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Design of fractional evolutionary 
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Reactive power dispatch is a vital problem in the operation, planning and control of power system 
for obtaining a fixed economic load expedition. An optimal dispatch reduces the grid congestion 
through the minimization of the active power loss. This strategy involves adjusting the transformer 
tap settings, generator voltages and reactive power sources, such as flexible alternating current 
transmission systems (FACTS). The optimal dispatch improves the system security, voltage profile, 
power transfer capability and overall network efficiency. In the present work, a fractional evolutionary 
approach achieves the desired objectives of reactive power planning by incorporating FACTS devices. 
Two compensation arrangements are possible: the shunt type compensation, through Static Var 
compensator (SVC) and the series compensation through the Thyristor controlled series compensator 
(TCSC). The fractional order Darwinian Particle Swarm Optimization (FO-DPSO) is implemented on 
the standard IEEE 30, IEEE 57 and IEEE 118 bus test systems. The power flow analysis is used for 
determining the location of TCSC, while the voltage collapse proximity indication (VCPI) method 
identifies the location of the SVC. The superiority of the FO-DPSO is demonstrated by comparing the 
results with those obtained by other techniques in terms of measure of central tendency, variation 
indices and time complexity.

�e optimal reactive power dispatch (ORPD) problem in coordination with �exible alternating current transmis-
sion system (FACTS) devices became a topic of growing research interest for the cost-e�ective operation and 
security of power  systems1–5. �e aim of the ORPD is to attain a �ne tuning of the control variables for obtaining 
minimum transmission losses and acceptable voltage pro�les while reducing the operational cost. Several volt-
age controlling devices are integrated in the power systems for voltage pro�le improvement, such as tap chang-
ing  transformers6, shunt  capacitors7, static VAR compensators (SVC), thyristor-controlled series compensators 
(TCSC) and thyristor-controlled phase shi�ers (TCPS)8. However, optimal allocation of the FACTS and setting 
their control variables poses a complex constraint optimization problem. Furthermore, such optimization has 
considerable in�uence on the e�ectiveness in system performance, by providing loss reduction, voltage pro�le 
improvement, network load ability enhancement, increased voltage stability and fuel cost reduction through 
optimal power  �ow9–12.

Due to these reasons we verify a growing interest to reach these objectives, namely with the incorporation 
of FACTS in legacy power systems. In power systems, weak buses were identi�ed for the installation of FACTS 
through modal analysis. Moreover, the voltage collapse proximity indicator (VCPI) was tested for improving the 
voltage stability index. Optimal power �ow (OPF) problems were solved by means of analytical  methods13, genetic 
algorithms (GA)14,15, current  injection16 and power injection model of  FACTS17. Indeed, FACTS were installed at 
optimal locations to reduce voltage  deviation18, active power  loss19 and reactive power  control20, or for security 
purposes such as in  margin21 and  congestion22 management. Several computational techniques were proposed 
for the optimal allocation of FACTS, namely fuzzy  GA23, gravitational search  algorithms24 and population-
based techniques, such as di�erential  evolution25, arti�cial bee colony with  �re�y26, quasi-oppositional chemical 
reaction  optimization27, improved gravitational search  algorithm28, ant lion  optimizer29, whale optimization 

OPEN

1Department of Electrical and Computer Engineering, COMSATS University Islamabad, Wah Campus, Wah 
Cantt 47040, Pakistan. 2Department of Computer Science and Software Engineering, Pak-Austria Fachhochschule: 
Institute of Applied Science  and Technology, Haripur  22620, Pakistan.  3Department of Electrical and Computer 
Engineering,  COMSATS  University  Islamabad,  Attock  Campus,  Attock  43600,  Pakistan.  4Future  Technology 
Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, 
Yunlin 64002, Taiwan, ROC. 5Department of Electrical Engineering, Polytechnic Institute of Porto, 4200-465 Porto, 
Portugal. *email: rizwan.akhtar@fecid.paf-iast.edu.pk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-79838-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |          (2021) 11:593  | https://doi.org/10.1038/s41598-020-79838-2

www.nature.com/scientificreports/

 algorithm30, adaptive particle swarm  optimization31 and chaotic krill herd  algorithm32. �ese schemes have their 
own pros and cons and, therefore, it is important to explore the fractional swarming/evolutionary techniques, 
because these algorithms have not yet been exploited in the viewpoint of ORPD including FACTS.

In recent years, the implementation of fractional swarming and evolutionary computational strategies includ-
ing fractional calculus in the internal structure of the optimizers was proposed. We can cite the PSO with 
fractional order velocity, fractional particle swarm optimization (FPSO), fractional order Darwinian PSO (FO-
DPSO) and fractional order robotic  PSO33–38. �ese methods were successfully applied in several problems 
including robot path controllers  design39, image  processing40, classi�cation of hyperspectral  images41,42, feature 
 selection43, estimation of electromagnetic plane wave  parameters44, adaptation of parameter for Kalman �ltering 
 algorithms45, localization and segmentation of optic  disc46, design of discretized fractional order  �lters47 and 
land-cover  monitoring48. Beside these application, we �nd also the design of PID controllers for AVR  systems49, 
non-linear systems  identi�cation50, fractional robust control of coupled tank  systems51, continuous nonlinear 
observer using sliding mode  PID52 and design of power system stabilizer using GA-PSO53. �ese works point 
toward embedding the fractional calculus tools with the evolutionary strategies for optimization problems in 
the energy sector. �is study explores the application of FO-DPSO for ORPD incorporating FACTS in electric 
power networks.

In various contingency situations, weak buses provide substantial evidences that they are responsible for 
voltage collapse. We start by applying power �ow analysis and VCPI methods to detect the weak buses in the 
interconnected power system. �en, a new fractional version of the PSO, the FO-DPSO, is implemented as an 
e�cient solver for ORPD problems. �e algorithm involves the computation of control variables, including the 
values of SVC, TCSC, transformer tap positions and bus voltages, while satisfying the power demand. �e volt-
age deviation, line loss minimization and system overall cost are considered as the objective functions, while 
observing the FO-DPSO execution. �e highlights of the contribution can be summarized as:

• Novel application of the fractional swarming scheme for reliable solution of ORPD incorporating FACTS 
with optimization by means of the FO-DPSO.

• Application of the FO-DPSO on ORPD problems for reducing the overall cost, voltage deviation, and line 
loss minimization, while ful�lling of the load demand and operational constraints.

• Performance analysis of the FO-DPSO with di�erent fractional orders conducted with ORPD problems.
• Statistical analysis, in terms of histograms, probability plots and learning curves, demonstrating the consist-

ency, robustness, and stability of the proposed FO-DPSO.

�e paper is structured as follows. “Objective functions of ORPD problem with FACTS devices” section  for-
mulates the �tness function for ORPD. “Mathematical model of FACTS” Section describes the mathematical 
modeling of FACTS and its in�uence in power system. “Weak bus detection for optimal positioning of FACTS” 
Section  presents methods for the identi�cation of weak buses. “Proposed methodology” Section gives an over-
view of the designed FO-DPSO, pseudocode and work �ow diagram of the scheme. "Results and discussion" 
and "Statistical analysis" sections analyse several simulations with the proposed algorithm including a detailed 
comparison with other strategies and a statistical evaluation. Finally, the last “Conclusions” section  summarizes 
the main conclusions.

Objective functions of ORPD problem with FACTS devices
�e locations of the SVC and the TCSC can be found by using the VCPI and the load �ow analysis, respectively. 
�en the FO-DPSO is applied to optimize the control variables. �is includes the reactive power generation, tap 
changer settings, and size of the TCSC and SVC considering the system evaluation functions. �e expressions 
of the objective functions and constraints are given in the follow-up.

Fitness function for power loss minimization. �e �tness function for real power losses in power 
system is expressed as

where x1 and x2 are de�ned as:

In expressions (1) to (3) we have following variables and symbols:

(1)

Minimize FPL(x1, x2) = PLoss

=

R
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• F1(x1, x2) consists of the loss minimization function.
• R represents the total number of transmission lines.
• Vi and Vj are the sending and receiving end voltages, respectively.
• gr stands for the line conductance.
• δi and δjare the sending and receiving end voltage angles, respectively.
• x2 denotes the vector of control variable consisting of transformers tap positions 

(

T1,T2, . . . ,TNT

)

 , gen-

erators voltage magnitude 
(

VG1,VG2, . . . ,VGNPV

)

 , reactive power compensators 
(

QC1,QC2, . . . ,QCNC

)

 , 

static VAR compensators 
(

SVC1, SVC2, . . . , SVCNSVC

)

 , thyristor controlled series capacitors 
(

TCSC1,TCSC2, . . . ,TCSCNTCSC

)

.

• x1 denotes the vector of dependent variables that include the generator reactive power 
(

QG1,QG2, . . . ,QGNPV

)

 , 

load voltages 
(

VL1,VL2, . . . ,VLNL

)

 and line loading 
(

SL1, SL2, . . . , SLNL

)

.

�e allowable limits of the SVC and the TCSC are provided in Table 1. �e equality constraints are de�ned as:

�e inequality constraints consist of the transformer’s tap position settings, generators voltage and reactive power, 
and the SVC and TCSC boundaries as:

here, PGi
 and PDi

 are the ith bus active power supply and demand, respectively, QGi
 and QDi

 represent the ith bus 
reactive power supply and demand, respectively, NT , NTCSC , NSVC and Nc correspond to the number of trans-
formers, TCSCs, SVCs and �xed shunt capacitors, respectively.

Fitness function for voltage deviation ( VD). Keeping a steady voltage pro�le in power system for secure 
operation is a challenging objective. Mathematically, the reduction of ( VD) can be characterized as:

here, Vi is the voltage at ith and NBUS is number of buses.

Fitness function for overall operating cost minimization. �e �tness function for overall operating 
cost minimization combines two parts. �e �rst part incorporates the investment of FACTS devices, whereas 
the second part represents the cost due to energy loss. �erefore, the aim is not only to reduce the cost of energy 

(4)PGi − PDi − Vi
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∑
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Vj
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Bij sin
(
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)

+Gij cos
(
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(6)T
min
i ≤ Ti ≤ T

max
i , i = 1, 2, . . . ,NT

(7)Qmin
Gi ≤ QGi ≤ Qmax

Gi , i = 1, 2, . . . ,NPV

(8)V
min
Gi ≤ VGi ≤ V

max
Gi , i = 1, 2, . . . ,NPV

(9)Qmin
ci ≤ Qci ≤ Qmax

ci , i = 1, 2, . . . ,Nc

(10)SVC
min
i ≤ SVCi ≤ SVC

max
i , i = 1, 2, . . . ,NSVC

(11)TCSC
min
i ≤ TCSCi ≤ TCSC

max
i , i = 1, 2, . . . ,NTCSC

(12)VD =

NBus∑

i=1

|Vi − 1.0|

Table 1.  Boundaries of the control variables.

Control variables

IEEE 30 bus system IEEE 57 bus system

Max Min Max Min

SVC 0.20 0 0.20 0

TCSC 0.08 0 0.11 0

Transformers tap 1 0.9 1.05 0.9
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losses associated with the TCSC and SVC during minimization of power loss, but also to minimize the initial 
investment of these devices. Hence, the overall �tness function for cost minimization can be formulated as:

where

Herea�er, we �x the following values: cost due to energy loss 0.06 $/kWh, capital cost of shunt capacitor 1000$, 
hours in a day 24, days in a year 365. �e provided cost data for CEnergy is taken from  reference1,30. �e cost CFACTS 
of the FACTS devices is taken from the Siemens AG  database20 and is speci�ed as

where α , β , and γ are the cost coe�cients and S is the operating range of the FACTS devices in MVAR. �e limits 
and values can be seen in Tables 1 and 2.

Mathematical model of FACTS
�e solid-state devices provide an innovative concept in load �ow control through network branch, fault reduc-
tion and reduced line losses, while keeping desired level of  voltages30. �is can be implemented by governing the 
network parameters including the current, voltage, phase angle, series and shunt impedances by incorporating 
FACTS in the electric power network. From the family of the FACTS, the TCSC and the SVC are used as stunt 
and series compensating devices, respectively. �e mathematical model of TCSC and SVC along their in�uence 
a�er integrating into the network is discussed in the next sub-section.

TCSC modelling. �e TCSC provides a variable reactive impedance equation jXc that can be altered above 
and below of the original impedance line. �e power system static model equipped with TCSC between the mth 
to nth buses can be seen in Fig. 1. �e power �ow equations for the active and reactive components a�er cou-
pling the TCSC are expressed, respectively,  as30

likewise, the power (real and reactive) �ow equations from the nth to mth buses can be formulated as

(13)Coverall = CFACTS + CEnergy ,

CEnergy = PLoss · 0.06 · 1000 · 365 · 24

(14)CFACTS = αs2 + βs + γ

(15)
Pmn = + V

2

mGmn − VmVnGmn cos(δm − δn)

− VmVnBmn sin(δm − δn)

(16)
Qmn = − V2

mBmn − VmVnGmn sin(δm − δn)

+ VmVnBmn sin(δm − δn)

(17)
Pnm = + V

2

nGnm − VnVmGnm cos(δn − δm)

− VnVmBnm sin(δn − δm)

(18)
Qnm = − V2

nBnm − VnVmGnm sin(δn − δm)

+ VnVmBnm sin(δn − δm)

Table 2.  Cost coe�cients TCSC and SVC.

FACTS devices α β γ

TCSC 0.0015 − 0.7130 153.75

SVC 0.0003 − 0.3051 127.38

Z=R+jX

jBsh

bus-m bus-njXTCSC

jBsh

Figure 1.  Static model of the TCSC.
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where the susceptance and conductance of the transmission line are given by Bmn =
−X−XTCSC

R2+(X−XTCSC)2
 and 

Gmn =
R

R2+(X−XTCSC)2
 , respectively.

�e modi�ed Ybus equation matrix a�er the installation of the TCSC between the buses of the network is 
given by:

Here, �ysr , is the change in admittance value a�er the installation of TCSC. �ese new entries of the line reac-
tance a�ect the branch data due to the presence of TCSC.

SVC modelling. �e SVC can inject and absorb reactive power to and from the bus bar by coupling di�er-
ent topologies of inductors and capacitors in shunt. �e reactive power �ow is governed by the phase-controlled 
operation of thyristor valve to quickly remove or add parallel connected capacitor and reactors. �e equivalent 
model of the SVC that can also be implemented as a parallel integrated variable susceptance BSVC at any given 
bus-k is depicted in Fig. 2. �e reactive power �ow from the SVC into the bus can be written  as30:

where V is the amplitude of bus voltage where the compensator is installed. �e modi�ed admittance ( Ybus ) 
matrix a�er installation of the SVC at a given bus is expressed as:

Here, �Yshunt , is the shunt admittance of SVC. �ese modi�ed values in the admittance matrix due to the SVC 
a�ects the bus data.

Weak bus detection for optimal positioning of FACTS
�e main aim of a weak bus recognition is to obtain the best possible position of the FACTS devices for provid-
ing proper reactive power provision at the suitable locations. �is action a�ects the natural characteristics of the 
electrical transmission lines, provides better voltage pro�le, increases the power transfer capacity, reduces line 
losses and solves problems related to voltage  instability31. �e method used in the present work for weak bus 
identi�cation involves the load �ow analysis through single line diagram.
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
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




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Figure 2.  Static SVC model.
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Voltage collapse proximity indication (VCPI). �e maximum power transfer theorem provides the 
basis of the VCPI  technique30 for a line. Consider a constant voltage source Vs with internal impedance Zs∠θ that 
is feeding a load with impedance ZL∠ϕ . According to this theorem, the maximum power �ow occurs when the 
ratio of impedances ZL/Zs equals 1. �is result is used as voltage collapse predictor.

In order to simplify the problem and to maintain the accuracy level it is useful to keep ϕ constant while con-
sidering a variable load impedance. For each increase of the load demand, it results that the current increases 
and ZL decreases. �ese combined e�ects further increase the line drop and decrease the voltage at the receiving 
end as follows:

For

the line power loss is given by

and the receiving end power by

�e maximum power Pr can be attained by applying the boundary conditions (∂Pr/∂ZL) = 0 , which implies that 
ZL/Zs = 1 . By replacing this in Eq. (27), the maximum power transfer capacity results

the line maximum power transfer forms the conceptual basis of VCPI and, therefore, it can be written as

with a value that should be lower than one for a stable system. When this value is approaching the unity, for any 
bus, it means that it is getting closer to instability. �is bus is identi�ed as weak bus and designated as the best 
possible location for the SVC installation.

Load flow analysis. �e reactive power �ow can be computed and those lines that transfer the higher 
value can be identi�ed. �e buses where the branch ends are referred as weak buses and the TCSC are installed 
between such buses.

�e procedural steps for �nding the TCSC locations are as follow: 

1. Load bus and line of the test system.
2. Generate the Y-bus matrix.
3. Compute the angle and voltage of each bus using the Newton Raphson technique.
4. Compute the reactive power (Q) and active power (P) in each line using load-�ow technique.
5. Pick the line/branch with maximum Q.
6. Conditional check: If the designated branch is a slack bus (reference bus), or if it is linked to a generator 

(generator bus), then repeat step 5, else switch to step 7.
7. �e branch end-point or bus is designated for the position of the TCSC.

Proposed methodology
�e proposed methodology includes two phases. In the �rst, an introductory overview of the FO-DPSO is pre-
sented. In the second phase the computational strategy in terms of the processing block structure and pseudocode 
are provided for ORPD incorporating FACTS. �e overall work�ow schematic of the presented technique is 
depicted in Fig. 3. �e idea is to develop a technique based on the FO-DPSO for optimal sizing of the SVC and 

(22)I =
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TCSC with appropriate placement in the inter connected power system, while minimizing the overall operational 
cost, power loss and voltage deviation of the IEEE standard test systems.

Introduction of the FO-DPSO. �e Darwinian PSO (DPSO) is an evolutionary mechanism that improves 
the standard PSO by increasing its capability to escape from local optimum either by natural assortment, or by 
persisting those with high �tness values. �e performance of DPSO is superior to the one exhibited by the PSO, 
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but has the disadvantage of a higher computational complexity. Pires et al. combined the DPSO with the con-
cept of fractional calculus (FC) to improve learning ability of the DPSO mechanism by designing the Fractional 
Order Darwinian PSO (FO-DPSO)54.

�e development of FC and its application in engineering problems has proved its importance due to heredity 
and long memory e�ects in many phenomena and  systems36. �e integro-di�erential operator de�ned by the 
Grünwald-Letnikov, Caputo and Riemann–Liouville formulations are classical expressions that are adopted in 
science and engineering. �e Grüwald-Letnikov interpretation of the fractional derivative can be expressed  as35

herea�er, h is sampling interval, α denotes the fractional order and Ŵ stands for the Euler gamma function. In 
the present study we adopt the discrete time approximation

where T corresponds to the sampling period and r is the truncation order. Considering r = 4 , that is, adopting 
the �rst four terms for the expression (5.4.2) of di�erential derivatives, the velocity update equation for FO-DPSO 
is transformed from that of conventional PSO and is given for nth particle as:

and position update is given as:

where x is the position vector of nth particle with velocity v, t is the �ight index, and �1 and �2 are the personal 
best and global best acceleration constant, respectively. Moreover, S represents the swarm consisting of m par-
ticles, i.e., x1, x2, xm , r1 and r2 are random numbers between 0 and 1, and G and L are the global and local best 
position vector in the swarm, respectively.

Equation (32) shows that the canonical PSO is a particular scenarios of the FO-DPSO with order of derivative 
α = 1 , i.e., without “memory”. In the literature, there is no speci�c method to �nd out the best fractional orders 
α . �e searching of the appropriate fractional order α for optimal performance of the fractional evolutionary/
swarming techniques for a speci�c objective function is usually conducted by means of a stochastic procedure, 
i.e., the best performance of order α based on the statistics. �e interpretation of the fractional order α used in 
the optimization using the fractional PSO and a possible justi�cation through physics is always a complex task. 
�e traditional practice is to adopt the Monte-Carlo simulations-based statistics to select the order α that perform 
best on a problem-oriented speci�c �tness function.

In addition, the results depend on the fractional order α depending on the problem and function convergence 
rate varies for di�erent α and each scenario.  In55, the convergence rate with respect to α was studied. In this 
case, the best results were obtained at lower orders for di�erent test functions.  In35, a faster convergence rate was 
attained at α in the range [0.5, 0.8]. In spite of these di�culties, all studies endorsed that adopting a fractional 
order provides better results in comparison with the integer case. In addition, each optimization scenario may 
have a di�erent optimal value of α . A�erwards, the FO-DPSO is adopted as a signi�cant fractional evolutionary 
strategy considering the best α , that is evaluated and selected using Monte-Carlo simulations-based statistics 
for each objective function.

(30)Dα
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h→0
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1

hα

∞
∑
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Table 3.  Parameter settings of the FO-DPSO algorithm.

Parameters IEEE 30 Bus (19 variables) IEEE 57 Bus (25 variables) IEEE 118 Bus (80 variables)

Particle dimensions or variables 19 25 80

Swarm, set of particles 50 50 50

Fractional order 0.6 0.6 0.3

Inertia weight 0.9–0.2 0.9–0.2 0.9–0.2

Global acceleration factor 0.1–0.9 0.1–0.9 0.1–0.9

Local acceleration factor 0.9–0.1 0.9–0.1 0.9–0.1

Iterations or cycles for statistics 80 180 50

Vmax 2 2 2



9

Vol.:(0123456789)

Scientific Reports |          (2021) 11:593  | https://doi.org/10.1038/s41598-020-79838-2

www.nature.com/scientificreports/

Application of FO-DPSO for ORPD incorporating FACTS. �e key modi�cation adopted in the FO-
DPSO is the velocity update in the standard PSO since the fractional derivative is included in the algorithm. �e 
global optimization e�ectiveness of FO-DPSO is explored for �nding the best size of the TCSC, SVC, tap values 
and generators reactive power output in the IEEE-30, IEEE-57 and IEEE-118 buses power systems, while reduc-
ing the line losses, voltage deviation and overall cost.

�e steps for the evaluation of control variables using FO-DPSO are given in Algorithm 1, and the parameter 
settings of FO-DPSO are documented in Table 3.
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Results and discussion
�e validity and applicability of the FO-DPSO is analyzed for the reactive power scheduling in the IEEE 30, IEEE 
57 and IEEE 118 buses while incorporating the SVC and TCSC devices at weak buses. We tested the performance 
of designed fractional order DPSO technique on a consistent similar strategy as reported in recent  articles35,55 
where the fractional order is taken between 0 and 1 (i.e., [0.1, 0.2,..., 1.0]). �e theoretical and simulation 
analyses are presented for 10 values of the fractional order including the integer order case, i.e., α = 1, where the 
fractional DPSO transformed to standard DPSO. �e search for the fractional order for optimal performance 
of fractional evolutionary/swarming technique is normally conducted on stochastic procedure, namely on the 

Figure 4.  Learning curves for test case 1 using fractional order α = [0.1, 0.2, . . . , 1.0] , (a) line loss 
minimization, PLoss (b) voltage deviation, VD and (c) overall cost, Coverall.
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Table 4.  Description of the test case 1.

Index Data Quantity Description

1 Generating units 6 At buses 1, 2, 5, 8, 11 and 13

2 Transformers 4 At branch 4–12, 6–10, 6–9 and 28–27

3 Transmission lines 41 –

4 Slack/reference bus 1 Bus number 1

5 Base MVA – 100

6 QD – 1.262 MVAR

7 PD – 2.834 MW

8 Shunt capacitors 2 At buses 10th and 24th

Table 5.  Results generated by the FO-DPSO and other schemes for ORPD with FACTS during case 1.

Control Reported Proposed

Variable SPSO31 APSO31 EPSO31 Fuzzy-DE23 GWO30 DE23 QODE30 QOGWO30 WOA30 FO-DPSO

QG (2) 0.6 0.0 0.6 0.0 − 0.0108 − 0.5090 0.3535 0.0339 0.6 0.7494

QG (5) 0.0 0.0 0.0 0.6 − 0.1151 − 0.1307 0.2365 − 0.0027 0.6250 0.4392

QG (8) 0.0 0.0 0.0 0.25 0.1228 0.3955 0.4462 0.2907 0.5 0.3879

QG (11) 0.4 0.4 0.4 0.0416 0.0797 0.3031 0.3497 0.0515 0.0029 0.2656

QG (13) 0.0 0.0 0.0 0.0 0.2117 0.0474 0.2460 0.2342 0.0177 0.8470

T (11) 0.9 0.9 0.9439 0.9787 0.9 0.9021 0.9012 0.9 0.9 0.9889

T (12) 0.9 0.9501 0.9 0.9 0.9295 0.9658 0.9514 0.9452 0.9448 1.0072

T (15) 0.9 0.9180 0.9 0.9370 0.9 0.9007 0.9004 0.9 0.9 0.9974

T (36) 0.9223 0.9330 0.9326 0.9157 0.9289 0.9211 0.9278 0.9271 0.9285 0.9793

TCSC (1) 0.1463 (25) 0.1463 (25) 0.1463 (25) 0.0 0.08 (25) 0.08 (25) 0.0618 (25) 0.08 (25) 0.08 (25) 0.1113

TCSC (2) 0.0419 (41) 0.0419 (41) 0.0419 (41) 0.0 0.08 (41) 0.08 (41) 0.1588 (41) 0.08 (41) 0.08 (41) 0.2734

TCSC (3) 0.1049 (28) 0.1049 (28) 0.1049 (28) 0.0 0.08 (28) 0.0797 (28) 0.1999 (28) 0.08 (28) 0.08 (28) 0.0901

TCSC (4) 0.1388 (5) 0.1388 (5) 0.1368 (5) 0.0 0.08 (5) 0.08 (5) 0.0116 (5) 0.08 (5) 0.08 (5) 0.1348

SVC (1) 0.0 (7) 0.0 (7) 0.0 (7) 0.0 0.0368 (22) 0.0663 (22) 0.0797 (22) 0.0589 (22) 0.0524 (22) 0.1999

SVC (2) 0.0 (15) 0.0 (15) 0.0 (15) 0.0 0.1707 (04) 0.1492 (04) 0.08 (04) 0.12 (04) 0.1544 (04) 0.2

SVC (3) 0.0 (17) 0.0 (17) 0.0 (17) 0.0 0.20 (28) 0.1498 (28) 0.0789 (28) 0.20 (28) 0.2 (28) 0.2

SVC (4) 0.0840 (21) 0.0768 (21) 0.0 (21) – 0.0049 (20) 0.0225 (20) 0.08 (20) 0.0091 (20) 0.0145 (20) 0.2

PLoss 0.05198 0.05092 0.05049 0.04745 0.04929 0.04881 0.0528 0.06331 0.06333 0.04683

Coverall 2.7324E+06 2.6767E+06 2.6541E+06 2.494E+06 2.5910E+06 2.5658E+06 2.7755E+06 3.3279E+06 3.3289E+06 2.4528E+08

Table 6.  Comparative results of loss and overall cost reductions.

Methods PLoss (p.u) Coverall (USD) Loss reduction (p.u) Cost reduction (USD)

Base case 0.0711 3737016 – –

Fuzzy-DE23 0.04745 2.49E+06 0.0236 1.24E+06

SPSO31 0.05198 2.73E+06 0.0191 1.00E+06

PSO31 0.05092 2.68E+06 0.0202 1.06E+06

EPSO31 0.05049 2.65E+06 0.0206 1.08E+06

DE23 0.04881 2.57E+06 0.0223 1.17E+06

QODE30 0.0528 2.78E+06 0.0183 9.62E+05

GWO30 0.04929 2.59E+06 0.0218 1.15E+06

QOGWO30 0.06331 3.33E+06 0.0078 4.09E+05

WOA30 0.06333 3.33E+06 0.0078 4.08E+05

Proposed 0.04683 2.45E+08 0.0243 1.28E+06
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basis of statistics. Indeed the selection of α with a clear justi�cation through physics is always di�cult and Monte-
Carlo statistics are used to select the order which performs best. To evaluate the optimization robustness of the 
FO-DPSO, a statistical analysis is performed for 100 trials during all test cases.

Test case 1. As a �rst case, the IEEE 30 bus system is adopted with the numerical values documented in 
Table 4. �e initial operating cost without reactive power planning is 3.737016 × 10

6USD and the active power 
loss is 7.11 MW. Weak buses are identi�ed through the power �ow analysis method and according to that crite-
rion the TCSC are installed in the 5th, 28th, 25th, and 41th lines. Using the VCPI method, the SVC are installed 
at the 4th, 20th, 22th and 28th buses. A�er that, the FO-DPSO is implemented for computing the optimal set-
tings of the SVC, TCSC, tap changer position and reactive power generation, while considering all the �tness 
functions. �e number of particles is taken as 80. �e learning behavior of the FO-DPSO for line loss PLoss mini-
mization using the orders α = [0.1, 0.2, . . . , 1.0] is depicted in Fig. 4a, where the minimum loss is obtained at α = 
0.6. �e learning behavior for the voltage deviation and overall cost function are shown in Fig. 4b,c, respectively. 
�e optimized settings of control variables including reactive power generation, tap value, size of the TCSC and 
SVC by mean of the FO-DPSO, are listed in Table 5 along with di�erent optimization methods. �e results of the 
FO-DPSO can be compared with those exhibited by other schemes including the  GWO30,  WOA30,  QOGWO30, 
 DE23, fuzzy  DE23,  SPSO31,  APSO31,  EPSO31 and  QODE30 algorithms. �e corresponding results are documented 
in Table 5, where one can observe that the FO-DPSO evaluated for the minimum losses, and compares well with 
the other optimization schemes.

�e FO-DPSO computes real power loss of 0.04683 p.u and an operating cost as 2.4528 × 10
6 USD, that is 

inferior values with 0.0243 p.u and 1.284216 × 10
6 USD less than the base case, respectively. �e comparative 

analysis for the line loss and operating cost reduction in relation with the other cases can be seen in Table 6. We 
observe that the strategy for ORPD incorporating FACTS provides a better solution than the other optimization 
mechanisms in terms of minimum losses and minimum overall operating cost.

To highlight the optimization strength of presented technique, we have also applied fractional evolutionary 
computing FO-DPSO to solve the ORPD problem in IEEE 30 bus system with 13 control variables without FACTS 
devices. �e results are documented in Table 7. We verify that the results yielded by FO-DPSO are superior to 
the state of art solvers reported in literature including MICA-IWA56,  PSO57,  MFO56,  HSA57,  ICA56,  GA58,  IWO59, 
 DE57,  GWO60 and  NMFLA61. �e line loss reduction from presented scheme as compared to counterparts can 
be seen in Table 8 where it is endorsed that FO-DPSO is the best.

Test case 2. �e second test case addresses the PLoss of the IEEE 57 bus system. �is standard power system 
comprises 80 transmission lines with the tap changing transformers installed at seventeen links, 7 generating 
stations synchronized at buses 1, 2, 3, 6, 8, 9 and 12, and three shunt capacitors. Bus# 1 represents the slack bus, 
that is the reference bus. �e cumulative power demand for the real and reactive load is 12.5170 MW and 3.3570 
MVAR, respectively, at base power of 100 MVA. Initially, the cost of operation is 1.471 × 10

7 USD and the PLoss 

Table 7.  Comparative study for the 30 bus network with 13 decision variables without FACTS.

Control Variables MICA-IWO PSO MFO HSA ICA GA IWO DE GWO NMFLA FO-DPSO

V1 1.07972 1.0313 1.1 1.0726 1.0785 1.0721 1.06965 1.095319 1.1 1.1000 1.01

V2 1.07055 1.0114 1.0946 1.0625 1.06943 1.063 1.06038 1.085946 1.096149 1.0945 1.04231

V5 1.04836 1.0221 1.0756 1.0399 1.06943 1.0377 1.03692 1.062628 1.080036 1.0753 1.0401

V8 1.04865 1.0031 1.772 1.0422 1.04714 1.0445 1.03864 1.065076 1.080444 1.0773 1.0956

V11 1.07518 0.9744 1.0868 1.0318 1.03485 1.0132 1.02973 1.0266 1.093452 1.1000 1.0110

V13 1.07072 0.9987 1.1 1.0681 1.07106 1.0898 1.05574 1.014253 1.1 1.1000 1.0491

T6-9 1.03 0.97 1.04110 1.01 1.08 1.0221 1.05 1.017796 1.04 1.06 1.0610

T6-10 0.99 1.02 0.95007 1 0.95 0.9917 0.96 0.979277 0.95 0.92 0.9295

T4-12 1 1.01 0.95541 0.99 1 0.9964 0.97 0.977843 0.95 0.95 0.9665

T27-28 0.98 0.99 0.95754 0.97 0.97 0.971 0.97 1.008938 0.95 0.96 0.9555

Qc3 − 7 17 7.1032 34 − 6 5.3502 8 20.22359 12 0.08 8.4272

Qc10 23 13 30.796 12 36 36 35 9.584327 30 0.26 25.1542

Qc24 12 23 9.8981 10 11 12.4175 11 13.02992 8 0.10 9.2331

PLoss(MW) 4.846 5.8815 4.608 5.109 4.849 4.8775 4.92 4.888081 4.613 4.6118 4.606

Table 8.  PLoss reduction for the 30-bus model with MFO, MICA-IWO, GA, HSA, GWO, DE, NMSFLA having 
13 decision/control variables without FACTS.

Items Initial MICA-IWO GA HSA MFO GWO DE NMSFLA FO-DPSO

PLoss(MW) 5.663 4.846 4.8775 5.109 4.608 4.613 4.888080765 4.6118 4.606

Loss reduction (%) – 14.44 13.87 9.78 18.64 18.54 13.68 18.56 18.66
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is 27.99 MW without ORPD. �e SVC are installed at the 23rd , 38th, 39th, and 48th, buses, that are identi�ed 
as weak buses by means of the VCPI method. �e TCSC are installed in 13th, 37th, 57th, and 61st lines that are 
found as the weak links based on the power �ow technique. �e FO-DPSO is tested to evaluate the best values 
of the dependent variables, namely the size of the SVC and TCSC along with the tap changer position and reac-
tive power generation while reducing the network evaluation �tness functions including PLoss , VD and Coverall 
minimization. �e behavior of FO-DPSO using di�erent di�erential orders α = [0.1, 0.2, . . . , 1.0] can be seen 
in Fig. 5a for the line loss PLoss , in Fig. 5b for the voltage deviation VD , and in Fig. 5c for the overall cost Coverall . 

Figure 5.  Learning curves for test case 2 using fractional order α = [0.1, 0.2, . . . , 1.0] , (a) line loss 
minimization, PLoss , (b) voltage deviation, VD and (c) overall cost, Coverall.
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�e superiority of the new approach is again endorsed when comparing the results of the FO-DPSO and those of 
the  SPO31,  APSO31,  EPSO31,  DE23,  QODE30 and  GWO30 algorithms. �e results are listed in Table 9. �e system 
operating cost and the real power loss reduction for di�erent solvers is documented in Table 10 that highlights 
the signi�cance of the FO-DPSO as both quantities are considerably smaller than those obtained when adopting 

Table 9.  Comparison of the FO-DPSO versus other schemes for ORPD with FACTS during case 2.

Control variables

Reported Proposed

QODE30 DE23 EPSO31 APSO31 GWO30 SPSO31 FO-DPSO

Qg(2) − 0.0011 0.1504 0.5 0.1213 − 0.1258 0.5 0.6

Qg(3) 0.0348 0.2594 0.6 0.5754 0.1785 0.6 0.25

Qg(6) 0.1377 0.2239 0.25 0.25 0.1926 0.25 − 0.09

Qg(8) 0.1816 1.8451 0.2 0.2 − 0.103 0.2 0.5713

Qg(9) 0.0364 − 0.0129 0.09 0.09 0.0049 0.09 0.0529

Qg(12) 1.2359 1.3528 0 0 0.0026 0 1.475

T(19) 0.903 0.92 1.1 0.9 0.9145 0.9 0.903

T(20) 0.9135 0.9109 0.9 0.9152 0.9041 0.9 0.9

T(31) 1.0203 1.008 1.1 1.0892 1.0385 1.0128 1.05

T(35) 1.0203 1.008 1.1 0.9 1.0385 0.9 0.912

T(36) 0.9531 0.9391 0.9 0.9474 0.9263 0.9 0.9

T(37) 1.009 1.0498 1.0109 1.0281 1.0336 1.0203 1.05

T(41) 0.9037 0.9019 0.9 0.9021 0.9 0.9 0.9

T(46) 0.9871 0.9152 1.1 0.9 0.9058 0.9 0.9034

T(54) 0.9481 0.9281 0.9 0.9558 0.9109 0.9 0.9001

T(58) 0.9008 0.9003 0.9 0.9 0.9002 0.9 0.9

T(59) 1.0496 1.0483 0.9 0.9 1.05 0.9 1.05

T(65) 0.9004 0.9095 0.9 0.9456 0.9 0.9 0.9

T(66) 0.9123 0.9156 1.1 0.9274 0.9051 0.9 0.911

T(71) 0.9123 0.9156 1.1 0.9274 0.9051 0.9 0.9

T(73) 1.0394 1.0446 1.1 1.1 1.0371 1.1 1.005

T(76) 1.0488 0.9673 0.9 1.0357 0.9905 0.9 0.9

T(80) 0.9245 0.9044 0.9 0.9 0.9024 0.9 0.913

TCSC(1)-37 0.0941 0.0888 0.0331 0.0331 0.0242 0.0331 0.11

TCSC(2)-13 0.94 0.071 0.0334 0.0304 0.0115 0.0304 0.071

TCSC(3)-61 0.11 0.1098 0.0163 0.0163 0.11 0.0163 0.107

TCSC(4)-57 0.109 0.1073 0.041 0.041 0.11 0.041 0.11

SVC(1)-23 0.1794 0.1982 0 0 0.2 0 0.2

SVC(2)-48 0.1995 0.1939 0 0 0.2 0 0.2

SVC(3)-38 0.1954 0.1981 0.4397 0.5099 0.1999 0.3945 0.2

SVC(4)-39 0.193 0.1792 – – 0.1986 – 0.2

Ploss 0.2097 0.2097 0.2275 0.2231 0.2097 0.221 0.206

Coverall 1.1024E+7 1.1021E+7 1.203E+7 1.179E+7 1.102E+7 1.168E+7 1.08E+07

Table 10.  Comparative results of the loss and overall cost reduction.

Methods incorporating FACTS PLoss (p.u) Coverall(USD) Loss Reduction (p.u) (A1 - A) Cost reduction, USD (B1 - B)

Base case 0.27E−01 (A1) 1.47E+07 (B1) – –

SPSO31 2.21E−01 1.17E+07 5.89E−02 3.03E+06

EPSO31 2.28E−01 2.28E−01 1.20E+07 5.24E−02

APSO31 2.23E−01 2.23E−01 1.18E+07 5.68E−02

DE23 2.10E−01 2.10E−01 1.10E+07 7.02E−02

GWO30 2.10E−01 2.10E−01 1.10E+07 7.02E−02

QOGWO30 2.07E−01 2.07E−01 1.09E+07 7.27E−02

QODE30 2.10E−01 2.10E−01 1.10E+07 7.02E−02

FO-DPSO 2.06E−01 2.06E−01 1.08E+07 7.39E−02
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other optimization strategies. Additionally, from these results, we verify that the PLoss , VD and Coverall converge 
smoothly and with a less iterations for the FO-DPSO with respect to the other optimization algorithms.

Test case 3. �e 3rd test case consists of the standard IEEE 118 bus network for validating the FO-DPSO 
in the case of large scale power systems. �is system contains 186 lines, 9 transformer, 64 load buses, and 54 
generator buses. Here, the system restrictions and settings were derived  from57. Bus# 1 is considered as the slack/
reference bus and the base power is 100 MVA. �e FO-DPSO is tested to evaluate the optimum values of the 
dependent variables while reducing the �tness functions. �e e�ectiveness of FO-DPSO is again endorsed by 

Table 11.  Comparison of control variables for test case 3 with OGSA, WCA, NGBWCA from proposed 
technique.

Variable OGSA WCA NGBWCA FO-DPSO Variable OGSA WCA NGBWCA FO-DPSO

Generator voltage

V1 1.0388 1 1.0002 0.9655 V100 1.0032 1.0029 1.0021 1.0846

V4 0.9872 1.0194 1.0202 1.0378 V103 0.9843 1.0502 0.9998 0.9677

V6 0.9925 0.9996 0.9936 1.1 V104 0.988 0.9872 0.9852 1.0735

V8 0.9905 0.9812 0.9771 1.069 V105 1.0003 0.9992 0.9994 1.079

V10 0.9919 1.0031 1.0051 1.0426 V105 1.0033 1.0136 1.0198 1.0974

V12 1.0077 1.0131 1.012 1.0758 V110 1.004 1.0043 1.0152 1.1

V15 1.0034 0.9859 0.9853 1.0209 V111 1.0331 1.0247 1.0241 1.058

V18 0.9773 1.0575 1.0557 1.0103 V112 0.9877 1.0023 1.0023 0.9995

V19 1.0324 1.0203 1.019 1.0595 V113 0.9705 0.9825 0.9951 1.0211

V24 1.0285 1.0201 1.0197 1.0548 V116 1.027 0.9976 0.997 1.0829

V25 0.9705 1.0246 1.0108 0.9978 Transformer tap ratio

V26 1.0175 0.9883 0.9954 1.0031 T8 0.9841 0.9956 1.0484 1.0792

V27 1.0117 1.0164 1.0204 1.0695 T32 1.0377 0.9712 0.9511 0.9973

V31 1.0014 0.9976 0.999 1.0919 T36 0.9573 1.034 1.0312 1.075

V32 0.9988 0.9913 0.9877 1.0965 T51 0.9952 0.9817 0.9811 0.9954

V34 1.0158 1.0027 1.0211 1.0962 T93 0.9622 1.0212 1.0224 0.9888

V36 0.9916 0.9687 0.9656 0.9819 T95 1.032 0.9976 0.9972 1.0071

V40 1.0132 1.0002 1.0031 1.0294 T102 1.0137 1.0021 1.0249 1.005

V42 0.9892 1.0115 1.0012 1.0616 T107 0.9795 0.9679 0.9621 0.9904

V46 1.0607 1.0531 1.0512 1.0384 T127 0.9985 1.0212 1.0102 1.0309

V49 1.0031 1.0026 1.0001 1.0154 Capacitor banks

V54 1.0236 1.0231 1.0227 1.0357 QC-5 − 0.2403 − 0.1427 − 0.1413 0.9772

V55 1.0176 1.0346 1.0323 0.9959 QC-34 0.0371 0.0215 0.0212 0.9658

V56 1.0149 1.0131 1.0139 1.0802 QC-37 − 0.0437 − 0.1390 − 0.1319 0.9804

V59 1.0584 1.0099 1.0084 1.0275 QC-44 0.0375 0.0712 0.0781 18.1179

V61 0.9829 1 1.0001 0.982 QC-45 0.04 0.0452 0.0459 − 24.2592

V62 1.0562 1 1.0027 1.0944 QC-46 0.0749 0.0549 0.0711 − 7.7363

V65 0.9724 0.9694 0.9681 1.0755 QC-48 0.0796 0.1076 0.1002 22.8106

V66 1.002 1.0175 1.0143 1.0852 QC-74 0.0883 0.0084 0.0082 − 4.3584

V69 0.9827 1.0158 0.9995 1.091 QC-79 0.1218 0.0197 0.019 − 9.5234

V70 0.9997 0.9814 0.9721 1.0043 QC-82 0.038 0.1435 0.1417 28.0814

V72 1.0123 0.991 0.9987 1.0104 QC-83 0.0627 0.0813 0.0921 1.4103

V73 0.996 1.0313 0.9946 1.0785 QC-105 0.083 0.1146 0.116 6.8655

V74 1.0232 1.0002 1.0212 1.0794 QC-107 0.0459 0.0279 0.0242 − 27.6663

V76 1.0015 1.0097 1.0024 1.05 QC-110 0.0221 0.0276 0.0257 − 27.6663

V77 1.0124 1.03 1.0122 1.0357

V80 1.0226 1.0124 0.9998 1.0905

V85 1.0117 1.0112 1.0205 1.1

V87 1.0058 0.9997 1.0002 1.0159

V89 1.0076 1.0087 1.0002 1.0497

V90 0.9753 1.0145 1.0182 0.9941

V91 0.9836 0.9934 0.9879 1.0182 OGSA WCA NGBWCA F0-DPSO

V92 1.0272 0.9994 0.9999 0.9747

V99 0.9612 1.0712 1.0672 1.0647 Ploss , MW 157.72 165.71 152.31 132.5
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mean of a comparative analysis between the results of the proposed technique and those provided by the OGSA, 
WCA and NGBWCA 56,57. �e results are documented in Table 11, one may observe that FO-DPSO achieved 
losses inferior than those provided by other optimization mechanisms. �e setting of the control variables for 
the FO-DPSO and other optimization strategies can also be seen in Table 11. �e comparative learning behavior 
of the FO-DPSO using di�erent di�erential orders α = [0.1, 0.2, . . . , 1.0] can be seen in Fig. 6a for line loss (i.e 
Ploss ), in Fig. 6b for voltage deviation (i.e., VD ) and in Fig. 6c for overall cost (i.e., Coverall ). We can verify again 
that, all the minimization functions converge for a smaller number of iterations and evolve more smoothly for 
the FO-DPSO with respect to other methods.

Figure 6.  Learning curves for test case 3 (IEEE 118 bus system) using fractional order α = [0.1, 0.2, . . . , 1.0] (a) 
line loss minimization, PLoss , (b) voltage deviation, VD and (c) overall cost, Coverall.
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It is important to mention that the statistical analysis has been performed for 100 independent trials and for 
each independent run the population (i.e., the swarm), is initialized with pseudo random real numbers between 
the allowable bounds of decision variables. Di�erent initial populations/swarms are used for each independent 
trial and the robustness of FO-DPSO is endorsed by the optimization of the control variable with reasonable 
accuracy for each trail. �e di�erence in performances depicted by Figs. 4, 5 and 6, is due to some better initial 
population which is completely formulated on random process. �erefore, the main concern/intention for multi-
ple runs is to prove/certify the reliability, e�ectiveness and stability of the FO-DPSO on standard ORPD problems.

Statistical analysis
In this section, a comprehensive statistical investigation is conducted to demonstrate consistent implications 
of the FO-DPSO evolution for all the test cases and the three �tness functions of ORPD problems. �e per-
formance of the FO-DPSO with fractional order α = 0.6 revealed the best results on average among the set 
α = [0.1, 0.2, . . . , 1.0] for the IEEE 30 and IEEE 57 bus systems, while fractional order α = 0.3 for the IEEE 118 
bus system. �erefore, a sample of 100 independent runs are conducted with the FO-DPSO using α = 0.6 for the 
test cases 1 and 2, while α = 0.3 for the test case 3, considering PLoss , VD and Coverall minimization functions as 
the objectives of ORPD system incorporating FACTS. �e statistics from the three �tness measures, in term of 
stair plot, probability metric for box plot, cumulative distribution function (CDF), histogram, and convergence 
curves for the best, worst and mean gauges, are demonstrated in Figs. 7, 8 and 9, Figs. 10, 11, 12 and Figs.13, 
14 and 15 for the IEEE 30, 57 and 118 bus networks, respectively. �e minimum value of the �tnesses in all the 
test cases are depicted in Figs. 7a, 8a, 9a, 10a, 11a, 12a, 13a, 14a and 15a. �e probability plots for the CDF are 
illustrated in Figs. 7b, 10b and 13b showing that 80% of the independent �ights yield line losses inferior to 4.85 
MW, 20.4 MW and 132.7 MW for the test cases 1, 2 and 3, respectively. �e histograms represented in Figs. 7c, 
8c, 9c, 10c, 11c, 12c, 13c, 14c and 15c reveal that most of the autonomous simulations of the FO-DPSO yield 
minimum values of the three �tness functions. �e values of box plots in Figs.  7d, 10d and 13d demonstrate 
that the median of line losses is approximately 4.8 MW and 20.3 MW for the three test cases, respectively. �e 
learning behavior for the best, average and worst cases are included in Figs. 7e, 8e, 9e, 10e, 11e, 12e, 13e, 14e 

Figure 7.  Statistical analysis for test case 1: power loss minimization during 100 free runs, (a) minimum �tness 
comparison, (b) CDF, (c) histogram analysis, (d) �tness boxplot, (e) learning behavior.
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and 15e that demonstrate the consistency of the FO-DPSO for an e�ective optimization. In brief, all statistics of 
the ORPD cases demonstrate the stability, robustness, and consistency of the FO-DPSO as a signi�cant, reliable 
and accurate optimization strategy.

�e scalability of the FO-DPSO is further extended on a very large power system i.e. IEEE 300 bus which 
contains 304 transmission lines, 60 tap changing transformers, and 69 generators. �is study proposes the 
earliest solution for a single objective of ORPD which is line loss minimization, PLoss . As IEEE-300 bus system 
is challenging problem, the solutions for reactive power dispatch problems published in the literature are very 
rare, and so the comparison of results is not possible at this stage. However, when the FO-DPSO is applied 
to tune the variables, better and consistent results than the base case values are obtained. �e computed PLoss 
from proposed strategy are 403.259 MW, which are 1.2% less than the base case i.e. 408.316MW. �e statistical 
results obtained for 100 independent trial are depicted in Fig. 16. �e Fig. 16a demonstrates that for 95 times, 
the minimum �tness values obtained by the FO-DPSO are below the base case value (408.316 MW). �e CDF 
based probability plot in Fig. 16b reveals that 90% of the independent runs computed PLoss values less than 407 
MW. �e histogram represented in Fig. 16c shows that maximum of the independent trials provide minimum 
gauge of the �tness function. �e values of box plot in Fig. 16d reveal that median of PLoss is approximately 405.8 
MW with relative small spread of data. �e learning curves for the best, average and worst cases can be seen in 
Fig. 16e that demonstrate the consistency of the FO-DPSO for an e�ective computation.

�e time complexity of FO-DPSO is presented in the box plots of Fig. 17 for all the evaluated �tnesses. �e 
calculated time of the algorithm execution for 100 independent runs in term of median gauge adopting test case 
1 for PLoss , VD , and Coverall minimization are around 42 s, 68.3 s and 68.5 s, respectively, for case 2 the respective 
values are around 55 s, 75.75 s, 84.25 s, while for case 3 the values are around 60 s, 80.3 s and 91.5 s, respectively. 
�e small di�erence between the calculated time for each independent trial (i.e., results of the �rst quartile and 
third quartile) show the smooth and consistency operation of proposed FO-DPSO technique for solving the 
ORPD problems.

�e computational complexity of the FO-DPSO is also compared with the other algorithms implemented 
to solve the ORPD problems. �e reported results of time complexity of seeker optimization algorithm (SOA), 
simple GA (SGA)62, PSO, multi agent PSO (MAPSO)63, improved evolutionary programming (IEP), evolutionary 

Figure 8.  Statistical Analysis for test case 1: voltage deviation during 100 free runs, (a) minimum �tness 
comparison, (b) CDF, (c) histogram analysis, (d) �tness boxplot, (e) learning behavior.
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Figure 9.  Statistical analysis for test case 1: overall cost minimization during 100 free runs, (a) minimum �tness 
comparison, (b) CDF, (c) histogram analysis, (d) �tness boxplot, (e) learning behavior.

Table 12.  Analysis of time complexity with state of art counter parts.

S. no. Reference Speci�cations Bus system Average time (s)

1
SOA Matlab 7, Pentium 4, IEEE-57, 391.32

Run=30 CPU 2.4 GHz, 512 MB RAM IEEE-118 –

2
SGA Matlab 6.5, Pentium 4, IEEE-57, 156.34

Run=30 CPU N.A, RAM N.A IEEE-118 335.54

3
PSO Matlab 6.5, Pentium 4, IEEE-57, 59.21

Run=50 CPU N.A, RAM N.A IEEE-118 144.46

4
MAPSO Matlab 6.5, Pentium 4, IEEE-57, 41.93

Run=50 CPU N.A, RAM N.A IEEE-118 119.35

5 IEP Pentium 3 750 IEEE-118 77.35–142.8

6
EP Matlab 6.5, Pentium 4, IEEE-14, 72–78

CPU N.A, 128 MB RAM IEEE-30 103–118

7
SARGA Matlab 6.5, Pentium 4, IEEE-30, 54–66

CPU N.A, 128 MB RAM IEEE-118 87–101

8

Proposed Matlab 2016, Core i 7, IEEE-30, 42

Run=100 CPU 3.4 GHz, 8 GB RAM IEEE-57 55

IEEE-118 60
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programming  EP64, self-adaptive real coded GAs, SARGA 65 and the FO-DPSO are documented in Table 12 along 
with the available speci�cation of the system and number of independent trials used for the analysis. �e results 
show that there is no noticeable variation in the computational time requirements of the FO-DPSO versus those 
for the rest of the algorithms. However, the complexity performance is di�cult to compare because reported 
results are based on machines with di�erent hardware speci�cation, i.e., RAM, CPU, cloud and parallel pro-
cessing platform, operating algorithms (i.e., swarm intelligence, evolutionary computing) with di�erent initial 
settings of swarm size, population, �ights and generations, and so�ware environment (i.e., operating systems, 
MATLAB, MATHEMATICA, etc.).

Conclusions
A fractional evolutionary computing algorithm was designed to solve the ORPD problem in power systems 
using shunt and series FACTS devices. �e FO-DPSO was explored for the minimization of the active power 
losses and the operating costs, together with the installation cost of FACT, while the voltage pro�le is maintained 
within the allowable limits through minimizing voltage deviation index in the standard IEEE-30, 57 and 118 bus 
systems. �e results using the FO-DPSO are compared with those reported in the literature adopting the GWO, 
WOA, QOGWO, DE, fuzzy DE, SPSO, APSO, EPSO, QODE, OGSA, WCA and NGBWCA schemes. �e results 
demonstrated the superior performance of the FO-DPSO for all objectives of ORPD with FACTS devices. �e 
validation of the FO-DPSO is supported by statistics that include the probability distribution functions, histo-
gram and boxplot representations as measures of the central tendency and diversity indices for ORPD problems 
solved for the standard test systems.

Figure 10.  Statistical analysis for test case 2: �tness in Section power loss minimization during 100 free runs, 
(a) minimum �tness comparison, (b) CDF, (c) histogram analysis, (d) �tness boxplot, (e) learning behavior.
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In future, one may exploit the strength of the fractional swarming/evolutionary computing paradigm as an 
alternative optimization solver for multi-model nonlinear problems including robust wind power  prediction66, 
forecasting of air  temperature67, design of optical  metasurfaces68, nonlinear active noise  control69, parameter 
estimation of photovoltaic  models70, optimization of design for desalination  plant71, multi-objective classi�ca-
tion  problems72 and prediction of blast-induced ground  vibrations73. In addition, the power system performance 
should be investigated further by incorporating the second generation FACTS devices including the STATCOM, 
UPFC and TCPS while operating in steady and dynamic states by exploiting the optimization legacy of proposed 
fractional swarming technique with orders α ≤ 0 , 0 < α < 1 and α > 1 . �e selection of appropriate fractional 
order α in FO-DPSO with theoretical justi�cation of the physics for a particular optimization problem looks 
promising to be explore by research community as a further related work.

Figure 11.  Statistical analysis for test case 2: voltage deviation during 100 free runs, (a) minimum �tness 
comparison, (b) CDF, (c) histogram analysis, (d) �tness boxplot, (e) learning behavior.
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Figure 12.  Statistical analysis for test case 2: overall cost minimization during 100 free runs, (a) minimum 
�tness comparison, (b) CDF, (c) histogram analysis, (d) �tness boxplot, (e) learning behavior.
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Figure 13.  Statistical analysis for test case 3: power loss minimization during 100 free runs, (a) minimum 
�tness comparison, (b) CDF, (c) histogram analysis, (d) �tness boxplot, (e) learning behavior.
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Figure 14.  Statistical analysis for test case 3: voltage deviation during 100 free runs, (a) minimum �tness 
comparison, (b) CDF, (c) histogram analysis, (d) �tness boxplot, (e) learning behavior.
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Figure 15.  Statistical analysis for test case 3: overall cost minimization during 100 free runs, (a) minimum 
�tness comparison, (b) CDF, (c) histogram analysis, (d) �tness boxplot, (e) learning behavior.
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Figure 16.  Statistical analysis for 300 bus system: power loss minimization during 100 free runs, (a) minimum 
�tness comparison, (b) CDF, (c) histogram analysis, (d) �tness boxplot, (e) learning behavior.
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