

Design of Generic Floating Point Multiplier
and Adder/Subtractor Units

Lamiaa S. A. Hamid

ECE Dept.
Misr International Uni.

Cairo, Egypt
Lamiaa.a.hamid@miuegypt

.edu.eg

Khaled A. Shehata
ECE Dept.

Arab Academy for Science
and Technology

Cairo, Egypt
K_shehata@aast.edu

Hassan El-Ghitani
ECE Dept.

Misr International Uni.
Cairo, Egypt

Hassan.elghitani@miuegypt.
edu.eg

Mohamed ElSaid
 ECE Dept.

Ain Shamis University
Cairo, Egypt

mkelsaid@gmail.com

Abstract— A high speed generic Floating Point Unit (FPU)
consisting of a multiplier and adder/subtractor units is proposed.
A novel multiplication algorithm is proposed and used in the
multiplier implementation. The new algorithm depends on
dividing the multiplication operation into several smaller
multiplications performed in parallel. The output from these
multiplications is then manipulated in a manner to give the final
result of the original multiplication operation. The
adder/subtractor unit is implemented using the Leading One
Detector (LOD) algorithm. In order to achieve high maximum,
speed, both units were deeply pipelined. The design is written
using VHDL code and mapped to Virtex2, Virtex4 and Virtex5
FPGAs. Both units can operate at more than 400 MHz on
Virtex4.

Keywords-floating point; FPGA; Pipelined Architecture

I. INTRODUCTION
Advances in process technology have led to dramatic

increase in FPGAs densities and speeds. FPGAs are now
becoming more suitable for supporting designs with dense
computations and high operating frequencies. Consequently,
FPGAs are becoming more suitable for supporting high speed
floating point arithmetic units. Floating point units are widely
used in digital applications such as digital signal processing
and multimedia. In conventional floating point units, the most
frequently used floating point operations are multiplication and
addition/subtraction counting for more than 94% of all floating
point instructions [1]. Hence the employment of highly
performing multiplier and adder/subtractor modules is of high
importance.

The design objective in this paper is to implement high
speed generic multiplier and adder/subtractor single precision
floating point units. In order to achieve a high maximum
operating frequency for both the multiplier and the
adder/subtractor units, each unit was optimized separately by
optimizing its bottle neck block. The bottle neck of the floating
point multiplier unit is the multiplier block. Many algorithms
have been introduced aiming to speed up the multiplier block
[2]. In this paper, to optimize the multiplier block we used a
novel proposed multiplication algorithm where the operands to
be multiplied are sliced into smaller blocks. This proposed
multiplier is referred to as "Block Multiplier". The bottle neck
of the adder/subtractor module is the normalization block
which is responsible for adjusting the result to the IEEE 754
normalized format after the result from addition/subtraction has

been calculated. Many algorithms have been proposed to
optimize a certain performance parameter in the normalization
process [3], [4]. In this paper, we chose to implement the
adder/subtractor using the standard algorithm, also known as
the LOD algorithm. LOD algorithm is characterized by its
simplicity and reduced area. To achieve high operating
frequency, the design was deeply pipelined.

To attain a generic design, VHDL was used for design entry
of the entire floating point unit. The adopted VHDL design
style was intended for optimum synthesis performance. Since
VHDL is a hardware description language independent on the
hardware intended for implementation, our design is expected
to show optimal performance over any FPGA platform it is
implemented on. This has been illustrated by implementing the
design on Virtex2p, Virtex4 and Virtex5 and comparing results
with other implementations.

The rest of the paper is organized as follows. Section 2
explains the IEEE 754-2008 industry standard for floating point
representation [5]. Sections 3 and 4 present the floating point
block multiplier unit and adder/subtractor unit respectively.
Section 5 includes the implementation and results while section
6 wraps up with the conclusion.

II. SINGLE PRECISION IEEE 754-2008 STANDARD
Floating point numbers are used to represent decimal

numbers. The main advantage of floating point numbers is the
wide dynamic range. IEEE 754-2008 standard specifies how
binary floating point numbers are represented as well as how to
carry out arithmetic operations on them. Single precision
floating point binary numbers consist of 32 bits; 1 sign bit, 8
bits for exponent and 23 bits for mantissa. The exponent is
represented in excess-127 code to facilitate exponent
comparison needed when performing arithmetic operations.
The 23 bit mantissa actually has a 24th implied bit. The floating
point number is said to be normalized when it is adjusted such
that the implied bit is '1'. Hence, it is dropped upon storage
allowing for increased accuracy and retrieved when performing
operations for correct calculations. For numbers that are
smaller than the smallest normalized number, the implied bit is
‘0’ and the number is referred to as a de-normalized or
subnorm number. De-normalized numbers are generally rare
and require complicated hardware for their handling [6]. This is
the main reason of dealing with normalized numbers in our
design.

2010 12th International Conference on Computer Modelling and Simulation

978-0-7695-4016-0/10 $26.00 © 2010 IEEE

DOI 10.1109/UKSIM.2010.80

610

2010 12th International Conference on Computer Modelling and Simulation

978-0-7695-4016-0/10 $26.00 © 2010 IEEE

DOI 10.1109/UKSIM.2010.119

610

2010 12th International Conference on Computer Modelling and Simulation

978-0-7695-4016-0/10 $26.00 © 2010 IEEE

DOI 10.1109/UKSIM.2010.117

615

Arithmetic operations may give a result with a number of
bits more than what can actually be stored so the result has to
be rounded to fit in the allowed number of bits. IEEE 754-2008
standard introduces five different rounding modes. Round to
nearest even (REN) is the default rounding mode and is used in
most software and hardware implementations and is the mode
of interest in our design.

In IEEE floating point representation, zero is not directly
represented due to assumption of leading '1'. Instead, zero is
considered as a special value denoted by all zeros exponent and
mantissa. IEEE 754-2008 standard also specifies how to deal
with exceptions that could result from an arithmetic operation.
Overflow and underflow are the most common exceptions. In
this paper, they were only honored in the multiplier module
where they are more probable.

III. FLOATING POINT MULTIPLIER DESIGN

A. Floating Point Multiplication
In floating point numbers, multiplication of two numbers is

basically performed through adding their exponents and
multiplying their mantissas. As mentioned before, for floating
point multiplication, the bottle neck of the design is the 24*24
bit multiplier used to calculate the resulting 48 bit mantissa. To
increase the maximum operating speed of the multiplier, the
proposed design breaks up the 24*24 bit multiplication of
operands A and B into nine 8*8 bit multiplications where each
mantissa is sliced into three 8-bit slices such that A=A2A1A0
B=B2B1B0. Then, B0 is multiplied in A2, A1 and A0. Each of
these three 8*8 bit multiplications gives a 16 bit result. The
three 16 bit results are properly manipulated to give a 32 bit
result Ro of the 24*8 bits multiplication operation (i.e. A*B0).
In a similar manner B1 and B2 are multiplied in A2, A1 and
A0 to give R1 and R2. R1 and R2 are properly shifted to be
added to R0 thus giving the 48 bit result mantissa.

B. The Floating Point Multipler Unit
The proposed floating point multiplier unit block diagram is

illustrated in Fig. 1. Its general structure is similar to that
introduced in [7] and [8]. The proposed design has the
following main modules:

1) Zero Detect: It is used to set a zeroflag when any of the
input operands is zero. This avoids unnecessary calculations
throughout the multiplier module when a zero input is applied.
The sign, exponent and mantissa of each input operand are
seperated to be manipulated differently throughout the
multiplier module. To prepare the mantissas for the
multiplication operation, the dropped implied bit of each
mantissa is set to ‘1’.

2) Add Exponents: To determine the resultant exponent, the
exponents are added and a 127 bias is subtracted. The bias
subtraction compensates for the bias having been added in
both exponents. The result is fit into a 10 bit exponent to allow
checking for overflow or underflow in the post multiply
normalization step. Since the 8 bit exponent of a single
precision floating point number is an unsigned number, the
10th bit set to '1' indicates an underflow. An overflow is
detected when the 10th bit is '0' and the 9th bit is '1'.

Fig. 1. Block Diagram of Floating Point Multiplier Module

3) Block Multiplier: Multiplies the two 24 bit manitssas of

operands A and B through the proposed block multiplication
method explained earlier. The result sign is determined
through a simple XOR operation.

4) Post Normalize: The implied bit is located and dropped.
The 48 bit mantissa from the multiplication operation is then
truncated to a 26 bit mantissa which are the 23 bits assigned
for the mantissa along with three extra bits to increase the
accuracy of the rounding process. These three extra bits are
the guard , round and sticky bits. The guard and round bits are
just an extension added to the mantissa to allow for extra
precision. Sticky bit is the logical "Or"ing of all the truncated
bits. The exponent is adjusted and checked for overflow or
underflow and the appropriate flag is set accordingly.

5) Rounding: The 26 bit resultant mantissa is rounded to a
23 bits using the REN technique. After rounding, the exponent
is checked again for possible overflow. Finally, the sign,
exponent and mantissa are appended together to give the
single precision floating point multiplication result in the IEEE
format along with the overflow and underflow flags.

IV Floating Point Adder/Subtractor Design

A. Floating Point Addition/Subtraction
In floating point addition (or subtraction), the two numbers

must have equal exponents for their mantissas to be added (or
subtracted) correctly. So in the adder/subtractor unit, the
exponent of the smaller number is incremented such that both
exponents are equal and the mantissa of the small number is
then shifted right 'n' times where 'n' is the difference between
the large and small exponents. After the addition/subtraction
operation is performed, the resultant mantissa is normalized
using the LOD method. The LOD detects the most significant
'1' by counting the number of zeros (nz) before the most
significant '1'. The mantissa is then shifted left 'nz' times.

Due to the excess shifting required before and after the
addition/subtraction operation in the pre-normalization of the
smaller number and the post normalization of the resultant
mantissa respectively, addition/subtraction of floating numbers
is considered more complicated than multiplication. To
increase the maximum operating speed of the adder/subtractor
unit all the shift operations in the pre-normalization and post-
normalization steps were performed through barrel shifting.
Barrel shifting has the advantage of shifting the data by any
number of bits in one operation which makes barrel shifting
suitable for the shifting operations required in the
adder/subtractor unit that can be a shift by any number
between 1 and 253 depending on the difference between the
exponents of the input operands.

B. LOD Floating Point Adder/Subtractor Unit
The general block diagram of the floating point

adder/subtractor module is illustrated in Fig. 2. Its general
structure is similar to that introduced in [7] and [8]. The
proposed design has the following main modules:

611611616

Fig. 2. Block Diagram of Floating Point Adder/Subtractor Module

1) Unpack: The sign, exponent and mantissa of both
operands are seperated. A flag, aequalb flag, is set if both
inputs are equal . The aequalb flag will be used if the effective
operation, determined in the adder/subtractor module, was
subtraction to set a flag indicating a zero output. This prevents
unecassary addition/subtraction and pre-normalization
operations from taking place.

2) Swap: Inputs are swapped if necessary such that operand
A carries the larger floating point number and operand B is the
smaller operand to be pre-normalized. A swap flag is set if the
operands were swapped to be used in determining the effective
operation in the adder/subtractor module.

3) Zero Detect: An appropriate flag is set if one or both
input operands is a zero. This helps avoid uneccessary
calculations and normalizations when a zero operand is
detected. The resultant exponent and the difference betweeen
the two exponents are determined here.

4) Prenormalize: The smaller mantissa, of operand B, is
prenormalized, that is it's shifted by the difference between the
two input exponents. Three extra bits the guard bit, the round
bit, and the sticky bit are added to both mantissas to increase
the accuracy of the performed operation (addition or
subtraction) and to be used in the rounding process. Sticky bit
is the logical "Or"ing of any bits that are dropped during the
pre-normalization of operand B.

5) Adder/Subtractor: The effective operation to be
performed is caluclated according to the signs of operands A
& B ,the input operation and the swap flag. The effective
operation is performed and the zero flag is updated if the
effective operation is subtraction and the aequalb flag is set.

6) Post Normalize: The resultant mantissa is normalized
after the leading one is detected using the LOD method. The
resultant exponent is adjusted accordingly.

7) Rounding: The resultant mantissa is rounded using the
REN technnique. The final ouput is given in IEEE format.

V Implementation

The implementation of both the multiplier and the
adder/Subtractor modules is performed in a top-down
approach. Their sub-modules were written in VHDL using the
Mentor Graphics FPGAdv 8.1 Tool. Each sub-module was first
separately tested using ModelSim to validate correct functional
behavior. The sub-modules were then connected to form the
floating point multiplier and adder/subtractor units. Each unit
was then tested for functionality. Deep pipelining was
performed to reach maximum possible operating frequency.
Xilinx ISE 9.2i was used for synthesis and implementation,
place and route.

VI. RESULTS
The multiplier and adder/subtractor functional simulations

showed that both modules accept an input and give an output
with every clock cycle. The first output appears after a latency
of 23 and 22 clock cycles for the multiplier and
adder/subtractor units respectively. Fig.3 shows a snapshot
from the functional simulation of the multiplier unit. In this
example the operands are -22 (H41B00000) and 4
(H40800000). The result is available after 23 clock cycle and
equal to -88 (HC2B00000). Fig. 4 shows a snapshot from the
functional simulation of the adder/subtractor unit. In this
example the operands are 12(H41400000) and 1(H3F800000)
are added. The result is available after 22 clock cycles and
equal to 13(H41500000).

Fig. 3 Functional Simulation of Multiplier

Fig. 4 Functional Simulation of Adder

612612617

Both the multiplier and the adder/subtractor modules were
implemented on three generations of Xilinx FPGAs namely
Virtex2p (speed grade -7), Virtex4 (speed grade -12) and
Virtex5 (speed grade -3). Maximum operating frequency and
area were obtained by the Xilinx tool after the place and route
process. The results obtained are summed up in Table I.

To further investigate the improvement in performance of
the proposed block multiplication, the multiplier module was
also implemented using a simple 24* 24 multiplier. The
comparison in synthesis results between the floating multiplier
using the simple multiplier module and using the block
multiplier module is listed in Table II. The comparison shows
superiority in the maximum operating frequency for the design
using the proposed block multiplier over the design using the
simple multiplier for the tested FPGAs.

Table III and IV compare the post place and route results of
the proposed multiplier and the adder/subtractor units
respectively with other published results. The performed
comparison is fair since the proposed designs and those
presented in [4] and [6] do not support denormalized numbers.
The proposed multiplier has a higher speed than the one
presented in [6] when implemented on Virtex2. When
implementing the multiplier on Virtex4 FPGA, the one
presented in [4] has a higher speed due to the use of DSP48
blocks to construct the multiplier module. The use of these
blocks optimized the design presented in [4] for Virtex4. The
proposed adder module has higher operating frequency when
implemented on both Virtex2 and Virtex4.

TABLE I. BLOCK MULTIPLIER & ADDER PARAMETERS OVER
DIFFERENT XILINX FPGAS

 Multiplier Adder/Subtractor

Speed
(MHz)

Area
(Slices)

Speed
(MHz)

Area
(Slices)

Virtex2p
Xc2vp7ff896 -7 288 1005 317 1323

Virtex4
Xc4vfx100 -12 437 903 401 1324

Virtex5
Xc5vlx110 -3 442 579 407 664

TABLE II. SYNTHESIS COMPARISON BETWEEN SIMPLE & BLOCK
MULTIPLIERS

Proposed Multiplier Simple Multiplier

Speed
(MHz)

Area
Slices

Speed
(MHz)

Area
(Slices)

Virtex2p
Xc2vp7ff896 -7 284 1049 181 412

Virtex4
Xc4vfx100 -12 430 864 106 343

Virtex5
Xc5vlx110 -3 415 457 217 578

TABLE III. COMPARISON WITH OTHER MULTIPLIER MODULES

Multiplier Designs

Proposed Karlstrom
[4]

USC
[6]

Virtex2p -7 288 NA 250

Virtex4 -12 437 450* NA
 *Optimized for Virtex4 by using DSP4 to construct multiplier.

 TABLE IV. COMPARISON WITH OTHER ADDER MODULES

Adder Designs

Proposed Karlstrom
[4]

USC
[6]

Virtex2p -7 317 288 250

Virtex4 -12 401 361 NA

VII CONCLUSIONS

Floating point multiplier and adder/subtractor units
are presented. Both were written entirely in VHDL to optimize
implementation on any FPGA. A novel architecture is
proposed for the multiplier block. A deeply pipelined LOD
architecture is used to implement the adder/subtractor unit.
Both designs were proved to operate at high operating
frequencies when implemented to several Xilinx FPGAs. The
proposed multiplier operates at 430 MHz while the
adder/subtractor operates up to 401 MHz when implemented
on Virtex4 FPGA.

REFERENCES
[1] A. Amarica, M. Vladutiu , L. Prodan, M. Udrescu and O. Boncalo,

“Design of addition and multiplication units for high performance
interval arithmetic processor,” in Proceedings of the International
Conference on Computer Design, 2007, pp. 1-4.

[2] S.V.Siddamal, R.M. Banakar and B.C. Jinaga, " Design of high speed
floating point multiplier," in the 4th IEEE International Syposium on
Electronic Design, Test and Application , 2008,pp.285–289.

[3] J. Liang, R. Tessier and O. Mencer, " Floating point unit generation and
evaluation for FPGAs," in Field-Programmable Custom Computing
Machines, 2003, pp. 185–194.

[4] P. Karlstrom, A. Ehliar and D. Liu, " High performance, low latency
FPGA based floating point adder and multiplier units in a Virtex 4," in
Computers and Digital Techniques, volume 2, issue 4, 2008, pp. 305-
313.

[5] IEEE standards board, IEEE standard for floating-point arithmetic, 2008.
[6] G. Govindu, L. Zhuo, S. Choi and V. Prasanna, " Analysis of high

performance floating point arithmetic on FPGAs," in Proceeding of the
18th International Parallel and Distributed Processing Symposium, April
2004, pp. 149-156

[7] M. Reaz, S. Islam and M. Suliman, " Pipeline floating point ALU design
using VHDL," in Proceedings of Semicoductor Electronics, 2002, pp.
204-208.

[8] G. Marcus, P. Hinojosa, A. Avila and J. Nolazco-Flores, " A fully
synthesizable single precision floating point adder/subtractor and
multiplier in VHDL for general and educational use," in Proceedings of
the 5th IEEE Interantional Caracas Conference on Devices, Circuits and
Systems, November 2004, pp. 319-323

613613618

