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ABSTRACT:  

 

One of the main questions to solve when analysing geographically 

added information consists of the design of territorial units adjusted to the 

objectives of the study. This is related with the reduction of the effects of the 

Modifiable Areal Unit Problem (MAUP). 

In this paper an optimisation model to solve regionalisation problems is 

proposed. This model seeks to reduce some disadvantages found in previous 

works about automated regionalisation tools. 

 

Key words: Zone design, Modifiable Areal Unit Problem, Optimisation, 

Contiguity constraint. 

 

JEL codes: R22, R12, C61 

 



 

 

RESUMEN: 

 

Uno de los principales inconvenientes al realizar estudios que impliquen 

la utilización de información agregada geográficamente consiste en la 

sensibilidad de los resultados a la forma cómo se ha configurado las unidades 

territoriales, unidades que en muchas ocasiones no se relacionan con los 

objetivos del estudio sino con la disponibilidad de información estadística. 

Dicho problema ha sido estudiado en la literatura cómo el Problema de la 

Unidad Espacial Modificable (PUEM). 

En este estudio se presenta un modelo de optimización y un algoritmo 

para el diseño de unidades territoriales con los cuales se busca cubrir algunos 

vacíos encontrados en otras formulaciones propuestas en la literatura.  

 

Palabras clave: Zonificación, unidad espacial modificable, optimización, 

restricción de continuidad. 

 

Códigos JEL: R22, R12, C61 
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DESIGN OF HOMOGENOUS TERRITORIAL UNITS: A 

METHODOLOGICAL PROPOSAL 

 

 

1. INTRODUCTION 

 

The interest for geographical information technologies has considerably 

increased during the last three decades. Nowadays, geographical information 

is no more exclusive of government and public administrations (in the areas of 

planning, demography and topography) thanks to the development of 

computer tools (in software and hardware) that have made possible to use this 

information in firms and in academic areas. 

This kind of statistical information is usually published at different 

territorial levels with the aim of providing information of interest for all the 

potential users. When using this information, they have two different choices: 

first, to use the officially established territorial units (towns, provinces, etc.) 

or, second, to design territorial units directly related with the analysed 

phenomena aggregating territorial units of small size1, but without arriving at 

the upper level, or combining information from different levels2. 

                                                 
1 Apart from aspects such as the statistical secret or other legislation about the treatment of 

statistical data, according to Wise et al, (1997), this kind of territorial units are designed 
in such a way as to be above minimum population or household thresholds, to reduce the 
effect of outliers when aggregating data or to reduce possible inexactities in the data, and 
to simplify information requirements for calculations or to facilitate its visualisation and 
interpretations in maps. 

2 See, for example, Albert et al, (2003), who analyze the spatial distribution of economic 
activity using information with different levels of regional aggregation, NUTS III for 
Spain and France and NUTS II for the rest of countries, with the objective “using similar 
territorial units”. López-Bazo et al. (1999) analyze inequalities and regional convergence 
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In most cases, the aggregation of territorial information is usually done 

using “ad-hoc” criteria due to the lack of regionalisation methods with enough 

flexibility. In fact, most of these methods have been developed to deal with 

very particular regionalisation problems, so when applied in other contexts the 

results could be very restrictive or inappropriate for the considered problem. 

However, and with independence of the applied territorial aggregation 

method, there is an implicit risk, known in the literature as “Modifiable Areal 

Unit Problem” (Openshaw, 1984), and related with the sensitivity of the 

results to the aggregation of geographical data and its consequences on the 

analysis. 

This paper formulates a new methodology of aggregation based on an 

optimisation model that tries to overcome some of the disadvantages of 

available methodologies. Among the main characteristics of the proposed 

model, it is worth mentioning the following: 

 

a) Automated regionalisation model in order to design a given number of 

homogeneous geographical units from aggregate small areas subject to 

contiguity requirements. 

  

b) The aggregation process takes into account not only characteristics of each 

area3 but also the relationships among them (symmetric and not necessarily 

metric). 

                                                                                                                                                     
at the European level in terms of GDP per capita using a database for 143 regions using 
NUTS II data for Belgium, Denmark, Germany, Greece, Spain, France, Italy, 
Netherlands and Portugal, and NUTS-I for the United Kingdom, Ireland and Luxemburg 
with the objective of ensuring the comparability of geographical units. 

3  In this paper, we will use the term “area” to denote the smallest territorial unit. The 
aggregation of areas will form a “region” and the aggregation of regions will cover the 
whole considered territory. 
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c) In this paper, the regionalisation problem is posed as a lineal optimisation 

problem. This ensures the possibility of finding, among all feasible 

solutions, the global optimum. 

 

d) More coherent solutions can be easily obtained introducing additional 

constraints about other specific requirements relevant for the 

regionalisation process. 

 

e) There is more freedom than in other methodologies regarding the shapes of 

the regions, which only depend on data characteristics and are not imposed 

by the considered methodology. 

 

The paper is organised in the following sections: in section 2 the 

literature about the different regionalisation methods are briefly summarised; 

in section 3 the proposed lineal optimisation model for automated 

regionalisation is described; section 4 introduces an algorithm to deal with 

more complex regionalisation problems, and, last, the most relevant 

conclusions of the paper are presented in section 5. 
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2. REVISION OF THE LITERATURE 

 

In this section, we briefly summarised the most relevant methodologies 

for territorial aggregation. We have only focused on those methodologies with 

a higher impact in the specialised literature and on those ones that have been 

tested satisfactorily in real problems. 

Some of these methodologies use techniques based on cluster analysis4. 

In this context, the problem of aggregation of spatial data is considered as a 

particular case of clustering where geographical contiguity among the 

elements to be grouped should be considered. This particular case of 

clustering methods is usually known as contiguity-constrained clustering or 

simply regionalisation problem. A detailed summary of these aggregation 

methodologies can be found in Gordon (1999) and for the case of constrained 

clustering in Fisher (1980), Murtagh (1985) and Gordon (1996). 

Regionalisation algorithms can be categorized under three 

methodological strategies: two-stages aggregation; the inclusion of 

geographical information in the set of classification variables; and, the use of 

additional instruments to control for the geographical contiguity constraint. 

 

2.1. Two stages aggregation 

 

This strategy consists of splitting the aggregation process in two stages. 

The first stage consists of applying a conventional clustering model without 

take into account the contiguity constraint, and, in a second stage, the clusters 

                                                 
4  Multivariate statistical tool widely used to classify elements in terms of their similarities 

or dissimilarities (Jobson, 1991). 
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are revised in terms of geographical contiguity. With this methodology, if the 

areas included in the same cluster are geographically disconnected, those areas 

are defined as different regions (Ohsumi, 1984). 

Two conventional clustering algorithms can be used in this context: 

hierarchical or partitioning. 

 

2.1.1. Hierarchical algorithms. 

 

They are usually applied when the researcher is interested in obtain a 

hierarchical and nested classification (for every scale levels), that is usually 

summarised using dendograms5. The main disadvantage of using hierarchical 

clustering algorithms, without considering the high computational 

requirements (Wise et al., 1997), is the high probability of obtaining local 

optimum due to the fact that once two elements have been grouped in an 

aggregation level, they would not return to be evaluated independently in 

higher aggregation levels (Semple and Green, 1984). On the other hand, the 

main advantage that should be highlighted is that there is no need to specify 

initial partitions to apply the algorithm (Macmillan and Pierce, 1994). 

 

2.1.2. Partitioning algorithms. 

 

More used in regionalisation processes is the K-means clustering 

procedure, which belongs to partitioning clustering category, this iterative 

technique consists of selecting from elements to be grouped, a predetermined 

number of k elements that will act as centroids (the same number as groups to 

                                                 
5  Graphical representation of the solutions of hierarchical cluster (Gordon, 1996). 
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be formed). Then, each of the other elements is assigned to the closest 

centroid. 

The aggregation process is based on minimizing some measure of 

dissimilarity among elements to aggregate in each cluster. This dissimilarity 

measure is usually calculated as the squared Euclidean distance from the 

centroid of the cluster6, see equation 2.1. 

 

 ( )∑ ∑∈
=

−
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N

i
icim XX

1

2  (2·1) 

 

Where imX denotes the value of variable i (i=1..N) for observation m 

(m=1..M), and icX  is the centroid of the cluster c to which observation m is 

assigned or the average iX for all the observations in cluster c. 

K-means algorithm is based on an iterative process where initial 

centroids are explicitly or randomly assigned and the other elements are 

assigned to the nearest centroid. After this initial assignation, initial centroids 

are reassigned in order to minimize the squared Euclidean distance. The 

iterative process is terminated if there is not any change that would improve 

the actual solution. 

It is important to note that the final solutions obtained by applying K-

means algorithm depend on the starting point (the initial centroids 

designation). This fact makes quite difficult to obtain a global optimum 

solution. 

                                                 
6 A detailed summary of these aggregation methodologies can be found in Gordon (1999) 

and for the case of constrained clustering in Fisher (1980), Murtagh (1985) and Gordon 
(1996). 
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Finally, when K-means algorithm is applied in a two stages 

regionalisation process, it will be possible that the required number of regions 

to design will be not necessarily equal to the value given to parameter k as 

areas belonging to the same cluster have to be counted as different regions if 

they are not contiguous. So, different proofs have to be done with different 

values of k (lower than the number of desired regions), until contiguous 

regions are obtained. In some cases could be impossible to obtain the desired 

number of contiguous regions. 

Among the advantages of two stages aggregation methodology, 

Openshaw and Wymer (1995) highlight that the homogeneity of the defined 

regions is guaranteed by the first stage. Moreover, this methodology can also 

be useful as a way to obtain evidence of spatial dependence among the 

elements. However, taking into account the objectives of the regionalisation 

process, the fact that the number of groups depends on the degree of spatial 

dependence7 and not on the researcher can be an important problem. 

 

2.2. Inclusion of geographical information as classification variables. 

 

The second strategy consists of including as classification variables the 

geographical coordinates of centroids representing the areas to be grouped 

(Perruchet, 1983, Webster and Burrough, 1972). In this strategy, as a way to 

force the geographical contiguity, the geographical coordinates are included in 

the calculation of dissimilarities between areas and, next, conventional 

classification algorithms are applied. 

                                                 
7  When the spatial dependence is higher (lower) there will be a trend towards the creation 

of less (more) regions. 
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This kind of approach has been implemented in the SAGE system 

(Spatial Analysis in a GIS Environment) (Haining et al., 1996). In its 

regionalisation algorithm, this system uses an objective function formed by 

three components, the first controls the intra-group variance taking into 

account the non spatial attributes, the second, as geographical component, 

includes the sum of the distances from areal centroids to the cluster centroids 

in order to force geographical contiguity, and the third component is a 

deviation measure between the regional value of an attribute and its average 

value. A different weight is assigned to each of these components in the 

objective function in order to obtain a unique value to minimise. The 

regionalisation procedure is based on a partitioning algorithm K-means 

(Andemberg, 1973). 

Calciu (1996) uses the same territorial aggregation strategy, referring to it 

as “contrainte spatiale implicite” (implicit spatial constraint), which 

incorporates as geographical variables the Cartesian coordinates, conveniently 

transformed, of the points representing each area. This author is in favour of 

applying a hierarchical classification algorithm, where the inclusion of the 

coordinates permits to obtain an improved geographical continuity, although it 

implies some lost in terms of intragroups homogeneity in relation to the case 

where the hierarchical algorithm is applied without considering these 

geographical variables. 

The main inconvenient associated to this methodology are the difficulty 

of treating simultaneously variables expressed in different measure units and 

the definition of objective weights for each of the variables, specially the 

geographical ones as the weights should be strong enough to guarantee that 

geographical contiguous regions are formed (Wise et al., 1997). 
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Another disadvantage is that the final solution can change depending on 

the applied method to localise the centroid that represents each of the areas to 

be grouped, especially in those cases where the areas are considerably big 

(Horn, 1995, Martin et al., 2001). 

 

2.3. Additional instruments to control for the continuity restriction. 

 

The last, but perhaps the most used strategy to solve territorial 

aggregation problems, consists of controlling the geographical contiguity 

constraint using additional instruments as the contact matrix or its 

corresponding contiguity graph. Contact matrix is a binary matrix with 

elements cij, where cij takes value 1 if areas i and j share a border; and 0 

otherwise. In the contiguity graph the areas to be grouped are represented as 

nodes and arcs represent the adjacency relationship between them8. 

The elements above are used to adapting conventional clustering 

algorithms, hierarchical or partitioning, with the objective of respecting the 

continuity constraint. 

The main problem with adapted hierarchical algorithms in the context of 

regionalisation processes is that there can be breaks in monotonicity among 

elements. This problem is known as reversals: the distance between two 

objects can be higher than the distance between the union of this object with a 

third one (Calciu, 1996, Gordon 1996, Ferligoj and Batagelj, 1982). It makes 

difficult the interpretation of classification. 

                                                 
8  For a more detailed description of the methods for the elaboration of this kind of graphs, 

see Gordon (1996, 1999). 
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In adapted partitioning algorithms, contact matrices or contiguity graphs 

have mainly been applied into two different methodologies: mathematical 

programming and iterative algorithms. 

Regarding to mathematical programming, Macmillan and Pierce (1994) 

define the regionalisation problem as an optimisation problem where, given a 

predetermined number of groups to form, the solution will define the optimum 

territorial aggregation. The proposed solution by these authors to ensure the 

geographical continuity consists of exponenciating the contact matrix, taking 

into account that for the formation of a region with n continuous areas is 

necessary that the (n-1)th power of the contact matrix does not contain null 

elements. This solution implies that the feasible space defined by the 

constraints is non-convex and, as a result, the objective function is likely to 

get trapped in a local optimal solution. 

Cutting algorithms for graph partitionig are another way to see the 

regionalisation problem from a mathematical programming point of view. In 

these models, the contiguity graph has associated in their arcs a value of 

dissimilarity between areas, i.e. G=(V,E), with a weight function w : E→N. 

The cutting algorithms looks for a partition of the node set V into k 

disjoint sets F={C1, C2,..., Ck} where k is integer and k ∈ [2..|V]. Thus, in a 

regionalization process, the idea could be to maximice the isolation between 

groups, so the objective in a “maximum k-cut” is to maximice the sum of the 

weight of the edges between the disjoint sets, i.e.: 

 { }( )∑ ∑ ∑
−

= +=
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Where v1 and v2 are the endpoints of an arc9. 

 

Another method, cited by Neves et al. (2001), consists of the reduction 

of the contiguity graph (G=(V,E)) where each arc has associated a value of 

dissimilarity between areas (weight function w : E→N). The reduction makes 

a progressive elimination of arcs until a minimum spanning tree is obtained. 

The main point of this representation is that the elimination of one arc at a 

time implies the partition of the graph in intraconnected, but not 

interconnected, subgroups (Ahuja et al., 1993). 

One disadvantage of the regionalisation methodologies modelling the 

dissimilarity relationships using the arcs of the contiguity graph is related with 

the fact that an important number of dissimilarity relationships between areas 

that are not contiguous are not being considered. 

Taking into account that the resolution of this kind of problems using 

conventional optimisation methods is extremely complex10, other 

methodologies have been developed in the field of regionalisation that have 

been very effective in those cases where the number of elements to group is 

very high. Among these different solutions, the algorithms known as Iterative 

Relocation Algorithms have been widely analysed. These methods try to find 

the best regional configuration using as a starting point a non-optimal 

configuration11 and, next, different movements of areas between regions are 

done with the objective of improving the objective function. Ferligoj and 

                                                 
9  A compendium of models related to network design can be found in Crescenzi and Kann 

(2004). 
10  Openshaw (1984) calculated that to aggregate 1,000 areas in 20 regions there are 101,260 

different solutions. For more information about combinatorial problems, see Aarts and 
Lenstra (1997). 

11  Different alternatives to determine the initial solution can be found in Wise et al. (1997). 



 12

Batagelj (1982) provide different iterative reallocation algorithms that allow 

moving an area to a different region only if contiguity constrains are satisfied. 

Algorithms such as the Automatic Zoning Procedure (AZP) (Openshaw, 

1977), the Land Allocation Problem (Benabdallah and Wright, 1992), the 

Redistricting Problem (Macmillan and Pierce 1994) and the Regional 

Partitioning Problem (Horn, 1995) have been used in the literature related 

with the particular case of splitting a country in administrative areas or 

electoral districts such that the final regionalisation minimises the effects of 

the Modifiable Areal Unit Problem (MAUP)12. 

Iterative Relocation Algorithms have been improved using heuristics 

that permit a better search among the different feasible solutions and to avoid 

the risk of getting trapped into a local optimum. The most used heuristics in 

this context are the Simulated Annealing (AZP-SA) and the Tabu Search 

Algorithm13,14 (AZP-TABU), proposed by Openshaw and Rao (1995), and the 

Anneal Redistricting Algorithm proposed by Macmillan and Pierce (1994). 

The methodologies of constrained clustering where additional 

instruments, such as distance or contact matrix, are included, have as a 

common characteristic that the relationships between the areas to group are 

                                                 
12  Openshaw defined the problem of the Modifiable Areal Unit Problem (MAUP) as a 

potential source of error that can affect the results of those studies based in geographical 
aggregated information as these results could vary in function of the configuration of this 
aggregation. The MAUP is related with two different problems regarding the analysis of 
spatial data: the problem of scale, related with the desired number of regions, and the 
problem of aggregation, related with the configuration of small areas inside bigger areas. 
For more information, see Openshaw (1977), Openshaw and Taylor (1981), and in an 
econometric context, see Fotheringham and Wong (1991) and Amrhein and Flowerdew 
(1992). 

13  The Simulated Annealing was proposed as an optimisation procedure by Kirkpatrick et 
al. (1983) and first time applied in the Redistricting Problem by Browdy (1990). 

14  For more information about the Tabu Search Algorithm, see Glover (1977, 1989, 1990). 
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symmetric. In this sense, Ferligoj and Batagelj (1983) have developed 

agglomerative algorithms where asymmetric relationships can be considered. 

All the methods presented above are “supervised” models, which means 

that the researcher knows a priori the data structure of the analysed 

phenomenon. But there are other unsupervised models that can be useful when 

the researcher wants to analyse a big amount of data and there is not enough 

information of the factors that can affect the system. In these cases, one 

possibility consists in applying a non-parametric analysis of data that will 

permit to find the patterns and relationships among the considered elements. 

One of the most known applications of these methods in the field of 

regionalisation is Self Organization Maps (SOM) proposed by Kohonen 

(1984). There is no consensus among researchers about the validity of this 

methodology, originally developed in the field of artificial intelligence, due to 

the lack of a theoretical basis that difficult the interpretation of the results 

(Openshaw, 1992). 

A summary of the different methodologies in this section can be found 

in table 1. 
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Table 1. Summary of the different available methodologies for the reduction of geographical data 

 

 

Geographic data 
Reduction

Supervised

Unsupervised

Without 
contiguity 
constrain

With contiguity 
constrain

Use of additional 
instruments

To incorporate geographic 
attributes and to apply 

conventional
clustering algorithms

In two stages

Nonsymmetric
relations

Symmetric 
relations

Hierarchical 
algorithms

Partitioning 
algorithms

Mathematical 
programming

Iterative 
algorithms / 
heuristics

 
 
 
Source: Own elaboration. 
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3. A LINEAL OPTIMISATION MODEL FOR THE 

CONFIGURATION OF REGIONS 

 

3.1. Model description 

 

In this section, we formulate the regionalisation problem as a linear 

optimisation model that permits the design of regions taking into account the 

characteristics of the areas but also their relationships. In this model, the 

restrictions of geographical contiguity will not conditionate, more than 

necessary, the final result. Before introducing the mathematical formalisation 

of the model, its main characteristics and assumptions used will be mentioned. 

 

3.1.1. Representation of the geographical set 

 

The starting point of any regionalisation process consists in the 

identification of the territory to regionalise. As an example, Figure 1 shows a 

territory that could be regionalised. It is composed by a finite number (n) of 

geographical areas of smaller size that form a geographical contiguous A = 

{a1, a2, a3, ... , an}. 

Once the territory of interest has been defined, the next step consists in 

simplifying the previously defined geographical set in a way that each of the 

considered elements (n areas) and their neighbourhood relationships could be 

easily represented. This simplification can be done using a graph formed by n 

nodes, each of them representing one of the considered areas, and arcs that 

represent the geographical contiguity among them. 
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There are different methods in order to make this kind of simplification. 

We have selected the most general one, the Delaunay Triangulation (DT) 

(Aurenhammer, 1991). With this method, each arc relates those areas with a 

common border. One of the main advantages of this method is that the 

localisation of the point representing each of the areas does not affect the 

result of the graph. Other methods, such as the Gabriel Graph (Matula and 

Sokal, 1980), the Relative Neighbourhood Graph (Toussaint, 1980) or the 

Minimum Spanning Tree (Graham and Hell, 1985) are particular cases of DT 

and results can be different depending on the localisation of the areal 

centroids. Figure 2 combines the DT graph with the one representing the 

territory considered in the example. 

 

Figure 1. Group of areas that form the territory to regionalise 

 A 

a1 

a2 

a3 

a4 

a5 

a6 

a7 

 
Source: Own elaboration. 

 

Figure 2. Delaunay Triangulation (DT) 
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Source: Own elaboration. 
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3.1.2. Relationships between the elements to be grouped 

 

The next step consists in the consideration of the relationships between 

the different areas (or nodes of the graph). The consideration of these 

relationships is one of the more relevant elements in the regionalisation 

process proposed in this paper, as its consideration permits to consider 

interactions between areas in order to obtain more homogeneous regions. For 

example, if the objective of the study is to build regions with a similar 

population in order to establish proper comparisons, it will be helpful to 

consider also information on dissimilarities regarding other socio-economic 

variables in order to obtain more homogenous regions. 

These relationships are incorporated in the model through a squared and 

symmetric matrix Dij (i = 1, 2, ..., n and j = 1, 2, ... , n) where dij contains a 

dissimilarity measure between every couple of areas i, j. 

The selected function to calculate dissimilarities between couples of 

areas should satisfy the following properties: 

 

 njidd jiij ,...,1, =∀∀=  (1) 

 ( ) njijidd ijij ,...,1,if0,0 =∀∀==≥  (2) 

 

These properties imply that the function should not be metric (it does 

not have to satisfy the triangular inequality15): 

 

 nkjiddd kjikij ,...,1,, =∀∀∀+≤  (3) 

 

                                                 
15 For more information, see Gower and Legendre (1986). 
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The possibility of using distance functions that should not be 

necessarily metric can be understood as a relaxation of the hypothesis used in 

the regionalisation models based in centroids where the rest of areas are 

assigned to each region depending on their proximity. When metric distance 

functions are used, the centroid-based approach ensures that the final solution 

will satisfy the geographical continuity constrain.  

 

3.1.3. Strategy for the configuration of regions 

 

Once we have information about the territorial configuration and the 

relationships between the different areas, the next step consists in grouping the 

n areas {a1, a2, ... , an} in m non-empty sets or regions {1, 2, ... , m} in a way 

that the areas belonging to each region form a geographical contiguity. 

To define these regions it will be necessary to select n-m arcs from the 

global set of arcs that define the contiguity graph. These n-m arcs can be 

understood as a necessary but not sufficient condition to form m regions in a 

way that areas belonging to each region are totally interconnected but 

disconnected from the areas belonging to other regions. This selection should 

take into account the following conditions: each region must have a number of 

arcs equal to the number of areas belonging to the region less one, each region 

should be formed by a minimum of two areas and, last, in each region, every 

couple of areas should be connected by a one and only one combination of 

arcs16. This system of regional configurations implies that the minimum 

number of areas in each region will be two (one arc connecting two areas), or 

in mathematical terms m = [n/2]. This condition is less restrictive as the 

                                                 
16 For more information about the properties of this (and other) configurations, see Ahuja, 

Magnanti and Orlin (1993). 
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number of areas forming the territory increases17. Figure 3 shows a possible 

solution to design 2 regions from 7 areas. 

 

Figure 3. Feasible result for the design of two regions 
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Source: Own elaboration. 

 

The localisation of arcs in each region does not have influence on the 

final result. For example, the region formed by the areas connected by arcs 1-

2, 2-3 and 2-4 can be also configurated with arcs 1-3, 2-4 and 3-4. This result 

is related with the fact that the arcs function is only to ensure geographical 

contiguity, because of they do not have any value assigned. This strategy can 

be very useful to identify regional configurations with a high variety of shapes 

(longed or compact regions), as it does not rely on centroids, which tend to 

produce compact areas. 

 

 

                                                 
17 If we have one area that is considered as an outlier it should be treated as a region, the 

solution will be to exclude from the analysis and forming m-1 groups with the other n-1 
areas. 
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3.1.4. Considered criteria for the configuration of regions: the objective 

function 

 

The objective of grouping n areas in m regions is that the areas 

belonging to each region form a homogeneous geographical contiguity. So, a 

partition criterion considering which one of the possible configurations of n 

areas in m regions is the most adequate should be defined. 

With this aim, it is necessary to define a measure of adequacy of a 

regional configuration. One possibility consists in calculating the degree of 

heterogeneity of the areas assigned to a region or, other alternative could be to 

calculate the degree of isolation of the areas of one region related to the rest. 

The heterogeneity measure selected in this paper consists in the sum of the 

elements of the upper triangular matrix of dissimilarity relationships between 

the areas in the considered region. Following Gordon (1999), the 

heterogeneity measure for region r, Cr can be calculated as follows: 

 

 { }∑ <∈≡
jiCji ijr

r
dCH

,
)(  (4) 

 

Taking this into account, the problem of obtaining r homogeneous 

classes (regions) can be understood as the minimisation of the sum of the 

heterogeneity measures of each class (region) r: 

 

 ( ) ( )∑ =≡Σ c

r rCHHP
1

,  (5) 
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or, following the MIN-MAX strategy, we can also try to minimise the value of 

the most heterogeneous region as this imply that the rest of the regions would 

be equal or less heterogeneous: 

 

 ( ) { } ( )rcr CHMaxHP ,...,1max, =≡  (6) 

One disadvantage associated to the second strategy is that once the 

value of the most heterogeneous region is minimised, the configuration of the 

rest of the regions will not be revised, avoiding the possibility of making 

changes that could improve their heterogeneity. For this reason, the strategy 

followed in this paper consists in the minimisation of the sum of the 

heterogeneity measures of each region ( )( )Σ,HP . 

It is worth mentioning that both objectives, minimising internal 

heterogeneity H(Cr) and maximising the isolation among regions I(Cr), are not 

independent. In fact, we can formulate an equivalent objective in terms of 

isolation criteria: 

 

 ( ) ( ) ( )∑ =≡Σ≡Σ c

r rCIIPHP
1

,,  with ∑ ∑∈ ∉≡
r rCi Cj ijr dCI )(     (7) 
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3.2. Mathematical model 
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{ } { } ,...,mk ,...,n ji,T;, ; Y,X ijikijk 1;1,00101 =∀=∀∀≥∈∈  (15) 

 

As it was previously mentioned, the objective function of the model is 

related with the minimisation of the total heterogeneity, measured as the sum 

of the elements of the upper triangular matrix (Dij) of dissimilarity 

relationships between areas belonging to the same region (the elements 

defined by the binary matrix Tij). Restriction (8) controls the assignation of the 

values of matrix Tij where, by the nature of the objective function, the 

relationship between areas i and j will only be taken into account if they 

belong to the same region. Restriction (9) imposes that the minimum number 

of areas defining a region is two. As it was previously mentioned, the 

restriction is less strong as the number of areas increases. Restriction (10) 

imposes that each area must be assigned to one and only one region. 

Restrictions (11) and (12) imposes that only when the area i is assigned to 

region k, it will be possible to establish arcs to the neighbourhoods of the area 

(j∈Ni). To avoid an excessive reduction of feasible regional configurations, 
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the number of arcs from an area can be higher than one. Restriction (13) 

imposes that the number of arcs to ensure geographical contiguity of the areas 

assigned to one region must be equal to the number of areas in the region less 

one. However, this restriction does not totally ensure that the final solution 

will be formed by contiguous regions. There are cases such as the one shown 

in figure 4, where region A, formed by areas 1, 2, 3, 6 and 7, satisfies 

restriction (13) –there are four connecting arcs for five areas- but the 

combination of arcs 1-2, 1-3, 2-3 generates a cycle that breaks the 

geographical contiguity of the region. For this reason, it will be necessary to 

control, a part of the number of arcs, if there are cycles and this is the origin of 

restriction (14). 

 

Figure 4. Non-feasible regional configuration 
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 Source: Own elaboration. 

 

The problem of cycles has been treated in the literature as the analysis 

of subtour in transport models such as the Vehicle Routing Problem (VRP)18. 

The VRP consists in defining vehicles routes with a given origin and end in 

the same node (called depot) and trying to minimize costs. The design of a 

                                                 
18 This problem was first proposed by Dantzing and Ramser (1959). A survey about the 

models derived from this approach can be found in Laport and Osman (1995). 
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tour for a certain vehicle cannot contain subtours and to control this condition, 

the VRP incorporates the following constraint: 

 

1−≤∑
∈

SX
Sj,i

ijk , ∀ non-empty subset of S⊆{2,...,n}; k=1,...,m.    (16) 

 

The main disadvantage of this approach is that the number of 

restrictions increases exponentially with n and m. For this reason, and 

although the proposal is theoretically adequate, at the practical level it has 

been necessary to implement other restrictions to solve this problem in a more 

efficient way. These alternatives can be appropriated for the specific problem 

of the VRP (although they do not ensure the elimination of subtours in 

problems of a certain dimension), but not for the regionalisation problem. For 

example, it is required to establish a priori a depot node that will be the origin 

and end of all the tours, and it is also necessary to establish a sequential order 

among nodes. 

However, the theoretical restriction of the VRP can be adapted in an 

efficient way in this geographical context as we know the number of elements 

of the set S. For example, in the territorial configuration of figure 5 we can 

clearly identify the different combination of arcs ci,j,k that can generate cycles. 

The combination of arcs 1-2, 1-3, 2-3 (o 2-3, 2-4, 3-4) will produce a cycle 

where 3 areas would be involved, 1, 2 and 3 (or 2, 3, 4), while the 

combination of arcs 1-2, 1-3, 3-4, 2-4 will generate a cycle among the four 

areas.  
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Figure 5. Configuration of areas with potential cycles 
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 Source: Own elaboration. 

 

Moreover, in a territorial configuration as the one shown in figure 6, 

there is no combination of arcs ci,j,k that could generate a cycle. For this 

reason, at the territorial level, not every subset S can have cycles as the 

number of potential arcs ci,j,k is limited to those combinations i,j where the 

value of the contact matrix wij =1. This is the set of potential arcs ci,j,k that are 

included in Ni. 

 

Figure 6. Configuration of areas without potential cycles 
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Source: Own elaboration. 

 

But, is there any special pattern that could help to detect potential cycles 

in a specific territorial configuration? Yes, we only have to identify those 

combinations of arcs where the number or arcs is equal to the number of areas 

connected through them. For example, in the case shown in figure 5, the three 
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arcs 1-2, 1-3, 2-3 (or 2-3, 2-4, 3-4) connect three areas, 1,2,3 (or 2,3,4), and as 

a result, 3 arcs and 3 areas imply the existence of a cycle. The same happens 

with the combination of arcs 1-2, 1-3, 3-4, 2-4 that connect four areas 

(1,2,3,4). Again, 4 arcs and 4 areas imply the existence of a cycle of 4 

elements. 

But, for a territorial configuration of n areas that will be grouped in m 

regions, which is the maximum number of areas that can be involved in a 

cycle? As the model, in restriction (9), requires that the minimum number of 

areas in a region is 2, in the case where (m-1) regions are formed by two areas, 

there will be no possibility of cycles, as each region will only have one 

possible arc (restriction 13). For this reason, when creating m-1 regions with 2 

areas, we will have a region formed by n-2(m-1) areas with  (n-2(m-1))-1 arc, 

which is the maximum number of arcs that can create a cycle. Simplifying this 

expression, we have that: 

 

 n-2m+1 (17) 

 

So, the minimum number of areas where the possibility of finding a 

cycle should be evaluated is three, as it is impossible that for a lower number 

of areas we find this problem. 

As a result, restriction (14) is related with the modification of the set S 

as proposed in the VRP. Using this modification, we achieve an important 

reduction in the number of restrictions to satisfy, avoiding that the number of 

restrictions increases exponentially with n and m. This fact permits to use 

commercial software in the context of regionalisation problems with a high 

number of areas and regions. 
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Last, restriction (15) only implies that ijkX  and ikY  should be binary 

variables. Although the variable ijT  has been defined as positive, and not as 

binary, it will always take values 0 or 1 because of the combination of 

restriction (8) with the objective of minimisation of the model19. 

 

3.3. Application of the model 

 

In this subsection, different examples are shown with the aim of 

illustrating the model capacity to design regional configurations with different 

characteristics. With this aim, we have implemented a first set of four 

examples each one with a different dissimilarity matrixes (Di,j), where values 

di,j have been established in such a way that it is possible to know a priori the 

optimum regional configurations. The procedure to obtain the dissimilarity 

matrix in each example has been the following: 

 

1. We have grouped the n areas in m contiguous regions, assigning each area 

i = {1,...,n} to a Region k = {1,...,m}. This aggregation permits to built the 

set Rk {i|i∈k}. 

 

2. We have assigned a value to each of the areas i = {1,...,n} depending on the 

region they have been assigned. This value is given by the sum of a 

constant with a random term, generated from a uniform distribution among 

0 and 1. The value of the constant is different for each region, as there 

should be a big enough difference (D) in order to obtain significant 

                                                 
19 The possibility of defining a variable taking values 0 or 1 as positive and not as a binary 

variable has an advantage when using the branch and bound algorithm, as the number of 
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different average values for each region. The applied expression has been 

the following: 

 

 ( ) [ ]1,0~;,...,1;,...,1* UmknikDCA
kRi εε =∀=∀++=∈    (18) 

 

3. Next, we have calculated the relationships between areas using a distance 

function. In particular, the function that we have used is the weighted 

Euclidean distance calculated among the elements of the Ai vector after 

centering it. 
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where S is the standard deviation of the Ai, vector and c
iA is a centered 

vector calculated as follows from Ai:  

 ninAAA
n

i
ii

c
i ,...,1,
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−= ∑

=
 (20) 

 

The matrixes obtained with this procedure are shown in Table 2. 

 

                                                                                                                                                     
sub-problems is drastically reduced. For more information about this algorithm, see 
Hiriart, Oettli and Store (1983). 
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Table 2. Relationships matrixes for examples 1 to 4  

Example 1  Example 2 
area 2 3 4 5 6 7 8 9 10 11  area 2 3 4 5 6 7 8 9 10 11 

1 1.041.211.181.110.170.142.262.310.09 2.31 1 0.06 0.02 0.03 2.42 2.49 1.23 0.03 1.19 0.04 0.02
2   0.170.140.071.221.181.221.271.14 1.27 2   0.07 0.03 2.37 2.44 1.18 0.09 1.13 0.01 0.04
3     0.030.101.381.351.051.101.31 1.10 3     0.04 2.44 2.51 1.25 0.01 1.20 0.06 0.03
4       0.071.351.321.081.131.27 1.13 4       2.40 2.47 1.21 0.06 1.16 0.02 0.01
5         1.291.251.151.201.21 1.20 5         0.07 1.19 2.45 1.23 2.38 2.40
6           0.032.432.480.08 2.49 6           1.26 2.52 1.31 2.45 2.48
7             2.402.450.05 2.45 7             1.27 0.05 1.19 1.22
8               0.052.36 0.05 8               1.22 0.07 0.05
9                 2.41 0.00 9                 1.14 1.17
10                   2.41 10                   0.02

   

Example 3  Example 4 
area 2 3 4 5 6 7 8 9 10 11  area 2 3 4 5 6 7 8 9 10 11 

1 0.640.801.361.272.031.980.081.982.78 2.79 1 0.23 0.27 0.16 2.45 2.56 0.22 0.04 0.06 0.17 0.04
2   0.150.720.621.391.340.731.342.13 2.14 2   0.05 0.06 2.23 2.34 0.00 0.27 0.28 0.40 0.27
3     0.570.471.231.190.881.181.98 1.99 3     0.11 2.18 2.29 0.05 0.31 0.33 0.45 0.31
4       0.100.670.621.450.621.41 1.42 4       2.29 2.40 0.06 0.21 0.22 0.34 0.21
5         0.760.721.350.711.51 1.52 5         0.11 2.23 2.49 2.51 2.63 2.50
6           0.052.110.050.75 0.76 6           2.34 2.61 2.62 2.74 2.61
7             2.070.000.79 0.80 7             0.26 0.28 0.40 0.26
8               2.062.86 2.87 8               0.02 0.13 0.00
9                 0.79 0.80 9                 0.11 0.02
10                   0.01 10                   0.13

Source: Own elaboration. 

 

The obtained regional configurations after applying the optimisation 

model with the different relationships matrix are shown in the maps in table 3. 

The solutions coincide with the optimal regional configurations predefined 

above and, so, it seems that the model can design regions with a high variety 

of shapes 

 

3.4. Additional restrictions that can be incorporated to the model 

 

In this sub-section a second block of examples are shown in order to 

introduce some restrictions in the model that are usually considered in 

regionalisation processes. 



 

 31

Using a similar procedure to the one explained in the previous sub-

section, we have calculated a relationships matrix (Di,j) using demographic 

data20 for the 11 statistical areas in which the Comunidad de Madrid is divided 

at the NUTS IV level (see table 4).  

 

Table 3. Solutions for the relationships matrixes from Table 2 

Example 1 

 

Example 2 

 
n=11 and m=3 

 
n=11 and m=3 

 
Example 3 

 

Example 4 

 
n=11 and m=5 n=11 and m=2 

n: number of areas, m: number of regions. 
Source: Own elaboration. 

 

                                                 
20 Replacing ratio: (Population between 15 and 39 years old)/(Population between 40 and 

64 years old). Dependence ratio: (Younger than 15 years old and older than 64 years 
old)/(Population between 15 and 64 years old). Progressivity ratio: (Population between 
0 and 4 years old)/(Population between 5 and 9 years old)x100. 
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Table 4. Demographic variables at the NUTS IV level zones of the Madrid 

Autonomous Community 

AREA 
REPLACING 

RATIO 
DEPENDENCE 

RATIO 
PROGRESIVITY 

RATIO 
POPULATION 

1 1.333494 0.544033 95.220244 22,407 
2 1.491906 0.430047 95.915703 86,954 
3 1.343378 0.577842 89.237288 21,719 
4 1.564950 0.440989 90.867430 48,655 
5 1.440734 0.369530 97.272824 292,155 
6 1.263530 0.464020 100.935145 2,879,052 
7 1.502627 0.355461 95.658407 233,035 
8 1.706222 0.435573 96.254891 25,602 
9 1.511078 0.342928 87.525416 452,188 
10 1.445924 0.316330 88.654766 1,024,513 
11 1.463349 0.529148 86.576424 59,045 

 1.35 0.41 95.68 5,145,325 

Source: Padron continuo 1999. Instituto de Estadística de la Comunidad de Madrid.
21

 

 

To combine the information of the tree variables (replacing ratio, 

dependence ratio and progressivity ratio) (v = 1, 2, 3) in the relationships 

matrix, we used the following distance function:  
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Expression (21) is a multivariate version of (19) that permits the 

incorporation of p variables, thanks to the inclusion of subindex v. Using this 

expression, the distance between areas i and j is the square root of the sum of 

the squared distances between i and j calculated for each of p considered 

variables. The obtained relationship matrix is shown in table 5. 

 

                                                 
21  http://www.madrid.org/iestadis/pc99_d99.htm. 
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Table 5. Relationships matrix from demographic variables in table 4 

area 2 3 4 5 6 7 8 9 10 11 
1 1.86 1.33 2.44 2.24 1.63 2.59 3.34 3.20 3.12 2.14
2   2.54 1.24 0.87 2.21 0.87 1.78 2.05 2.06 2.30
3     2.44 3.06 2.89 3.19 3.73 3.07 3.14 1.27
4       1.90 3.30 1.51 1.64 1.41 1.81 1.60
5         1.99 0.64 2.34 2.18 1.93 2.93
6           2.60 3.81 3.78 3.46 3.55
7             1.93 1.74 1.63 2.80
8               2.68 3.02 3.07
9                 0.67 2.19
10                   2.50

Source: Own elaboration. 

 

3.4.1. Requirement of a population minimum 

 

In order to guarantee that each of the designed regions has a population 

minimum, it is necessary to introduce the following restriction in the 

mathematical model: 

 

 ,...,mkLPY i

n

i
ik 1,

1

=∀≥⋅∑
=

 (22) 

 

where Pi is a vector containing information of the population of each of 

the considered areas and L is a constant that specifies the population minimum 

required. For this example, we have fixed this minimum in 800,000 

inhabitants. 

Following the suggestions by Openshaw et al. (1998), the objective of 

reducing the population differences among regions has been formulated as an 

inequality restriction. Using this formulation, it is clear than if the value of L is 

very high, the problem can be not feasible. However, this kind of situations 
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can be avoided using a multi-objective function with the objective of 

minimising the regional heterogeneity but also the differences in terms of 

population. The problem with this approach is to assign weights for these 

objectives. 

The obtained results after solving a model with and without a minimum 

population requirement are shown in table 6. In the solution for the 

unrestricted model (left map), the region 1 has the lower value for population, 

131,080 inhabitants, while in the solution for the restricted model (right map), 

the same region is still the one with the minimum population but its value is 

820,186 inhabitants (>800,000 inhabitants). 

 

Table 6. Solutions with and without requirements of a population 

minimum 

Without population minimum With population minimum ≥  800,000 

  
 Region 1  Region 2  Region 3  Region 1  Region 2  Region 3 

Population1 Population 2 Population 3 Population1 Population 2 Population 3 

131,080 1,584,401 3,429,844 820,186 1,153,932 3,171,207 

Source: Own elaboration. 
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3.4.2. Configuration of regions with mandatory isolation 

 

A different kind of restriction that could be of interest consists in 

imposing that certain areas belong to different regions in the final solution 

(mandatory isolation). In this case, the following restriction should be added 

to the model:  

 

 ,...,mkOY i

n

i
ik 1,1

1

=∀=⋅∑
=

 (23) 

 

where Oi is a binary vector that takes 1 for selected areas and 0 for the 

rest. It is important to take into account that, when defining Oi, the number of 

selected areas must be equal to the desired number of regions: 

 

 mO
n

i i =∑ =1
 (24) 

 

In marketing research, this restriction would be useful when it is 

necessary to divide a territory in zones in such a way each zone must be 

assigned to pre-located warehouses. 

Table 7 shows the results of applying the model with data from table 5, 

but imposing that some preselected areas, marked with a red circle, must 

belong to different regions in the final solution. The results show that the 

model achieves both objectives: the areas are assigned to different regions and 

each region is homogeneous in terms of demographic variables. 
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Table 7. Solutions with mandatory isolation 

  
Source: Own elaboration. 

 

3.5. Computational results 

 

One of the most interesting features of optimisation models when 

applied in real problems is the required computational time to achieve the 

optimal solution.  

With the aim of testing the computational capacity of the model, it was 

applied to different random territorial configurations. The procedure to obtain 

these random configurations was the following: 

 

a. For a given number n of areas, a triangular matrix was randomly 

generated following a [0,1] uniform distribution. 

 

b. A threshold point, between 0 and 1, was fixed in a way that random 

numbers above this point were replaced by 1, and 0 otherwise. The 

obtained binary matrix can be interpreted as a contact matrix, which 

should be evaluated in terms of contiguity. 

The threshold value was assigned taking into account that the 

resulting territorial configuration (or connecting arcs) was realistic in 
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term of the neighbourhoods of each area. The selected matrixes have 

an average density of 28.3% and a median of neighbourhoods of 3 per 

area, ranging from 1 to 8. 

 

c. Every randomly generated matrix was evaluated in terms of 

geographical contiguity and we only selected feasible ones22. 

 

d. Last, the relationships between the n considered areas were randomly 

generated from a [0,1] uniform distribution. Using this method, we are 

assuming a scenario where relationships between areas are not 

geographically dependent. 

 

Table 8 shows the average running times23 for different combinations of 

areas and regions (5 examples for each combination). 

 

Table 8. Average running time, in seconds, for different combinations 

(areas-regions) 

 Regions 
 2 4 6 

5 <1* - - 

8 <1* 3.00 - 

11 <1* 19.00 - 

14 5.80 117.40 2,571.00 

   
  A

re
as

 

17 2.20 2,458.20 42,283.80 

Note: Five examples for each combination of areas and regions. 
* Execution times lower than a second. 
Source: Own elaboration. 

                                                 
22 Although the decision of evaluating a posteriori the contiguity of the matrix would imply 

a higher computation time for the generation of the different examples, this methodology 
assures that the territorial configurations in each example are totally random. 

23 The calculations in this paper have been performed using Extended LINGO/PC 6.0 in a 
PC computer with a Pentium 4 processor at 2.40C GHz and 256 Mb of RAM memory. 
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Although the number of restrictions was clearly reduced with the 

modification of constraint (14), that controls the elimination of cycles, the 

running time stills very high. In fact, for those cases with more than 17 areas 

the time increases substantially. For this reason, other alternatives that would 

permit to increase the computational capacity of the model would be 

considered in the next section  

 

4. RASS (Regionalisation Algorithm with Selective Search) 

 

The characteristics of a regionalisation process can generate certain 

inefficiencies in the heuristics that have been adapted for this context (a 

summary of the different heuristic is presented in Annex 1). In fact, one of the 

aspects that have been less considered in the literature is the capacity of 

heuristics such as the Tabu Search or the Simulated Annealing when used in 

regionalisation process.  

In this section, we propose a new algorithm, called RASS 

(Regionalisation Algorithm with Selective Search), as a regionalisation tool 

that solves some of the inconvenients associated to the previously mentioned 

methodologies. The most relevant characteristic of this algorithm is related 

with the fact that the way it operates is inspired in the own characteristics of 

regionalisation processes, where available information about the relationships 

between areas can play a crucial role in directing the searching process in a 

more selective and efficient way (less random). 

The RASS incorporates inside its algorithm the optimisation model 

presented in sub-section 3.2. in order to achieve local improvements in the 

objective function. These improvements can generate significant changes in 
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regional configurations, changes that would be very difficult to obtain using 

other iterative methods. 

 

4.1. Steps for the application of RASS 

 

Step 1:  Take as a starting point, a feasible solution of m regions that group n 

areas. 

 

Step 2:  Select from these m regions the more heterogeneous geographical 

contiguity formed by r regions with ( ) 21 ≥≥− rm . 
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 where Mi is the set formed by the different alternatives of selection 

of r contiguous regions of the available m regions. 

 

Step 3:  Application of the direct optimisation model to the areas of the r 

selected regions to create r* regions. 

 

Step 4:  Select a region to include (e): From the (m-r) regions that were not 

considered, identify those areas bordering on territory formed by the 

r* regions and select the one with higher similarities with any of the 

regions in r. 

 

 ( ) ( ))I(CMindprom)I(C d,fCi ijCj ijd,f
f d

→≡ ∑ ∑∈ >∈  (26) 
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 where d is the set of the r* regions which are inside, and f is a subset 

of regions bordering on d. Each of the (m-r) regions that were not 

selected in the step 2 will only be selected once in every cycle (steps 

2 to 8). 

 

Step 5:  Select the region that will be removed (s): The region with higher 

differences with the region to be included (e) in step 4 will be 

removed from d. The region to be removed cannot destroy the 

internal contiguity of d. 

 

 ( ) ( ))I(CMaxdprom)I(C d,eCi ijCj ijd,e
e d

→≡ ∑ ∑∈ >∈  (27) 

 

Step 6:  Include in the set of r regions the region (e) and remove (s): d=(d+e-

s). The direct optimisation model will be applied to the new 

configuration of r regions to create r* regions. 

 

Step 7:  Repeat steps 4 to 6 until the (m-r) regions that where not selected in 

step 2 have been included at any time in d, or until there are no more 

candidates to be selected in the bordering on d. 

 

Step 8:  Calculate the value of the objective function. 

 

Step 9: If the value of the objective function improves, step 2 would be 

repeated. If the value of the objective function does not improve, 

step 2 would be repeated but selecting the next more heterogeneous 

group. Steps 2 to 8 would be repeated until no significant 
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improvement in the objective function is found in a given number of 

cycles (C) or until the list of alternative r contiguous regions is 

exhausted. 

 

Some characteristics to highlight from the RASS algorithm are the 

following: 

 

a) The application of direct optimisation to a group of regions, in steps 3 to 

5, permits to achieve improvements in the objective function that can be 

accompanied by important changes in regional configurations because of 

the reassignation of an important number of areas. 

 

b) The criteria used in step 2 for the selection of r regions and the criteria for 

including/removing regions in steps 4 and 5 try to keep in the 

optimisation model, step 3, those regions with a higher potential to 

improve the objective function after reconfiguration.  

The objective is to ensure that the included region is the one that 

presents the higher probability of containing areas belonging to other 

regions. This potential reassignation is identified assuming that two 

regions with exchanged areas, decreases the dissimilarities among these 

regions. 

Last, when the region to be included (e) is selected, the next step 

establishes that the region to be removed (s) (in order to keep an 

appropriated number of areas for the optimisation model) is the more 

different one from the region to include. This region has lower 

possibilities of exchanging areas with the region to be included (e). 
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c) The conditions in steps 7 and 9 try to avoid repetitive searching patterns. 

Moreover, the criteria for including/removing regions and the use of the 

optimisation model clearly improve the capacity of RASS of escaping 

from local optimum. 

 

d) The fact of applying the optimisation model only to a part of the 

considered territory does not imply that each local improvement could 

worsen the global solution. In fact, after each cycle, the value of the 

objective function will be always lower or equal to the value of the 

objective function at the beginning of the cycle. 

 

4.2. Computational results and comparison with the direct optimisation  

 

This sub-section tries to evaluate the performance of the RASS 

algorithm respect the direct optimisation model. The solved examples are the 

ones that were randomly generated in sub-section 3.524. In order to apply the 

algorithm to these examples, it was necessary to define an initial feasible 

partition that could be used as a starting point for RASS. The initial partition 

was randomly generated following these steps: 

 

a) Generate a vector with n values (as many as areas) using a 

uniform distribution between 0 and 1. 

 

                                                 
24 In this analysis we have excluded the examples where 2 regions should be formed, as in 

this case the application of the RASS would be equivalent to the direct application of the 
optimisation model: there is no difference between the values of parameters m and r of 
RASS and, as a result, the application of step 3 will take directly to the optimal solution. 



 

 43

b) The interval [0,1] is divided in equal sized intervals, as many as 

the number of regions to design. For example: for 2 regions we 

used the intervals [0, 0.5) and [0.5, 1] and for 4 regions, the 

intervals were [0, 0.25), [0.25, 0.5), [0.5, 0.75) and [0.75, 1). 

Each of these intervals represents a region, in such a way that the 

elements of the random vectors can be transformed in a vector 

that assignates areas to regions (potential initial partition). 

 

c) If the initial partition was feasible in terms of geographical 

contiguity, this partition was used as starting point for RASS. If 

this were not the case, we went back to step a). 

 

Some descriptives of the results for the 30 considered problems (5 for 

each combination of regions and areas) are shown in table 9. RASS achieved 

the optimal solution in the 100% of the considered examples in a considerably 

lower time than the direct solution method. 

 

Table 9. Comparison of RASS with the direct solution method 

Regions  Areas  Optimum/5 
Seconds 
(RASS) 

Seconds 
(Direct) 

(FOI - FO1c)   
(FOI - SO*) 

8 5/5 3.40    3.00 76.45% 
11 5/5 5.80    19.00 86.70% 
14 5/5 29.00    117.40 74.31% 

4 

17 5/5 247.20    2,458.20 69.46% 
14 5/5 25.20    25,710.00 85.93% 6 
17 5/5 250.00    42,283.80 66.71% 

FOI= Initial objective function, FO1c= Objective function after the first cycle, 
SO*= Optimal solution 
Source: Own elaboration. 
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In the last column, we can also see that after the first cycle of the RASS, 

the value of the objective function is reduced in an 80% of the total reduction 

required to achieve the global optimum. 

Using the available information about running times of both methods, 

the direct method and the RASS, it is possible to calculate the time savings by 

applying the algorithm. Figure 7 shows the relationship between the savings 

and an indicator of complexity that has been defined as the product between 

the number of considered areas and the number of considered regions. The 

results in this figure show that in less complex models the direct method is a 

better option, while in complex models the RASS provides better results. 

According to these results, this change happens for models with a complexity 

over 57.83 (58 if we keep the discrete nature of the variable25). 

In order to obtain a better measure of the time savings achieved with 

RASS, we have estimated a quadratic model between time savings and the 

measure of complexity26,27. The results of estimating this model are shown in 

table 10. There is a significant relationship between the two variables at 1% 

significance level. In front of a marginal increase in the complexity of the 

problem, the use of RASS implies a time saving of 426.08-14.73 

(areas*regions), a result that confirms the previously mentioned intuition. 

                                                 
25 It should be highlighted that this value can be obtained with different combinations of 

areas and regions. 
26 We have considered together the effects of the number of areas and regions because 

when introduced separately in the regression, there is a problem of collinearity due to the 
high correlation among them. 

27 We have excluded the intercept from this regression in order to impose that the execution 
time is equal to zero when the complexity is equal to zero. 
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Figure 7. Relationship between the complexity of the problem and the 

time savings obtained after applying RASS 
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Source: Own elaboration. 

 

Table 10. Quadratic regression among the time savings obtained with 

RASS and the complexity indicator 

n=30 Coefficient 

(areas×regions) 426.078* 

(areas×regions)2 -7.367* 
R2 0.566 
F 18.269* 
* Significant at 1% 

 

 

4.3. Capacity of the RASS to achieve global optimums in more complex 

problems 

 

As in more complex problems, it is impossible to compare the results 

obtained by the RASS and direct optimisation because the execution method 

for the second would be very high, in this section we present the obtained 
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solution for a regionalisation process where we want to group 38 areas in 10 

regions (complexity of 38*10 = 380). For this comparison, we have followed 

the same procedure than in the examples of sub-section 3.3: A relationship 

matrix Dij is defined in a way that it is possible to know a priori the optimal 

solution of the regionalisation process. This optimal solution can be compared 

with the solution obtained by the RASS . 

 

4.3.1. Data  

 

a) Characteristics of the territory to regionalise 

 

The selected areas for this example are the 38 areas (Zones 

Estadístiques Grans) that form the city of Barcelona. The first step consists in 

considering the contiguity relationships among these 38 areas or, in other 

words, in obtaining the contact matrix. 

 

b) Relationships among areas 

 

The relationships among areas (see Table 11) were created in a way that 

the optimal solution grouped the 38 areas in 10 regions, each of them with 

different shapes and sizes (among 2 and 6 areas by region). This optimal 

solution is shown in figure 8, and this is the solution that the RASS algorithm 

should be able to identify. 
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Table 11. Relationships matrix between the 38 areas 

 
  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

1 0.006 0.000 0.038 0.328 0.330 0.319 0.359 0.340 0.676 0.661 0.671 0.682 0.951 0.977 0.972 0.964 1.270 1.316 1.287 1.603 1.625 1.928 1.898 1.928 2.243 2.235 2.257 2.565 2.558 2.882 2.866 2.873 2.574 2.581 2.901 2.586 2.853

2  0.006 0.032 0.322 0.324 0.313 0.353 0.335 0.670 0.655 0.666 0.677 0.945 0.971 0.966 0.958 1.264 1.310 1.282 1.597 1.620 1.923 1.893 1.923 2.237 2.229 2.252 2.560 2.552 2.876 2.861 2.868 2.568 2.575 2.895 2.580 2.847

3    0.038 0.328 0.330 0.319 0.359 0.340 0.676 0.661 0.671 0.682 0.951 0.977 0.972 0.964 1.270 1.316 1.287 1.603 1.625 1.928 1.898 1.928 2.243 2.235 2.257 2.565 2.558 2.882 2.866 2.873 2.574 2.581 2.901 2.586 2.853

4      0.290 0.291 0.281 0.321 0.302 0.638 0.622 0.633 0.644 0.913 0.939 0.934 0.925 1.231 1.278 1.249 1.565 1.587 1.890 1.860 1.890 2.205 2.197 2.219 2.527 2.520 2.844 2.828 2.835 2.535 2.542 2.863 2.548 2.815

5        0.002 0.009 0.031 0.013 0.348 0.333 0.344 0.354 0.623 0.649 0.644 0.636 0.942 0.988 0.960 1.275 1.298 1.601 1.571 1.601 1.915 1.907 1.930 2.238 2.230 2.554 2.539 2.546 2.246 2.253 2.573 2.258 2.525

6          0.011 0.029 0.011 0.346 0.331 0.342 0.353 0.621 0.647 0.642 0.634 0.940 0.986 0.958 1.273 1.296 1.599 1.569 1.599 1.913 1.905 1.928 2.236 2.228 2.552 2.537 2.544 2.244 2.251 2.571 2.256 2.523

7            0.040 0.022 0.357 0.342 0.353 0.363 0.632 0.658 0.653 0.645 0.951 0.997 0.969 1.284 1.307 1.609 1.580 1.609 1.924 1.916 1.939 2.247 2.239 2.563 2.548 2.555 2.255 2.262 2.582 2.267 2.534

8              0.018 0.317 0.302 0.312 0.323 0.592 0.618 0.613 0.605 0.911 0.957 0.929 1.244 1.266 1.569 1.539 1.569 1.884 1.876 1.898 2.206 2.199 2.523 2.507 2.514 2.215 2.222 2.542 2.227 2.494

9                0.335 0.320 0.331 0.342 0.610 0.636 0.631 0.623 0.929 0.976 0.947 1.263 1.285 1.588 1.558 1.588 1.902 1.895 1.917 2.225 2.217 2.541 2.526 2.533 2.233 2.240 2.560 2.245 2.513

10                  0.015 0.004 0.006 0.275 0.301 0.296 0.288 0.594 0.640 0.612 0.927 0.950 1.252 1.223 1.252 1.567 1.559 1.581 1.890 1.882 2.206 2.191 2.198 1.898 1.905 2.225 1.910 2.177

11                    0.011 0.022 0.290 0.316 0.311 0.303 0.609 0.656 0.627 0.943 0.965 1.268 1.238 1.268 1.582 1.574 1.597 1.905 1.897 2.221 2.206 2.213 1.913 1.920 2.240 1.925 2.192

12                      0.011 0.279 0.305 0.300 0.292 0.598 0.645 0.616 0.932 0.954 1.257 1.227 1.257 1.571 1.564 1.586 1.894 1.886 2.210 2.195 2.202 1.902 1.909 2.229 1.914 2.182

13                        0.269 0.295 0.290 0.281 0.587 0.634 0.605 0.921 0.943 1.246 1.216 1.246 1.560 1.553 1.575 1.883 1.876 2.199 2.184 2.191 1.891 1.898 2.219 1.904 2.171

14                          0.026 0.021 0.013 0.319 0.365 0.337 0.652 0.675 0.978 0.948 0.978 1.292 1.284 1.307 1.615 1.607 1.931 1.916 1.923 1.623 1.630 1.950 1.635 1.902

15                            0.005 0.013 0.293 0.339 0.311 0.626 0.649 0.951 0.922 0.951 1.266 1.258 1.280 1.588 1.581 1.905 1.890 1.897 1.597 1.604 1.924 1.609 1.876

16                              0.008 0.298 0.344 0.316 0.631 0.654 0.957 0.927 0.957 1.271 1.263 1.286 1.594 1.586 1.910 1.895 1.902 1.602 1.609 1.929 1.614 1.881

17                                0.306 0.353 0.324 0.640 0.662 0.965 0.935 0.965 1.279 1.272 1.294 1.602 1.594 1.918 1.903 1.910 1.610 1.617 1.937 1.622 1.890

18                                  0.046 0.018 0.333 0.356 0.659 0.629 0.659 0.973 0.965 0.988 1.296 1.288 1.612 1.597 1.604 1.304 1.311 1.631 1.316 1.583

19                                    0.029 0.287 0.309 0.612 0.582 0.612 0.927 0.919 0.941 1.249 1.242 1.566 1.550 1.557 1.258 1.265 1.585 1.270 1.537

20                                      0.316 0.338 0.641 0.611 0.641 0.955 0.948 0.970 1.278 1.270 1.594 1.579 1.586 1.286 1.293 1.613 1.298 1.566

21                                        0.022 0.325 0.295 0.325 0.640 0.632 0.654 0.962 0.955 1.279 1.263 1.270 0.971 0.978 1.298 0.983 1.250

22                                          0.303 0.273 0.303 0.617 0.610 0.632 0.940 0.932 1.256 1.241 1.248 0.948 0.955 1.275 0.960 1.228

23                                            0.030 0.000 0.314 0.307 0.329 0.637 0.629 0.953 0.938 0.945 0.645 0.652 0.972 0.657 0.925

24                                              0.030 0.344 0.337 0.359 0.667 0.659 0.983 0.968 0.975 0.675 0.682 1.002 0.687 0.955

25                                                0.314 0.307 0.329 0.637 0.629 0.953 0.938 0.945 0.645 0.652 0.972 0.657 0.925

26                                                  0.008 0.015 0.323 0.315 0.639 0.624 0.631 0.331 0.338 0.658 0.343 0.610

27                                                    0.022 0.330 0.323 0.647 0.631 0.638 0.339 0.346 0.666 0.351 0.618

28                                                      0.308 0.300 0.624 0.609 0.616 0.316 0.323 0.643 0.328 0.596

29                                                        0.008 0.316 0.301 0.308 0.008 0.015 0.335 0.020 0.288

30                                                          0.324 0.309 0.316 0.016 0.023 0.343 0.028 0.295

31                                                            0.015 0.008 0.308 0.301 0.019 0.296 0.029

32                                                              0.007 0.293 0.286 0.034 0.281 0.013

33                                                                0.300 0.293 0.027 0.288 0.020

34                                                                  0.007 0.327 0.012 0.279

35                                                                    0.320 0.005 0.272

36                                                                      0.315 0.048

37                                                                        0.267

Source: Own elaboration. 
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Figure 8. Preestablished optimal regional configuration 

 

 
Source: Own elaboration. 

 

4.3.2. Evaluation of results 

 

The initial considered partition is shown in Table 12. This is the 

partition that is considered by the RASS in the step 1. It is worth mentioning 

that this configuration is very different to the optimal one. After 5 cycles, the 

RASS algorithm properly reaches the optimal solution. 

The different regional configurations considered by the RASS in the 

different steps and iterations are shown in Annex 2. 
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Table 12. Initial partition and solution obtained by the RASS 

  
Source: Own elaboration. 

 

In order to evaluate the evolution of the results from the initial partition 

up to the final results, table 13 presents the value of the objective function and 

the associated regional configuration at the end of each cycle in the 

application of the algorithm. The value of the objective function for the initial 

partition is 34.36 and in the first cycle a reduction of 24.15 is achieved. This 

value is reduced in the following cycles until achieving its minimum value in 

1.08. 

 

Table 13. Values of the objective function in the initial partition and at 

the end of each cycle  

Regions Initial cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 
1 10.35 5.21 2.21 1.04 1.04 0.23 

2 8.07 2.21 1.04 0.93 0.30 0.18 

3 5.61 1.70 0.93 0.23 0.23 0.16 

4 3.52 0.60 0.23 0.16 0.18 0.13 

5 2.89 0.13 0.13 0.13 0.16 0.10 

6 1.34 0.10 0.11 0.09 0.13 0.09 

7 1.28 0.09 0.09 0.07 0.09 0.07 

8 0.59 0.07 0.07 0.04 0.07 0.06 

9 0.36 0.06 0.06 0.02 0.04 0.04 

10 0.35 0.04 0.04 0.02 0.03 0.02 

Objective function 34.36 10.21 4.91 2.73 2.27 1.08 
Source: Own elaboration. 
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As it can be appreciated in figure 9, the behaviour of the objective 

function is similar to the expected one: in the first cycles is where higher 

improvements are achieved. Also, it is confirmed that in every cycle the value 

of the objective function is improved, or at worst equal, in relation to the 

previous cycle. 

 

Figure 9. Evolution of the objective function during the application of 

RASS 
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 Source: Own elaboration. 

 

The number of regions in the optimisation model was set to 4 (r = 4). 

With this value, the average number of areas where each optimisation model 

was running was 15. This number was enough to permit that the running times 

where appropriated with an average running time of 2.43 minutes by model. 

These running times are shown in figure 10. 
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Figure 10. Running times of optimisation models 
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 Source: Own elaboration. 

 

As it can be seen, the running times of the different optimisation models 

were higher at the beginning of each cycle and, in particular, for the first time 

it is executed (although it is also when a higher reduction in the objective 

function is achieved). This is related with the fact that in the first model of 

each cycle is executed considering the 4 (r) most heterogeneous regions, 

which can imply that the reassignation of the areas in these r regions can be 

very high. For this example, the first model has reassignated the 37% of these 

areas (or a 18.4% if we take into account the 38 areas) and has achieved a 

reduction in the objective function of 13.18 points, a 54.6% of the reduction 

obtained in the first cycle (or a 39.6% of the total reduction).  

 

4.3.3. Sensitivity of the results to the initial partition 

 

How can the initial partition affect to the final result? In this sub-

section, we would use a different initial partition to the same problem as 

above. In particular, the initial partition in the step 1 of RASS will be closer to 
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the optimum regional configuration. With this partition, we should expect a 

lower number of cycles and similar results as in the previous sub-section. 

In this case, the optimal configuration was found after 2 cycles (see 

table 14), 3 cycles less than in the previous example. The results shown in the 

table 15 and in the figure 11, permit to conclude that, as before, the higher 

reductions in the objective function are achieved in the initial cycles of the 

RASS. 

 

Table 14. Initial partition (close to optimum) and obtained solution 

  
Source: Own elaboration. 

 

Regarding the impact of the first optimisation model on the objective 

function, now there is a reduction of 19.33 points (from 26.94 to 7.61), a 

79,25% of the total obtained reduction in the first cycle. The 50% of the areas 

in the 4 (r) considered regions are now reassigned (a 21.1% in the 38 areas are 

considered). 
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Table 15. Values of the objective function in the initial partition (closes to 

the optimal solution) and at the end of each cycle 

Regions Initial cycle 1 cycle 2 
1 10.31 1.71 0.23 

2 6.83 0.18 0.18 

3 2.33 0.15 0.16 

4 1.95 0.13 0.13 

5 1.93 0.10 0.10 

6 1.04 0.09 0.09 

7 0.93 0.07 0.07 

8 0.88 0.06 0.06 

9 0.65 0.04 0.04 

10 0.09 0.02 0.02 

Objective function 26.94 2.55 1.08 
 Source: Own elaboration. 

 

Figure 11. Evolution of the objective function during the application of 

RASS with the initial partition closes to the optimal solution 
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Source: Own elaboration. 

 

The obtained results permit to conclude that the RASS, due to the 

incorporation of a direct optimisation routine as part of the algorithm, has a 

big capacity to achieve global optimums in the context of regionalisation 
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problems. However, it is worth mentioning that the relationship between the 

number of regions (m) and the number of areas (n) should be defined as a way 

that the number of regions considered by the optimisation model (r) must be 2 

or higher and these regions should contain a number of areas in line with the 

computational capacity of the model. We have calculated that the most 

appropriate relationship m/n must be above the 14%. For example, if we 

considered a territory formed by 8000 areas, the number of regions that can be 

obtained will be higher or equal than 1120 regions (an average size of 7 areas 

per region). This relationship ensures that r can take values higher or equal 

than 2 without increasing substantially the running time. 

If the relationship between regions and the number of areas is very low, 

one possible strategy could consist in designing nested regionalisation 

problems, which would imply the sequential application of the RASS. For 

example, the city of Barcelona is divided in 1919 statistical sections (Seccions 

Estadístiques, SE), which are grouped in 248 small research areas (Zones of 

Recerca Petites, ZRP). These areas are also grouped in 110 basic statistical 

units (Unitats Estadístiques Bàsiques, UEB) that form the 38 big statistical 

areas (Zones Estadístiques Grans, ZEG). Last, the big statistical areas are 

grouped to obtained the 10 districts of the city28. Each territorial level is 

formed grouping the previous one, and this also guarantees that the different 

grouping levels are self-contained. 

 

                                                 
28 For more information, see: 
    http://www.bcn.es/estadisitica/catala/terri/index.htm. 
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5. CONCLUSIONS 

 

The objective of this paper was to propose a new methodology to design 

regions from lower level territorial units (areas) considering not only their 

characteristics but also the relationships among them. 

This methodology permits to avoid the use of ad-hoc regionalisation to 

obtain territorial units that are representative of the considered phenomenon. 

This aspect is especially relevant as statistical and econometrical results are 

sensitive to different levels of aggregation and scale. 

We have proposed the use of a lineal optimisation model to find the 

optimal aggregation of different areas in a given number of regions from the 

consideration of a geographical contact matrix and a relationships matrix. The 

minimisation of the “internal” heterogeneity of each region permits to find 

homogeneous regions according to the considered criteria. 

The possibility of treating the regionalisation problem as a linear model 

permits to ensure that, by its mathematical properties, the feasible region is 

convex and, as a result, it is possible to find the optimal solution. Another 

advantage of this kind of formulation is that it is easy to implement in a great 

variety of commercial software. 

The obtained empirical evidence permits to affirm that the proposed 

methodology has a great capacity to identify different complex territorial 

configurations. The model takes into account the contiguity constraint but 

without conditioning the shapes that those regions can adopt. 

We would also like to highlight that the model permits to easily 

introduce additional restrictions in the regionalisation process. As an example, 



 

 56

we have shown the possibility of introducing two additional restrictions: the 

minimum population requirement and the mandatory isolation.  

An algorithm called RASS (Regionalisation Algorithm with Selective 

Search) has also been introduced as a way of improving the computational 

capacity of the model. This algorithm tries to take profit of the advantages of 

applying direct optimisation to a given territorial portion that varies in each 

iteration, thanks to a selective search strategy. These characteristics permit the 

RASS to escape from local optimum. 

The obtained results with the RASS have shown its utility, as in a 100% 

of the considered simulations the global optimum was found and in a running 

time considerably lower than the one obtained applying the direct optimisation 

model. 
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ANNEXES 

 

Annex 1.  Using heuristics for the configuration of regions: some 

solutions proposed in the literature 

 

In this annex we present a brief description of the heuristics with a 

higher impact in the field of regionalisation and that fulfil the following 

conditions: their objective is to divide a territory in a pre-defined number of 

regions and the areas to be grouped do not have a specific role. So, we are not 

considering here the heuristics applied in hierarchical partitions and those that 

try to find core areas or centroids in order to assign the rest of the areas. 

 

a) Automatic Zoning Procedure (AZP) 

 

This heuristic proposed by Openshaw (1977) is based in an iterative 

procedure. It consists in the optimisation of an objective function F(Z), where 

Z is the allocation of each of the N zones to one of M regions such that each 

zone is assigned to only one region and each region should have at least one 

zone. 

The AZP algorithm consists of the following steps: 

 

Step 1 Start by generating a random zoning system of N small zones into M 

regions, M<N. 

Step 2 Make a list of the M regions. 

Step 3 Select and remove any region K at a random from this list. 
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Step 4 Identify a set of zones bordering on members of region K that could 

be moved into region K without destroying the internal contiguity of 

the donor region(s). 

Step 5 Randomly select zones from this list until there is a local 

improvement in the current value of the objective function or a move 

that is equivalently as good as the current best. Then make the move, 

update the list of candidate zones, and return to step 4 or else repeat 

step 5 until the list is exhausted. 

Step 6 When the list for region K is exhausted return to steps 3, select 

another region, and repeat steps 4-6. 

Step 7 Repeat steps 2-6 until no further improving moves are made.  

 

Among the main advantages of this heuristic, there is the possibility of 

using any objective function sensitive to the aggregation of zones. This 

characteristic is of great utility to approximate limit of aggregation effects. It 

has also been useful to demonstrate that MAUP exists. 

The main disadvantages of this heuristic are related to the local search 

procedure (restricted to the selected region) and to the strong dependence of 

the results to selected starting point (step 1). Last, the strategy of not 

considering the possibility of moving a zone that implies a decrease in the 

objective function can produce that the heuristic is trapped in a local optimum. 

Openshaw tried to solve this problem in later proposals. 

 

b) Simulated Annealing Variant of AZP (AZP-SA) 

 

This proposal of Openshaw and Rao (1995) consists in a modification to 

the AZP. In particular, the step 5 now consists in “Randomly sample this list 
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until there is a local improvement in the objective function or an equivalently 

good move. Then make the move. Otherwise make the move with a probability 

given Boltzmann’s equation”: 

 

 ( ) ( )



 ∇<
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f
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The interest of this modification consists in the possibility of moving 

towards solution that decrease the objective function, but with a probability 

that diminishes gradually, through iteration time. 

In this heuristic, special attention should be given to the definition of the 

initial value of T(0) and the cooling schedule, looking for an appropriate 

“trade-off” between the execution time and a good solution. Openshaw adopts 

an exponential cooling scheme where the temperature in k is equal to a 

fraction of the temperature in k-1, this is: T(k)=fT(K-1) where f is typically 

between 0.8 and 0.95. 

So, the AZP-SA can be summarised in the following steps: 

 

Step a Set T(0), k=0. 

Step b Apply AZP with the modified step 5 until either MAXIT (a user-

defined maximum number of) iterations or convergence or at least a 

minimum of Q simulated annealing moves have been made. 

Step c Update T and k:  T(k)=0.85·T(k-1) and k=k+1. 
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Step d Repeat steps b and c until no further moves occur over at least three 

different k values. 

 

Macmillan and Pierce (1994) apply the Simulated Annealing in the 

Redistricting Problem. Their heuristic, called ANNEAL redistricting problem, 

is defined to group C counties in D districts with the restrictions that each 

district should contain at least one county, and each county can only be 

assigned to one district. The optimisation criterion is the minimisation of the 

sum of the squares of the deviations of the district populations from their 

population target (P/D of the state’s P electors). 

Taking into account that a big amount of the complexity of the proposed 

heuristics for regionalisation problems is related with the control of contiguity, 

Macmillan (2001) proposes a regionalisation algorithm called SARA, which 

incorporates a more efficient methodology to control it based in the concept of 

switching points. This new proposal improves significantly the execution 

times obtained by Openshaw and Rao (1995). 

 

c) Tabu Search Algorithm (AZP-TABU) 

 

This heuristic was adapted by Openshaw for regionalisation problems. 

Its main advantage is the possibility of achieving similar results to the 

Simulated Annealing, but with a lower computational cost. The AZP-TABU 

steps are the following: 

 

Step 1 Find the global best move that is not prohibited or tabu. 

Step 2 Make this move if it is an improvement or equivalent in value, else:  
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Step 3 If no improving move can be made, then see if a tabu move can be 

made which improves on the current local best (termed an aspiration 

move), else: 

Step 4 If there is no improving and no aspirational move, then make the 

best move even if it is nonimproving (that is, results in a worse value 

of the objective function). 

Step 5 Tabu the reverse move for R iterations.  

Step 6 Return to step 1. 

 

This algorithm is a powerful optimisation tool as it allows the 

possibility to escape from local optimums or cyclical behaviour. However, its 

main disadvantage is related with the definition of an adequate value of R, as 

the results depend heavily on this parameter. Battiti and Tecchiolli (1994) 

propose the Reactive Tabu Search where R is dynamically adjusted. 

 

d) Heuristic based on spanning trees for territorial aggregation 

 

The heuristic proposed by Maravalle and Simeone (1995), called 

MIDAS (Méthode Itérative D’Agrégation Spatiale) incorporates the 

relationships between vertices (areas) with the objective of building 

homogeneous regions with respect to a certain set of characteristics. The 

problem is formulated in the following way: “Given a connected graph G, in 

which a vector of characteristics is associated with each vertex, find a 

minimum inertia partition of the vertex-set of G into a prescribed number of 

connected clusters”. 

The proposed heuristic follows a strategy based in the simplification of 

G, in a way that G is replaced by one of its spanning tree T in which each 
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couple of vertices are connected by one and only one group of arcs. The group 

of arcs belonging to T are a subgroup of the arcs belonging to G. The most 

relevant characteristic of T is that deleting one of its arcs will generate a 

partition of the vertices in two groups connected inside but disconnected 

among them. This result is consistent with the regionalisation requirements. 

The MIDAS heuristic can be summarised in the following steps29: 

 

Step 1 (Initial tree) Find a good initial spanning tree T of G. 

Step 2 (Initial partition) Find a good initial partition π̂  from the whole 

group of possible partitions of G, ( )Tp∏ ; 

Step 3 (Tree-optimisation) Starting from π̂ , perform a local search to find a 

near-optimal solution *π  to the problem 

( ) ( ){ }Tf p∏∈ππ :min  

Step 4 (Tree-modification) Attempt to find, if possible, another p-partition 

π and another tree T of G such that: 

 

 ( ) ( )*ππ ff <  (i) 

 ( )Tp∏∉π  (ii) 

 ( )Tp∏∈π  (iii) 

 

If no such pair ( T,π ) can be found, then stop: output the current 

partition *π  (since *π  is feasible in T, it is also feasible in G); else replace π̂  

by π  and go to step 3. 

                                                 
29 A detailed description of the different steps can be found in Maravalle and Simeone 

(1995). 
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The main inconvenients associated to this methodology are: the loss of 

control on the number of elements included in each partition, and, more 

relevant, the utilisation of arcs of the contact matrix G as a way to represent 

the relationships between vertices, since this imply not considering other 

relationships between non-adjacent vertices. 
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Annex 2.  Maps of the different territorial configurations obtained using 

RASS 
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