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Desgn of Fuzzy-Siding Mode Control with the Sdf Tuning Fuzzy
Inference Based on Genetic Algorithm and Its Application

Seok-Jo Go, Min-Cheol Lee, and Min-Kyu Park

Abstract: This paper proposes a sdf tuning fuzzy inference method by the genetic algorithm in the fuzzy-diding mode control
for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without
an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed
that the selected solution become the global optima solution by optimizing the Akaike's information criterion expressing the
quality of the inference rules. The trgectory tracking smulation and experiment of the polishing robot show that the optimal
fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding mode controller provides
reliable tracking performance during the polishing process.
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I. Introduction

To solve tracking errors related to the unmodeled
dynamics in the operation of industrial robots, many
researchers have used the sliding mode control which is
robust against parameter variations and payload changes
[1]-[5]. Lee and Aoshima [4] proposed a dliding mode
control algorithm where a nonlinear and unmodeled
dynamic terms were considered as external disturbances to
apply the algorithm to a robot. And, the sliding mode
control agorithm with two dead zones was proposed to
reduce the chattering [5]. However, these algorithms could
not completely reduce the inherent chattering which was
caused by excessive switching inputs around the sliding
surface.

In the our previous study, the fuzzy-sliding mode
controller was designed to reduce the inherent chattering of
the sliding mode control by using the fuzzy rules [6]. The
trajectory tracking experiments showed that the chattering
could be reduced prominently by the fuzzy-diding mode
controller and the controller was robust in spite of a change
of payload [6]. However, the number of inference rules and
the shape of membership functions of the fuzzy-sliding
mode controller should be determined only through the tria
and error method by an expet who had the expert
knowledge of robot systems. And aso, it could not be
guaranteed whether the selected inference rules were the
global optimal solution or not because the expert used the
trial and error method to determine the inference rules.
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This paper proposes a self tuning fuzzy inference method
by the genetic agorithm. The genetic algorithm is the
search agorithm based on the mechanics of natural
selection, genetics, and evolution. One of the best
advantages of the genetic agorithm is to obtain global
optimum because of operators such as crossover and
mutation [7]. Using the genetic algorithm, in this study, the
number of inference rules and the shape of membership
functions of the fuzzy-sliding mode controller are optimized
without the expert in robotics. And, the fuzzy outputs of the
consequent part are updated by the gradient descent method.
Also, it is guaranteed that the selected inference rules
become the global optimal solution by optimizing the
Akake's information criterion [8][9] expressing the quality
of the inference rules. Therefore, although a designer is a
non-expert who has not the expert knowledge of robot
systems, the fuzzy-sliding mode controller can be designed
by the proposed self tuning fuzzy inference method based
on the genetic algorithm.

To automate the polishing process, this study developed
the polishing robot [10][12]. The developed polishing robot
has always a big contact force change by removing tool
marks and a vibration of tool by rotating a polishing tool
during polishing [10][12]. Unless disturbances of polishing
robot are compensated for properly, satisfactory control
performance cannot be expected. Therefore, in order to
evaluate the learning and the trajectory tracking
performances of the fuzzy-diding mode controller using the
genetic algorithm, the trgectory tracking simulation and
experiment of the polishing robot are carried out. And,
polishing experiments on the die of the shadow mask are
performed to evauate the trgectory tracking performances
of the proposed fuzzy-sliding mode controller during
polishing process.

Il. Design of fuzzy-sliding mode controller
with the trial and error
The simplified dynamic eguation of a robot can be
written as follow [4]-[6][12]-[14]:

F® + B Qi+ Fi= kiuy @
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Fig. 1. Phase plane around the switching line.

where Ji is the summation of all linear terms in the moment
of inertia of link i and the driving motor. Bi is the
equivalent damping coefficient from the motor, reduction
gears, and the viscosity friction of link i. The disturbance
term Fi is the summation of the nonlinear terms: inertia
moments, the Coriolis and centrifuga forces, the gravity
force, and the Coulomb friction term. The ki is a constant
to be determined from the motor torque coefficient, the
reduction rate of gears, and the armature resistance. ui is the
control input voltage.

To reduce the inherent chattering of the sliding mode
control, in the previous study, the fuzzy-sliding mode
controller was proposed [6]. A control input of the
fuzzy-sliding mode controller can be easily obtained from
the smplified dynamic (1). In order to setisfy the existence
condition of the sliding mode, when the unmodeled
nonlinear terms are replaced by disturbances, a control input
is proposed as follows [6]:

u; = <Vtﬁei + <Vluzzy + QVW %di + QVN %di (2)

where @ Bi and Y yi are feed-forward control input terms
to satisfy the existence condition of diding mode against
unfavorable effects due to the desired angular velocity Qg
and the desired angular acceleration §y on the trajectory
tracking. W fuzy is the control input term for compensating
disturbances. In (2), the limit values of the switching
parameter Y ai, Y Bi, and Y yi can be derived from the
existence condition of sliding mode. And, Y fuz is selected
by fuzzy rules within a predetermined dead zone as shown
in Fig. 1 [6].

Fuzzy input variables selected in the previous study were
the state value of a phase plane around the switching line
and the change rate of the state vadue. That is, the fuzzy
inputs are s and s; which are the fuzzified variables of
the state value si and the change rate of state value s,
respectively. The fuzzy output variable is ufi which is the
fuzzified variable of Y fuzy for compensating disturbances.
The fuzzy rules were established from a state value and a
change rate of state value on phase plane [6]. In Fig. 1, the
state space at the point P1 represents the state that si is
positive big and s, is negative medium. That is, sfi is
PB(positive big), s; is NM(negative medium). In order to

quickly approach on the switching line without overshooting
the line at this state, a fuzzy output ufi is selected as
NS(negative small). The state space a the point P2
represents the state that sfi is ZO(zero), s; is NM(negative

medium). Therefore, ufi is selected as PM(positive medium)
because this state is far away from the switching line. Also,
at the same method, the fuzzy rule about other points P3,
P4 and P5 can be established as follows:

P1: If sfiis PB and s; is NM, then ufi is NS. (©)
P2 : If sfiis ZO and s;; is NB, then ufi is PM.
P3 : If sfiis NB and s; is NB, then ufi is PB.
P4 : If sfiis ZO and s; is PB, then ufi is NM.
P5 : If sfiis PM and s; is PB, then ufi is NB.

And, the control input term W fuz/ for compensating
disturbances was determined by the selected fuzzy rules and
defuzzification. Therefore, the fuzzy-diding mode controller
could reduce the inherent chattering because the controller
changed the excessive switching input around the diding
surface into the small optimal control input [6].

However, the number of inference rules and the shape of
membership functions of the fuzzy-sliding mode controller
should be determined only through the trial and error
method by the expert in robotics. In that case, it could not
be guaranteed whether the selected inference rules were the
global optimal solution or not.

I11. Design of fuzzy-sliding mode controller
with the genetic algorithm

1. Individuals and a fitness function

In order to optimize the number of inference rules and
the shape of membership functions of the fuzzy-sliding
mode controller, this study proposes a sdf tuning fuzzy
inference method by the genetic adgorithm. In the genetic
algorithm, a solution candidate is expressed by binary
coding. Thus, the number and shape of membership function
are expressed in terms of string consisting of 0 and 1 as
shown in Fig. 2. The membership function takes a triangular
shape, and the width of each membership function is
defined as length between the centers of the neighbored two
membership functions. Also, to set the membership
functions on both sides of the domain of each fuzzy input
variable, the first and last bits of a string are set 1. The
solution candidate expressed by a string is caled an
individual. A set of individuals is called a population. The
individuals are determined by uniform random numbers.
And, the fitness value of each individual is calculated by the
selected fitness function to determine the selection
probability of an individua being acted on three genetic
operators: reproduction, crossover, and mutation.

To evaluate fitness of each individua in the population,
the Akaike's information criterion C [8][9] is employed and
the fitness function E is defined as follows:

C(S) = Ni l0g(ERROR) + 2 Mi 4
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ERROR = ZU( (0~ 8)? ©)

E(S) = maxj (C(S)) - C(S) (6)

where Ni is the number of fuzzy input variables, and Mi is
the number of membership functions in each individua S.
ERROR is the summation of the square of trgectory errors
of the difference between a desired tragjectory 6 d and a
measured trgectory 6 i(t). C(S) is the information criterion
of the ith individual S and E(S) is the fitness value of the
S. maxj(C(S)) is the largest vaue among all information
criteria from the initial generation to the jth generation.

The information criterion C shows the overal capability
for learning: the number of inference rules and the
trajectory tracking performance. The smaller the information
criterion is, the better the inference rules and the trajectory
tracking performance are. Therefore, the number and
position of membership functions maximizing the fitness in
a string can be obtained by using the proposed self tuning
fuzzy inference method.

2. Updating of the fuzzy outputs

All the universes of discourse of the fuzzified variables
have a specified universes which is performed by a fuzzifier
[9]. The fuzzifier performs the function of fuzzification
which is a subjective valuation to transform measurement
data into valuation of a subjective value. Hence, it can be
defined as a mapping from an observed input space to
labels of fuzzy sets in a specified input universe of
discourse. Therefore, in the previous study, the range of
variables si, s;, and Y fuz were scaled to fit the universe of
discourse of fuzzified variables sfi, s;, and ufi with scaling
factor K1, K2 and K3 respectively [6]. However, these
scaling factors were determined only through the trial and
error by an expert in robotics.

To solve this problem, this study uses the gradient
descent method [9]. The fuzzy outputs of the consequent
pat are adjusted by a updating law derived from the
gradient descent method. In fuzzy logic, the input-output
relation of a system is expressed as a collection of fuzzy
IF-THEN rules in which the antecedent and consequent part

1.1} 0.0 1.0
OQlololilolololifiloly ol

Fig. 2. String and membership function.
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Fig. 3. Height method.

involve fuzzy variables. For example, if x1and x2 are fuzzy
input variables and y is the output variable, the relation
among X1, x2 and y may be expressed as

RULE i : If x1is Ail and x2 is Ai2 then y is Bi.

where i (i = 1, ..., n) is the number of inference rules. Ail
and Ai2 are the membership function in the antecedent part,
Bi is the membership function in the consequent part.

Defuzzification is a mapping from a space of fuzzy
control actions defined over an output universe of discourse
into a space of nonfuzzy control actions [9]. This process is
necessary because in many practical applications crisp
control action is required to actuate the control system.
Therefore, this study uses the height method for
defuzzification [13]-[15]. The defuzzification process is
shown in Fig. 3. A membership grade w1 and w2 are
determined by RULE 1 and RULE 2, respectively. The
consequent part is expressed by a red number yl and y2
The defuzzified result is simply derived as follows:

wi = Ailx)  Aidx2 (1)
zﬂmi Yi
S0

To update the real numbers yi of the consequent part, this
study defines a cost function H, which measures the fuzzy
inference error by

0 -

y (8)

H= 3 -y ©

where y(K) is a desired fuzzy output for the kth fuzzy inputs,
and y® is an output of fuzzy inference for the same kth
fuzzy inputs. However, in operating a industrial robot, the
kth desired fuzzy output y(K against parameter variations
and payload changes is an unknown value. Thus, the cost
function H is redefined as follows:

Hoo H = 2 (8™ - o®)? (10)

where 0 (K is a desired trajectory, and 6 | is a measured
trajectory. If 6 (Y approaches to 6 (K, y® approaches to a
desired fuzzy output y(K.

Using a gradient descent method, the real number yi of
the consequent part is adjusted by an amount Avyi to be
proportional to the negative gradient H at the current
location:

yi (n"+ 1) = yi(n")+ Xy,
=y, (n)- ngy'ii (11)
=y () K (y -y )

mi
=1

mi r mi r
(Y y ™My e (8% ™) (12
= 1(“i Zlmi
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O
yi (n'+ 1)=vy; (n')- K—5
®

|=1I

(8- /") (13

where n' is the number of iteration of learning and K is a
positive number called the learning constant which
determines the rate of learning.
3. A learning procedure of the genetic algorithm

The learning procedures of the genetic algorithm consist
of the several steps as shown in Fig. 4 [13][14]. First, a
base population of individuals is established. The individual
is expressed in terms of srings consisting of 0 and 1 by
uniform random numbers as shown in Fig. 2. Second, to
evaluate the fitness value of all individuals of a current
population, the trajectory tracking simulation of a robot is
carried out by the proposed fuzzy-sliding mode control.
During the simulation, the rea number yi of the consequent
part is updated by using (13). And, this step is continued
until the following condition is achieved.

| ERROR(n') - ERROR(N-1) | < & (14)

where & is a threshold value to judge the convergence of
the tracking error ERROR as shown in (5). Third, the
selection probability of each individual is calculated by
using the fitness values. Fourth, the new individuals are
generated by three genetic operators: reproduction,
crossover, and mutation. These operators are applied
repeatedly until the new individuals take over the entire
population. Finaly, these steps are repeated until the
number of generation exceeds the predetermined value.
Therefore, as these steps are repeated, individuas of the
new population have higher fitness than those of the
previous generation.

IV. Simulation
This study developed the two-axis polishing robot to
automate the polishing process as shown in Fig. 5 [10]-[12].
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Fig. 5. Polishing robot with two degrees of freedom.

The polishing robot has always a big contact force change
by removing tool marks and vibration by rotating a
polishing tool during polishing. Unless disturbances of
polishing robot are compensated for properly, satisfactory
control performance cannot be expected. Therefore, in order
to evaluate the learning and trajectory tracking performance
of the proposed fuzzy-diding mode controller using the
genetic algorithm, a tragjectory tracking simulation of a
polishing robot is carried out. And daso, the proposed
controller is compared with the fuzzy-sliding mode
controller using the trial and error method, which was
proposed in the previous study.

First, the trajectory tracking simulation is carried out by
the fuzzy-diding mode controller proposed in the previous
study. The number of inference rules and the shape of
membership functions in the antecedent part are determined
through the trial and error method by an expert in robotics.
Using (3), the inference rules are established as listed in
Table 1. The membership function determined by the expert
is shown in Fig. 6. And, the determined scaling factors are
K1= 40, K2= 30, K3= 0.2 for axis C and K1= 45, K2=
35, K3 = 0.15 for axis A. The simulation results are shown
in Fig. 7.

Table 1. Fuzzy rules determined by the expert.

5 il pg PM Z0 NM NB
PB NB NB NM NS Z0
PM NB NM NS Z0 PS
Z0 NM NS Z0 PS PM
NM NS Z0 PS PM PB
NB Z0 PS PM PB PB

i NB NM ZO PM PB
-1.0 0.0 1.0

Fig. 6. Membership function determined by the expert.
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Fig. 7. Angle of axis C and A by the fuzzy-diding mode
control based on the trial and error.

Second, the trajectory tracking simulation is carried out
by the fuzzy-sliding mode control with a self tuning fuzzy
inference method based on the genetic agorithm. The initia
conditions for the genetic algorithm are listed in Table 2. In
order to determine the number of inference rules and the
shape of membership functions of the sliding-mode
controller, the learning procedure mentioned in Fig. 4 is
used. The shape of membership function determined by the
learning procedure is shown in Fig. 8. And, this selected
inference rules become the global optimal solution by
optimizing the Akake's information criterion. The
simulation results of the proposed agorithm are shown in
Fig. 9.

Comparing Fig. 7 with Fg. 9, traectory tracking
simulation shows that the optimal fuzzy inference rules are
automatically selected by the genetic agorithm and the
control result of the proposed fuzzy-sliding mode control is
amost similar to the result of the fuzzy-diding mode
control which is selected through the trial and error method
by an expert. Therefore, dthough a designer is a non-expert
who has not the knowledge of robot systems, the
fuzzy-sliding mode controller can be designed by the
proposed self tuning fuzzy inference method based on the
genetic algorithm.

Table 2. Initiad conditions for the genetic agorithm.

Initia conditions Vaue
Total number of individuals 20
Length of individual 13
Mutation probability 0.01
Crossover probability 0.65
Number of generation 25

Threshold value 0.00001

LL

1.0 1.0

11ojolofojolalolololololt]

Fig. 8. Membership function determined by the genetic
algorithm.
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Fig. 9. Angle of axis C and A by the fuzzy-diding mode

control based on the genetic algorithm.

Fig. 10. The automatic polishing robot system.

V. Experiment

1. Learning and trajectory tracking performance

In order to evaluate results of simulation by experiment,
the proposed algorithm is implemented to the automatic
polishing robot system which was developed in the previous
study. The automatic polishing robot system, named
POLYEM, is composed of a host computer, a machining
center, and a polishing robot, as shown in Fig. 10 [10]-[12].
A DSP(Digitd Signal Processor) board for rea-time
caculations is used to control the two-axis polishing robot,
and a FANUC controller is used to control the machining
center. The proposed algorithm is stored in ROM(Read
Only Memory) of the DSP board.

In order to determine the number of inference rules

Table 3. System parameters of the polishing robot.

wn £ Ji Bi
(rad/sec) (Kg m2 |(Kg m2s)
Axis A 12 0.4 0.0114 0.10944
Axis C 12 0.1 0.0991 0.23784

Table 4. Limit values of switching parameters.
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Fig. 11. Angle of axis C and A by the fuzzy-sliding mode

control based on the genetic agorithm.

and the shape of membership functions of the fuzzy-diding
mode controller, learning experiments of the polishing robot
is carried out. First, to determine the switching parameter Y ai,
Y Bi, and Y yi in (2), the values of inertia Ji and damping
coefficient Bi of a robot system are estimated by the signal
compression method which identifies unknown parameters
of system [11][12][16]. Using the signa compression
method, the unknown parameters of the polishing robot are
estimated as listed in Table 3. When slopes of switching
line are c1= 4 and c2= 4, the limit values of the switching
parameter which are satisfied the existence condition of
sliding mode are derived as listed in Table 4. Second, the
initial conditions for the genetic algorithm of experiment
and simulation are the same. By using a learning procedure
of the genetic algorithm in Fig. 4, the shape of membership
functions is determined as shown in Fig. 8. And, the
experiment results are shown in Fig. 11. Therefore, results
of experiment and simulation are the same.

2. Polishing of the die of shadow mask

In the polishing process of the die, the polishing robot
has always a big contact force change by removing tool
marks and vibration by rotating a polishing tool during
polishing. And, when the velocity of the polishing todl is
1200 [rpm] and polishing sheet is 100 [mesh], the efficiency
of polishing is best at the 40 [N]-polishing force. However,
when the velocity of the polishing tool is 1200 [rpm] and
the number of polishing sheet is 800 [mesh], the polished
surface is singed black at the 20 [N]-polishing force
[11][12]. Therefore, the magnitude of polishing force must
be redricted to 20 [N] at 800 [mesh] and 1200 [rpm]
because heat is generated by friction between the polishing
tool and the surface of die.

In order to evaluate the robust trajectory tracking
performances of the proposed fuzzy-diding mode controller
during polishing process, polishing experiment on the die of
the shadow mask is performed. The material of the die is
STD, and its size is 570 [mm] x 340 [mm] as shown in
Fig. 10 and Fig. 12. The desired polishing trajectory pattern
for the die of a shadow mask is generated by PolyCAM, a
dedicated CAM software for the system [11][12]. The
generated polishing trajectory pattern is shown in Fig. 13.

First, polishing condition (1) is 1000 [mesh], 1300 [rpm]
and 10 [N]. The control results along the zigzag pattern are
shown in Fig. 14. Second, polishing condition (I1) are 1000
[mesh], 1300 [rpm] and 20 [N]. The control results are

Fig. 12. Die of shadow mask.

Fig. 13. Zigzag polishing pattern.
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Fig. 14. The control results at polishing condition (1).

shown in Fig. 15. In Fig. 14(b) and Fig. 15(b), the
maximum error of axis A and axis C are 0.07 degrees. It
is possible to correct this error because the structure of the
polishing tool has some flexibility and the tool is always in
contact with a polishing surface by a constant polishing
force. Therefore, the results show that the proposed
algorithm can provide reliable tracking performance during
the polishing process.

VI. Conclusion
This study proposed the fuzzy-sliding mode controller
using a self tuning fuzzy inference method based on the
genetic agorithm. Using this method, the number of
inference rules and the shape of membership functions were
optimized without an expert in robotics. And, the fuzzy
outputs of the consequent part were updated by the gradient
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Fig. 15. The control results at polishing condition (II).

descent method. Also, it was guaranteed that the selected
inference rules become the global optima solution by
optimizing the Akaike's information criterion expressing the
quaity of the inference rules. To investigate the learning
and the trajectory tracking performances of the proposed
fuzzy-sliding mode controller using the genetic agorithm,
the trgjectory tracking simulation of the polishing robot was
carried out and the controller was compared with the
fuzzy-sliding mode controller using the trial and error
method, which was proposed in the previous study.
Trajectory tracking smulation shows that the optimal fuzzy
inference rules are automaticaly selected by the genetic
algorithm and the control result of the proposed
fuzzy-sliding mode control is amost similar to the result of
the fuzzy-diding mode control which is selected through the
trial and error method by an expert. Therefore, although
designer is a non-expert in robotics, the fuzzy-sliding mode
controller can be designed by the proposed self tuning fuzzy
inference method based on the genetic agorithm. To
evaluate results of simulation by experiment, the proposed
algorithm was implemented to the automatic polishing robot
system. Results of experiment and simulation are the same.
And, the proposed algorithm can provide reliable tracking
performance during the polishing process. However, the
proposed approach has some potential difficulties.
Programming and debugging the proposed algorithm are a
very time-consuming and tedious job because the program
is very long and has a complex structure. And, a
micro-process for real-time calculations is needed to control
the robot because the learning procedure is long. Also, to
evaluate the performance of the proposed algorithm, this
study only applies the algorithm to the polishing robot.
Thus, our future study will include the algorithm is applied

to other genera robots.

References

[1] K. K. D. Young, “Controller design for manipulator
using theory of variable sructure systems” IEEE
Trans. on System, Man and Cybernetics, vol. 8, no.
2, pp. 101-109, 1978.

[21 J J E. Slotine, “The robust control of robot
manipulators,” Int. J. of Robotics Research, vol. 4,
no. 4, pp. 49-64, 1985.

[3] H. Hashimoto, K. Maruyama, and F. Harashima, “A
Microprocessor-Based robot manipulator control with
sliding mode,” IEEE Trans. Industrial Electronics,
vol. 34, no. 1, pp. 11-18, 1987.

[4 M. C. Lee and N. Aoshima, "Red time Multi-Input
sliding mode control of a robot manipulator based
on DSP,” Proc. of SCE, pp. 1223-1228, 1993.

[5] M. C. Lee, K. Son, and J M. Lee, “Improving
tracking performance of industrid SCARA robots
using a new diding mode control algorithm,” KSME
Int. J, vol. 12, no. 5 pp. 761-772, 1998.

[6] M. C. Lee and S. J. Go, “Readl time Fuzzy-Siding
mode control for SCARA robot based on DSP,*
Proc. of 2nd Asian Control Conf., vol. Il, Seoul,
Korea, pp. 599-602, July, 1997.

[71 D. Goldberg, GENETIC ALGORITHMS in Search,
Optimization & Machine Learning, Addison-Wedey
Publishing Company, 1989.

[8] H. Akake, “A new look at the satisticad mode
identification,” 1EEE Trans. on Automatic Control,
vol. AC-19, no. 6, pp. 716-723, 1974.

[99 C. T. Cin and C. S. George Lee, Neural Fuzzy
System, Prentice-Hall, 1996.

[10] S. J Go and M. C. Lee, “Development of a
controller for polishing robot attached to machining
center and its performance evaluation,” Proc. of Int.
Conf. on ICASE, Pusan, Korea, pp. 346-352, Oct.,
1998.

[11] M. C. Lee, S. J. Go, J. Y. Jung, and M. H. Lee
“Development of a User-friendly polishing robot
system”, Proc. of Int. conf. on Intelligent Robots
and Systems, Kyongju, Korea, pp. 1914-1919, Oct.,
1999.

[12] M. C. Lee, S. J Go, M. H. Leg, C. S. Jun, D. S.
Kim, K. D. Cha, and J H. An, “Robust trajectory
tracking control of a polishing robot system based
on CAM data” 10th Int. Conf. on Flexible
Automation and Intelligent Manufacturing, Maryland,
USA, pp. 497-506, June, 2000.

[13] S. J. Go, M. C. Lee, and M. K. Park, “The design
of Fuzzy-Sliding mode controller using genetic
algorithm,” Proc. of Int. Conf. on ICASE, Yongin,
Korea, pp. E173-176, Oct., 1999.

[14] S J Go and M. C. Lee, “Fuzzy-Sliding mode
control with the self tuning fuzzy inference based
on genetic agorithm,” Proc. of the 2000 IEEE Int.
Conf. on Robotics & Automation, San Francisco,



Transactions on Control, Automation and Systems Engineering Vol. 3, No. 1, March, 2001 65

USA, pp. 2124-2129, April, 2000.
[15] J. Mohammad, U. Nader, and J. R. Timothy, Fuzzy
Logic and Control, Prentice-Hall, 1993.

Seok-Jo Go

He was born in Korea in 1969. He
received the B.S. in Mechanicd
Engineering from Pusan Nationa
University in 1994 and M.S. in
Mechanical Engineering from Pusan
National University in 1996. He had
been with DAEWOO Electronics
Company as a research engineer from 1995 to 1997. He
is now a Ph.D. candidate in the School of Department of
Mechanical and Intelligent Systems Engineering, Pusan
Nationa University. And, he is a full-time lecturer in the
Department of Machine System, Dongeui Institute of
Technology. His research interests includes intelligent
control, nonlinear control, robotics, and system
identification.

Min-Kyu Park

He was born in Korea in 1972. He
received his B.S. in Mechanica
Engineering from Yeungnam Universty
in 1996, and M.S. in Mechanica
Engineering from Pusan Nationd
University in 1998, respectively. He
is currently a Ph.D. candidate in the
School of Department of Mechanical and Intelligent
Systems Engineering, Pusan National University. Also, he
has been with RIMT(Research Ingtitute of Mechanical
Technology) at Pusan Nationa University since 2000. His
research interests includes the identification and robust
control for a nonlinear system, and the robust observer
design.

[16] M. C. Lee and N. Aoshima, “ldentification and its
evaluation of the system with a nonlinear element
by signa compression method,” Trans. of SCE,
vol.25, no.7, pp. 729-736, 1989.

Min-Cheol Lee
He was born in Korea in 1960. He
received the B.S. in Mechanica
Engineering from Pusan Nationa
; University in 1983, and M.S. and
P Ph.D. in Engineering Sciences from
ii the Tsukuba University, Japan, in
) 1988 and 1991, respectively. He is
now an associate professor in the School of Mechanical
Engineering, Pusan National University. His research
interests includes mechatronics, control of digital servo
system, robotics, sensor application, and system
identification.




