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Abstract. The Low Noise Amplifier (LNA) is the first stage in RF CMOS receivers. The Common Gate (CG)
LNA and Inductively Degenerated Common Source (CS) LNA are one of the widely used topologies for
realizing RF CMOS receivers. The present work emphasizes a simple and exhaustive search procedure for the
synthesis and analysis of CMOS CG and Inductively Degenerated CS LNA circuits. The width (W), gate source
voltage (V) and drain source voltage (V) of the transistors constitute the design space in the circuit design.
The design first involves the use of a circuit simulator (HSPICE) to obtain the small signal parameters of the
circuit for various W, V,, and Vg,of the transistors and then to generate a Look-Up Table (LUT) for all design
points using the obtained values. This LUT is used to meet the target performance specifications along with
appropriate analytical expressions derived from the circuit in a numerical simulator (MATLAB). This will
enable one to explore the whole design space quickly and fastly for arriving at the optimal values for the device
dimensions, bias voltages and bias currents of the two LNA circuits. The design methodology is demonstrated
by designing CG and Inductively Degenerated CS LNA circuits using 90 nm CMOS technology library in which

Inductively Degenerated CS LNA gets high gain and low noise figure than CG LNA.
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1. Introduction

Radio Frequency Integrated Circuits (RFIC) normally work
between 300 MHz to 30 GHz. RFIC applications include a
mobile phone, WLAN, UWB, GPS and Bluetooth devices,
etc. The optimal design of CMOS REF circuits that meets all
target specifications is a challenging task. The success of a
receiver’s design is measured in multiple dimensions:
receiver sensitivity, selectivity, and proclivity to reception
errors. It calls for intuition, prior design experience, and time-
consuming simulations to be carried out with circuit simu-
lators. In the design of CMOS RF circuits, the main challenge
to meet the design specifications is in the optimum selection
of the sizes of the various transistors and the associated DC
bias levels. Given a set of device dimensions and bias volt-
ages, circuit simulators can evaluate the performance of the
circuit with very high accuracy. But the simulation time
required to exhaustively explore the entire design space (all
permissible devices dimensions and bias voltages) is difficult
to estimate and is normally prohibitively very high.

The first stage of a CMOS RF receiver is Low Noise
Amplifier (LNA). The LNA plays an undisputed
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importance in the receiver design. Its main function is to
provide enough gain to amplify extremely low signals
without adding noise, thus preserving the required signal to
noise ratio of the system at extremely low power levels.
The design methodology for Radio Frequency (RF) CMOS
LNA using current-based Metal-Oxide—Semiconductor
Field-Effect Transistor (MOSFET) model was converted
from weak to strong inversion regions including moderate
inversion by Baroncini et al [1]. The inductor realization
constraints are not considered and hence noise expressions
require some corrections. The transistors that operate in
moderate inversion are larger than those in strong inver-
sion. As the integrated inductors are much bigger, the area
is increased and NF of 1.4 dB is obtained for 2.5 GHz
frequency.

An inductorless LNA with an active balun for radio
applications between 100 MHz and 6 GHz was proposed by
Blaakmeer et al [2]. A combination of a CG stage and an
admittance-scaled CS stage with replica biasing is exploited
to maximize balanced operation simultaneously canceling
the noise and distortion of the CG stage. NF close to or
below 3 dB is achieved for 0.2-5 GHz frequency and 1.2 V
power supply and good linearity is obtained when the CS-
stage is carefully optimized.
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A broadband inductorless LNA design utilizing simul-
taneous noise and distortion cancellation is exploited by
Chen et al [3]. The minimum internal gain of 14.5 dB and
NF of 2.6 dB is achieved for 800 MHz to 2.1 GHz fre-
quency and 1.5 V supply voltage by drawing 11.6 mA
current.

Manstretta et al [4] extended a broadband single-ended
input differential output LNA for canceling second order
distortion. The second-order distortion products in the dif-
ferential output are cancelled effectively by using a linear
feedback from the common mode output to the single-
ended input. The sensitivity to process, supply voltage, and
temperature variations are reduced by replica bias. The NF
of 2.25 dB in the Very High Frequency (VHF) band and 2
to 4 dB in the Ultra High Frequency (UHF) band are
derived for 230 MHz to 470 MHz frequency with the power
dissipation of 7.8 mW.

Ansari et al [5] performed a full on-chip CMOS LNA
topology for cognitive radios with very low power con-
sumption by exploiting the combination of CG stage for
wideband input matching and CS stage for canceling the
noise and distortion of CG stage. Both n-Channel Metal-
Oxide Semiconductor (NMOS) and p-Channel Metal-Oxide
Semiconductor (PMOS) transistors are used in CS stage for
improving the Second Order Input Intercept Poin t(IIP2).
The output impedance of 50 Q is achieved by paralleling a
resistor with the output node. The Noise Figure (NF) of 2.3
dB to 2.8 dB, Input Reflection Coefficient (S11) less than
—10 dB, the power gain of 12 dB and IIP2 of 20 dBm are
obtained for the range of 50 MHz to 10 GHz frequency and
1 V power supply with power consumption of 6 mW.

The comprehensive noise performance analysis of
CMOS LNA including channel noise and induced gate
noise in MOS devices was performed by Dong Feng et al
[6]. A new analytical noise factor formula based on noisy
two-port network theory is exhibited which shows that
distributed gate resistance and other losses in series with the
gate have both direct and indirect contributions to the noise
factor. Design tradeoffs between power dissipation, over-
drive voltage, and noise figure are balanced appropriately
and high performance is achieved.

The design of CMOS CG LNAs using a design space
exploration for all inversion regions, from weak to strong is
investigated by Fiorelli ef al [7]. The exploration is per-
formed in terms of current consumption, gain and noise
figure in the design space (ID, gm/ID) and the short channel
effects are neglected, hence results measured are inaccu-
rate. For smaller NF, transistor works in strong inversion
and hence current consumption increases and for higher NF
it is vice versa.

A 0.13 pym CMOS Balun-LNA for ultra-wideband
applications is investigated by Reddy et al [8] using a
common gate amplifier with source degenerated inductance
for input matching. The balanced operation is maximized
and noise of the CG stage is cancelled by emphasizing the
combination of a CG stage and an admittance-scaled CS
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stage with replica biasing. The NF < 2.8 dB, S11 less than
—10 dB and maximum gain of 17.8 dB is obtained for
2.1 GHz-9.5 GHz frequency and 1.2 V supply with a power
consumption of 18.5 mW.

Tulunay et al [9] reported a stand-alone design
automation tool tailored for RF CMOS LNA designs to
obtain faster optimization. Design exploration is empha-
sized using circuit simulator which is time-consuming. NF
less than 2.78dB is measured for 900 MHZ frequency and
2.5 V power supply. An automatic synthesis tool for Radio
Frequency Integrated Circuits (RFIC) design is demon-
strated by Tulunay er al [10]. The tool incorporated built-in
numerical simulators for fast evaluation of the performance
metrics. The duration of the overall optimization process is
reduced which eliminates the need for circuit simulators.
Nonlinearity is modelled using Volterra series method and
additionally provides the on-chip inductors. NF of less than
0.75 dB is derived for 900 MHz frequency and 3.3 V power
supply.

The rest of the paper is organized as follows. Section 2
describes the proposed design methodology. Section 3
discusses the simulation results that validate the proposed
design methodology. Finally, section 4 provides the con-
clusions of the present work.

2. Proposed design methodology

The design of CMOS LNA circuits using small signal
models has been widely used but has some limitations in its
accuracy. For example, the small signal model approach
used by Tuluna ef al [10] with reverse isolation is not valid
for all LNA designs. Another small signal model approach is
used by the BSIM3v3 [11] model considers reverse isola-
tion. However, the extraction of the values of the associated
model parameters is not straightforward. These limitations
can be overcome by the proposed design.

2.1 Small signal parameters extraction

In RF CMOS circuits, the transistors are normally designed
with large widths. For the fixed length of the transistor, the
small signal parameters are obtained for different bias
voltages for a particular width. This procedure is repeated
for various widths. In the present work, the small signal
parameters are extracted using circuit simulators (HSPICE).
The parasitic capacitors associated with all the terminals of
the transistor are modeled as frequency dependent current
sources as described in figure 1. The various current sour-
ces of figure 1 can be expressed as follows.

Ly = gmvgs + gmbxvhs + gdsvds (l)

Lo(s) = 5(CgeVg 4 CosVs 4+ Cop Vi + CoaVa)  (2)



Sadhana (2019) 44:4

D
0 — —
G |3 3 B
G B =+ 4 =
S - =
3
(a) (b)

Figure 1. CMOS transistor (a) symbol, (b) proposed small
signal model.

Li(s) = 5(Cag Ve + Cys Vs + Cap Vo + CaaVa + CigVap) (3)
Is(s) = S(ngvg + CssVs + Csbvb + Cstd + stVsb) (4>

I (s) = 5(CrgVg + Cus Vs + Cop Vi + Cpa Vi) (5)

In Eqgs. (1)-(5), gm» &mpbs» &as are the gate to source
transconductance, bulk to source transconductance and
drain to source transconductance, respectively. Vg, Vi,
Vs, Vg represent gate to source voltage, bulk to source
voltage, drain to source voltage and source to bulk voltage,
respectively. Similarly, Vg, V}, Vs, V; are gate voltage, bulk
voltage, source voltage and drain voltage with respect to
ground, respectively. The symbol C,,, (x,y = g,d,s,b) rep-
resents the capacitance relating the rate of change of charge
in x terminal respect to change in voltage in y terminal.Cj,,
Cjs represent the junction capacitance at the drain and
source terminals, respectively.

The transistor’s small signal parameters depend directly
on width, length and bias voltage at the source, drain, bulk
and drain terminals. In this work, the transistors are
designed at the fixed length, fixed source and bulk voltages
and hence small signal parameters depend only on the
width and varying gate and drain bias voltages. Thus the
three parameters, namely width (W), the gate-source volt-
age (V,,) and drain source voltage (V) of the transistors
constituting the design points in the circuit that forms the
design space. A LUT is created over different bias voltages
for different width with the fixed length of the transistor.
The LUT contains the various device transconductances,
parasitic capacitances and other DC quantities like drain
source current. During the design exploration procedure,
this LUT is used by the MATLAB.

2.2 Steps to explore the design space

For determining the performance analysis of the LNA cir-
cuits the appropriate analytical expressions are derived. The
analytical expressions are then used in MATLAB along
with the created LUT to explore the design space and to
arrive at the feasible design point. The steps to explore the
design space are as follows:
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2.2a Creation of LUT: For the chosen fixed transistor length
and particular width, LUT is created using the obtained DC
and small signal parameters. This is carried out by per-
forming DC simulation in HSPICE for various Vg and Vy;.

2.2b Defining the design space: For the circuit topology, the
design points are W, V,, and Vy;, of all transistor. The size
of the design space depends on the number of transistors
used.

2.2¢ Deriving the analytical expressions: For the circuit
under the considerations, the analytical expressions for
determining the performance of LNA are derived using the
proposed small signal model of the circuit. The analytical
expressions derived include Input Reflection Coefficient
(S11), Forward Gain (S21), and Noise Figure (NF).

2.2d Exploring the design space: The performances of the
circuit are analyzed from the derived analytical expression
in MATLAB by loading LUT. Save the design points that
satisfy the performance requirement as feasible design
points.

2.2e Select the optimal design: Sort the feasible design
points obtained in Step 4 above with optional additional
constraints on the performance and select the best possible
design.

The above design space exploration is also depicted in
the form of a flowchart in figure 2.

2.3 Design of LNA circuits

Two important specifications for an LNA are a power
impedance match and low noise figure. The NF of an LNA
using MOSFETs can be made low by increasing the
transconductance (g,,) of the device and with proper layout.
The source impedance that yields minimum NF is inductive
in character and generally unrelated to the conditions that
maximize power transfer [12, 13]. Furthermore, the gate
(input impedance) of a MOSFET is predominantly capac-
itive by providing a good match to a 50 Q source without
degrading noise performance. Since presenting a known
resistive impedance to the external world is an almost
critical requirement of LNAs.

The circuit topologies that provide resistive impedance
are

e Resistive termination
e Series-shunt feedback
e Common gate connection
e Inductor degeneration

2.3a Common gate LNA design: The proposed methodology
is exhausted on commonly used inductor less CG LNA as
in figure 3 and its small signal model is in figure 4. Small
signal parameters and LUT has been created using 90 nm
CMOS technology in HSPICE. Next the design points W,
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Create a LUT for device small signal
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Figure 2. Flow Chart for Design Space Exploration of LNA circuits.

Vs, and Vg, are defined for each transistor in the circuit.
The dimension of the design space is three for CG.

The input is applied to source terminal MOS and the
output is taken from the drain terminal. The drain terminal
is connected to the power supply through the load resistor.
By properly choosing W, V. and Vs voltage and load
resistor the input is amplified and is obtained at the output.

With reference to figure 4, the parasitic dependent Input
Impedance of the CG LNA can be expressed as,

ap + sap

= 6
by + sby + s2b; (6)

Zi (S)

where,
a; =14 gu *Rp
a» = Cp* Ry, + Cpp * Ry,
by = gm + 8mbs + 8as

by = Gy * Cpp * Ry + Gy ¥ Cp * R + 845 * Cag * Ry
_CDB*Cdg*RL_CD*Cdg*RL+CBBa1

by = Cye ¥ RL(Cpp + Cp) + Csp * R.(Cpp + Cp)
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? In a similar manner, the Forward Gain can be expressed
as,
R1 C1 — SCp
S = 8

[] 21(5) di + sdy + s*ds ®
5 where,

Q1 =

| 2NE661 €1 = Gn
Vg 2

C) = Cdg

dl = gus + (I/RL) - (Gm * (RS/RL))

1 dy = gas * RL(—Cag — Cp + C») + Cps + Cp — Cps
1k * (Rs/RL) — Gy % Cpp * R, — Gy x Cp % R, — Gy

[] RS D * (Rs/Ru)
\l/ d3:CDB*RS(_CBB+Cp)+Cp*CD*RS_CBB*CD

Noise Factor (F) is also defined as,

total output noise power

~ output noise due to input source

©)

L The NF is F expressed in decibels. With reference to
N figure 5, the F is given by,

0

Figure 3. Common gate LNA.
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G = &m + 8ds + &Gmbs I1 o

Cpg = Cagp +Cys — Cig

RB
Cpp = Cy5 + Cyp + Cg @ = [] b E LS

Cp=Cu+Cpyq
Given Z;,(s) as in (6), the Input Reflection Coefficient 2
can be expressed as, . . g =
Si(s) = M (7) i ’
s = Zin(8) + Ry Figure 5. Inductively degenerated common source LNA.
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Figure 6. Small Signal Model of Inductively degenerated Common Source LNA.

((1/Rs) +5(Cag + Cos + Cp))* * i3
(Gm - stg)z*g

((1/Rs) + Gy + 5(Cpg + C,) ) % 2

(Gm - SCdg)z*%

F=1+

(10)

where,

The NF of the circuit is given by,

NF = 10 x log(F) (11)

2.3b Inductively degenerated common source LNA: Induc-
tively degenerated common source LNA is most commonly
used in narrowband applications because it has resistorless
input impedance for having low noise figure. To have
proper impedance matching inductor is used in the source
of the M1 transistor. Capacitor C,, is used to adjust the Q-
point of the transistor. The circuit for inductively degen-
erated common source LNA is shown in figure 5. The input
is applied to source terminal M1 and the output is taken
from the drain terminal of M2. The drain terminal of M2 is
connected to the power supply through the load resistor. By
properly choosing W1, W2, Vg, Vg, Veotransistor the
input is amplified and is obtained at the output.

Similar to CG LNA the analytical expressions for Input
Impedance, Forward Gain and Noise Figure of Inductively
Degenerated CS LNA are derived using the small signal
model given in figure 6. The parasitic dependent Input

Impedance of Inductively Degenerated CS LNA can be
expressed as,
Zin(s) = Zinl(s) + rg + (s*L,) (12)

In a similar manner, the Forward Gain of Inductively
Degenerated CS LNA can be expressed as,

= (1)

The F of Inductively Degenerated CS LNA is given by,

(13)

Vo2 Vo3
F=1+—
JrVolJr

Vo4
Vol

Vol (14)

From these equations, the Input Reflection Coefficient,
Forward Gain and Noise Figure of Inductively Degenerated
CS LNA is calculated for all design points and its opti-
mized results are in table 3.

The design points were identified with the sweep of
design variables. For the Common Gate model, the widths
of the transistors M range from 10 pm to 300 um in a step
of 50 pm. The drain to source voltages ranges from 0.2 V to
1.6 V and gate to source voltages ranges from 0.4 V to
1.7 V. These ranges chosen for the free parameters are
considered large enough to cover all feasible design cases.

For the Inductively Degenerated Common Source LNA, the
width of the transistor M1 ranges from 50 pm to 400 pm in a
step of 50 um. The drain to source voltages of transistor M1
ranges from 0.2 V to 1.6 V, the gate to source voltages of
transistor M1 ranges from 0.4V to 1.7 V and the gate voltage of
M2 transistor ranges from 0.5 V to 1.8 V. The design con-
straints are chosen for the CG LNA and Inductively Degen-
erated CS LNA are given in Table 1. Under these constraints,
the feasible points were obtained using LUT in conjunction
with analytical expressions in MATLAB by performing an
exhaustive search among various design points.
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Table 1. Design specifications.

Design specifications Value
Supply voltage (Vuq) 1.8V
Input reflection (Sy;) < —10 dB
Forward gain (S,) > 10 dB
Noise figure (NF) <5dB
Bias current (/) <25 mA
Resonant frequency 2 GHz/10 GHz
Source impedance 50 Q
Load impedance 5 pF
CMOS technology 90 nm

3. Results and discussion

The RF CMOS CG LNA is designed using 90 nm CMOS
technology in HSPICE and simulated using MATLAB. The
number of design points in this space exploration process is
defined by the number of free parameters, the step sizes of
the free parameters and their respective minimum and
maximum value. In this work W, V,, and Vy;, of the tran-
sistor were used as design points for the CG LNA design
explorations and W1, W2, Vi, Vs, Vg of the transistors
were used as design points for inductively degenerated CS
LNA. Each design point is validated in less than a mil-
lisecond using any circuit simulator. The time required to
arrive at the feasible design points using a circuit simulator
alone will be very high, and in addition, it would require
intense manual effort.

The effective use of LUT obtained from HSPICE in
conjunction with MATLAB completes the search and
arrives at the feasible results of CG LNA and inductively
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degenerated CS LNA within a few seconds. The size of the
search space increases as the number of design points
increases which in turn increases as the number of tran-
sistors in the circuit increase, and this leads to an increase
in the simulation.

The small signal parameters are obtained for various
design points (W, V,, and V). Look Up Table is formed
for various design points using the obtained small signal
parameters from the design as shown in figure 7. The
highlighted values in figure 7 are considered for the design.

The small signal parameters are obtained for various
design points (W1, W2, Vi, Vg1, Vo). Look up table is
formed for various design points using the obtained small
signal parameters as shown in figure 8. Tables 2 and 3
contain the feasible design points of CG LNA and
Inductively Degenerated CS LNA, respectively obtained
by MATLAB for operating frequency of 2GHz. Each row
in tables 2 and 3 corresponds to the feasible design points
optimized in any single objective. The highlighted values
in figure 8 are considered for the design. The design
parameters are global since the operating frequency and
supply voltage is common to the entire circuit. The Gate
source voltage and drain source voltage is maintained
globally.

3.1 Parasitic effects

Inductive degeneration is popular because of package par-
asitics. The parasitics in LNA design can be reduced during
package. This requires good model pf package and bond
wires. The inductance of the input loop depends on the
arrangement of bond wires, die size and pad locations. The

Figure 7. Look up table using small signal parameters of CG LNA.
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Figure 8. Look UP Table using small signal parameters of inductively degenerated CS LNA.

Table 2. Design result of CG LNA at F = 2 GHz.

S1.No W (um) Vg (mV) Vgs (mV) Ry (Q) Optimized parameters and its value
1. 50 400 200 102 Minimum Power — 904.6734 pW
2. 50 600 800 420 Maximum S21 - 13.6333 dB
3. 300 1600 1800 397 Minimum NF - 0.7798 dB
4, 50 400 200 102 Minimum S11 - 17.5212 dB
Table 3. Design result of inductively degenerated CS LNA at F = 2 GHz.

Wi w2 Vst A/ Vias2 L Cex L, RIld Rg  Optimized parameters and
SLNo (um) (um) (mV) (mV) (mV) (nH) (pF) (nH) Q) LdmH) (Q) its value
1. 300 30 700 400 700 0.54 1015 63.1 0.64 0.01259 0.2782 Minimum Power — 1.0353

mW

2. 250 150 900 1200 1500 0.13 89 327 0.51 0.01223 0.3328 Maximum S21 - 31.9719
3. 100 150 1200 700 1200 024 2025 60.2 037 0.01206 0.8285 Minimum NF - 0.0630 dB
4. 50 50 1000 400 700 0.1 25 40 0.45 0.01253 1.6645 Minimum S11 — 24.3172

dB

changing flux generates an EMF around the circuit loop and
it causes undesired mutual inductance to other parts of the
circuit. Many designs also require ESD protection which mance of Inductively Degenerated CS LNA is high
manifests as increased capacitance on the pads.

Figure 9 shows the comparison of CG LNA and Induc-
tively Degenerated CS LNA at F = 2 GHz. The perfor-

compared to CG LNA.
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Figure 9. Comparison of CG LNA and Inductively Degenerated
CS LNA at F = 2 GHz.

4. Conclusion

The RF CMOS CG LNA and Inductively Degenerated CS
LNA is designed for space exploration and the synthesis is
carried out by an exhaustive search to obtain the feasible
design points which provide minimum power, maximum
gain, minimum noise figure, and minimum input reflection
coefficient at a 2 GHz frequency. In this, CS Inductively
Degenerated LNA is high in performance compared to CG
LNA with 57.35% of the increase in gain and 91% of
reduced noise figure.
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