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Abstract: In situ composite manufacture is an approach to improve interfacial adhesion between
matrix and reinforcements, in which reinforcements are synthesized along composite processing
itself. In situ powder metallurgy route, in particular, offers alternatives to some shortcomings found
in other techniques. This work aims not only to review the state of the art on metal matrix composites
(MMCs)—including cermets—obtained in situ by powder metallurgy, but also to dissect key aspects
related to the development of such materials in order to establish theoretical criteria for decision
making before and along experiments. Aspects regarding the design, raw material selection, and
processing of such composites were observed and divided between concept, intrinsic, and extrinsic
parameters. That way, by means of material databases and computational thermodynamics applied to
examples of the reviewed literature, we aim at providing tools in both conducting leaner experiments
and richer discussion in this field.

Keywords: metal matrix composites; cermets; powder metallurgy; computational thermodynamics;
in situ

1. Introduction

As for any composite, the performance of metal matrix composites (MMCs) is not
only subject to the size, volume fraction, shape, and composition of reinforcements, but
also to the distribution and interface between matrix and reinforcement [1]. Metal matrix
composites are conventionally manufactured by a number of techniques, such as additive
manufacturing [2,3], casting [4–6], and spray forming [7], but according to research studies
regarding the last 10 years, the processing techniques that are the most used—around 30%
of large-scale industrial level—are powder metallurgy techniques (PM) [8].

In all these techniques, the composite material is usually produced by mixing the
desired reinforcement to the matrix along processing. Such an approach is named ex situ
because reinforcements have already been synthesized prior to composite manufacturing.
Apart from the seemingly simpler preparation by mixing, particles—especially nanometric
ones—are often hard to disperse or tend to segregate from the matrix if both display signifi-
cant differences in density [9]. Additionally, because it is inevitable for powder surfaces to
present some level of roughness, impurities, and moisture, many ex situ composites end up
suffering from porosity and contamination at the interface of reinforcements with the metal
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matrix [10,11], which hampers load bearing capacity, Zener pinning, and Orowan and
thermal mismatch strengthening, and ultimately leads to lower overall strengthening [12].

In situ formation of reinforcements has been used as an approach to improve reinforce-
ment adhesion with the interface. In those techniques, the reinforcements are synthesized
by exothermic reactions along composite manufacturing itself. Some reinforcements have
even been found to be coherent with the matrix, resulting in reduced lattice mismatch
and great wettability, not to mention complete absence of contamination [13–15]. When
interface bonding is adequate, it is possible to transfer load from matrix to reinforcement,
and composites do not fail prematurely by intergranular fracture caused by poor interfacial
strength. Such advantage implies that reinforcement particles can effectively generate and
resist the movement of dislocations, as well as inhibit matrix grain growth [16]. Addition-
ally, in situ techniques allow for raw materials saving, as they do not require the use of
nanopowders to obtain nanosized reinforcements. Moreover, because reactive elements
can often be found in inexpensive materials, in situ synthesis has been attained in most of
the aforementioned composite processing techniques [17].

In Figure 1a,b, it is possible to see examples of such well bonded, pore-free interfaces.
Figure 1b also displays the particle resisting to the passage of dislocations, which become
accumulated around the reinforcement.
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In situ powder metallurgy, in particular, has gained momentum in many industries
because it offers interesting alternatives to shortcomings found in other techniques. Sinter-
ing uses lower temperatures and is, therefore, expected to yield more nuclei and slower
coalescence of reinforcements [18]. Unlike casting, there is no incompatibility related to
density differences between matrix and reinforcements, and thus there is no segregation
caused by reinforcements floating inside the liquid matrix. In addition, reinforcement
particles often compromise the fluidity of the molten matrix material. Powder metallurgy
techniques, therefore, allow for a broader range of reinforcement compositions and volume
fractions [19]. Additionally, those techniques offer all advantages inherent to powder
metallurgy, such as raw material savings, low processing temperature, and near-net shape
of the final product, even for complex components. This is particularly advantageous for
composites, which are strong and hard to machine, and implies dramatic cost reductions,
especially for large-scale production of small parts.

The tables in Appendix B of this review aim at indexing all the relevant bibliographic
production we found on this topic. Details regarding the search queries, databases, and
filtering criteria can be also found in Appendix A. Apart from a broad state of the art
regarding what has been accomplished so far on the in situ aluminum, titanium, iron,
nickel, and copper matrices composites by powder metallurgy, this paper aims at dissecting
design and processing parameters—often through a thermodynamic viewpoint—that can
lead to a better understanding of the relationship between processing, microstructure,
and properties.



Metals 2022, 12, 2073 3 of 61

The premise of in situ composites relies on raw materials reacting to form the final
composite microstructure, and this in turn requires the composite phases to have lower
Gibbs free energy than the initial system. Therefore, a thermodynamic analysis of the
system is necessary. Moreover, thermodynamic data, and CALPHAD-based software, such
as Thermo-Calc® (All CALPHAD simulations presented in this paper were made using
Thermo-Calc® with the databases TCFE7, SSOL5, and MOBFE2. Open-source software such
as MatCalc could be used as well.), in particular, can be powerful tools for decision making
in composite design and processing. It is possible, for instance, to analyze combinations
of raw materials and estimate solid state diffusion of elements between them to provide
useful insights regarding the final microstructure.

In this article, considerations were ordered starting from composite concept, which
deal with the choice and validation of the composite system, intrinsic parameters regarding
raw material selection, up to extrinsic parameters related to processing parameters within
the scope of powder metallurgy. The aim of the following sections is to increase the chances
of obtaining the desired microstructure and of helping to understand the underlying
phenomena that influence it. For such purposes, this review reports and analyzes some
examples found in the literature.

It should be mentioned that there are many other phenomena related to sintering and
in situ reactions that may be described using thermodynamics. However, in this paper, the
goal is to use thermodynamic resources to perform calculations that easily yield results
that can be used as criteria for decision making regarding an in situ composite system of
choice, even before any experiment is carried out.

We believe that, through such systematic analysis, it is possible to decrease experimen-
tal effort or to conduct it in a more precise manner to enhance the possibilities and quality
of future experimental contributions regarding this topic.

2. Concept

In the design of discontinuously reinforced metal matrix composites, the matrix tends
to be chosen first according to the desired combination of properties: aluminum and
titanium for high specific strength, iron for cost effectiveness and high strength, nickel for
corrosive environments and high temperatures, and copper for high electrical and thermal
conductivity. In the meantime, the reinforcement particles analyzed in this review are
mostly selected to increase wear resistance and strength. Carbides, nitrides, oxides, and
borides of transition metals are traditionally used in the industry as reinforcement phase in
such metallic composites for their high hardness and wear resistance [20]. Additionally,
intermetallics such as [21], AlxTiy [22], AlxNiy [23], and CuxZry [24] are used as well. Like
ceramics, these materials are brittle in their pure form, and display elevated hardness and
mechanical strength up to high temperatures. The reinforcement compound can either be
based on the metal matrix itself, as in an Al + Al2O3 system, hereby called A + AB type, or
based on another metallic compound, as is the case for a Fe + TiC composite, hereby called
A + BC composite. Moreover, reinforcements such as graphene (reactions of graphene
reinforced in situ composites are not described in this section because they belong to a very
specific setup, and thermodynamic considerations regarding its intrinsic parameters are
out of the scope of this work) have also been reported [25].

Oxide dispersion strengthened (ODS) steels bear many similarities with in situ metal
matrix composites in view of the fact that, like many in situ composites, their processing
involves high-energy ball milling, powder compaction, and precipitation of thermody-
namically favored phases upon thermal treatment. Nevertheless, we consider this class
of materials to be out of the scope of this review for two main reasons: firstly, the amount
of oxides present in such materials is very low—usually below 1 wt.%—so that we find it
to be more closely related to, for instance, a ferrous alloy containing very small fractions
of insoluble carbides rather than an in situ composite. Secondly, is it a well-established
processing technique which has such vast literature on the subject that it deserves a review
of its own.
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Additionally, although techniques such as SHS, exothermic dispersion (XD), and
combustion synthesis may be related to powder metallurgy, mostly because reactants are
often used in powder form, those processes involve large amounts of liquid phase and
no isothermal control due to the self-propagating/combustion character of the reaction.
Because of that, they do not bear many similarities to powder metallurgy and both process-
ing and thermodynamic considerations in our review do not cover such techniques very
well. Some scientific production on additive manufacturing involving SLM has also been
excluded from this work for the same reason. Nevertheless, SHS, combustion synthesis,
and exothermic dispersion can be used as means to produce in situ composite powders,
which can in turn be used in powder metallurgy [26,27]. Some robust scientific reviews
on the particularities of such processing methods have been published by Tjong [26] and
Subrahmanyam [28].

We have also found reports in the literature of in situ metal matrix composites in
which the dispersed phase is not conceived to act as a reinforcement [29,30]. Those studies
were deliberately left out of the scope of the review. Although we recognize the relevance
and innovation of such works, we believe they do not share most of the design criteria and
considerations hereby discussed.

2.1. Validation of the Composite System

A useful first step in designing in situ composites is to analyze whether the desired
reaction is thermodynamically possible. The two following criteria help to evaluate whether
a matrix/reinforcement system has good chances of being formed in situ, and are detailed
in sequence:

• Gibbs free energy criterion: the combination of desired phases should at least have a
lower Gibbs free energy than the initial raw materials or, ideally, be stable
upon equilibrium;

• Reinforcement dissociation criterion: the elements that are conceived as reinforcements
should have sufficiently low solubility in the matrix.

2.1.1. Gibbs Free Energy Criterion

Given that in an in situ composite system raw materials react and form the intended
matrix and reinforcement, such composite must have lower free energy than the selected
reactants. One straightforward method to be sure of that is to check if the phases of
interest correspond to a state of minimum free energy for the composition in question.
If a combination of phases is the lowest free energy form of a system, all raw material
combinations tend to transform accordingly. Unlike what is sometimes implied in the
literature, it should be highlighted that it is not sufficient for a reinforcement to have low
free energy by itself: instead, the whole set of phases in the composite, i.e., reinforcement
and matrix, must be stable in the presence of one another.

Titanium borides are a good example of why free energy of formation of the reinforce-
ment alone cannot be used as a criterion for a composite feasibility: as in [31], a mixture
of 34.14 wt.% TiB2 and Ti powders—the composition of the system is, therefore, around
10 wt.% B and 90 wt.% Ti—yields a Ti + ~70% TiB composite, even though TiB has a higher
free energy of formation per mole of product: −160 kJ/mol for TiB (from Thermo-Calc®)
than TiB2 −306 kJ/mol (from Thermo-Calc®). The reason why the equilibrium state of this
system is TiB + Ti is because the Gibbs free energy change of the whole system, considering
Ti and ~70 wt.% TiB phases, is lower compared to higher amounts of pure titanium mixed
with ~34.14 wt.% titanium diboride. They are, respectively, −160 kJ/mol and −153 kJ/mol.

Depending on the number of elements, binary or ternary phase diagrams can be used
to evaluate what are the stable phases for a given composition, for a system of up to three
elements, as is the case for Ti-B binary phase diagram in Figure 2.
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(~77 at.% Ti).

To further illustrate the Gibbs free energy criterion, two articles found in the literature
were analyzed: in the first one, Wang [32] produced a vanadium carbide reinforced ferrous
alloy, starting from Fe, Fe-50 wt.% V, Fe-70 wt.% Cr, Fe-50 wt.% Mo, and carbon black
powders. Samples of Fe-28.3V-6.7C-2Mo-2Cr wt.% were sintered at 1573 K in an argon
atmosphere. In Figure 3, a property diagram simulated in Thermo-Calc® shows that
the equilibrium state of the system is indeed Fe(Mo, Cr) + VC, not only at the sintering
temperature, but actually ranging from room temperature up to the melting point. As
expected from the simulations, Wang [32] obtained VC particles homogeneously dispersed
in the matrix, ranging from 1 to 5 µm, and a hardness of ~770 HV.
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As a counterexample, Guan [33] aimed at increasing the wear resistance of a 316 L
stainless steel by in situ precipitation of SiC. The precursor for SiC was a polycarbosilane
(PCS) in concentrations that range from 1.5 to 7 wt.%. PCS is a silicon-based polymer
that is converted into silicon-based ceramic upon heating, a class of material known as
polymer derived ceramics (PDC). In Figure 4, we calculated the equilibrium state around the
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sintering temperature for the composites containing 1.5 and 7 wt.% PCS. The equilibrium
phases were not found to be austenite + SiC, but rather austenite + chromium carbides. This
happens because in this system, carbon has a higher affinity for chromium than for silicon,
and silicon has high solubility in iron. In this case, even though the authors reported an
increase in hardness—from 195 HV to 361 HV—and in wear resistance, the resistance to
oxidation is compromised by a process known as stainless steel sensitization, i.e., chromium
depletion by chromium carbide precipitation.
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Figure 4. Property diagram of 316L with (a) 1.5 wt.% and (b) 7 wt.% PCS. M23C6, M7C3, and
M6C phases listed represent carbides from the metals of the alloy of several compositions (mostly
chromium), but none corresponds to SiC.

It should be noted that the thermodynamic analysis presented here also applies when
more than one reinforcement phase is to be used. We chose to analyze single reinforcement
systems for the sake of simplicity, and although calculations become more complex when
more phases are involved, they can be computed in thermodynamic software just as easily.

2.1.2. Reinforcement Dissociation Criterion

Composite A + AB
In this composite type, elements A and B form a compound beyond a specific solubility,

so that the reinforcement is based on the same metal as the matrix. The fraction of AB
depends on the system’s B content and the solubility of B in the metallic matrix.

For instance, Pan et al. [34], Otte [35,36], and Toptan [37] used Ti + BN for in situ
formation of TiB reinforcements. No TiN can be found in any of the manufactured compos-
ites, because although titanium nitride is a very stable compound, nitrogen has very high
solubility in Ti. This means that the matrix can accommodate large amounts of dissolved
nitrogen upon processing temperatures, without the formation of TiN. On the other hand,
B has very low solubility and TiB can be precipitated within Ti, even at very low B contents.

Composite A + BC
In this system type, the metal(s) in the reinforcements are not the same as the major

element of the matrix. If the equilibrium state corresponds to low contents of B and C
dissolved in the matrix, the amount of reinforcement that can be formed upon sintering is
almost the same as the fractions of B and C in the system. Otherwise, if there is significant
dissociation of BC reinforcement, reinforcement yield after in situ reaction is lower and
could also affect the matrix properties. The reinforcement elements’ solubility in the matrix
can be simulated in Thermo-Calc® or in an open-source CALPHAD software.
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For instance, Kwon et al. [38] developed a Ni-TiC composite based on the reaction of
Ni–Ti alloy and graphite. Ti–Ni alloy presenting a weight ratio of 7:3 and enough graphite
to match the molar ratio of Ti in the alloy were ball milled, compacted, and sintered at
1600 K, with a holding time of 5 min. TiC particles with size below 1 µm were obtained,
leading to a hardness of 1384 HV. According to Thermo-Calc® simulations performed by
us, at the equilibrium corresponding to this temperature and composition, 5.4 at.% Ti is
expected to be in solid solution in the nickel matrix. It should be noted that solubility of
both Ti and C decreases with the temperature and reinforcement yield at room temperature
may vary according to the cooling rates. The amount of dissolved Ti may not be significant
for samples with as high a ratio of Ti:Ni as the one in this paper, and it can result in
solid solution hardening of the nickel matrix. For lower amounts of Ti, this could mean,
however, a significant reduction in reinforcement volume fraction. Additionally, solute in
the matrix can sometimes jeopardize its performance, as is often the case for copper-matrix
composites that are aimed for high conductivity applications, in which reinforcement
dissociation should be carefully studied, for dissolved atoms have a very negative impact
on conductivity [39]. Moreover, the amount of dissolved elements in the matrix can also
influence its crystal structure, such as is the case for beta stabilizing elements in titanium
matrix composites.

Alternatively, it is possible to make an estimate without thermodynamic software by
calculating the reinforcement’s solubility product. The solubility limit is reached when the
molar free energy of the solid solution is equal to the molar free energy for the formation of
the compound, which is given by Equation (1), if it is assumed that A does not dissolve in
the reinforcement:

mµA
B + nµA

C = ∆GBC (1)

in which µA
i is the chemical potential of element i in solid solution in the matrix A, and

∆GBC is the change in Gibbs free energy for the reaction mB + nC→ BmCn. The chemical
potential of the elements in solid solution are given by Equation (2):

µA
i = RT ln

(
xA

i γA
i

)
(2)

where xA
i and γA

i are, respectively, the molar fraction and the activity coefficient of element
i in solid solution in the matrix A. The product xA

i γA
i is called the activity of element i,

represented by the symbol ai. As elements B and C are added to the matrix, they first
form a solid solution because in very low molar fractions the term ln(xiγi) is negative
with a very high absolute value. By adding more B and C, the absolute value of this term
decreases until it becomes equal to ∆GBC. At this point, B and C reach their solubility
limit and start to form the reinforcement compound. It is for this reason that, the more
negative the compound-forming energy, the lower its solubility in the matrix. Combining
Equations (1) and (2), the equilibrium point between solid solution and formation of BC
can be expressed by Equation (3):(

xA
B γA

B

)m(
xA

C γA
C

)n
= exp

(
∆GBC/RT

)
(3)

Equation (3) can be used to calculate the so-called solubility product, a parameter
widely used to evaluate the solubility of carbides in steels. For a given temperature, the
solubility of carbide-forming elements depends on the carbon content. The higher the
materials’ carbon content, the greater the elements’ tendency to leave solid solution and
form carbides. A solubility product graph shows this dependence: for a given temperature,
the solubility of an element is a function of carbon concentration. The same applies to
oxides, borides, nitrides, and intermetallics.

To illustrate that, Figure 5 compares the solubility product of chromium, titanium, and
vanadium in iron at 1473 K, a hypothetical sintering temperature. Chromium presents a
very high solubility product in iron. Even at 3 at.% of carbon, there can be up to 17 at.% of Cr
in solid solution, which means that only chromium in an excess of 17 at.% would be in the
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form of carbide at that temperature. On the other hand, titanium has the lowest solubility
product, so in the Fe-M-C system, M being titanium, chromium, or vanadium, Ti has
the highest reinforcement turnout. Therefore, among the three reinforcement candidates,
titanium carbide would be the best suited for an iron matrix composite according to
this criterion.
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3. Intrinsic Parameters
3.1. Raw Material Selection

After evaluating whether a matrix and reinforcement set is a viable in situ composite,
one must select raw materials that recombine to form the selected phases. Depending
on the starting powders, different diffusion paths can take place upon reaction, and the
resulting microstructure varies accordingly. This impacts reaction rate, reinforcement
size, and whether there might be defects at the interface. Moreover, the driving force
for in situ composite formation depends on the reactants. An intelligent selection of raw
materials implies not only cost-effective powders and processing but also a potential
boost of interface bonding and particle size distribution refinement. This section aims at
providing a clear comparison between the choices of reactants and factors that we believe
should be considered in the selection of processing parameters afterwards. Processing
variables, hereby called extrinsic parameters, are further discussed in the following section.
Suggestions on simulation or at least basic thermodynamic assessments of the system prior
to composite manufacture are provided whenever possible.

Moreover, we believe that a condensed, critical comparison between each system’s
tradeoffs can shed light on some promising new raw material systems. We hope that such
examples can cover by analogy most of the approaches found in the reviewed literature
listed in Appendix B.

Based on what has been found in the reviewed literature, we separated the interac-
tions between raw materials into groups, according to the type of composite—A + AB or
A + BC—and the form of reactants. This approach makes highlighting critical diffusion
paths for similar systems easier, which, together with processing parameters, ultimately
influence the final composite’s microstructure.

3.1.1. Composite A + AB

The simplest way to form in situ composites is based on two fundamental elements
A and B, which form a composite of A + AB type. Upon reaction, B converts into an AB
compound, which acts as composite reinforcement. Many of such composites are those
whose matrix is a strong compound forming metal, such as Ti and Al. The reinforcement
particles ultimately form where B is available. If B is a solid particle, AB reinforcement
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presents a size like the original B powder particle. Additionally, large A powders may
cause a heterogeneous distribution of the reinforcement phase around the prior A particle
boundaries. Either interface mobility or diffusion controls the reaction speed, depend-
ing on which is the slower phenomenon. Table 1 summarizes raw material systems for
A + AB composites produced by in situ powder metallurgy found in the reviewed literature
and common features that have been identified among each reaction type. It is worth men-
tioning that none of the considerations regards liquid phase sintering. Figure 6 illustrates
microstructural evolution for such raw material systems.

Table 1. Raw material possibilities for composites of type A + AB. ∆G is the Gibbs free energy change
of the reaction, G is the Gibbs free energy of element i, and pB is the partial pressure of B in atm. R
and P subscripts in the fourth column stand for reactant and product amounts of A, respectively. For
the sake of simplicity, there is no mass balance in the reaction equations. Figures in the “examples”
column are meant to illustrate microstructural features listed in the summary.

Reaction Description Microstructural Features Examples

A + B → A + AB,
B = Metal
Driving Force :
∆G′ = GAp + GAB −
(GAr + GB)

Metal matrix powder
reacting with another
metallic powder.
The reaction generates
intermetallic
reinforcements.

Difference in solubility of
metals causes Kirkendall
porosity.
Reinforcements are about the
size of B particles.
If B powder is too large,
reaction may be incomplete.

Al + Ti→ Al + Al3Ti [40]
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Table 1. Cont.

Reaction Description Microstructural Features Examples

A + BC →
A + AC + AB
Driving Force :
∆G′ = GAp + GAB +
GAC − (GAr + GBC)

Metal matrix powder
reacts with a compound
powder.
BC compound becomes
two types of
reinforcements by reacting
with the matrix.

AB and AC form near BC
reinforcements, so a cluster of
nuclei forms at former
BC particles.
Microstructural evolution
relies on the stability of
BC [16].
Coherent and semi-coherent
interfaces are possible.

Ti + B4C→ Ti + TiC + TiB [43]
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Ti + Mo2C→ Ti(Mo) + TiC [44]
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pictures in the first column correspond to the beginning of the reaction (t = 0), the second column to
an intermediate state of the process, and the third column to the system’s final state.

3.1.2. A + BC

In this composite system, element A is the matrix, and elements B and C form the
reinforcement compound. Despite the metal of the matrix not being part of the reinforce-
ment’s formula, during in situ processing, the matrix-reinforcement interactions play a
role in determining potential intermediate phases and available diffusion paths, as is later
discussed in the section regarding solubility and diffusion of raw materials. Table 2 summa-
rizes raw material types used for A + BC composites into reaction systems. As before, none
of the scenarios consider liquid phase assisted sintering. Figure 7 illustrates microstructural
evolution for some raw material systems.
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Table 2. Raw material possibilities for composites of type A + BC. ∆G is the Gibbs free energy change
of the reaction, G is the Gibbs free energy of element i. R and P subscripts in the fourth column
stand for reactant and product amounts of A, respectively. For the sake of simplicity, there is no
mass balance in the reaction equations. Figures in the “examples” column are meant to illustrate
microstructural features listed in the summary.

Reaction Description Microstructural Features Example

A + B + C → A + BC
Driving Force :
∆G′ = GAp + GBC −
(GAr + GB + GC )

Elemental powder mixture
of A, B, and C.
B and C reaction yields
reinforcements and A
becomes the matrix
surrounding them.

Adhesion between matrix and
reinforcement depends on A
densifying around BC.
The differences in diffusion
fluxes between raw materials
determines the final
microstructure.

Al + Ti + B→ Al + TiB2 [46]
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FeV + C→ Fe + VC [47]
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Cu(Gd) + Hu2→ Cu + Gd2O3 [48]
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Table 2. Cont.

Reaction Description Microstructural Features Example

A(BC) → A + BC
Driving Force :
∆G′ =
GAp + GBC − GA(BC)

A, B, and C form a single
solution, which, upon
heating, precipitates BC
reinforcements within A.

Both B and C are dissolved in
the matrix, so they nucleate
and grow within it, like a
classical solid state nucleation
process.

Cu(Nb,C)→ Cu + NbC [49]
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Ni + Ti2AlC→ Ni + TiC + γ′ [50]
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3.1.3. Multi-System Composites

Many complex raw material reactions involving a larger number of reactants exist in
the literature. As the number of elements grows, there is an increasing number of possible
raw material combinations. Nonetheless, we believe that by covering the systems above, it
is possible to provide general microstructural investigation tools for evaluating mechanisms
and highlighting key parameters involved even in larger systems.

3.1.4. Decomposition Prior to In Situ Reactions

The raw material system may be engendered so that reduction and decomposition
of raw materials take place before in situ reactions. This can be an interesting strategy
for using cheaper and finer powder particles, as is the case for most metallic oxides [51].
Ghiasabadi [52], for instance, has used the process of carbothermal reduction of Fe2O3,
TiO2, and graphite powders to produce a TiC reinforced iron matrix composite.

Moreover, hydrides may be an alternative to protect some metals from undesired
oxidation, as is often the grounds for using TiH2. Organic materials, which sometimes even
play a role in previous processing steps, as process control agents in milling or binder, can
be used as a carbon source, reacting after they decompose at lower temperatures.

Nonetheless, early reduction and decomposition of raw materials should be studied
carefully so that they do not negatively superimpose on reinforcement generation. Differ-
ential scanning calorimetry (DSC) and thermodynamic simulations of a compound system
as a function of temperatures may provide good insights on that topic.

Figure 8 shows a simulation of the TiH2 decomposition. When heated above 924 K,
the compound dissociates into Ti and H2. Before its decomposition, titanium is protected
from residual oxygen in the atmosphere, as the latter preferentially reacts with hydrogen.
Moreover, upon decomposition, the H2 that is released can combine with residual oxygen
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and reduce O2 partial pressure in the furnace. However, if TiH2 decomposes before titanium
particles can react, such particles become prone to oxidation and hydrogen’s protective
effect is lost.
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3.2. Parameters Regarding In Situ Reactions
3.2.1. Driving Force of Raw Materials’ Reaction

It should be mentioned that, for the sake of clarity, mass balance has been intentionally
removed from reaction equations in the first column of Tables 1 and 2. Nevertheless, in
reactions such as A + B→ A + AB, the amount of A on the right-hand side of the equations
is less than on the left-hand side, for a percentage—corresponding in stoichiometric ratio to
the amount reacted with B—has reacted to form the AB compound.

The equations for driving force described above can be used as comparison criteria
between different raw material possibilities within the same composite (in the intended
comparison, the final composite is the same for all raw materials, so it is not necessary to
portray the Gibbs free energy change related to elements dissolved in the matrix in the
reaction equations) Selecting among reactants that cause the largest energy release in the
system could be an approach to attaining high nucleation and reaction rates.

Otte [36], for instance, calculated the Gibbs free energy and enthalpy change for
different reactant candidates for a Ti + TiB composite. According to the authors, there
are often problems with unreacted raw materials used to manufacture TiB/Ti composites
through powder metallurgy.

The equations for driving force in the fourth row of Tables 1 and 2 have been written
in the most general form and absolute values. Therefore, the free energy of formation GA is
the number of moles of species A multiplied by the molar free energy of A, respectively, nA
and GA.

GA = nAGA (4)

It should be pointed out that, although GA is constant in reactants and products, the
amount of this species in the reactants and products, namely nAr and nAp, are different. For
that reason, in the equations for driving force, the Gibbs free energy of the matrix in the
reactants and products is identified, respectively, as GAr and GAp.
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For reactions taking place in the standard state, driving force equations may become
much simpler, as the standard state free energy of formation of pure substances is zero, so,
for instance, the reaction

∆G′ = GAp + GAB − (GAr + GA) (5)

becomes
∆G′ = ∆GAB (6)

3.2.2. Solubility between Elements in the Composite

The solubility between elements of the composite has a large impact not only on the
validation of the composite system but is also a powerful tool for evaluating interactions
between raw materials as well. As mentioned in Table 1 above, Kirkendall porosity may
result from the interdiffusion between elemental metallic powders and alloys. This effect
can be anticipated by comparing solubilities of one into another.

Secondly, by knowing if one of the elements is not soluble in the matrix—such as in
the case of carbon in copper—it is possible to have significant insights about the reactions
involved in reinforcement formation. This is because if the C element in an A + BC
composite—particularly in raw materials systems such as A + B + C, A(B) + C or AB+ C—is
insoluble in A, it cannot move within it, so B must diffuse across the matrix to be able to
react with C. This implies that reinforcements would display similar size and distribution
to C particles. This reaction path and corresponding microstructure is depicted in Figure 7
for A + B + C→ A + BC reaction type.

Additionally, limited solubility and eventual formation of intermediate compounds
in the interface of raw materials can be an obstacle for the intended in situ reaction. For
instance, in the reaction between Al, Ti, B, and C to create an aluminum matrix composite
reinforced by TiC and TiB, which is the thermodynamically favored form of this system at
room temperature, there may be formation of Al2B and Al3Ti at the interfaces of elemental
powders, namely Al and B, and Al and Ti powders, due to limited solubility between
them. Those compounds are fairly stable and were often found as residue in the final
microstructure as reported in [53].

It is helpful to initially study the solubility of elements and compounds using phase
diagrams. Binary phase diagrams can provide information regarding the solubility of
elements according to the temperature, and insights into the reaction path between two
elemental powders of the system—even if the system has more than two elemental powders,
each interface can be analyzed separately—as it displays the phases present from 100%
A to 100% B, which will form along the interface as interdiffusion undergoes. The same
applies to ternary phase diagrams when the simultaneous interaction of more than two
elements are concerned. A good example of using ternary phase diagrams for predicting
reaction paths on an interface can be found in [54]. Pseudo-binaries can provide precious
information regarding reactions between compound raw materials, such as transient phases
and, unlike ternary phase diagrams, phase stability in a temperature range. However, if
on the one hand binary and ternary diagrams can be easily found in the literature, and we
recommend experimental data to be preferred, whenever available, specific pseudo-binary
diagrams are hard to come by. Fortunately, diagrams can be rapidly simulated with the
help of CALPHAD software such as Thermo-Calc®. Such simulations even provide phase
composition at all points of the diagram.

For instance, Li [55] used Fe2Ti e B4C to create TiB and TiC reinforced iron matrix
composites. A mixture of boron carbide powders and ferrotitanium alloy was spark plasma
sintered under temperatures ranging from 1073 to 1373 K for 5 min. It is particularly
interesting to map intermediate phases that would take place during diffusion in the spark
plasma sintering (SPS) processes, as they are characterized by a short soaking time, and
thermodynamic equilibrium may not be reached in time.
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In this case, Figure 9 shows the property diagram used to simulate intermediate phases
that form as the reaction progresses at the interface between Fe2Ti and B4C powders. It
should be mentioned that from this diagram, it is impossible to know at which composi-
tional stage the microstructure is at a given time frame, as there is no kinetic data being
used. Diffusion data for such compounds is often unavailable at DICTRA and hard to
find in the literature. It is, therefore, useful to visualize the compositional gradient that
may develop in the interface between Fe2Ti and B4C powders, as it is expected to transit
between all phases in the diagram. The phase diagram in Figure 9 has been simulated
in Thermo-Calc®.
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Figure 9. Fe2Ti—B4C property diagram simulated in Thermo-Calc® for 1223 K.

From the XRD results in Figure 10, it is possible to see that phase evolution is similar to
the phase diagram: for lower temperatures (a) and (b), which are at room temperature and
at 1073 K, respectively, as very little diffusion is taking place, only the phases corresponding
to raw materials were detected. As the temperature increases to 1173 K and powders diffuse
into one another, FeB and TiB2 are detected as well, which corresponds to low amounts of
B4C diffusing into Fe2Ti. At 1223 K, FeB is no longer detected, and TiC is formed. All the
phases present in the sample sintered at 1223 K were predicted by the property diagram in
Figure 9. In all instances, α-iron was detected because measurements were performed after
the samples were cooled. Fe2Ti is detected up to 1273 K, when it fully decomposes into
Fe + TiB + TiC, which are the equilibrium phases of this system.
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Figure 10. XRD patterns for (a) room temperature and sintering at (b) 1073, (c) 1173, (d) 1223,
(e) 1273, and (f) 1323 K (reprinted from Fabrication of in situ TiB2–TiC reinforced steel matrix
composites by spark plasma sintering, B H Li, Y Liu, J Li, H Cao & L He, Powder Metallurgy,
copyright © Institute of Materials, Minerals and Mining, reprinted by permission of Taylor & Francis
Ltd., http://www.tandfonline.com (accessed on 27 October 2022) on behalf of Institute of Materials,
Minerals and Mining).

3.2.3. Diffusion during In Situ Reactions

After a thermodynamic assessment of the composite system, it is an excellent resource
to, whenever possible, evaluate diffusion fluxes of raw materials upon sintering. By know-
ing which element diffuses faster, a reasonable microstructural forecast can be performed.
This analysis can be performed experimentally by analyzing the sintered interface of macro-
scopic plates in contact, each having the composition of the chosen raw materials. The
interdiffusion of such plates at the sintering temperature can provide plenty of insights
into the microstructural evolution of the composites. A good example of that is the work
by Shahid [56]. Moreover, informative theoretical assessments can be made by using the
diffusion coefficient and solubility of elements in the matrix, if not for making predictions,
but for interpreting an in situ composite final microstructure.

For instance, in A + BC composite systems, particularly in raw materials systems such
as A + B + C, A(B) + C, or AB+ C, if there is a large difference in diffusion coefficients
between B and C, it is possible to make an estimate of where in situ reinforcements are
likely to be created.

The distance d traveled by a species from the starting point in time t can be approxi-
mated using the diffusion coefficient D of said species—in one dimension—by the mean
square displacement

〈
d2〉 relationship below [57]:

〈d〉
t

= 2D (7)

As an example, Lee et al. [19] produced in situ TiC reinforced iron matrix compos-
ite, from the reaction of carbon black, titanium hydride, and Fe powders. In that sys-
tem, the obtained microstructure results from carbon diffusion towards elemental Ti to

http://www.tandfonline.com
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form TiC. This happens because in that system the diffusion flux of carbon through Fe is
much higher than that of Ti. The diffusion flux is dependent on both diffusion coefficient
and concentration gradient. However, because the diffusion coefficient of carbon in iron
(5.7 × 10−10 m2/s) (from Thermo-Calc®) is three orders of magnitude larger than titanium
(2.2 × 10−13 m2/s) (from Thermo-Calc®) at the sintering temperature (1673 K), the differ-
ence in solubility between the two species, i.e., C and Ti, is negligible. The result is that
before the interdiffusion between iron and titanium can take place, carbon would already
have diffused to titanium and formed the carbide. This results in TiC formation where Ti
powder particles used to be.

The same assessment could be performed by comparing the differences in microstruc-
ture when reacting Fe(C) + Ti and Fe(Ti) + C in the solid state. The former would yield a
similar microstructure to the previous example, as C can reach titanium particles’ surface
faster than Ti would diffuse significantly into the matrix. Alternatively, in the latter case, the
raw material selection would lead to nucleation and growth of TiC precipitates, as titanium
is already homogeneously distributed in the matrix. Liquid phase reactions may be more
complicated as all elements may be dissolved prior to reaction and diffusion becomes
orders of magnitude greater.

3.2.4. In Situ Composites through Atomization

Apart from the aforementioned reaction systems, it is also possible to obtain composite
powders through atomization. Unlike the reactions between powder and gas that are
summarized in the third row of Table 1, reinforcements can also be precipitated from
elements that are either previously dissolved in the melt and form upon fast cooling of
droplets [26,58] or that precipitate in the molten matrix upon the mixture of master alloys
melts [26].

Shi et al. [56] used the latter approach to produce Cu-TiB2 composite powders through
gas atomization. Cu, Ti, and B were used to produce Cu–B and Cu–Ti master alloys by
induction melting. Then, at 1673 K, both melts were mixed to form the TiB2 within the
molten copper. The composite was solidified in powder form by atomization.

Though many considerations regarding the thermodynamic validation of the compos-
ite system and extrinsic parameters apply for reinforcements obtained upon atomization,
reaction kinetics bear more similarities with other in situ techniques that take place in liquid
state, such as rapid solidification processing (RSP) and Mixalloy Process [26].

4. Extrinsic Parameters of In Situ Composites

Bearing in mind the intrinsic characteristics that are most critical to a composite
and raw material system, it is possible to calibrate extrinsic process parameters, such
as temperature, time, atmosphere, etc., to meet the demands of each, as well as refine
operations so that the results come out according to the intended microstructural design.

Some thermodynamic aspects of in situ composites sintering are very akin to those
of general powder metallurgy, and do not belong to the scope of this review because they
have already been extensively analyzed elsewhere [59]. Therefore, we focused on aspects
that deal with specificities of in situ composites and relate to processing parameters.

4.1. Milling

Milling of reactants plays a more significant role in the in situ composites than those
MMCs obtained by traditional ex situ methods because milling is not only necessary for
homogenization and reinforcement size reduction, but in this case, it can affect the resulting
in situ reactions, for there may be a change in reaction paths and kinetics of reactants.

In the first instance, high-energy milling can reduce powder particle size, affecting the
final microstructure according to the type of raw material system. As previously mentioned,
finer particles may display a lower mean free path of diffusion and sometimes reduce final
reinforcement size. What is more, particle size reduction and defect density increase also
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promote enhanced diffusion and lower the activation energy for in situ reaction, which can
allow for lower temperatures for reactions and sintering [60].

Because of those two factors—size reduction and increased defect density—the amount
of energy stored within the material is so high that it might overcome the free energy of in
situ reaction and reinforcements are able to form upon milling.

In [23], the authors produced Al2O3 + AlxNix reinforced aluminum composites.
The authors produced the composites by reaction between Al and NiO using two ap-
proaches: milling accompanied by reaction—thereby called reactive milling—followed by
hot pressing, and in situ reaction upon sintering—thereby called reactive sintering—of
milled powder.

Powders presenting different Al:NiO ratios, namely 5:3, 7:3, 15:3, and 20:3, were milled
in a shaker mill. A thermocouple was attached to the milling vial to detect if an in situ
reaction—which is exothermic—took place upon milling. Only powders presenting a ratio
of 20:3 did not react upon milling.

Among the reaction milled powders, it has been observed that the reaction takes
place faster for the 5:3 and 7:3 composites, and only Al, Al2O3, and AlN phases were
detected. Powders displaying a 15:3 ratio took longer to react and display Al, Al2O3,
Al3Ni, and Al3Ni2 phases. Moreover, more dilute NiO mixtures also have a more refined
microstructure. Both characteristics are likely due to the reactions occurring at different
temperatures, according to the amount of reinforcements being formed due to increased
NiO amount.

The authors hot pressed both 15:3 and 20:3 powders under the same conditions. It has
been found that samples produced with reaction milled powder display higher porosity,
because of the hardness of in situ reinforcements that were produced upon milling, which
in turn hampers compressibility of the powders. Nevertheless, composites obtained by
reactive sintering display lower hardness, because a 20:3 proportion yields lower amounts
of reinforcements.

Moreover, elemental powders can be turned into a solid solution outside the equi-
librium composition or the equilibrium temperature. Mechanical alloying is a processing
technique that uses high-energy ball milling to produce equilibrium and non-equilibrium
solid solutions through deformation energy promoted by the impact of balls and pow-
der. That is especially interesting when dealing with A(B) + C→ A + BC reactions, for
reinforcement yield could be increased by dissolving a higher amount of B in the matrix
before reaction with C. The energy of milling required to form a solid solution can also be
evaluated in open-source software [61], which uses Miedma’s model to calculate an alloy’s
entropy of mixing [62–64].

Miedema’s method is a simple method to determine the enthalpy of mixing of solid
solutions and amorphous phases [65,66]. Aguilar et al. [67] determined Gibbs’ free energy
of mixing for the Ti-Nb-Ta system, as illustrated in Figure 11. From the ∆G of mixing,
milling operations can be designed to provide the required deformation energy to stabilize
such phases.

It should be highlighted that such powders, particularly those in which reinforcement
has already precipitated, usually present high hardness, which hinders compressibility
and, therefore, may present challenges related to powder metallurgy, i.e., to attain high
green density [68]. Additionally, because often long, high-energy milling times are required,
powder processing tends to be expensive. Therefore, unless one can identify niche markets
for mechanical alloying, cost may become prohibitive. Additionally, aspects involving
consolidation and the contamination of particles have also been reported to rank among the
main obstacles for mechanical alloying industrialization. Very large amounts of scientific
production in the field of in situ synthesized metal matrix composites use mechanical
alloying to obtain their final products and it is important to have in mind that technological
relevance of such developments is often conditioned to affordably produce large quantities
of material, especially when one of the main claims of a study is that it is economically
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more advantageous over ex situ techniques. Nevertheless, authors such as [69] report
successfully implementing MA for tailored, high-added value composites.
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4.2. Time and Temperature
4.2.1. Nucleation and Coarsening

Oftentimes, in situ and sintering are performed in a single thermal cycle, even though
there are reports of powders that underwent special processes in which reinforcement for-
mation took place before the sintering stage [70–75]. High temperatures and long reaction
periods on the one hand may help in situ reactions and densification, when sintering is
simultaneous to those reactions, but on the other hand, they also favor nucleation of larger
reinforcements and accelerated coarsening of them.

Viljus [76] developed an in situ (Ti, Mo)C-Ni composite using a sintering cycle com-
posed of two dwellings periods. Ti (62.2 wt.%), Ni (16.7 wt.%), C (12.8 wt.%), and Mo
(8.3 wt.%) powders were vacuum sintered first at 1273 K for 1 hour, a dwelling time and
temperature designed for the in situ synthesis of carbides to be completed. After pre-
cipitation took place, a second heating segment was performed for sintering the matrix
to its final density. It was considered that going directly to the sintering temperature
would cause critical radius for precipitation to be larger and, therefore, a smaller number
of larger precipitates would tend to be formed directly. It was found that optimum sin-
tering temperature for such a composition to be 1773 K, for it gave rise to a hardness of
1451 ± 22 HV10, transverse rupture strength of 956 ± 64 MPa, and fracture toughness
of 10.59 ± 0.30 MPa

√
m. Although those properties are comparable to commercial ex

situ composites (etalon cermet), the authors [76] did not make a comparison with the
same in situ composites without dwelling time at 1273 K for validation of the proposed
sintering cycle strategy. Depending on the kinetics of coarsening, sintering itself may cause
reinforcement growth upon sintering, even though reinforcements have been formed at a
lower temperature.

As for coarsening itself, besides high temperature and long sintering time, high
interfacial energy also increases the driving force of coarsening. Moreover, reinforcement
dissociation—which was already estimated in the sections before—as well as the mean
free path between reinforcements can increase coarsening kinetics. Considering the mean
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radius of the precipitates to be r0 when sintering starts, after a time t has passed, the mean
radius increases to rt according to the relation [77]:

(rt)
3 − (r0)

3 ∝ XDσt (8)

where X and D are, respectively, the solubility and the diffusion coefficient of the precipitate
in the matrix, and σ is the interphase interfacial energy [77]. A more detailed description of
coarsening that considers the size distribution can be found in the work of Lifshitz, Slyozov,
and Wagner [78,79].

Although Thermo-Calc® software proposes equations for estimating coalescence using
mobility data and interfacial energy of a precipitate in a given matrix, it is not always
possible to use it to effectively estimate coarsening because it is still very challenging to
find accurate values for interfacial energy in the literature.

4.2.2. Densification

In addition to attaining in situ formation of the composite, sintering can be challenging
because reinforcement particles, particularly the smallest ones, tend to block mass transport
required for densification [80,81]. What is more, the reaction between raw materials can be
accompanied by shrinking. In other words, as the reaction takes place, additional porosity
appears as denser phases are formed [82].

To reach effective sintering, and low coalescence, methods that use fast heating and
high pressure are adopted to enable higher density in those composites, while avoiding
coarsening that would take place in classical, pressureless sintering. In the majority of
reviewed articles (see Appendix B), authors used special techniques such as hot pressing,
hot isostatic pressing, and, particularly, spark plasma sintering.

In [75], the authors adopted spark plasma sintering as a sintering technique for at-
taining densification of nanoreinforced Fe + TiB2 in situ composite powders, which would
otherwise coarsen at the temperatures required for densification under pressureless sin-
tering. Firstly, a mixture of Fe and TiH2 aiming at a final composite Fe-40 wt.% TiB2
was high-energy ball milled and heat treated at 1173 K to obtain nanoreinforced powder
particles, which would be subsequently consolidated. To attain a similar densification at
pressureless sintering and SPS, powders were sintered, respectively, at 1673 K and 1353 K.
It has been found that reinforcements that underwent traditional sintering display several
micrometers while SPSed ones are as small as 5 nm. Their hardness is 840 ± 70 HV20 and
1560 ± 130 HV20, respectively. The wear rate of composites obtained by SPS decreased by
one order of magnitude.

Though SPS-related research at laboratory scale has shown promising results, indus-
trialization of components using such techniques is yet limited. SPS scalability is a major
problem from both technical and practical points of view, mainly because larger samples
are challenging to produce, and the cost of manufacture is elevated. High-added value
applications may benefit from the performance granted by such techniques, but in most
applications, SPS use can offset the cost-effectiveness of other attributes of in situ compos-
ites [83,84]. Moreover, as the principle of SPS is based on electrical conductivity and in situ
synthesis relies on a mixture of powders presenting variable electrical properties, it can
also be challenging to determine the temperature throughout the sample precisely as well
as to control it, leading to uneven heating, which in turn also restricts its use in components
presenting complex geometries. Moreover, although pressure assisted sintering techniques,
particularly SPS, can enhance sintering speed, in situ reinforcement reaction kinetics may
not be accelerated to the same extent. Many reviewed works added a post treatment of
further soaking time to ensure reaction completion [36].

In both pressure assisted and conventional sintering techniques, many authors use
temperatures that at least partially melt raw materials, so that rearrangement of particles
and dissolution-precipitation in the liquid can favor densification. Viljus [76], for example,
used 40 wt.% Ni, 30–35 wt.% Ti, 20–15 wt.% C, and 10 wt.% Mo powders as starting
materials to form (Ti,Mo)C–Ni alloy composite. Milling was performed in an attritor mill
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with BTP ratio of 5:1 at 560 rpm for 6 h. During high-energy milling, graphite is smeared
onto powder particles and reacts with Ti and Mo during heat treatment to form (Ti, Mo)C
at 1273 K. The as-milled powders were pressed to compacts and then heated in a vacuum
furnace at 1673 K for 30, 150, and 300 min. At 1273 K, (Ti, Mo)C has already precipitated.
Above 1573 K, there is liquid phase assisted sintering. The longer the stage of liquid phase
sintering, the more pronounced the carbide particle growth, as shown in Figure 12.

The solidus temperature, even for complex systems, can be estimated via one axis
equilibrium calculations via software, such as Thermo-Calc®. It should be mentioned,
however, that permanent liquid phase sintering is very sensitive to temperature variations,
as a slight oscillation in temperature can dramatically change liquid phase fraction, and
can lead to undesirable amounts of liquid, particularly because sometimes the equipment
is not suitable for large amounts of molten material to be formed upon sintering [85]. One
example of that is by Lee et al. [19] which used carbon black powder, titanium hydride, and
an atomized steel (equivalent to AISI D2, as listed in Table 3). Powders were mixed aiming
at 30 vol% TiC, with C:Ti ratios of 0.8, 0.9, 1, and 1.1. Powders were pressed and sintered at
1673 K for 1 h. Simulations of volume fraction of phases as a function of temperature were
performed in Thermo-Calc®, assuming that all carbon black reacts with TiC, are displayed
in Figure 13. This analysis shows how sensitive matrix phases can be to temperature
variations at this sintering condition: in an interval of only 40 K, the liquid volume fraction
goes from 0 to 0.7.

Table 3. Fe alloy powder composition data from [19].

C Si Mn P S Ni Cr Mo Cu V Fe

1.57 0.35 0.44 0.013 0.006 0.08 11.98 1.00 0.02 0.35 Bal.
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(reproduced with permission [86]). 

Figure 12. Volume fraction of stable phases for matrix alloy composition of Table 3 as a function of
temperature. M represents the metallic atoms, with Ti being the major element.

Transient liquid phase is likely the safest way to improve density through liquid phase
assisted sintering, because it depends on local composition gradients which eventually
cease to exist. To evaluate the possibility of transient liquid phase, local equilibrium should
be analyzed between each of the raw material interfaces upon sintering temperature.
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Figure 13. Micrographs showing reinforcement growth according to sintering temperature. Sintering
at (a) 1273 K for 30 min, (b) 1573 K for 30 min, (c) 1673 K for 30 min, and (d) 1673 K for 300 min
(reproduced with permission [86]).

Saito [86] produced in situ Ti-6.8Mo-4.2Fe-1.4Al-1.4V from hydride-dehydride pure
titanium, Fe–62Mo and Al–50V master alloy, and TiB2 powders. Samples were sintered
at 1573 K for 4 h and the amount of resulting TiB ranged from 0 to 40 vol%, depending
on the amount of added titanium diboride. The final microstructures display uniformly
distributed needles of TiB and no residual TiB2 was found. After hot working, samples
display porosity below 1%, regardless of the reinforcement amount. The authors [86] used
Thermo-Calc® to evaluate diffusion paths among powders and the results are displayed
in Figure 14. According to the interaction parameters in its database, ferro-molybdenum
particle is unstable in ß titanium. Because the diffusivity of iron in titanium is at least
100 times higher than that of molybdenum, iron atoms in Fe–Mo master alloy penetrate
rapidly into the titanium matrix prior to molybdenum atoms. Boron, on the other hand, has
very little solubility in ß titanium (<3 ppm). What results is that boron and molybdenum
co-segregate and form a transient liquid phase. This phenomenon has been explained by
analyzing the effect of boron on the solidus line of a Ti4Fe-Mo pseudo-binary diagram
calculated by the authors, as depicted in Figure 14.

The composites containing 20% TiB [86] and 20% TIB composites display UTS:
~1700 MPa, E: ~155 GPa, fatigue strength ~1000 MPa, and the lowest wear rate among all
volume percentages of TiB in the study (including TiB-free titanium). Authors claim that
all properties, including hot workability, are superior to the celebrated Ti–6V–4Al alloy.

We believe that, besides liquid phase assisted sintering, several strategies that go
back to traditional powder metallurgy could be used to improve densification, namely
improving the green compact density and density gradients. It is well known from basic
powder metallurgy theory that many defects and poor densification that become assessable
after the sintering process are inherited from the green compact [71].
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Panda [87] used trimodal powder distribution respecting a proportion that would
allow for maximal packing density. The authors [87] selected Ti, Nb-Mo, and TiB2 powders
that correspond to a particle ratio of 45:10:2 (large:medium:small), which is very close
to 49:7:1, which corresponds to the highest theoretical density for a trimodal particle
distribution. When compared to β-stabilized Ti(Mo, Nb) + TiB2 displaying a bimodal
distribution, the attainable density for a trimodal distribution is 8% higher. Furthermore,
the enhanced contact between particles can favor the reaction of starting powders, possibly
leading to accelerated reaction, and sintering as well. This strategy is particularly interesting
considering that several in situ composites use more than one kind of raw material, and
that very often one already seeks to use at least one fine component to maximize reaction
rate and reduce reinforcement size.

Additionally, as important as a high green density is a uniform distribution of powders
and pores in the green compact. The reason for that is because pores also suffer from the
Ostwald ripening effect: the large consume the smaller ones. If the interspacing between
powders is similar, samples can sinter to a higher density. Strategies to control the green
body microstructure and its effects include powder flowing additives, granulation of
powder blend, or metal injection molding.

Operations after the sintering step, such as forging, extrusion, and post-HIP, have
been very often used in the reviewed literature, as can be inferred from the bibliographic
data summarized in Tables A2–A6. Their aim is to increase densification and to refine the
microstructure and do not differ much from what is also done with ex situ composites.

Hot isostatic pressing is often adopted as a complement after conventional component
sintering to increase density. This approach is mainly used when previous steps have
already produced a highly complex part. The hot isostatic pressing process preserves the
dimensions of the part, as the stresses at all points of the material are homogeneous.

Processes such as forging and extrusion imply the need for further machining opera-
tions, as it is not possible to produce a high complexity, near net shape part. In these cases,
powder metallurgy is chosen thanks to the microstructural control it allows for, rather than
for obtaining a finished component from the powder.

4.3. Atmosphere

During the sintering process, chemical reactions involving condensed and gaseous
phases take place. When planning in situ composites, it is often important to take into
account that undesirable reacting elements in the system can come from the sintering atmo-
sphere. When composites are reinforced with intermetallics, as well as carbides, borides,
and nitrides, avoiding oxidation is necessary when selecting sintering atmosphere condi-
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tions, because sometimes not only the matrix can be oxidized, but the metal reinforcement
precursor may convert (at least partially) into oxide instead of the desired phase. In the case
of PM in particular, powders—even compacted green bodies—have a surface-to-volume
ratio a few orders of magnitude higher than ingots, so that even if a reaction with the
atmosphere is restricted to the surface of the particles, both the sintering kinetics and the
mechanical, magnetic, electrical, and chemical properties can be severely impaired.

It is common practice to use hydrogen in the atmosphere to prevent oxidation. The
pH2/pH2O ratios from which the reduction of oxides is favorable can be obtained in
Ellingham diagrams from the literature, such as the one in Figure 15.
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If data regarding a particular oxide cannot be found in Ellingham diagrams in the
literature, one may also calculate oxygen partial pressure for oxidation from which the
reduction of oxides is favorable [88]. For a pure oxide MO, formed from pure solid metal
M at a temperature T and a pressure p according to the reaction in Equation (9), the Gibbs
free energy can be determined for a given temperature and pressure using Equation (10).

M(s) +
1
2

O2(g) = MO(s) (9)

∆G0 = −RT ln
(

aMO

aM pO2
1/2

)
(10)

where ∆G0 is the change in Gibbs free energy of reaction from Equation (9), αi is the activity
of element I, and pO2 is the partial pressure of O2. If both M and MO are in the standard
state used to calculate ∆G0, their activities are equal to 1. Otherwise, their activities in
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relation to the standard state should be used in Equation (10). For more complex systems,
the expression can be generalized as Equation (11).

∆G0 = −RTln
( Σaproducts

Σareactants

)
(11)

This relationship can also be estimated via software. As an example, this calculation
was performed for aluminum, iron, and chromium using Thermo-Calc® and is displayed
in the graph in Figure 16. By including hydrogen in the atmosphere, it is possible to
increase the acceptable amounts of oxygen impurities. To estimate how much hydrogen
is required to avoid oxidation of those metals, one uses H2/H2O proportions instead of
oxygen concentration.
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Figure 16. Simulated pH2/H2O ratios for reducing Cr, Fe, and Al oxides as a function of temperature.

As would be expected for materials that were selected for their ability to form very
stable compounds, it can be gathered from the pH2/pH2O ratio in Figure 16 that a strongly
reducing atmosphere is required to prevent oxidation of chromium and particularly alu-
minum at sintering temperatures. Oxygen traps—also known as getter agents—can also
be added as sacrifice material to oxidize preferentially and reduce the amount of available
oxygen in the atmosphere [88]. Those oxygen traps can be made of metals presenting
higher affinity to oxygen [89], such as using magnesium as a getter agent for aluminum. A
getter material can be any metal that displays lower free energy of oxidation at the given
temperature, as can be easily visualized in Ellingham diagrams [89,90]. Oxygen traps can
be also made of the same metal one intends to protect, using a sacrifice sample placed
at a slightly cooler region of the furnace, where the driving force for oxide formation is
higher. The positive slope of the free energy curves for oxides in the Ellingham diagram
corresponds to a decrease in their stability as temperature increases.

Rodeghiero [91] used thermodynamic data, as shown in Figure 17, to evaluate phase
combination possibilities and reduction protocol. The raw materials were Ni/Al hydrox-
ides, prepared using an aqueous precipitation technique. Powders were heat treated before
sintering, and according to the atmosphere, different composites were obtained, namely
Ni + NiAl2O4 and Ni+ Al2O3. For Ni/Al2O3, a partial pressure of O2 in the range of
10–23 and 10–24 atm, and sintering temperature of 1273 K was used, so as to lay in the
γ-Ni + Al2O3 region of the Ni/Al/O phase diagram. To obtain Ni/NiAl2O4 composite
powders, a temperature of 1373 K for 1 h and an oxygen partial pressure of 10–9.9 atm were
selected. It should be mentioned that a CO/CO2 mixture was adopted to reduce oxygen
partial pressure in Ni/NiAl2O4 composites, and that it was possible because neither Ni nor
Al have great affinity for carbon. This thermal treatment cycle at lower temperatures prior
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to sintering can be a strategy for both obtaining finer precipitates as well as for allowing
proper contact with the atmosphere. Sintering atmosphere during hot pressing was also
designed to preserve the desired phases. As sintering was performed at 1673 K, higher
oxygen partial pressures could be used, as oxide stability decreases with temperature.
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Moreover, vacuum atmosphere is often used in powder metallurgy to promote densifi-
cation, because it helps promote mass transport mechanisms upon sintering, as the partial
vapor pressure of metals increases under vacuum. This should, however, be carefully
implemented for nitride reinforcement, which may decompose due to the low nitrogen
partial pressure in the atmosphere, as indicated by the simulation shown in Figure 18.
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5. Concluding Remarks

In this review, over 400 papers, which correspond to all the literature we found on
the subject of metal matrix composites produced in situ via powder metallurgy, have been
compiled. From the analysis of the state of the art of this subject, some important common
aspects regarding the design, raw material selection, and processing of such composites
were observed and divided between concept, intrinsic parameters, and extrinsic parameters,
as depicted in the flowchart in Figure 19.
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Figure 19. Flowchart summarizing parameters discussed in this review as a means of designing
experimental conditions for in situ composite manufacture by powder metallurgy.

In the concept section, an analysis aiming at validating a composite as a possible
candidate for in situ powder metallurgy has been carried out and Gibbs free energy
minimization and low reinforcement dissociation were used as criteria.

In the intrinsic parameters section of this work, raw materials possibilities have been
discussed based on the reactions that are likely to take place and the microstructure they
might yield. Such reaction possibilities have been accessed through thermodynamic and
kinetic features of such systems. We also outlined the equations used for calculating the
driving force of such reactions, so they can be used as criteria for selecting among different
reactant options.

In this work, all processing related operations have been regarded as extrinsic parame-
ters. Temperature parameters have been viewed from the standpoint of in situ reactions
and densification upon sintering.

The authors hope that this review illustrated important aspects of design in the
field of in situ composites via powder metallurgy. During the development of our own
composites, some drawbacks could have been avoided from knowledge and observation of
previous works. However, the literature on the subject mostly deals with manufacturing
of specific composites and, therefore, those design insights were scattered and oftentimes
only possible by comparison of multiple systems. We expect to have summarized relevant
aspects that can help conduct research in the field in a more concise manner, for we consider
in situ composites a promising area for sustainable technological development. Although
most simulations were made assuming thermodynamic equilibrium, and equilibrium is not
always attained in experimental conditions, either due to sluggish kinetics or high activation
energies, we strongly believe thermodynamic analysis in general, and simulations in
particular, to be tools of inestimable value in both conducting leaner experiments and richer
discussion in this field.
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Appendix A. Database Search Queries

In this work, the database was SciVerse Scopus. “Advanced mode” search queries
were developed to find articles that fit the literature relevant for this review. The five metal
matrices with the largest amount of published literature were selected. The keywords for
search queries and their written forms using Booleans for Advanced Search in Scopus are
disclosed in Table A1. All the articles which did not fit the scope outlined in the introduction
of this review were excluded, and the remaining papers were individually read, analyzed
by our team, and now compose the data found in Tables A2–A6. Although we do not aim
to provide a systematic review report, all papers that are disclosed in the tables have been
double checked and independently read by at least two of the authors. The last database
update was performed on 13 May 2022. All papers that were not available in English were
also left out.

Table A1. Scopus database search queries.

Matrix. Specific Keywords General Keywords Format for Scopus Advanced Search

Aluminum “Aluminum”;
“Aluminium”; “Al”

“Matrix”
“Dispers*”;
“Strength*”;

“Composite”;
“Nanocomposite”;

“Sinter*”;
“Powder metallurgy”;

“PM”;
“MIM”;

“Injection mold*”;
“SPS”;
“SPH”;
“HIP”;

“In situ”; “In-situ”; “Insitu”;
“Reactive sintering”;
“Diffusion alloying”

TITLE-ABS-KEY ((aluminum OR aluminium OR al)
W/3 (matrix OR (dispers* AND strength*) OR

composite OR nanocomposite OR cermet) AND (sinter*
OR “powder metallurgy” OR pm OR mim OR “injection

mold*” OR sps OR sph OR hip) AND (“in situ” OR
“in-situ” OR insitu OR “reactive sintering” OR

“diffusion alloying”)) AND (EXCLUDE (DOCTYPE,
“cp”) OR EXCLUDE (DOCTYPE, “cr”))

Titanium “Titanium”; “Ti”

TITLE-ABS-KEY ((titanium OR ti) W/3 (matrix OR
(dispers* AND strength*) OR composite OR

nanocomposite OR cermet) AND (sinter* OR “powder
metallurgy” OR pm OR mim OR “injection mold*” OR
sps OR sph OR hip) AND (“in situ” OR “in-situ” OR

insitu OR “reactive sintering” OR “diffusion alloying”))
AND (EXCLUDE (DOCTYPE, “cp”) OR EXCLUDE

(DOCTYPE, “cr”))
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Table A1. Cont.

Matrix. Specific Keywords General Keywords Format for Scopus Advanced Search

Nickel “Nickel”; “Ni”

TITLE-ABS-KEY ((nickel OR ni) W/3 (matrix OR
(dispers* AND strength*) OR composite OR

nanocomposite OR cermet) AND (sinter* OR “powder
metallurgy” OR pm OR mim OR “injection mold*” OR
sps OR sph OR hip) AND (“in situ” OR “in-situ” OR

insitu OR “reactive sintering” OR “diffusion alloying”))
AND (EXCLUDE (DOCTYPE, “cp”) OR EXCLUDE

(DOCTYPE, “cr”))

Copper “Cu”; “Copper”;
“Brass”; “Bronze”

TITLE-ABS-KEY ((cu OR copper OR brass OR bronze)
W/3 (matrix OR (dispers* AND strength*) OR

composite OR nanocomposite OR cermet) AND (sinter*
OR “powder metallurgy” OR pm OR mim OR “injection

moud” OR sps OR sph OR hip) AND (“in situ” OR
“in-situ” OR insitu OR “reactive sintering” OR

“diffusion alloying”)) AND (EXCLUDE (DOCTYPE,
“cp”) OR EXCLUDE (DOCTYPE, “cr”))

Iron “Iron”; “Fe”; “Ferr*”

TITLE-ABS-KEY ((iron OR Fe or steel or ferr*) W/3
(matrix OR (dispers* AND strength*) OR composite OR
nanocomposite OR cermet) AND (sinter* OR “powder
metallurgy” OR pm OR mim OR “injection mold*” OR
sps OR sph OR hip) AND (“in situ” OR “in-situ” OR

insitu OR “reactive sintering” OR “diffusion alloying”))
AND (EXCLUDE (DOCTYPE, “cp”) OR EXCLUDE

(DOCTYPE, “cr”))

Appendix B. Summary of Reviewed Literature

Table A2. Aluminum Matrix Composites.

Matrix Reinforcement Processing Method Raw Materials References

Al Al0.5FeSi0.5 Pressureless Sintering (PS) Al; Fe; Si [92]

Al Al12W Pressureless Sintering (PS); Hot Extrusion (HE) Al; W [93]

AA2024 Al13Co4; Al3Y Hot Pressing (HP); Hot Extrusion (HE) AA2024;
Al84Ni8.4Y4.8La1.8Co1 [94]

Al Al13Fe4 Spark Plasma Sintering (SPS) Al; Fe [62]

Al Al2O3 Pressureless Sintering (PS) Al [95]

Al(Zn) Al2O3 Hot Pressing (HP) Al; ZnO [96]

Al Al2O3 Hot Forging (HF) Al; O2 [97]

Al Al2O3 Hot Pressing (HP) Al; Fe2O3; Al2O3 [98]

Al(Si,Mg,Cu) Al2O3 Pressureless Sintering (PS) Al; Mg; Cu; Si; SiO2 [60]

Al Al2O3 Hot Pressing (HP); Hot Extrusion (HE);
Quasi-Isostatic Forging (QIF) Al; O2 [41]

Al Al2O3 Hot Pressing (HP); Hot Extrusion (HE) Al; O2 [99]

Al Al2O3 Hot Pressing (HP); Hot Extrusion (HE) Al; O2 [100]

Al Al2O3 Hot Isostatic pressing (HIP) Al; O2 [101]

Al(Zn) Al2O3 Pressureless Sintering (PS) Al; ZnO [102]

Al(Zn) Al2O3 Pressureless Sintering (PS) Al; ZnO [103]
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Table A2. Cont.

Matrix Reinforcement Processing Method Raw Materials References

Al Al2O3-(Al3Ti; Al3Zr;
TiB2) Pressureless Sintering (PS) Al; TiO2; ZrO2; B2O3 [104]

Al Al2O3; Al11Ce3 Pressureless Sintering (PS); Friction Stir
Processing (FSP) Al; CeO2 [105]

Al Al2O3; Al2Cu Pressureless Sintering (PS) Al; CuO [106]

Al Al2O3; Al3Ti Hot Pressing (HP) Al; TiO2 [107]

Al Al2O3; Al3Ti Hot Pressing (HP) Al; TiO2 [108]

Al Al2O3; Al3Ti Pressureless Sintering (PS) Al; TiO2 [109]

Al-V Al2O3; Al3V; Al10V Pressureless Sintering (PS) Al; V2O5 [110]

Al Al2O3; Al3Zr Pressureless Sintering (PS) Al; ZrO2 [111]

Al Al2O3; AlNi; Al3Ni;
Al3Ni2 Hot Pressing (HP) Al; NiO [23]

Al Al2O3; Carbon
Nanotube (CNT)

Spark Plasma Sintering (SPS); Hot Extrusion
(HE)

Al; Multiwalled
Carbon Nanotubes

(MWCNTs); O2
[112]

Al Al2O3; CuAl2 Pressureless Sintering (PS); Hot Pressing (HP) Al; CuO [113]

Al Al2O3; CuAl2 Pressureless Sintering (PS) Al; CuO [114]

Al Al2O3; CuAl2 Pressureless Sintering (PS) Al; CuO [115]

Al Al2O3; FeAl2; FeAl3 Spark Plasma Sintering (SPS) Al; Fe2O3 [116]

Al Al2O3; Si Pressureless Sintering (PS) Al; SiO2 [117]

Al Al2O3; Si Pressureless Sintering (PS) Al; SiO2 [118]

Al Al2O3; Si Hot Isostatic Pressing (HIP); High Pressure
Torsion (HPT) Al; SiO2 [119]

Al Al2O3; Si Pressureless Sintering (PS) Al; SiO2 [120]

Al Al2O3; SiC; Al4C3; Si Pressureless Sintering (PS); Hot Pressing (HP) Al; SiO2; C [121]

Al Al2O3; TiB2 Pressureless Sintering (PS) Al; TiO2; B2O3 [122]

Al Al2O3; TiB2; Al3Ti Pressureless Sintering (PS); Hot Pressing (HP);
Hot Extrusion (HE) Al; TiO2; B [123]

Al Al2O3; TiB2; TiC Pressureless Sintering (PS); Hot Extrusion (HE) Al; TiO2; B4C [124]

Al Al2O3; TiC Hot Isostatic Pressing (HIP) Al; TiO2; C [125]

Al Al2O3; TiC; Al3Ti;
AlN Pressureless Sintering (PS) Al; C; TiO2; N2 [126]

Al Al2O3; WAl12 Hot Pressing (HP); Hot Extrusion (HE) Al; WO3 [127]

Al Al2O3; ZrB2 Pressureless Sintering (PS); Hot Pressing (HP) Al; ZrO2; B [128]

Al Al2OC-AlN; Al5O6N;
Al7O3N5 Pressureless Sintering (PS) Al; Al2O3; N2 [129]

Al Al3(Zr, Ti) Pressureless Sintering (PS); Hot Pressing (HP) Al; Zr; Ti [130]

Al Al3CON; Al5O6N Pressureless Sintering (PS) Al; NH3; Ethylene-bis
Stearamide [131]

Al Al3Ni; Al3Ni2; CeO2 Pressureless Sintering (PS) Al; Ni; CeO2 [132]

Al Al3Ti Hot Extrusion (HE); Pressureless Sintering (PS) Al; Ti [22]

Al Al3Ti Pressureless Sintering (PS); Hot Pressing (HP) Al; Ti [133]

AA6061 Al3Ti Spark Plasma Sintering (SPS) AA6061; Ti [134]

Al Al3Ti Pressureless Sintering (PS); Hot Extrusion (HE) Al; Ti [40]
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Table A2. Cont.

Matrix Reinforcement Processing Method Raw Materials References

A356 Al3Ti Pressureless Sintering (PS) A356; Ti [135]

Al Al3Ti Pressureless Sintering (PS) Al; Ti [136]

Al Al3Ti Spark Plasma Sintering (SPS) Al; Ti [137]

Al Al3Ti Spark Plasma Sintering (SPS); Hot Rolling (HR) Al; Ti [138]

Al Al3Ti Spark Plasma Sintering (SPS) Al; Ti [139]

Al Al3Ti Hot Extrusion (HE); Hot Isostatic Pressing
(HIP) Al; Ti [140]

Al Al3Ti Hot Pressing (HP); Friction Stir Processing
(FSP) Al; Ti [141]

AA2024 Al3Ti; Al2O3 Hot Pressing (HP) Al; TiO2 [1]

Al Al3Ti; Al2O3 Pressureless Sintering (PS); Hot Extrusion (HE) Al; Al2TiO5 [142]

Al Al3Ti; Al3O2 Pressureless Sintering (PS); Hot Extrusion (HE) Al; Al2TiO5 [143]

AA7075 Al3Ti; B4C Pressureless Sintering (PS) AA7075; Ti; B4C [144]

Al Al3Zr Spark Plasma Sintering (SPS); Hot Forging (HF) Al; ZrH2 [145]

Al Al3Zr; Al2O3 Hot Pressing (HP); Hot Extrusion (HE); Hot
Rolling (HR) Al; ZrO2 [146]

Al Al3Zr; Al2O3 Hot Pressing (HP); Hot Extrusion (HE); Hot
Rolling (HR) Al; ZrO2 [147]

Al Al4C3 Hot Pressing (HP) Al; Polyvinyl Butyral
(PVB) [72]

Al Al4C3 Pressureless Sintering (PS); Hot Extrusion (HE) Al; C [148]

Al Al4C3 Pressureless Sintering (PS) Al; C [149]

Al Al4C3 Pressureless Sintering (PS) Al; C [150]

Al Al4C3 Pressureless Sintering (PS) Al; C [151]

Al-O Al4C3 Hot Pressing (HP) Al; Polyvinyl Buyral
(PVB) [152]

Al Al4C3 Spark Plasma Sintering (SPS); Hot Extrusion
(HE) Al; CNTs [153]

Al Al4C3 Spark Plasma Sintering (SPS); Hot Extrusion
(HE)

Al; Multiwalled Carbon
Nanotubes (MWCNTs) [154]

Al Al5Fe2; Al13Fe4-Fe Gas-Pressure Sintering (GPS) Al; Fe [63]

Al Al5Fe2; AlN Gas-Pressure Sintering (GPS) Al; Fe; N2 [64]

Al Al9Co2 Pressureless Sintering (PS) Al; Co [155]

Al AlB2 Spark Plasma Sintering (SPS); Hot Rolling (HR) Al; B [156]

AA6061 AlN Pressureless Sintering (PS); Equal Channel
Angular Pressing (ECAP)

AA6061; Mg; Sn;
Nylon; N2 [157]

Al AlN Pressureless Sintering (PS); Hot Extrusion (HE) AA6061; Mg; Sn;
Nylon; N2 [158]

Al AlN Pressureless Sintering (PS); Hot Forging (HF) Al(Si,Ni,Mg); N2 [159]

Al AlN Pressureless Sintering (PS); Hot Forging (HF) Al(Si, Ni, Mg, Fe); N2 [160]

Al AlN Pressureless Sintering (PS); Hot Extrusion (HE) Al; Mg; Sn; N2 [89]

Al AlN Hot Pressing (HP) Al; N2 [161]

Al AlN Pressureless Sintering (PS) Al; NH3 [162]

AA2024 AlN Pressureless Sintering (PS); Hot Extrusion (HE) Al; Al-Mg; Cu; N2 [163]
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Matrix Reinforcement Processing Method Raw Materials References

Al AlN Pressureless Sintering (PS); Hot Extrusion (HE) Al; Sn; N2 [164]

Al AlN; AlB2 Pressureless Sintering (PS) Al; hBN [165]

Al AlN; Si Pressureless Sintering (PS); Hot Extrusion (HE) Al(Si, Ni, Mg, Fe); N2 [166]

AA6061 La2Si2O7 Pressureless Sintering (PS) AA6061; La [167]

AA6061 Mg(Al)B2 Hot Pressing (HP); Hot Forging (HF); Hot
Rolling (HR) AA6061; B4C [168]

AA6061 MgAl2O4 Pressureless Sintering (PS); Hot Extrusion (HE) AA6061; Mg; H3BO3 [169]

AA6061 MgAl2O4 Hot Pressing (HP) AA6061; Mg; H3BO3 [170]

AA6061 MgAl2O4 Pressureless Sintering (PS); Hot Extrusion (HE) AA6061; Mg; H3BO3 [171]

Al MgAl2O4 Pressureless Sintering (PS); Hot Extrusion (HE) Al; Mg; H3BO3 [172]

Al MgAl2O4 Pressureless Sintering (PS); Hot Extrusion (HE) Al; Mg; H3BO3 [173]

Al MgAl2O4; (Mg,Al)B2 Pressureless Sintering (PS); Hot Extrusion (HE) Al; Mg; H3BO3 [13]

Al MgAl2O4; MgZn2 Pressureless Sintering (PS); Hot Extrusion (HE) Al; Mg; ZnO [174]

Al MgAlB4 Pressureless Sintering (PS); Hot Extrusion (HE) Al; Mg; B [175]

Al MoAl12; MoAl5;
MoAl4; Al2O3 Pressureless Sintering (PS) Al; MoO3 [176]

Al Nano-C; Al2O3; Si Hot Isostatic Pressing (HIP); Equal Channel
Angular Pressing (ECAP) Al; SiO2; CNTs; GNPs [177]

Al Ni-(Al3Ni2; Al3Ni;
AlN) Gas-Pressure Sintering (GPS) Al; Ni; N2 [178]

AA2014 Ni3Al; NiAl Hot Extrusion (HE) AA2014; Ni [21]

Al Ni3Al; NiAl; Al3Ni Hot Pressing (HP) Al; Ni3Al [179]

Al

Si; Al2O3;
Multiwalled Carbon

Nanotubes
(MWCNTs)

Hot Pressing (HP)
Al; SiO2; Multiwalled

Carbon Nanotubes
(MWCNTs)

[180]

Al SiC; AlN Spark Plasma Sintering (SPS) SiCN; Al [181]

Al Ti-Al3Ti Spark Plasma Sintering (SPS) Al; Ti [182]

Al Ti-Al3Ti Gas-Pressure Sintering (GPS) Al; Ti [183]

AA7050 TiB2 Hot Isostatic Pressing (HIP) AA7050; TiB2 [184]

Al TiB2 Spark Plasma Sintering (SPS); Hot Extrusion
(HE) Al; Ti; B [46]

Al TiB2 Pressureless Sintering (PS) Al; Ti; B [53]

Al TiB2; Al2O3 Pressureless Sintering (PS) Al; B; TiO2 [51]

Al TiB2; Al2O3; Al2Cu Pressureless Sintering (PS); Hot Extrusion (HE) Al; Cu; TiO2; B2O3 [185]

Al(Cu) TiB2; TiAl3 Microwave Heating (MH) Al; Ti; B; Cu [186]

Al TiC Pressureless Sintering (PS); Hot Pressing (HP) Al; Ti; C [14]

Al TiC Pressureless Sintering (PS) Al; K2TiF6; C [187]

Al TiO; Al2O3 Pressureless Sintering (PS) Ti2CO; Al [188]

Al WAl12 Spark Plasma Sintering (SPS) Cu; Zr; Al; Ti; Ni; W [189]

Al WAl12 Hot Pressing (HP) Al; W [190]

Al WAl12 Hot Pressing (HP) Al; W [191]

Al y-LiAlO2 Pressureless Sintering (PS); Arc Melting (AM) Al; Li2O [192]
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Al
Y2O3; Al5Y3O12;
CaO; CaAl4O7;
CuAl2; FeAl3

Hot Pressing (HP); Hot Extrusion (HE) Al-Ca; Al-Y; CuO;
Fe2O3 [193]

Al α-Al2O3; Al2Cu Pressureless Sintering (PS) Al; CuO [194]

Al α-Al2O3; Si Pressureless Sintering (PS) Al; SiO2 [195]

Al α-Al2O3; ZrB2 Hot Pressing (HP) Al; ZrO2; B [16]

Al β-Al3Mg2 Hot Extrusion (HE) Al; Mg [196]

Al β-Al3Mg2;
γ-Al12Mg17 Hot Pressing (HP) Al; Mg [56]

Al γ-Al2O3 Pressureless Sintering (PS); Hot Extrusion (HE) Al; H3BO3; C18H36O2 [15]

Table A3. Titanium Matrix Composites.

Matrix Reinforcement Processing Method Raw Materials References

Ti GNPs; TiB; TiC Spark Plasma Sintering (SPS) Ti; Graphene Nanoplatelets
(GNPs); TiB2 [197]

Ti Ti(C,N); TiC Spark Plasma Sintering (SPS) Ti; Graphene Nanoplatelets
(GnP); g-C3N4 [198]

Ti Ti2Co Spark Plasma Sintering (SPS) GO; Co; Ti [199]

Ti(Al,Zr,Mo,V) Ti3AlC; TiC Spark Plasma Sintering (SPS) Ti(Al,Zr,Mo,V); Ti3AlC2 [200]

Ti Ti5Si3 Spark Plasma Sintering (SPS) Ti; Si [201]

Ti Ti5Si3 Spark Plasma Sintering (SPS) Ti; SiO2 [202]

Ti(Mo) Ti5Si3 Spark Plasma Sintering (SPS); Hot
Rolling (HR) Ti; Mo; Si [203]

Ti Ti5Si3; Ti2C Hot Pressing (HP) Ti; SiC [204]

Ti (Fe, Mo, Al); β-Ti TiB Electric Field Assisted Sintering
(EFAS) Ti; TiB2; Mo; Fe; Al [85]

Ti TiB
Coupled Multi-Physical Fields

Activation Sintering Technology
(CMPFAST)

Ti6Al4V; TiB2 [205]

Ti TiB Spark Plasma Sintering (SPS) Ti; TiB2 [206]

Ti6Al4V TiB Spark Plasma Sintering (SPS) Ti6Al4V; TiB2 [207]

Ti TiB Spark Plasma Sintering (SPS) Ti; TiB2 [208]

Ti TiB Pressureless Sintering (PS) Ti; TiB2 [209]

Ti TiB Pressureless Sintering (PS) Ti; TiB2 [210]

Ti6Al4V TiB Hot Isostatic Pressing (HIP) Ti6Al4V; TiB2 [211]

Ti TiB Pulse Plasma Sintering (PPS) Ti; B [212]

Ti TiB Spark Plasma Sintering (SPS) Ti; TiB2 [213]

Ti TiB Spark Plasma Sintering (SPS) Ti; TiB2 [214]

Ti TiB Spark Plasma Sintering (SPS) Ti; TiB2 [215]

Ti; β-Ti TiB Spark Plasma Sintering (SPS) Ti; KBF4; Al; Fe [216]

Ti6Al4V TiB Spark Plasma Sintering (SPS) Ti6Al4V; Ti; TiB2 [217]
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Matrix Reinforcement Processing Method Raw Materials References

Ti(Al,Mo,V,Cr) TiB Pressureless Sintering (PS);
Extrusion (E) Ti-Al-Mo-V-Zr; TiB2 [218]

Ti6Al4V TiB Pressureless Sintering (PS); Hot
Extrusion (HE) Ti6Al4V; TiB2 [219]

Ti TiB Spark Plasma Sintering (SPS) Ti; TiB2 [220]

Ti TiB Pulse Plasma Sintering (PPS) Ti; B [221]

Ti TiB Spark Plasma Sintering (SPS) Ti; TiB2 [222]

Ti6Al4V TiB Pressureless Sintering (PS); Hot
Extrusion (HE) Ti6Al4V; TiB2 [223]

Ti6Al4V TiB Hot Isostatic Pressing (HIP) Ti6Al4V; TiB2 [224]

Ti TiB Spark Plasma Sintering (SPS) Ti; TiB2 [225]

Ti TiB Pressureless Sintering (PS) Ti; B [226]

Ti6Al4V TiB Pressureless Sintering (PS); Hot
Extrusion (HE) Ti6Al4V; TiB2 [227]

Ti6Al4V TiB Hot Isostatic Pressing (HIP) Ti6Al4V; TiB2 [228]

Ti6Al4V TiB Spark Plasma Sintering (SPS) Ti6Al4V; Ti; TiB2 [229]

Ti-Al-Mo-Fe TiB Pressureless Sintering (PS) Ti; Al; Mo; Fe; TiB2; LaB6 [230]

Ti TiB Pressureless Sintering (PS); Selective
Laser Melting (SLM) Ti; TiB2 [231]

Ti TiB Spark Plasma Sintering (SPS) Ti; KBF4 [232]

Ti6Al4V TiB Hot Pressing (HP) Ti6Al4V; TiB2 [233]

Ti6Al4V TiB Hot Pressing (HP) Ti6Al4V; TiB2 [234]

Ti TiB Spark Plasma Sintering (SPS) Ti; TiB2 [235]

Ti(Fe,Mo) TiB Spark Plasma Sintering (SPS) Ti; Fe-Mo; TiB2 [236]

Ti60 TiB Hot Pressing (HP) T60; TiB2 [237]

Ti6Al4V TiB Hot Pressing (HP) Ti6Al4V; TiB2 [238]

Ti TiB Hot Pressing (HP) Ti; TiB2 [239]

Ti6Al4V TiB Spark Plasma Sintering (SPS) Ti6Al4V; TiB2 [240]

Ti6Al4V TiB Hot Pressing (HP) Ti6Al4V; TiB2 [241]

Ti TiB Spark Plasma Sintering (SPS) Ti; TiB2 [242]

Ti TiB Spark Plasma Sintering (SPS) Ti; TiB2 [243]

Ti TiB
Current-Activated Pressure-Assisted

Sintering (CAPAS); Pressureless
Sintering (PS)

Ti; TiB2 [31]

Ti TiB
Current-Activated Pressure-Assisted

Sintering (CAPAS); Pressureless
Sintering (PS)

Ti; B; TiB2 [244]

Ti(Mo, Fe) TiB Hot Pressing (HP) Ti; Fe65Mo; B; TiB2 [245]

Ti(Fe,Mo) TiB Spark Plasma Sintering (SPS) Ti; Fe65Mo; B; TiB2 [246]

Ti(Fe,Mo) TiB Spark Plasma Sintering (SPS) Ti; TiB2; Fe65Mo [247]

Ti(Fe,Mo) TiB Spark Plasma Sintering (SPS) Ti; Fe65Mo; B [248]

Ti TiB Hot Pressing (HP) Ti; TiB2 [249]

β-Ti TiB Hot Pressing (HP) β-Ti(Mo, Nb, Al, Si); TiB2; α-Ti;
Fe-Mo; Mo; Nb [87]
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Matrix Reinforcement Processing Method Raw Materials References

β-Ti TiB Hot Pressing (HP) Ti; Fe-Mo, TiB2 [250]

Ti6Al4V TiB Hot Isostatic Pressing (HIP) Ti6Al4V; B [251]

Ti TiB Hot Pressing (HP) Ti; TiB2 [252]

Ti(Al,Sn,Zr,Mo) TiB Pressureless Sintering (PS); Hot
Isostatic Pressing (HIP) Ti(Al,Sn,Zr,Mo); TiB2 [253]

Ti(N) TiB Spark Plasma Sintering (SPS); Hot
Extrusion (HE) Ti; h-BN [34]

Ti TiB Spark Plasma Sintering (SPS) Ti; TiB2 [254]

Ti6Al4V TiB Plasma Activated Sintering (PAS) Ti6Al4V; TiB2 [255]

Ti TiB Pressureless Sintering (PS); Binder
Jetting Printing (BJP) TiH2; TiB2 [256]

Ti(Ta,Ni) TiB Pressureless Sintering (PS) Ti(Ta,N)i; TiB2 [257]

Ti TiB Pressureless Sintering (PS) Ti; BN [35]

Ti TiB
Hydrogen-Assisted Blended

Elemental Powder Metallurgy
(HABEPM)

TiH; TiB2 [258]

Ti(Al,Zr,Mo,V) TiB Hot Pressing (HP); Canned
Extrusion (CE) Ti(Al,Zr,Mo,V); TiB2 [259]

Ti TiB Pressureless Sintering (PS) Ti; BN [36]

Ti6Al4V TiB Spark Plasma Sintering (SPS);
Pressureless Sintering (PS) Ti6Al4V; B4C [260]

β-Ti TiB Pressureless Sintering (PS); Hot
Forging (HF) Ti; Fe-62Mo; Al-50V; TiB2 [86]

Ti(Zr) TiB Pressureless Sintering (PS); Hot
Rolling (HR) Ti; ZrB2 [261]

T(Al,Mo,V,Cr,Fe) TiB Hot Pressing (HP) T(Al,Mo,V,Cr,Fe); TiB2 [262]

Ti6Al4V TiB Pressureless Sintering (PS) TiH2, TiB2, and master alloy
(Al–V) [263]

Ti TiB Pressureless Sintering (PS) TiH2; Ti; TiB2 [264]

Ti6Al4V TiB Spark Plasma Sintering (SPS); Hot
Extrusion (HE) Ti6Al4V; TiB2 [265]

Ti TiB Pressureless Sintering (PS) TiH; TiB2 [266]

Ti TiB Electric Field Assisted Sintering
(EFAS) Ti; TiB2; Fe; Mo [267]

Ti TiB; FeTi Spark Plasma Sintering (SPS) Ti; TiB2; Fe [268]

Ti TiB; Si3N4 Pressureless Sintering (PS) Ti; TiB2; Si3N4 [269]

Ti6Al4V TiB; Ti5Si3 Spark Plasma Sintering (SPS) Ti6Al4V; TiB2; Si [270]

Ti6Al4V TiB; Ti5Si3 Hot Pressing (HP) Ti6Al4V; TiB2; Si [271]

Ti TiB; TiB2 Plasma Activated Sintering (PAS) Ti-Al-V-Fe-C; B [272]

Ti TiB; TiC Spark Plasma Sintering (SPS) Ti; Mo; B4C [273]

Ti(Al,Mo,V,Cr) TiB; TiC Spark Plasma Sintering (SPS) Ti-Al-Mo-V-Cr; B4C [71]

Ti4Al2Fe TiB; TiC Spark Plasma Sintering (SPS) Ti; Al; Fe; KBF4; Graphite foils [274]

Ti TiB; TiC Spark Plasma Sintering (SPS) Ti; TiB2; B4C [275]

Ti TiB; TiC Spark Plasma Sintering (SPS) Ti; B4C [45]
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Ti6Al4V TiB; TiC Spark Plasma Sintering (SPS) Ti6Al4V; B4C; B [276]

Ti TiB; TiC Spark Plasma Sintering (SPS); Hot
Extrusion (HE) Ti; B4C [277]

Ti TiB; TiC Spark Plasma Sintering (SPS) Ti; B4C [278]

Ti6Al4V TiB; TiC Spark Plasma Sintering (SPS); Hot
Rolling (HR) Ti6Al4V; B4C [279]

Ti TiB; TiC Spark Plasma Sintering (SPS); Hot
Extrusion (HE) Ti; B4C [280]

Ti TiB; TiC Spark Plasma Sintering (SPS); Hot
Extrusion (HE) Ti; B4C [281]

Ti TiB; TiC Spark Plasma Sintering (SPS); Hot
Extrusion (HE) Ti; B4C [282]

Ti TiB; TiC Spark Plasma Sintering (SPS) Ti; B4C [283]

Ti6Al4V TiB; TiC Hot Pressing (HP) Ti; Ti6Al4V; B4C; C [284]

Ti TiB; TiC Pressureless Sintering (PS) Ti; B4C [285]

Ti TiB; TiC Hot Pressing (HP) Ti; TiB2; B4C [286]

Ti TiB; TiC Pre-Sintered (PreS); Hot Isostatic
Pressing (HIP) Ti; TiB2; B4C [287]

Ti(Al,Fe); Ti(Al,Cr) TiB; TiC Pressureless Sintering (PS); Hot
Isostatic Pressing (HIP) Ti; Al3Ti; FeB; Cr3C2 [288]

Ti6Al4V TiB; TiC Spark Plasma Sintering (SPS) Ti6Al4V; TiC; B [289]

Ti TiB; TiC Pressureless Sintering (PS); Binder
Jetting Printing (BJP) TiH2; TiB2; TiC [290]

Ti(Mo) TiB; TiC Spark Plasma Sintering (SPS) TiB2; Ti; TiC; Mo [291]

Ti6Al4V TiB; TiC Spark Plasma Sintering (SPS) Ti6Al4V; B4C [292]

Ti TiB; TiC; Nd2O3 Pressureless Sintering (PS) NdB6; Ti(O); B4C [90]

Ti TiB; TiC; TiAl Hot Pressing (HP) Ti; B4C; Al [293]

Ti TiB; TiC; TiAl Hot Pressing (HP) Ti; B4C; Al [294]

Ti TiB; TiFe
Arc Melting (AM); Pressureless

Sintering (PS); Hot Isostatic Pressing
(HIP)

Ti; FeB [295]

Ti TiB; TiN Pressureless Sintering (PS) Ti; BN; Urea [37]

Ti TiC Hot Pressing (HP) Ti; Diamond [296]

Ti6Al4V TiC Spark Plasma Sintering (SPS) Ti6Al4V; Graphite [297]

β-Ti(Nb) TiC High Pressure Sintering (HPS) Ti; Nb; Stearic Acid [298]

Ti TiC Pressureless Sintering (PS) TiH2; CH4 [299]

Ti(Mo) TiC Pressureless Sintering (PS); Hot
Swaging (HS) Ti; Mo; MoC [43]

Ti6Al4V TiC Spark Plasma Sintering (SPS) Ti6Al4V; Carbon Nanotubes
(MWCNT) [300]

Ti TiC Hot Pressing (HP); Hot Rolling (HR) Ti; Carbon Nanotubes
(MWCNT) [301]

Ti TiC Spark Plasma Sintering (SPS) Ti; Graphene [41]

Ti TiC Pressureless Sintering (PS); Hot
Extrusion (HE)

TiH2; Carbon Nanotubes
(MWCNT) [302]
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β-Ti70Nb30 TiC Spark Plasma Sintering (SPS) β-Ti70Nb30; C [303]

Ti5Sn3C;
Ti13Cr5Sn3C TiC Spark Plasma Sintering (SPS) Ti; Cr; Sn; Carbon Black [304]

Ti(Mo); Ti(V) TiC Pressureless Sintering (PS); Hot
Rolling (HR) Ti; Mo2C; VC [305]

Ti TiC Spark Plasma Sintering (SPS); Hot
Extrusion (HE) Ti; Carbon Nanotubes (VGCFs) [306]

Ti-Fe TiC Pressureless Sintering (PS) Ti; Fe[C, O, SiO2]; Graphite [307]

Ti(V); Ti(Mo) TiC Pressureless Sintering (PS); Hot
Rolling (HR) Ti; Mo2C; VC [308]

Ti(Fe, Mo, V) TiC Pressureless Sintering (PS) Ti; Fe; Mo; Mo2C; VC [309]

Ti TiC Spark Plasma Sintering (SPS); Hot
Extrusion (HE) Ti; Carbon Black [310]

Ti6Al4V TiC Pressureless Sintering (PS);
Extrusion (E) Ti6Al4V; Ti; C3H8 [311]

Ti TiC Pressureless Sintering (PS); Hot
Isostatic Pressing (HIP) Ti; CH4 [312]

Ti(Ta) TiC Spark Plasma Sintering (SPS); Hot
Rolling (HR) Ti; Ta; Stearic Acid [313]

Ti TiC Hot Pressing (HP) Ti; TiC [314]

Ti6Al4V TiC Hot Pressing (HP) Ti6Al4V; VC [315]

Ti TiC; Ti3Si Pressureless Sintering (PS) Ti; (SiH(CH3)–CH2-)n (PCS) [316]

Ti–Al–Sn–Zr TiC; Ti5Si3 Pressureless Sintering (PS) Ti(Al,Sn,Zr); Ti; SiC [317]

Ti(Nb,Al,Mo) TiC; Ti5Si3 Spark Plasma Sintering (SPS) Ti; Nb; Al; Mo; Si; SiC [318]

Ti(Al,Sn,Zr,Nb,Mo,Si) TiC; Ti5Si3 Pressureless Sintering (PS) Ti; Ti(Al,Sn,Zr,Nb,Mo,Si); SiC [319]

Ti; β-Ti TiC; TiB Spark Plasma Sintering (SPS) Ti; B4C [320]

Ti TiC; TiB Spark Plasma Sintering (SPS) Ti; B4C [321]

Ti TiC; TiB Spark Plasma Sintering (SPS) Ti; B4C [322]

Ti6Al4V TiC; TiB Hot Pressing (HP) Ti; B4C; Graphite; TiB2; TiC;
Ti6Al4V [323]

Ti6Al4V TiC; TiB Hot Pressing (HP) Ti6Al4V; TiB2; Graphite [324]

Ti(Al,Mo,V,Cr) TiC; TiB Spark Plasma Sintering (SPS) Ti-Al-Mo-V-Cr; B4C; Graphite [44]

Ti TiC; TiB Spark Plasma Sintering (SPS) Ti; B4C [325]

Ti TiC; TiB Pressureless Sintering (PS); Hot
Extrusion (HE) Ti; B4C [326]

Ti(Al) TiC; TiB; Ti3Al;
TiAl Hot Pressing (HP) Ti; Al; B4C; Ti-Al [327]

Ti TiC; TiO2 Spark Plasma Sintering (SPS) Ti; Toluene [328]

Ti5V TiN Spark Plasma Sintering (SPS) Ti; V; N2 [329]

Ti TiN Mechanosynthesis (M); Hot Pressing
(HP) Ti; NH3 [330]

Ti TiN Mechanosynthesis (M); Hot Pressing
(HP) Ti; NH3 [331]

Ti TiN; Ti2Ni; TiCN Spark Plasma Sintering (SPS) Ti; Ni; TiCN [332]
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Table A4. Nickel Matrix Composites.

Matrix Reinforcement Processing Method Raw Materials References

Ni(Cr) (Cr, Ni)3C2; (Cr, Mo)3C2; (Cr, Mo,
Ni)7C3 Pressureless Sintering (PS) Cr; C; Ni; Mo [333]

Ni (Ti, Mo)C Pressureless Sintering (PS) Ti; C; Ni; Mo [12]

Ni (Ti, Mo)C Pressureless Sintering (PS) Ti; Ni; Mo; C [76]

Ni (Ti, Mo)C Gas-Pressure Sintering (GPS) Ni; Ti; Mo; C [334]

Ni (Ti, Mo)C Pressureless Sintering (PS) Ni; Ti; Mo; C [335]

Ni (Ti,W)C Hot Isostatic Pressing (HIP) Ni; Ti; W; C [336]

Ni (Ti,W)C Pressureless Sintering (PS) Ti; W; Ni; C [337]

Ni (Ti,W)C; WC Pressureless Sintering (PS) Ti; W; Graphite [338]

Ni Al2O3; NiAl2O4 Hot Pressing (HP) NiO; Al [339]

Ni Al2O3; TiC Hot Pressing (HP) Ni; Mo; Al; Ti; C;
TiC; Al2O3; TiO2 [340]

Ni Cr3C2 Pressureless Sintering (PS) Ni; Cr; C; Mo [341]

Ni Cr3C2 Hot Isostatic Pressing (HIP) Ni; Cr; C [342]

Ni Cr3C2 Pressureless Sintering (PS) Ni; Cr; C [343]

Ni Cr3C2 Pressureless Sintering (PS); Hot
Isostatic Pressing (HIP) Ni; Cr; C [344]

Ni Cr3C2 Pressureless Sintering (PS) Ni; Cr; C [345]

Ni Cr3C2 Pressureless Sintering (PS) Ni; Cr; C [346]

Ni Graphene Pressureless Sintering (PS) Sucrose; Ni [25]

Ni Graphene Pressureless Sintering (PS) Sucrose; Ni [347]

Ni Graphene Hot Pressing (HP) Ni; PMMA [348]

Ni Graphene Hot Pressing (HP) Ni; PMMA [349]

Ni Mo2NiB2 Pressureless Sintering (PS) Mo; Ni; N-B [350]

Ni NiAl2O4; Al2O3 Hot Pressing (HP)
Ni(NO3)2.6H2O;
Al(NO3)3.9H2O;
NaOH; Na2CO3

[91]

Ni(Mo) Ti(C,N) Gas-Pressure Sintering (GPS) Ti; TiO2; Ni; Mo;
Graphite; N2 [351]

Ni(Mo) Ti(C,N) Pressureless Sintering (PS) Ti; TiO2; Ni; Mo;
Graphite; N2 [352]

Ni(Mo) Ti(C,N) Pressureless Sintering (PS) Ti; TiO2; Ni; Mo;
Graphite; N2 [353]

Ni Ti(C,N) Pressureless Sintering (PS) Ni; TiO2; TiN; Mo;
WC; C [354]

Ni Ti(C,N) Pressureless Sintering (PS) Ni; TiO2; TiN; Mo;
WC; C [355]

Ni Ti(C,N) Pressureless Sintering (PS) Ni; TiO2; TiN; Mo;
WC; C [356]

Ti-Ni TiB; La2O3 Hot Pressing (HP) Ti-Ni; LaB6 [357]

Ni(Si,Ti) TiC Pressureless Sintering (PS) Ti3SiC2; Ni [80]

Ni TiC Pressureless Sintering (PS) Ti-Ni; Graphite [38]

Ni(Si,Ti) TiC Pressureless Sintering (PS) Ti3SiC2; Ni [358]

Ni TiC Spark Plasma Sintering (SPS) Ni; Ti; C [359]
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Ni TiC Pressureless Sintering (PS) Ni; Ti; Graphite [360]

Ni(Al) TiC Hot Pressing (HP) Ni; Ti2AlC [361]

Ni TiC Pressureless Sintering (PS) Ni; Ti; Graphite [362]

Ni TiC Spark Plasma Sintering (SPS) Ni; Ti; C [363]

Ni TiC; (NiCu)3Al; CuNi2Ti Pressureless Sintering (PS) Ni; Cu; Ti3AlC2 [364]

Ni TiC; Graphite Spark Plasma Sintering (SPS) Ni; Ti; Graphite [365]

Ni TiC; γ′-Ni3(Al,Ti) Hot Pressing (HP) Ti2AlC; Ni [366]

Ni TiC; γ′-Ni3(Al,Ti) Hot Pressing (HP) Ti2AlC; Ni [50]

Ni TiC; γ′-Ni3(Al,Ti) Hot Pressing (HP) Ti3AlC2; Ni(Cr, Si,
Fe, B) [367]

Ni TiC; γ′-Ni3(Al,Ti) Hot Pressing (HP) Ti2AlC; Ni [368]

Ni(Ti, Al) TiC; γ′-Ni3(Al,Ti) Pressureless Sintering (PS) Ni; Ti2AlC [369]

Ni(Mo);
Ni(Cr) TiCxNy; TiB2 Hot Pressing (HP) Ti; BN; B4C; Cr; Mo [370]

Ni TiN; TiCN; Ti2Ni Spark Plasma Sintering (SPS) Ti; Ni; TiCN [371]

Ni TiN; TiO2 Pressureless Sintering (PS) Ni; Ti; CONDAT [372]

Ni(W) WC Spark Plasma Sintering (SPS) Ni; W [373]

Ni WC Hot Pressing (HP) W; Ni; Graphite [374]

Table A5. Copper Matrix Composites.

Matrix Reinforcement Processing Method Raw Materials References

Cu Al2O3 Spark Plasma Sintering (SPS) Cu(Al); Oxidants [375]

Cu Al2O3 Pressureless Sintering (PS); Hot
Extrusion (HE) Cu-Al; O2 [376]

Cu Al2O3 Spark Plasma Sintering (SPS) Cu-Al; CuO; Cu [377]

Cu(Sn) Al2O3 Pressureless Sintering (PS) Sn; Cu2O; Cu-Al [81]

Cu Al2O3; CeO2; Cu2O Spark Plasma Sintering (SPS) CuAl2O3; Ce; La [378]

Cu Al2O3; TiC Spark Plasma Sintering (SPS) Cu; Ti2AlC; Cu2O [379]

Cu Cr2O3 Hot Pressing (HP) Cu; Cr; Cu2O [380]

Cu Cr3C2; Graphene; CeO2 Spark Plasma Sintering (SPS) Cu; Graphene
Oxide; Cr; Ce [381]

Cu Cu5Zr; ZrB2 Rapid Solidification Process (RSP);
Nd:YAG Pulsed Laser Cu; Zr; B [24]

Cu Gd2O3 Hot Pressing (HP) Cu(Gd); CuO2; O2 [48]

Cu Graphene Hot Pressing (HP) Cu; Paraffin [382]

Cu Graphene Spark Plasma Sintering (SPS) Cu; Wheat flour [383]

Cu Graphene; Al2O3 Hot Pressing (HP) Cu; C9H21AlO3 [384]

Cu(Ti) Graphene; TiC Pressureless Sintering (PS) Cu; Graphene; Ti [385]

Cu Mo2C Hot Pressing (HP) Cu; Mo; C [386]

Cu Mo2C Pressureless Sintering (PS); Spark
Plasma Sintering (SPS) Cu; Mo; C [387]
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Table A5. Cont.

Matrix Reinforcement Processing Method Raw Materials References

Cu NbC Pressureless Sintering (PS); Hot
Extrusion (HE)

Cu-Nb; Nb; Stearic
Acid [388]

Cu NbC Pressureless Sintering (PS) Cu; Nb; Graphite [389]

Cu NbC Pressureless Sintering (PS) Cu; Nb; Graphite [390]

Cu NbC Spark Plasma Sintering (SPS) Cu; Nb; Graphite [49]

Cu NbC Pressureless Sintering (PS) Cu; Nb; Graphite [391]

Cu NbC Spark Plasma Sintering (SPS) Cu; Nb; Graphite [392]

Cu NbC Pressureless Sintering (PS) Cu; Nb; Graphite [393]

Cu NbC Pressureless Sintering (PS) Cu; Nb; Graphite [394]

Cu NbC Hot Pressing (HP) Cu; Nb; Graphite [395]

Cu TiB2 Hot Pressing (HP) Cu; Ti; B [396]

Cu TiB2 Hot Pressing (HP); Hot Extrusion
(HE) Cu; Ti; B [397]

Cu TiB2; TiB Hot Pressing (HP) Cu; Ti; TiH2; B [398]

Cu TiB2; TiB Pressureless Sintering (PS) Cu; Ti; B [399]

Cu TiB2; TiC Laser Sintering (LS) Cu; B4C; Ni; Ti [400]

Cu TiC Spark Plasma Sintering (SPS) Ti25Cu75; C [401]

Cu TiC Spark Plasma Sintering (SPS)
Ti25Cu75; Carbon

black;
Nanodiamonds

[402]

Cu TiC Hot Pressing (HP) Cu; Ti; Graphite [403]

Cu TiC Spark Plasma Sintering (SPS) Cu; Ti; Graphite [404]

Cu TiC Spark Plasma Sintering (SPS) Cu; Ti; TiH2;
Graphite [405]

Cu TiC Pressureless Sintering (PS) Cu; Ti; Graphite [406]

Cu TiC Spark Plasma Sintering (SPS) Cu; Ti; Graphite [407]

Cu(Ti) TiC Spark Plasma Sintering (SPS); Hot
Rolling (HR) Cu; Ti; Graphite [39]

Cu TiC Spark Plasma Sintering (SPS); Hot
Pressing (HP)

Cu; Ti; Carbon
Black [408]

Cu TiC Spark Plasma Sintering (SPS) Cu; TiH2; C; TiC [409]

Cu TiC Spark Plasma Sintering (SPS) Cu; Ti; C; Graphite;
Nanodiamonds [410]

Cu TiC; C Pressureless Sintering (PS)
Cu; Ti; Graphite;
Carbon nanotube
(CNT); Graphene

[411]

Cu TiC; CuTi4 Hot Extrusion (HE) CuTi; Graphite [412]

Cu TiC; Graphene Pressureless Sintering (PS) Cu; Ti; Graphite [413]

Cu(Sn) V2C Hot Pressing (HP) Cu; V2SnC [414]

Cu WC Hot Pressing (HP) Cu, W; Graphite [68]

Cu(W) WC Hot Pressing (HP) Cu; W; GCI [415]

Cu WC; W2C Pressureless Sintering (PS) Cu; W; Graphite [70]

Cu Y2Ti2O7 Spark Plasma Sintering (SPS) Cu(Y); TiO2 [416]
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Table A6. Iron and Steel Matrix Composites.

Matrix Reinforcement Processing Method Raw Materials References

Fe (Ti,V)C Pressureless Sintering (PS) Ti; Fe; FeV; C [417]

Fe (Ti,V)C Pressureless Sintering (PS) Fe; FeV; FeCr;
FeMo; Ti; C [418]

Fe (Ti,V)C Pressureless Sintering (PS) Fe; FeV; FeCr;
FeMo; Ti; C [419]

Fe (Ti,V)C Pressureless Sintering (PS) Ti; Fe; Fe–V; Fe–Cr;
Fe–Mo; C [420]

Fe(Al) Al2O3; Fe3Al Hot Pressing (HP) Fe-Al [421]

Fe Al2O3; FeAl2O4 Pressureless Sintering (PS) Fe-Al2O3 [422]

316L Steel Cr7C3; Cr3C2; Fe2Si Spark Plasma Sintering (SPS) 316L; PCS [423]

316L Steel Cr7C3; FeSi Spark Plasma Sintering (SPS) 316L; PCS [33]

HCWI Cr7C3; TiC Pressureless Sintering (PS); Hot
Pressing (HP)

HCWI; TiC;
Ti3AlC2 [424]

Fe Fe3O4 Pressureless Sintering (PS) Fe; O2 [425]

Fe Fe3O4 Pressureless Sintering (PS) Fe; H2O [426]

Fe Fe3O4 Pressureless Sintering (PS) Fe; Fe2O3 [427]

Fe FeAl2O4 Hot Pressing (HP) Fe; Fe2O3; Al2O3 [428]

Fe FeAl2O4 Pressureless Sintering (PS) Fe; Al2O3 [429]

Fe FeAl2O4; Al2O3 Pressureless Sintering (PS) Fe; Al2O3 [430]

Fe FeB; Fe2B Hot Pressing (HP); Pressureless
Sintering (PS) Fe; B4C [82]

Fe(Mo) FeS; TiC; VC Pressureless Sintering (PS)

Fe2O3; FeO; TiO2;
V2O5; Al2O3; SiO2;
MgO; Fe; Graphite;

MoS2

[431]

Fe(Cr,C) M7C3; TiC Pressureless Sintering (PS); Hot
Pressing (HP) HCWI; Ti3AlC2 [432]

Fe-Si MnO-SiO2 Spark Plasma Sintering (SPS) Fe-Si; MnO2 [433]

Fe Mo(Ti)2FeB Pressureless Sintering (PS) Mo; FeB; Fe; Ti [434]

Fe-Ni Nanodiamonds Spark Plasma Sintering (SPS) Fe30Ni; MWCNTs [435]

Fe NbC Pressureless Sintering (PS) Fe; Nb; Graphite [436]

Fe TiB2 Spark Plasma Sintering (SPS) FeTi; FeB [437]

Fe-Cr-Mn-
Al TiB2 Spark Plasma Sintering (SPS) Cr; Fe; Mn; Al; Ti; B [438]

Fe TiB2 Spark Plasma Sintering (SPS);
Pressureless Sintering (PS) FeB; TiH2 [75]

Steel TiB2; TiC Spark Plasma Sintering (SPS) Fe2Ti; B4C [55]

Steel TiB2; TiC Spark Plasma Sintering (SPS) FeTi; B4C [17]

Steel TiB2; TiC Pressureless Sintering (PS) 465 stainless steel;
FeB; Ti; C [20]

Fe/Steel TiB2; TiC Pressureless Sintering (PS) 465 stainless steel;
FeB; Ti; C [439]

Fe TiB2; TiC Pressureless Sintering (PS) Ti; C; FeB [440]

Steel TiC Pressureless Sintering (PS); Hot
Isostatic Press (HIP) Fe; TiH2; C [19]
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Table A6. Cont.

Matrix Reinforcement Processing Method Raw Materials References

Fe TiC Pressureless Sintering (PS) Fe2O3; TiO2;
Graphite [52]

Fe TiC Pressureless Sintering (PS) Fe; Ti; C [441]

Fe TiC Pressureless Sintering (PS)

Fe3O4; FeTiO3;
Al2O3; SiO2; MgO;

CaO; Fe; La2O3;
CeO2; Graphite

[442]

Fe(Ni, Mo,
Cu) TiC Pressureless Sintering (PS) Fe; Ti; Mo; Ni; Cu;

Graphite [443]

Fe TiC Pressureless Sintering (PS) FeTi70; Sucrose [74]

Fe TiC Hot Isostatic Pressing (HIP); Hot
Pressing (HP)

Graphite; Steel;
FeTi; WCI [444]

Fe TiC Pressureless Sintering (PS) FeTiO3; Graphite [445]

Steel TiC; TiB2 Pressureless Sintering (PS) 465 stainless steel;
FeB; Ti; C [446]

Fe TiN Spark Plasma Sintering (SPS);
Pressureless Sintering (PS) Fe(Cr,Ni,Ti); N2 [447]

Steel TiN; TiB2 Spark Plasma Sintering (SPS) FeTi; BN [448]

Steel TiN; VN Hot Isostatic Pressing (HIP)
X4CrMoV15–1;

FeTi; X4CrMo15–1;
FeV; Graphite; N2

[449]

Fe(Cr, V) V3B4; V8C7 Pressureless Sintering (PS) FeV; C; Fe45 [450]

Fe(Cr,Mo) VC Pressureless Sintering (PS) Fe; FeV; FeCr;
FeMo; C [32]

Fe VC Spark Plasma Sintering (SPS) FeV; C [45]

Fe WC; Fe3W3C; W2C Spark Plasma Sintering (SPS) Fe; Cu; W; C [451]

Fe WC; W2C; Fe3W3C Spark Plasma Sintering (SPS) Fe; C; W; Cu; WC [452]

Fe ZrO2; Zr6Fe3O Pressureless Sintering (PS) Fe; ZrO2 [453]
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