, yhc, guokk}@tju.edu.cn).

introduce redundant data segments. When some of the storage
units fail, the constraints among the available units could be
used to recover the original data [7],[8],[9],[10].

In recent years, space based Internet has become a hot topic
due to its seamless global coverage and strong robustness to
failures of terrestrial infrastructures [11],[12],[13],[14]. In
space based Internet, data would be transmitted as IP packets
and large amounts of data will be stored on the satellite platform
[13],[14], so RS-EC could be widely used for reliable data
transmission and storage. But differently from the application
on terrestrial systems, cosmic radiation may cause the failure of
the on-board digital electronic systems [15],[16], so the
reliability of the RS encoder and decoder becomes an important
problem, especially for the decoder whose complexity is much
higher than the encoder. On the other hand, SRAM based
FPGAs (SRAM-FPGAs) are a popular option for on-board
digital processing due to their rich logic resources and good re-
configurability [17],[18]. However, SRAM-FPGAs are more
sensitive to cosmic radiation, and Single Event Upsets (SEUs)
are the most frequent events [18],[19]. SRAM-FPGAs can
suffer two types of SEUs: errors on the configuration memory
and errors on the user memory. The errors on the configuration
memory may change the design and they are permanent unless
the FPGA is reconfigured [19]. For user memory, e.g. registers
and BRAMs, the SEU may modify the parameters and
intermediate variables and corrupt the results. Therefore, if RS
codes are implemented in an SRAM-FPGA on a space platform,
the reliability of the decoder would be an important issue [20],
and the protection of RS decoders against errors induced by
SEUs becomes important.

There are several works on the protection of the decoder for
RS error correcting codes against SEUs. In [21], the traditional
triple redundancy modular (TMR) method is applied to protect
the flip-flops and the clock and reset signaling in the encoder
and decoder. The authors in [22] proposed to detect faults in the
RS decoder by checking whether the output is a valid codeword.
Instead, the work presented in [23] discussed the same self-
checking property of RS decoder, and proposed to reduce the
complexity of the fault detection logic with a small loss of the
fault tolerance capability. However, as far as the authors know,

A. Ullah is with University of Engineering and Technology, Peshawar,
Abbottabad Campus, Abbottabad 220101, Pakistan (e-mail:
aneesullah@uetpeshawar.edu.pk

P. Reviriego is with Universidad Carlos III de Madrid, 28911 Leganés,
Spain (e-mail: revirieg@it.uc3m.es).

Design of FPGA Implemented Reed Solomon
(RS) Erasure Decoders with Fault Detection and

Localization on User Memory
Zhen Gao, Lingling Zhang, Yinghao Cheng, Kangkang Guo, Anees Ullah and Pedro Reviriego

R

mailto:guokk%7d@tju.edu.cn
mailto:aneesullah@uetpeshawar.edu.pk

2

there is no research aiming at the SEU detection and
localization for the decoder of RS-EC.

In this paper, an efficient fault detection and localization
scheme is proposed to detect the faults induced by SEUs and to
locate their position in the user memory of the RS-EC decoder.
The SEU detection and location information could be used by
the fault management logic of the system for efficient recovery.

The rest of the paper is organized as follows. In Section II,
the principle of RS-EC encoder and decoder is introduced. In
Section III, the reliability of the user memory in the RS-EC
decoder to SEUs is analyzed theoretically and is verified by
hardware based fault injection experiments. In Section IV, a
scheme for fault detection and localization in the RS-EC
decoder is proposed, and the evaluation is conducted in Section
V. Finally, the paper is concluded in Section VI.

II. OVERVIEW OF AN RS ERASURE DECODER

In this section, a brief overview of the RS-EC encoder and
decoder is provided, and then the matrix inversion in RS-EC
decoder is briefly described.

A. Encoder and Decoder for RS-EC
An (k, m) RS-EC is composed of k data symbols (𝒅 = [d1,

d2, …, dk]T) and m parity symbols (p = [p1, p2, …, pm]T). Each
symbol is expressed as a w-bit word, and the combination of the
k+m symbols is defined as a codeword c = [dT pT]T on the Galois
Field GF(2w). Any combination of k symbols (data or parity)
could be used to recover the original k data symbols [5]. In other
words, the maximum number of erasures is m.

In the encoder, the m parity symbols of RS-EC can be
generated from k data symbols by matrix multiplication over
GF(2w) [4] as follows:

= ×p G d (1)
where G is an m×k generator matrix defined over GF(2w), and
is commonly constructed in the form of a Vandermonde matrix
[24] as shown in the next equation.

0 0 0

1 1 1

1 1 1

1 2
1 2

1 2m m m

k
k

k− − −

 =

G (2)

The decoder of an (k, m) RS-EC could recover data symbols
as follows. For the case that e data symbols are erased (e ≤ m),
we can construct an e×1 vector pe of e available parity symbols,
a k×1 vector de of the available data symbols and 0s on the
positions of erasures, an e×k matrix G’ with e rows from G
corresponding to the e available parity symbols in pe, and an
e×e matrix G” with e columns of G’ corresponding to the e
erased data symbols. Then the vector of erased data symbols dr
could be recovered according to equations (3) and (4) as
explained in [6], and the process is shown in Fig. 1 for an (3, 3)
RS-EC.

= − ×I e ep p G' d (3)
-1= () ×r Id G" p (4)

Since the code is defined over Galois Field GF(2w), the
operation of addition (or subtraction) between elements is
actually performed as XOR, and the multiplication (or division)
operation is performed based on a logarithmic table (gflog) and

an inverse logarithmic table (gfilog) on GF(2w) as explained in
[8] and shown in the next equation.

() ()() x y gfilog gflog gflogx y = + (5)

g11

g21

d2

p1

p2

p3

g31

g12

g22

g32

g13

g23

g33

p1

p2
-

g11

g21

g12

g22

g13

g23
×

0

d2

0

=

pe G’
de pI

G

g11

g21

g13

g23

pI

×

c

-1

=
d1

d3

(G”)-1 dr

p1'

p2'

p1'

p2'

Fig.1. RS-EC decoding procedure (example for an (3,3) RS-EC)

B. Matrix Inversion based on LU Decompostion
The main complexity of the RS-EC decoder comes from the

matrix inversion of G” in equation (4). In practice, LU
decomposition is a commonly used method for matrix inversion
[26]. As shown in equation (6), a nonsingular n×n square matrix
A could be decomposed by LU decomposition into the form of
A=L×U, where L is a unit lower triangular matrix and U is an
upper triangular matrix [27].

11 1 11 1

1 1

1

1

n n

n nn n nn

a a u u

a a l u

=

A L U

 (6)

The elements in matrix L and U could be calculated as [27],[28]:

()

1 1

1 1 11
1

1

1

1

 (1,2, ,);
 (2,3, ,);

 (, 1, , ; 2,3, ,);

1 (1, 2, , ; 2,3, ,).

j j

i i
k

kj kj kt tjt

k
ik ik it tkt

kk

u a j n
l a u i n

u a l u j k k n k n

l a l u i k k n k n
u

−

=

−

=

= =

= =

 = − = + =

 = − = + + =

(7)

Then the elements of U-1 can be obtained as [29]:

1

1 (1,2, ,);
1 (1, 2, 1; 1, ,).

ii ii

j
ij ik kjk i

ii

v u i n

v u v i n n j i n
u = +

= =

= − = − − = +

(8)

Following the same procedure, we can get the inverse of LT (the
transposed matrix of L), and then obtain L-1 according to:

-1 1(())T T−=L L (9)
Finally, the inverse matrix of A can be calculated as:

-1 -1 -1= ×A U L (10)

3

III. RELIABILITY OF THE UNPROTECTED RS-EC DECODER
TO SEUS ON USER MEMORY

In this section, a general FPGA implementation of an RS-
EC decoder is described and the reliability on each part of the
user memory of the decoder is analyzed theoretically and
evaluated by fault injection experiments.

A. A general FPGA Implementation of RS-EC Decoder
A simplified decoder for the (k,m) RS-EC was implemented

using Verilog and mapped on a Xilinx Zynq 7000 SoC (xc7z
030ffg676-1). The LU decomposition-based matrix inversion is
applied for equation (4). As shown in Table I, the user
memories of the RS-EC decoder include all the matrices and
vectors for equations (2), (3) ~ (4) and (6) ~ (9), and are stored
in Block RAMs and registers. An additional vector ped is used
to hold the positions for the erased data symbols. The value of
k, m and w could be set in the top module, and the space for all
matrices and vectors is pre-allocated for the worst case of m
erasures. From the table, the total user memory for the (k,m)
RS-EC decoder includes N = k+4m+2mk+2(2w-1)+8m2 words
over GF(2w), which corresponds to Nb = wN bits. Among all the
memories, the generator matrix G, logarithmic table (gflog) and
inverse logarithmic table (gfilog) are static and correspond to w
(mk+2(2w-1)) bits, and others corresponding to w(k+4m+mk+
8m2) bits would be recalculated and refreshed for each decoding.

TABLE I. USER MEMORY OF THE RS DECODER
User Memory (x) Size (Sx) Notes

G m×k Generator matrix
Gflog 2w-1 Logarithm table
Gfilog 2w-1 Inverse logarithm table

ped m×1 Positions of erased data symbols
de k×1 Data symbols with 0s for erased
G’ m×k Subset of G
pe m×1 Available parity symbols
pI m×1 Intermediate vector

G’’ m×m Subset of G’
(G’’)-1 m×m Inverse matrix of G’’

dr m×1 Recovered data symbols

Matrix
inversion
based on

LU
decomposition

L m×m Unit lower triangular matrix
U m×m Upper triangular matrix
LT m×m Transposed matrix of L

(LT)-1 m×m Inverse matrix of LT
L-1 m×m Inverse matrix of L
U-1 m×m Inverse matrix of U

B. Reliability Analysis of the User Memory of RS-EC decoder
In this paper, the reliability of RS-EC decoder against SEUs

on the user memory is evaluated by the SEU tolerance rate,
which is the probability that a SEU on a bit would not change
the decoding results for different inputs. The evaluation is
performed for the case that the erased data symbols could be
recovered correctly, so following two cases are not considered:
1) no data symbols are erased (decoding is not needed); 2) the
number of erased symbols is larger than m. Defining the number
of erased symbols as E (1≤E≤m), including e data symbols and
ep parity symbols (E = e + ep), the reliability of each part of user
memory to SEUs is analyzed in the following.
(1) Analysis for SEUs on the generator matrix G

For e erased data symbols, e rows in the generator matrix G
will be selected to construct G’. Therefore, if a word in one of

these e rows is corrupted by SEU, the decoding results would
be wrong, and SEUs on other rows would not affect the results.
Since the probability for e data symbols among E erasures is:

(,)
pee

k m
E

k m m
E

C CP E e
C C+

=
−

(11)

the SEU tolerance rate for the case of e erased data symbols
could be expressed as:

() (), ,t
m eP E e P E e

m
−

= (12)

Then the average tolerance rate for SEUs on G for E erased
symbols could be calculated as:

()
1

) ,(t

E
G

t
e

P E eP E
=

= (13)

The effect of SEUs on variables G’, pe, pI, dr and ped could
be analyzed in the same way, and the corresponding average
SEU tolerance rate can also be calculated based on formula (13).
It should be noted that the estimated SEU tolerance rate is for
the effective period of these matrix or vector, that is between
the moment the matrix or vector is refreshed and the moment
they have been used for decoding of the current input. Any SEU
out of the effective period will not cause decoding errors.
(2) Analysis for SEUs on logarithm table gflog

The reliability of the logarithm table gflog and the inverse
logarithm table gfilog depends on the number of different words
that are used during the RS decoding process. Table gflog is
used for the operands of the multiplication and division
operation in equations (3) and (4) and the matrix inversion
(G’’)-1 based on equations (7) and (8). The number of different
operands for each of these equations is analyzed as follows.

In equation (3), gflog is used for G’×de. For the case that e
data symbols are erased, the number of non-zero symbols in de
is Nd = k-e. As for the m×k matrix G’, e×k non-zero elements
are used during the matrix multiplication, but only part of them
need to be looked up in gflog because the first row and first
column of G are all 1s. In this case, the number of elements in
G’ that need to be looked up in gflog is related to the rows of G
that are selected to form G’, and is mainly determined by
whether the first data symbol (d1) and the first parity symbol (p1)
is erased. There are four cases regarding whether d1 or p1 is
erased. In Table II, the 3rd column lists the probability for each
case (p), and the corresponding number of elements in G’ that
need to be looked up from gflog (n) are listed in 4th column.
Finally, the expected number of elements in gflog that would be
used for G’ could be calculated as

4
' 1
(,) (,)G i ii

N E e p E e n
=

= (14)

TABLE II. SOME NUMBERS FOR ANALYSIS OF GFLOG AND GFILOG
Idx

i d1/p1
Probability

pi(E, e)
Elements in (3)

n
Repeats (gflog)

rlog
Repeats (gfilog)

rilog

1 √ √ 1 1
p

p

ee
k m

ee
k m

C C
C C
− − (e-1)*(k-e-1)+1 3e-2 (5e2-3e+2)/2

2 × √
1
1 1

p

p

ee
k m

ee
k m

C C
C C

−

− − (e-1)*(k-e)+1 4e-3 3e2-2e+1

3 √ ×
1

1 1
p

p

ee
k m

ee
k m

C C
C C

−

− − e*(k-e-1)+1 e-1 0

4 × ×
11

1 1
p

p

ee
k m

ee
k m

C C
C C

−−

− − e*(k-e) 3e-2 (5e2-5e+2)/2

4

For equation (4), e elements in pI (Np = e) and e2 elements
in (G”)-1 (NinvG’’ = e2) need to be looked up from gflog. For the
matrix inversion (G”)-1, gflog is used for each element in matrix
G”, L, U, L-1, and U-1. The number of gflog look-ups for each
of these matrices is analyzed as follows.
(a) The first row and first column of G” are used for

multiplication and division operations, so NG’’ = 2e-1
gflog look-ups are required.

(b) Matrix L has e(e+1)/2 non-zero elements. Except the 1s
on the diagonal, the number of elements that need to be
looked up from gflog is NL = e(e+1)/2-e = e(e-1)/2.

(c) Matrix U has e(e+1)/2 non-zero elements. Since the first row
is same to that of G’’, the number of elements that need to
be looked up from gflog is NU =e(e+1)/2-e = e(e-1)/2.

(d) Matrix L-1 has e(e+1)/2 non-zero elements, and the ones on
the diagonal are 1s, so the number of elements that need to
be looked up from gflog is NinvL = e(e+1)/2-e = e(e-1)/2.

(e) Matrix U-1 has e(e+1)/2 non-zero elements and is used to
multiply L-1 for (G”)-1. Since the e-th column of (G”)-1 is the
same as that of U-1 because the diagonal elements of L-1 are
1s, the number of gflog look-ups for this part should be NinvU
= e(e+1)/2-e = e(e-1)/2.
As a result, the total number of gflog look-ups during the

calculation of (G’’)-1 is Ninv = NG’’ + NL + NU + NinvL + NinvU =
2e2-1. But some elements are counted several times, and the
number is related to whether the first data symbol (d1) and the
first parity symbol (p1) is erased. The numbers of repeats for the
four possible combinations are listed in the 5th column of Table
II (rlog), and the final number of gflog look-ups for the
calculation of (G’’)-1 could be amended as:

() ()()
4 log

1
, ,inv i inv ii

N E e p E e N r
=

 = − (15)

In summary, the total number of different gflog look-ups
during the decoding process with E erased symbols and e data
erasures could be estimated as:

() () ()log , , ,G invG invd pN E e N N E e N N N E e
= ++ + + , (16)

which is also the number of elements that SEUs on them would
cause decoding errors. Since there are 2w-1 elements in gflog,
the average SEU tolerance rate of gflog for E erased symbols
can be estimated as:

llog

1

og2 1
() (,

,
2 1

)
()E

t
e

w

w

N E
P E P E

e
e

=

−

−
=

−
 . (17)

(3) Analysis for SEUs on inverse logarithm table gfilog
Table gfilog is used on the results for multiplication and

division operations in equations (3) and (4) and those used
during the matrix inversion (G’’)-1. The number of gfilog look-
ups for each procedure is analyzed as follows.

In equation (3), the vector de includes k-e non-zero elements
for e data erasures, so e(k-e) multiplications are involved in
G’×de, which is also the number of gfilog look-ups (N3 = e(k-
e)). Similarly, the produce of (G’’)-1 (with e2 non-zero elements)
and pI (with e non-zero elements) requires e2 table look-ups
from gfilog for equation (4) (N4= e2).

To get the matrix inversion (G’’)-1, gfilog table is used for
each element in matrix L, U, L-1, U-1 and (G’’)-1. According to
formulas (7) and (8), the number of gfilog look-ups for each
matrix is calculated as follows:
(a) According to formula (7), the generation of the first column

of matrix L requires e-1 divisions. For another column c

(2≤c≤e-1), c-1 multiplications and 1 division are required.
So the number of gfilog look-ups for matrix L can be
expressed as:

1

7
2

1 ()
e

L
c

N e c e c
−

=

−− += (18)

(b) According to formula (7), the elements of first row of matrix
U do not need to be calculated. For other columns, r-1
multiplications are required for e+1-r elements in the r-th
row (2≤r≤e). So the number of gfilog look-ups for matrix U
can be expressed as:

7
2
(1)(1)

e

U
r

N r e r
=

= − + − (19)

(c) According to formula (8), the diagonal elements of U-1 need
e divisions. For other elements, the one in the r-th row and
the c-th column (1≤r≤e-1, r+1≤c≤e) requires c-r
multiplications and 1 division. So, the number of gfilog
look-ups for matrix U-1 can be expressed as:

1

8
1 1

(1)
e e

invU
r c r

N e c r
−

= = +

= + − + (20)

(d) The calculation of L-1 is similar as that of U-1 except that the
diagonal elements are 1s, So the number of gfilog look-ups
for matrix L-1 is N8invL =N8invU – e.

(e) Both U-1 and L-1 are triangular matrices, so the number of
non-zero multiplications during U-1×L-1 is:

1 1

1(1 2 ()) ()
2

e e

iUiL
r r

rN r e r r e r
= =

−
= + + + + − = + (21)

As a result, the total gfilog look-ups during matrix inversion
(G’’)-1 is Minv = N7L + N7U + N8invL + N8invU + NiUiL. Like that for
gflog look-ups, the number of different gfilog look-ups needs to
be amended according to whether the first data symbol and the
first parity symbol is erased. The decrements for the four cases
are listed in the last column of Table II (rilog), and the amended
number of gfilog look-ups for (G’’)-1 is:

() ()()
4 ilog

1
, ,inv i inv ii

M E e p E e M r
=

 = − (22)

In summary, the total number of different gfilog look-ups
during the decoding process with E erased symbols and e data
erasures could be estimated as:

() ()3 4ilog , ,invN E e N N EM e+ += (23)

Since there are 2w-1 elements in gfilog, the average SEU
tolerance rate of gfilog for E erasures can be estimated as:

ilog

1

ilog2 1 (
()),(

,)
2 1

w

w

E

t
e

N E
P E P

e
E e

=

=
− −

−
 (24)

(4) Analysis for SEUs on vector de

The vector de is the basis for recovery of the erased data
symbols. So SEU on any element in de will change the decoding
results, and the SEU tolerance rate for de is 𝑃𝑡

𝑑𝑒= 0.
(5) Analysis for SEUs on matrix G” and (G”)-1

For e data erasures, both G” and (G”)-1 includes e2 non-zero
elements, and SEUs on other elements would not cause
decoding errors. So, the average SEU tolerance rate for G” and
(G”)-1 during their effective period could be estimated as:

() ()
2 2

'' ''
2

1
(,)

E
G invG

t t
e

m eP E P E P E e
m=

−
= = (25)

(6) Analysis for SEUs on intermediate matrices for (G”)-1

5

There are 6 blocks of memories involved during the LU-
decomposition based matrix inversion (G”)-1, corresponding to
matrix L, U, LT, L-1, U-1 and (LT)-1, respectively.

For e data erasures, e2 non-zero elements in (G”)-1 need to
be calculated, so the number of useful elements in L, U and LT
are all e•(e+1)/2. SEUs on other elements would not cause
decoding errors because they can be corrected during the
triangular matrix inversion. Therefore, for a total of E erasures,
the average SEU tolerance rate for these three matrices during
their effective period can be expressed as:

2

1
2 ((1 2)) ,

T
E

L U L
t t t

e

m e eP P P P E e
m=

−
=

+
= = (26)

For triangular inverse matrices L-1, U-1 and (LT)-1, they all
have e2 useful elements, so SEUs on other m2-e2 memory words
would not cause decoding errors. Therefore, for a total of E
erasures, the average SEU tolerance rate for these inversion
matrices during their effective period can be expressed as:

2 2

2
1

(,)
T

E
invL invU invL

t t t
e

P P P P E em e
m=

−
= = = (27)

(7) Total average SEU tolerance rate
Based on above analysis, the total average tolerance rate for

SEUs on all the memories of the RS-EC decoder during the
whole decoding period could be estimated as

() ()()
1 1 1T x

t x x t
x

P E S q P
N

= − − (28)

in which x denotes one part of the user memories listed in Table
I, and Sx, 𝑃𝑡

𝑥 and qx denote the number of words, SEUs
tolerance rate during the effective period and the portion of the
effective period over the whole decoding time, respectively.

C. Fault Injection Experiment Results
To verify the theoretical analysis, fault injection experiments

were conducted on the decoder for an (6, 3) RS-EC over GF(28)
(k = 6, m = 3, w = 8). In this case, the size of gflog and gfilog
are both 255, and the total number of memory words (N) is 636
according to the analysis in Section III.A. The fault injection
platform and the test procedure will be introduced in detail in
Section V.B. For each part of user memory, SEU injection is
conducted separately for the case of 1, 2 or 3 erasures (E = 1, 2
or 3). For each case, random inputs are generated for the
encoder, and the erasure positions are randomly selected. For
the SEU on a memory bit in each cycle, 100 runs of the
decoding are performed for 100 different inputs to average the
SEU fault tolerance rate. So for the memory x with Sx words,
the total number of SEU injections is 𝑁𝐼

𝑥 = 3×100×Sx×8×Td,
where Td is the total decoding time in cycles and is different for
different erasure cases. Then the SEU tolerance rate for
memory x with E erasures is measured as 𝑂𝑡

𝑥(𝐸) = 𝑁𝑡
𝑥(𝐸)/𝑁𝐼

𝑥,
where 𝑁𝑡

𝑥(𝐸) is the number of injections on memory x that do
not change the decoding results. The experiment results of SEU
tolerance rate for different number of erasures are listed in
Table III, in which the total SEU tolerance rate in the last row
is the weighted average over all memories as 1

𝑁
∑ 𝑆𝑥𝑂𝑡

𝑥(𝐸)𝑥 .
The theoretical estimations are also provided for comparison
based on equation (28), in which the effective portion for
memory x (qx) is measured based on the implementation and
listed in Table IV.

TABLE III. THEORETICAL AND EXPERIMENTAL SEU TOLERANCE RATES FOR
USER MEMORY IN RS DECODER

E
Mem x

1 2 3
Theory Expe Theory Expe Theory Expe

G 93.96% 93.96% 91.36% 91.40% 88.48% 88.45%
gflog 97.08% 97.44% 95.25% 96.04% 92.70% 93.40%
gfilog 97.82% 97.92% 96.24% 96.69% 92.84% 93.83%

ped 97.11% 97.11% 95.09% 95.08% 91.90% 91.81%
de 8.66% 9.04% 8.22% 8.57% 7.54% 7.66%
G’ 98.95% 98.95% 96.39% 96.39% 91.90% 91.92%
pe 93.96% 93.96% 89.35% 89.18% 82.86% 82.84%
pI 78.74% 78.74% 68.50% 68.54% 54.70% 53.73%

G’’ 92.83% 92.83% 82.74% 82.75% 65.68% 65.36%
(G’’)-1 98.95% 98.95% 97.64% 97.70% 95.84% 95.83%

dr 97.38% 97.38% 96.38% 96.44% 95.37% 95.30%
L 98.51% 98.51% 97.10% 97.09% 94.82% 94.79%
U 94.31% 94.31% 89.23% 89.22% 80.99% 80.66%
LT 94.23% 94.23% 89.00% 88.97% 80.65% 80.49%

(LT)-1 97.03% 97.03% 92.91% 92.97% 86.00% 85.97%
L-1 96.15% 96.15% 90.95% 91.15% 82.52% 82.42%
U-1 95.98% 95.98% 90.55% 90.38% 81.97% 82.25%

Total 96.29% 96.47% 94.15% 94.65% 90.56% 91.22%

TABLE IV. EFFECTIVE PORTION FOR USER MEMORY OF RS(6,3) DECODER
E

Mem x 1 2 3

G 18.11% 17.82% 17.08%
gflog 92.91% 93.27% 93.83%
gfilog 92.91% 93.27% 93.83%

ped 8.66% 10.13% 12.00%
de 91.34% 91.78% 92.46%
G’ 3.15% 7.44% 12.00%
pe 18.11% 21.96% 25.41%
pI 63.78% 64.98% 67.14%

G’’ 64.57% 65.73% 67.83%
(G’’)-1 9.45% 8.97% 8.23%

dr 7.87% 7.47% 6.86%
L 13.39% 13.66% 14.16%
U 51.18% 50.80% 52.01%
LT 51.97% 51.87% 52.94%

(LT)-1 26.77% 27.00% 27.67%
L-1 34.65% 34.48% 34.54%
U-1 36.22% 35.97% 35.63%

From Table III we can see that the theoretical estimations
match the experimental results very well, and two important
conclusions are revealed. First, the total SEU tolerance is higher
than 90%, which means most of the SEUs on user memories
could be tolerated by the RS-EC decoder itself. The main
contribution to the overall high reliability comes from the
logarithm table and the inverse logarithm table. These two
tables account 80% of all the memories and are effective during
over 90% of the decoding time. However, only very small
portion of the elements in the tables are used for each decoding.
Second, the reliability of the RS-EC decoder decreases when
the number of erasures increases. This is reasonable because
when the number of erasures increases, more elements in the
two tables and the pre-assigned memory for the matrices and
vectors would be effective, so the SEUs have higher probability
to change the decoding results.

6

IV. DETECTION AND LOCALIZATION OF SEUS ON USER
MEMORIES IN RS-EC DECODER

This section describes the scheme proposed to detect and locate
SEUs on the user memory. Detection is done by checking the
consistency of the parity symbols by partial re-encoding and
subsequently location is achieved by re-decoding. Finally,
parity check bits are used to protect the generator matrix.

A. Basic Fault Detection and Location Scheme
(1) Fault Detection based on Partial Re-encoding

Since the complexity of RS-EC encoder is much lower than
that of the decoder, we proposed to embed a partial RS-EC
encoder in the decoder to detect the SEUs on the user memories.
For the case that mr parity symbols 𝒑𝒓 are received at the
decoder (mr= m-ep), we only generate mr new parity symbols
corresponding to the received parity symbols by 𝒑𝒓

′ = 𝑮𝒑 × 𝒅′,
where 𝒅′is the 𝑘 ×1 data symbol vector including the received
and recovered ones, and 𝑮𝒑 is a mr×k matrix formed by the
mr rows of G corresponding to the mr received parity symbols.
Then the newly generated parity symbols 𝒑𝒓

′ are compared
with the received ones 𝒑𝒓. If all the parity symbols are the same,
the RS-EC decoder is considered as fault-free. Otherwise, there
should be an SEU on the user memory. The partial encoding
uses the same user memory for generator matrix and gflog/
gfilog tables in the decoder. Initial analysis shows that this
scheme is effective for detection of most SEUs on gflog/gfilog
tables and all SEUs on the intermediate variables listed in Table
I, but SEUs on the generator matrix and some SEUs on
gflog/gfilog tables may cause missing detection or false alarm.
For the former, when the corrupted element in the generator
matrix or gflog/gfilog tables causes wrong recovered data
symbols, it is possible to get the same parity symbol with the
same wrong data symbols and corrupted elements in gflog or
gfilog tables. The latter event mainly happens when a corrupted
element in the generator matrix or gflog/gfilog tables is not used
during decoding but used during re-encoding. In addition, the
SEUs on 𝒑𝒓

′ may also cause false alarm.
(2) Fault Location based on Re-decoding

As we introduced in Section III.A, among all the user
memories, the generator matrix G, logarithmic table gflog and
inverse logarithmic table gfilog are static, and all other matrices
and vectors would be refreshed for a new decoding. So, when a
fault is reported by the detection scheme, we propose to repeat
the decoding and compare the outputs with those of the first
decoding. If the two outputs are different, we can confirm that
SEUs happen on the intermediate memories during the first
decoding. In this case, the outputs of the second decoding
should be correct, and no repairing is needed. If the two outputs
are the same, the fault should come from the static part of the
memories. In this case, it cannot be further identified whether
the fault is on the generator matrix or on gflog/gfilog tables, so
the fault needs to be repaired by refreshing both two parts.

B. Enhanced Scheme based on Parity Check Bits on
Generator Matrix

Based on the above analysis, SEUs on G are the main source
for missing detection and false alarm and are difficult to be
distinguished from those on gflog/gfilog tables. Considering the
size of G is usually quite small in practice, we propose to

perform separate fault detection for G based on parity check bits.
For the m×k generator matrix G, one parity bit is stored for each
row based on the XOR operation, and then another check bit is
stored for all the check bits. So totally m+1 parity bits are added.
For each use of the generator matrix, the parity bit will be used
to check the correctness of the elements in each row. If a
mismatch is detected for any row, the parity bit of the row parity
bits will be used to check whether the SEU happens on the
parity bit of that row. The corrupted parity bit can be easily
recovered by flipping, and the fault in the generator matrix can
be recovered by refreshing the identified row. In addition, to
avoid false alarm caused by SEUs on the recovered parity
symbols, two copies of 𝒑𝒓

′ are stored as 𝒑𝒓𝟏
′ and 𝒑𝒓𝟐

′ .
With the separate fault detection for G and 𝒑𝒓

′ , the procedure
of the fault detection and localization scheme is divided into 6
steps as shown in Fig.2, and the logic is shown in Fig. 3. Step
① is the check bits-based fault detection for generator matrix
G, and step ② is the first decoding with the received symbols.
For step ③, the decoding results d’ (including the received data
symbols and the recovered erasure symbols) are re-encoded to
generate new parity symbols (𝒑𝒓

′), which are compared with the
received ones (pr) for fault detection (④). If both copies of 𝒑𝒓

′

does not match pr, the decoding is repeated (⑤), and the new
recovered data symbols d” are compared with that of the first
decoding (d’) for fault location between gflog/gfilog tables and
intermediate variables (⑥). If faults are detection on generation
matrix or gflog/gfilog, they would be repaired by refreshing.
Otherwise, no repairing is needed.

gflog and gfilog

Intermediate variables

Check
bitsGenerator matrix

RS Decoder

Partial RS Encoder

Fault Detection
and Location1

2

3
4

5 6

User memory for decoder

Common
Memory

Fig.2. Structure of fault detection and location scheme

 = pr or = pr? Fault-free

Faulty

NO

YES

Second decoding

d"= d' ?

gflog or gfilog

Intermediate
variables

YES

NO

Refreshing

Check bit match?

Faulty
NO

YES

No Repairing

1rp 2rp

Fig. 3. Logic for fault detection and location

C. Performance Analysis of the Enhanced Fault Detection
In this subsection, the performance of the enhanced fault

detection scheme is evaluated with the Missing Detection
Probability (MDP) and the False Alarm Probability (FAP),
respectively.

7

(1) MDP Analysis
The MDP is defined as the number of detected faults over the

total number of faults that cause wrong decoding results. For
the re-encoding-based fault detection, all the SEUs on
intermediate variables and look-up tables can be detected when
the number of erasures is less than m. But when the number of
erasures E equals m, if the corrupted elements in gflog or gfilog
are used in both the decoder and encoder, the faults may not be
recognized (missing detection, MD). The MDP for SEUs on
gflog and gfilog, and the average MDP for SEUs on all the user
memories are analyzed as follows, respectively.
(a) MDP for SEUs on elements in gflog

For m erasures (E = m) with e data symbols, the total number
of gflog look-ups that can cause decoding errors can be
estimated as 𝑁𝑙𝑜𝑔(𝑚, 𝑒) according to (16). Meanwhile, gflog
is used for G’×de in the decoder and 𝑮𝒑 × 𝒅′ in the encoder,
and the common gflog lookups include the elements in G’
(𝑁𝐺′(𝑚, 𝑒) according to equation (14)) and the non-zero
elements in de (Nd = k-e). SEUs on these 𝑁𝑑 + 𝑁𝐺′(𝑚, 𝑒)
elements will cause decoding errors and cannot be detected, so
the MDP for SEUs on table gflog can be estimated as:

log ' log
1 1
((,)) (,) / (,) (,)

m m
MD

d G
e e

P N N m e P m e N m e P m e
= =

= + , (29)

in which P(m,e) is calculated based on equation (11) with
m=E.

(b) MDP for SEUs on elements in gfilog
For m erased symbols with e data symbols, the total number

of different gfilog look-ups during the decoding and partial re-
encoding are 𝑁𝑖𝑙𝑜𝑔(𝑚, 𝑒) (according to (23)) and mr×k,
respectively, among which the number of common gfilog look-
ups would be N3 = e×(k-e) as defined in the third part of Section
III.B. Then the MDP for SEUs on gfilog can be estimated as:

iloilog 3
1 1

g(,) / (,) (,)
m m

MD

e e
P N P m e N m e P m e

= =

= (30)

(c) Average MDP for SEUs on all user memories
Since the missing detections are only caused by SEUs on

gflog or gfilog, the average MDP for all the user memories can
be estimated based on the fault tolerance probability (𝑃𝑡

𝑥) and
memory size (𝑆𝑥) for each part of the user memories as:

' 3
1
((,)) (,) / (1 ())

m
MD x

T d G x t
e x

P N N m e N P m e S P m
=

= + + − (31)

(2) FAP Analysis
The ‘false alarm’ in this paper is defined as the event that an

SEU happens and is detected, but the decoding result is correct.
In other words, the fault is detected correctly, but the correct
decoding result is mistaken to be wrong. In this case, ‘un-
necessary’ recovery process will be performed for the current
decoding, which will introduce ‘un-necessary’ delay. However,
faults accumulation is eliminated by the recovery process, so
the ‘false alarm’ is beneficial in the long run. For the partial re-
encoding-based fault detection scheme, false alarm is only
caused by the corrupted elements in gflog or gfilog that are only
used during the re-encoding. The FAP for SEUs on these two
tables and the average FAR for SEUs on all the user memories
are analyzed as follows, respectively.
(a) FAP for SEUs on elements in gflog

For E erasures with e data symbols, the number of elements
in gflog that would not cause decoding errors is 2𝑤−1 −

𝑁𝑙𝑜𝑔(𝐸, 𝑒). For partial re-encoding 𝑮𝒑 × 𝒅′, the gflog lookups
that are different from those used in the decoding include the
ones for m-E rows of G and e recovered data symbols. Since the
elements in first column of G are all 1s, the number of new gflog
look-ups for partial re-encoding would be (m-E)(k-1)+e. SEUs
on these elements in gflog table would not affect the decoding
results but would cause encoding errors, so the FAP for SEUs
on gflog table can be estimated as:

log log
1 1
(()(1)) (,) / (2 1 (,)) (,)

E E
FA w

e e
P m E k e P E e N E e P E e

= =

= − − + − − (32)

in which P(E,e) is calculated based on equation (11).
(b) FAP for SEUs on elements in gfilog

Following a similar approach for FAP for gflog, the total
number of elements in gfilog that would not cause decoding
errors is 2𝑤 − 1 − 𝑁𝑖𝑙𝑜𝑔(𝐸, 𝑒), and the number of gfilog look-
ups for partial re-encoding that are different from those used in
decoding is k(m-E)+e2. SEUs on these elements in gfilog table
would not affect decoding results but would cause encoding
errors, so the FAP for SEUs on gfilog can be estimated as:

2
ilog ilog

1 1
(()) (,) / (2 1 (,)) (,)

E E
FA w

e e
P k m E e P E e N E e P E e

= =

= − + − − (33)

(c) Average FAP for SEUs on all user memories
Since the false alarms are only caused by SEUs on gflog or

gfilog, the average FAP for all the user memories can be
estimated based on the fault tolerance probability (𝑃𝑡

𝑥) and
memory size (𝑆𝑥) for each part of the user memories as:

2

1
(+()(2 1)) (,) / ()

E
FA x

avg x t
e x

P e e m E k P E e S P E
=

= + − − (34)

V. EVALUATION OF THE PROPOSED FAULT TOLERANT RS
DECODER

This section presents the fault injection experiments and
evaluates the proposed fault detection and location scheme for
SEUs on the user memory in the RS-EC decoder.

A. Resource and Time Overhead
The decoder for (6, 3) RS-EC with the proposed fault

detection and localization scheme was implemented using
Verilog and mapped on the same target device, a Xilinx Zynq
7000 SoC (xc7z030ffg 676-1). To improve the resource
efficiency, the partial re-encoding (𝑮𝒑 × 𝒅′) reuses the module
for 𝑮′ × 𝒅𝒆 in the decoder, and the two copies of the newly
generated parity symbols (𝒑𝒓𝟏

′ and 𝒑𝒓𝟐
′) are stored in de

considering that k is usually larger than 2m. The usage of LUTs,
registers and BRAMs of the original RS-EC decoder and that
with the proposed fault detection and location scheme are listed
in Table V. As we can see, the proposed RS-EC decoder
consumes additional 73 LUTs and 50 registers (for partial re-
encoding and parity bit check for generation matrix G), thus the
resource overhead is about 1.03 times of that of the original
decoder. The decoding time in cycles is compared in Table VI.
The time overhead of the proposed solution is about 1.16 and
2.17 times of that of the original decoder for the cases without
and with fault, respectively.
TABLE V. RESOURCE USAGE OF UNPROTECTED AND PROPOSED RS DECODER

LUTs Registers BRAMs
Unprotected 2458 1238 1

Proposed 2518 (1.02x) 1311(1.04x) 1

8

TABLE VI. TIME OF UNPROTECTED AND PROPOSED RS DECODER IN CYCLES
Erasures 1 2 3

Unprotected 178 187 204

Proposed Free 206 (1.16x) 216 (1.15x) 232 (1.14x)
Fault 387 (2.17x) 407 (2.17x) 439 (2.15x)

B. Platform for SEUs Injection Experiments
To assess the effectiveness of the proposed scheme to detect

and locate faults in the user memory of RS decoder, SEUs have
been injected using an adapted version of the fault injection tool
in [30] and implemented on a Zedboard. The experimental
setup for injection on the unprotected and proposed RS decoder
with fault detection and location is shown in Fig. 5. The
injection platform consists of the Processing System (PS) and
the Programmable Logic (PL). The PS consists of the ARM
Cortex-A9 processor and dedicated controllers for different
peripherals e.g. DDR memory controller, SD controller, UART
controller etc. The DDR controller is responsible for storing the
list of bits in the registers and the BRAMs. The list is generated
during the compile time in Vivado and is used by the injection
algorithm for reliability evaluation of the original decoder and
the performance evaluation of the fault detection and location
scheme. The UART module in the PS is responsible for logging
results to the PC. The PL part consists of two copies of the RS-
EC decoder i.e. Golden and Design Under Test (DUT).
Moreover, a comparator and a synchronizer block are also
present in the PL part. These modules are responsible for
concurrent error detection in the Golden and DUT RS-EC
decoders, and the mismatches are recorded by ARM. The
synchronizer module is responsible for controlling the clock to
DUT and Golden copies of the RS-EC decoder. Furthermore,
the RS-EC decoder receives inputs from the ARM processor in
the PS part, so the test patterns are totally software-controlled.
Another important module housed by the PL part is the Internal
Configuration Access Port (ICAP) module, which allows the
ARM processor to access the user memory related to the DUT
decoder in run-time for error injection. The modules in the PL
region are connected to the PS region through AXI buses.

The ARM processor runs the software that controls the fault
injection process. The fault injection starts by freezing the clock
to the RS-EC decoder in the PL part (through the synchronizer
module). This is followed by reading back the target bit from a
register/BRAM through the ICAP port. The address of the user
memory bits for fault injection is extracted from the fault list
stored in DDR memory. The read back values are corrupted by
inserting a bit flip for SEU emulation and written back. This is
followed by resuming the design’s clock. For reliability
evaluation of original RS-EC decoder, the mismatches between
the Golden and DUT decoders are collected by ARM and
communicated to PC through UART interface. For the
performance evaluation of the proposed scheme, the fault
detection and location results are also collected.

ARM
Cortex-

A9

DDR
Memory

Controller

UART

RS Decoder
(Golden)

Comparator

Synchronizer

RS Decoder
(DUT)

HWICAP

AXI Slave

AXI Slave

AXI Slave
Clock Control

Clock Control

Processing System (PS) Programmable Logic (PL)

Fig. 5. Fault injection platform of RS Decoder

C. Performance Evaluation of Proposed Fault Detection and
Location Scheme for RS-EC Decoder

The MDP and FAP of the proposed fault detection scheme
are tested based on the fault injection experiments for each part
of the user memory, and the accuracy of the fault location
scheme is also evaluated correspondingly.

Similar to the reliability evaluation of original decoder, 100
RS-EC codewords are generated randomly for the fault
injection experiments on each bit for each case of E = 1, 2, or 3.
To speed up the experiments, SEUs are only injected during the
effective period of each part of memories, so the total number
of SEU injections on user memory x is 𝑁𝐼

𝑥 = 100×Sx×8 for
each case of E, where Sx is the number of words for memory x.
Then the number of SEUs that cause decoding errors (on critical
bits) are recorded as 𝑁𝑒𝑟𝑟

𝑥 , among which the missing detections
are counted as 𝑁𝑀𝐷

𝑥 . For the SEUs that do not cause decoding
errors (𝑁𝑓𝑟𝑒𝑒

𝑥 = 𝑁𝐼
𝑥 − 𝑁𝑒𝑟𝑟

𝑥), the number of false alarms is
recorded as 𝑁𝐹𝐴

𝑥 . Finally, we can get the total number of SEU
injections as 𝑁𝐼

𝑇 = ∑ 𝑁𝐼
𝑥

𝑥 , the total number of SEUs causing
decoding errors as 𝑁𝑒𝑟𝑟

𝑇 = ∑ 𝑁𝑒𝑟𝑟
𝑥

𝑥 , and the total number of
missing detections as 𝑁𝑀𝐷

𝑇 = ∑ 𝑁𝑀𝐷
𝑥

𝑥 .
(1) Testing results of MDP

The total MDP is measured as 𝑃𝑇
𝑀𝐷 = 𝑁𝑀𝐷

𝑇 /𝑁𝑒𝑟𝑟
𝑇 for E = 1,

2 or 3, respectively, and the MDP for user memory x is
measured as 𝑃𝑥

𝑀𝐷 = 𝑁𝑀𝐷
𝑥 /𝑁𝑒𝑟𝑟

𝑥 . The testing results for total
MDP are listed in Table VI, and the theoretical estimates are
also provided for comparison. As expected, for E = 1 or 2, all
the SEUs that will cause decoding errors are detected (𝑃𝑇

𝑀𝐷 =
0). For E = 3, we have 𝑃𝑇

𝑀𝐷 =13.07%, and further analysis
shows that all the missing detections are caused by the SEUs on
gflog and gfilog tables. As shown in Table VII, about 46% and
39% of the SEUs on critical bits of gflog or gfilog tables cannot
be detected by the proposed scheme, respectively. This means
that large portion of the critical bits in the gflog or gfilog tables
are used in both the decoder and the partial encoder when the
number of erasures achieves the recovery limit of RS-EC.
Assuming all the detected faults can be recovered by refreshing
and re-decoding, the reliability of the RS-EC decoder can be
further improved from 96.47%, 94.65% and 91.22% (in Table
III) to 100%, 100% and 98.9% (1-(1-91.22%)×13.07%) for E =
1, 2 or 3, respectively, which indicates the effectiveness of the
fault detection scheme. In addition, the theoretical estimates are
very close to the experiment results in Table VI and Table VII,
which verify the correctness of the analysis approach.

TABLE VI. MISSING DETECTION PROBABILITY FOR ALL USER MEMORIES
𝑁𝐼

𝑇 𝑁𝑒𝑟𝑟
𝑇 𝑁𝑀𝐷

𝑇 𝑃𝑇
𝑀𝐷(Expe) 𝑃𝑇

𝑀𝐷(Theory)
E = 1 508800 34191 0 0 0
E = 2 508800 53271 0 0 0
E = 3 508800 84766 11077 13.07% 15.13%

TABLE VII. MISSING DETECTION PROBABILITY FOR GFLOG/GFILOG (E=3)
NI Nerr NMD 𝑃𝑥

𝑀𝐷(Expe) 𝑃𝑥
𝑀𝐷(Theory)

gflog 204000 12821 5936 46.30% 45.90%
gfilog 204000 13476 5141 38.15% 39.01%

(2) Testing results of FAP
FAP is measured as 𝑃𝑥

𝐹𝐴 = 𝑁𝐹𝐴
𝑥 /𝑁𝑓𝑟𝑒𝑒

𝑥 for gflog and
gfilog, respectively, and the results are listed in Table VIII, in
which the theoretical estimates are also provided for
comparison. Based on the testing results, the FAP for gflog and

9

gfilog are about 3.2% and 4.1%, respectively, for single erasure,
and decreases to 1% and 1.65%, respectively, for 3 erasures.
This is expected because more elements in these tables are used
for decoding for more erasures, then the ones only used in re-
encoding becomes fewer. If weighted by the memory size, the
FAP for all the memories in the decoder can be calculated based
on equation (34), and the results are listed in Table IX. Since
gflog and gfilog dominates the user memory of the decoder, the
average FAP is just slightly smaller and the trend is similar for
different erasures. Again, the theoretical estimates are also
close to the testing results.

TABLE VIII. FALSE ALARM PROBABILITY FOR GFLOG AND GFILOG
Number
erasures

1 2 3
Theory Expe Theory Expe Theory Expe

gflog 4.45% 3.19% 2.67% 2.10% 0.86% 1.01%
gfilog 5.22% 4.11% 3.42% 2.64% 1.93% 1.65%

TABLE IX. AVERAGE FALSE ALARM PROBABILITY FOR ALL USER MEMORY
E=1 E=2 E=3

Theoretical 4.05% 2.62% 1.25%
Experimental 3.06% 2.04% 1.19%

(3) Fault location accuracy
The fault location accuracy is measured by the ratio of the

number of correctly located faults over the number of detected
faults. The evaluation is performed for each part of the memory.
As expected, all the faults can be located correctly, which
proves the completeness of the proposed scheme.

VI. CONCLUSIONS

In this paper, the reliability on the user memory of RS-EC
decoder implemented on FPGAs is first studied by theoretical
analysis and fault injection experiments, and the results show
that the decoder itself has strong fault tolerance against SEUs.
Then a fault detection scheme based on partial re-encoding and
a fault localization scheme based on re-decoding are proposed
to protect the RS decoder. To further enhance the performance
of the basic fault detection and localization scheme, generator
matrix is protected separately by parity check bits, and the
probability of missing detection and false alarm of the final
scheme is analyzed. Fault injection experiments show that 1)
the fault detection scheme could detect all the faults if the
number of erasures is less than m, and missing detections appear
for m erasures with a very small probability; 2) false alarms
exist with a small probability, but they only introduce a
decoding overhead and are also beneficial to avoid faults
accumulation. 3) the fault location scheme could locate all the
detected faults on intermediate variables, generator matrix and
two look-up tables, with accuracy of 100%.

REFERENCES
[1] R. E. Blahut. Theory and Practice of Error Control Codes. Addison

Wesley, 1984.
[2] T. Zhang and K. K. Parhi. “On the high-speed VLSI implementation of

errors-and-erasures correcting reed-solomon decoders”. In Proceedings of
the 12th ACM Great Lakes symposium on VLSI, New York, USA, 2002.

[3] F. Hernando, K. Marshall, M E. O'Sullivan . “The Dimension of Subcode-
Subfields of Shortened Generalized Reed Solomon Codes”, Designs
Codes and Cryptography, vol. 69, pp. 131–142 , 2013.

[4] J. Li. “The efficient implementation of Reed-Solomon high rate erasure
resilient codes”, in Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp. 1097-1100, 2005.

[5] L. Rizzo, “Effective erasure codes for reliable computer communication
protocols,” ACM Computer Communication review, vol. 27, pp. 24–36,
Apr. 1997.

[6] A. Al-Shaikhi and J. Ilow, “Packet Loss Recovery Codes Based on
Vandermonde Matrices and Shift Operator”, in Proc. IEEE International
Symposium on Information Theory, pp. 1058-1062, 2008.

[7] G.C. Cardarilli, A. Leandri, P. Marinucci, M. Ottavi, S. Pontarelli, M. Re,
A. Salsano, “Design of a fault tolerant solid state mass memory, IEEE
Transactions on Reliability”, vol. 52, pp. 476 – 491, 1999.

[8] J. S. Plank. “A Tutorial on Reed-Solomon Coding for Fault-Tolerance in
RAID-like Systems”. Software Practice & Experience, vol. 27, no. 9, pp.
995-1012, 1996.

[9] A. Fikes, Colossus, Successor to Google File System, Available Online:
http://google.com/en/us/university/relations/facultysummit2010/storage_
architecture_and_challenges.pdf

[10] S. Muralidhar et al., “F4: Facebook’s warm BLOB storage system,” 11th
ACM/USENIX Symp. Oper. Syst. Design Implement. (OSDI), 2014.

[11] J. Foust, “SpaceX's space-Internet woes”, IEEE Spectrum, vol. 56, no. 1,
Jan. 2019.

[12] M. Harris, “Tech giants race to build orbital internet”, IEEE Spectrum,
vol. 55, no. 6, June 2018.

[13] D. Li, X. Shen, N. Chen, and Z. Xiao, “Space-based information service
in Internet Plus Era”, Science China Information Sciences, vol.60, 2017.

[14] C. Fei, B. Zhao, W. Yu, and C. Wu, “Towards Efficient Data Collection
in Space-Based Internet of Things”, Sensors, vol. 19, 2019.

[15] E.G. Stassinopoulos and J.P. Raymond, “The space radiation environment
for electronics”, Proceedings of the IEEE, vol. 76, no. 11, Nov. 1988.

[16] M. Tali, R. G. Alía, M. Brugger, et al. “High-Energy Electron-Induced
SEUs and Jovian Environment Impact”, IEEE Transactions on Nuclear
Science, vol. 64, no. 8, Aug. 2017.

[17] S. López, “The Promise of Reconfigurable Computing for Hyperspectral
Imaging Onboard Systems: A Review and Trends”, Proceedings of IEEE,
March 2013.

[18] F. Siegle, T.Vladimirova, J. Ilstad, et al. “Availability analysis for satellite
data processing systems based on SRAM FPGAs”, IEEE Transactions on
Aerospace Electronic Systems, vol. 52, no. 3, pp. 977-989, 2016.

[19] F. L. Kastensmidt, L. Carro and R. Reis, “Fault-tolerance Techniques for
SRAM-based FPGAs”, New Haven, Springer 2006.

[20] Z. Gao, L. Yan, J. Zhu, R. Han, et al. “Radiation tolerant viterbi decoders
for on-board processing (OBP) in satellite communications,” in China
Communications, vol. 17, no. 1, pp. 140-150, Jan. 2020.

[21] M.K. Jaswal, D. Mallik, M. Kaur, “Radiation hardened SEU tolerant Reed
Solomon encoder and decoder”, in 3rd International Conference on Signal
Processing and Integrated Networks, SPIN 2016.

[22] G. C. Cardarilli, S. Pontarelli, M. Re, A. Salsano. “Concurrent error
detection in reed–solomon encoders and decoders”. IEEE Transactions on
Very Large Scale Integration Systems, vol. 15, pp. 842-846, 2007.

[23] S. Pontarelli, L. Sterpone, G.C. Cardarilli, et al. “Self Checking Circuit
Optimization by means of Fault Injection Analysis: A Case Study on Reed
Solomon Decoders”, in Proc. IEEE International On-line Testing
Symposium, pp. 194-196, 2007.

[24] J. K. Omura and J. L. Massey, “Computational method and apparatus for
finite field arithmetic,” U.S. Patent 4,587,627, May 6, 1986

[25] J. Lacan and J. Fimes, “Systematic MDS erasure codes based on
Vandermonde matrices,” IEEE Commun. Lett., vol. 8, no. 9, pp. 570–572,
Sep. 2004.

[26] M.S. Feali, A. Ahmadi, A. Hamidi, M. Ahmadi, “Fixed-point
arithmetic error analysis of sparse LU decomposition on FPGAs”, in Proc.
International Symposium on Signals, Circuits and Systems, 2017.

[27] G. Wu, Y. Dou, J. Sun, and G. D. Peterson, “A High Performance and
Memory Efficient LU Decomposer on FPGAs,” IEEE Transactions on
Computers, vol. 61, no. 3, pp. 366-378, 2012.

[28] M. K. Jaisval and N. Chandrachoodan, “FPGA based high performance
and scalable block LU decomposition architecture” IEEE Transactions on
Computers, vol.61, no. 1, pp.60-72, 2012.

[29] H. P. Oquendo, P. S. Pacheco, “Bounds for the 1-norm of the inverses of
some triangular matrices”, Linear Algebra and its Applications, vol. 495,
pp. 163-173, 2016.

[30] A. Ullah, P. Reviriego, J. A. Maestro, "An Efficient Methodology for On-
Chip SEU Injection in Flip-Flops for Xilinx FPGAs," in IEEE
Transactions on Nuclear Science, vol. 65, no. 4, pp. 989-996, April 2018.

