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Abstract 

Kalman filters have for  a long t ime been widely used on 
mobile robots as  a location estimator. Many different 
Kalman filter designs have been proposed, using models 
of various complexity. In this paper, two different de- 
sign methods are evaluated and compared. Focus is put  
o n  the common setup where the mobile robot is  equipped 
with a dual encoder system supported by some addi- 
tional absolute measurements. A common filter type 
here, is the odometric filter where readings f rom the 

quired that the model of the robot is perfect. As this 
is rarely the case, most Kalman filters run in a subopti- 
mal and possibly unstable manner. Luckily, the effects 
of this can be greatly reduced by choosing the filter 
model intelligently. The most common way in practice 
to prevent an erroneous filter model to biase or diverge 
the estimates, is to force the filter to put less confidence 
in the model and more in the measurements. This is 
done by increasing the filter's process noise covariance 
matrix, Q,  which is equivalent to adding fictitious pro- 
cess noise in the model to simulate the uncertainties. 

odometry system o n  the robot are used together with 

robot. If additional kinematic assumptions are made, 
f o r  instance regarding the velocity of the robot, an aug- 
merited model can be used instead, This kinematic fil- 
ter has advantages when used intelligently and 
it i~ shown how this type of filter can be used to sup- 
press noise o n  encoder readings and velocity estimates. tedious attempt to the robot by a 
The ~~l~~~ filter nomally consists of a time update 

shown that when using the leinematic filter, the encoder 
measurements should be fused prior to the time 
for  better performance. 

the geometry of the robot movement as a model of the As it is impossible to model a real robot perfectly, it 
is necessary to tune Q when Kalman 
filters are implemented. As this diminishes not only 
the influence of the modelling errors but also of the 
model itself, some considerations should be made re- 
garding the complexity of the model. A thorough and 

iug of Q that in practice deteriorates or even discards 

the design phase and during runtime. Besides, trying 
to make an accurate dynamical model of the robot con- 
templating all the nonlinearities caused by for instance 
friction forces, is not a trivial task and is hardly ever 
seen in the literature (one example though is found in 
[l]). The problem (besides the noulinearities) is that 
a lot of parameters that change with for instance time 
and temperature are required to be known quite pre- 
cisely. 

Quite often instead a simple kinematic model assum- 
ing either constant velocity or acceleration is used as 
for instance in [Z]. However, as any change in maneu- 
ver in these filters is an inherent modelling error, this 
approach relies heavily on measurements to correct the 
estimate. Another very common approach, is to use the 
odometric system of the robot along with a geometric 
description of the robot movement as the system model 
as in [3] or [4]. Here, readings from the robot encoders 
are used, not as measurements, hut as inputs driving 
the filter model. A combination of these filter types 

followed by one data H ~ ~ ~ ~ ~ ~ ,  it is the outputs from this model, is wasting time both in 

1 Introduction 

In mobile robot navigation one of the key problems is 
how to estimate the posture (i.e. the position and pose) 
of the robot. By far the most common way of ob- 
taining this estimate is by using a Kalman filter. The 
Kalman filter uses a system model along with measure- 
ments from internal and external sensors to maintain 
an estimate of the robot's posture and of a correspond- 
ing covariance matrix describing the uncertainty of the 
posture estimate. Knowing the covariance matrices of 
the estimate and the incoming measurements, the fil- 
ter fuses measurements and estimate, minimizing the 
variance of the resulting estimate. 

In order for the estimate to remain optimal, it is re- 
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can be obtained by augmenting the odometric model 
with kinematic states as in [5] (for convenience these 
hybrid filters shall be denoted kinematic here). 

2 Models for Mobile Robots 

As mentioned, mobile robots can be modelled in many 
ways at  many different levels of abstraction. Here, fo- 
cus is put on odometric and kinematic models. 

2.1 Odometric Kalman Filter 
If the mobile robot is equipped with an encoder on each 
motor shaft, a very feasible and common way of design- 
ing the location estimator, is by using these encoder 
readings as the system model. In this approach, the 
encoder readings arc translated to increases in the mo- 
bile robot's translational and rotational position and 
used as inputs to a simple geometrical filter model. 
An example of this common type of robot is shown 
on figure 1. During one sample period the encoders 

Figure 1: A mobile robot with dual drive and encoders. 

will measure angular increments corresponding to the 
distances d, and dl traveled by the right and the left 
wheel respectively. If the movement of the robot is 
assumed circular, d, and dl can be transformed to a 
translational and rotational displacement of the robot: 

d, - 4 se = - b '  

where b is the distance between the wheels. 

The coordinates of the mobile robot in a global coor- 
dinate frame can then be updated by (see [SI): 

1 Xh+l 6dk COS(8k + %) [ 2:; ] = [ 4 ] + [ 6dk s i n g +  !+) (3) 

Equation (3) assumes linear velocity within each sam- 
ple period. A model assuming circular motion can 

sometimes be more accurate. This can be obtainec 
by multiplying the X and Y coordinates with an ad 
justment factor: 

sin(6&/2) 
c =  

6eki2 (4 

Typically the sampling rate is so high compared to tl- 
velocity of the robot that the adjustment factor wil 
make very little difference. Equation (3) will therefor 
be used to describe the robot motion. 

The three coordinates (X, Y, e) constitute the state vel: 
tor x. In the problem considered in this paper (and frc 
quently encountered in real life) the state is observc~ 
by some absolute measurements, t. These measuic 
ments are described by a nonlinear function, c, of t,h 
robot coordinates and an independent Gaussian nok 
process, U. Denoting the nonlinear function (3) a, zr~ 
collecting 6 4  and 6ek in an input vector Uk, the mob! 
robot can be described by: 

zk+1 = a(Xk,uk,Wk,k) (5  
tk = C(Xk,  Uk, k), (E 

where: Wk y N(O, pk), V I  - N ( 0 ,  TI) ,  E [wiuT] = 0. 

An extended Kalman filter can be designed using tF 
system model in equation (3) and the filter equatioi- 
below as in [3] or [4]: 

*k+l = a(&,Uk,O,k) ( I  

p k + i  = AbPk(+)Ar+Gk&kG;f (t 
K k  = pkcz [Ckpkc: f Rk1-l (i 

ik(+) = 6 k  + Kk [th - C k ? k ]  (11 
pk(+) = [I-KkCklpk, (1' 

Denoting 61 = e k  + +, the linearized matrices E2 

comes: 

The process noise vector, w, is modelled as two in2 
pendent gaussian white noise processes added to ( 
and (2). As shown in [6] this is a fairly good appro. 
mation. 

1022 



2.2 Kinematic Kalman Filter 
Assuming that the robot moves at a constant speed, 
V, and rotates with a constant angular velocity, w ,  the 
state vector can (as in [5 ] )  he augmented to: 

(12) 
0 
0 - 

As the model assumes constant linear and angular ve- 
locity, the process noise here is the accelerations: V 
and 3. As these are unknown, maximum values Vm,, 
and w,,, should be used to ensure that the filter can 
track the mobile robot. 

The encoder readings can now be fused as measure- 
ments by dividing (1) and (2) with the sampling time: 

Observe that when the velocities are low or the sam- 
pling rate is high, the resolution of (1) and (2) and 
therefore also (13)-(14) will be poor. This should be 
taken into account when the process and measurement 
noise covariance matrices are determined. 

Compared with the odometric model the kinematic ap- 
proach offers a few advantages: 

1. The V = 3 = 0 smoothens the encoder measure- 
ments and therefore reduces the effects of wheel 
slippage and limited encoder resolution. 

2. Additional measurements of w or V (from for in- 
stance a gyro or a tachometer) can be fused easily. 
In the odometric filter these have to be fused with 
bd and 68 before being used as inputs. 

locities (can be used for control). 
3. Provides estimates for the linear and angular ve- 

Of course the velocity estimates could also be obtained 
simply by using (13)-(14) and an odometric filter, but 
as shown in [7]’ the Kalman filter estimates can be het- 
ier than the finitedifference estimates obtained by (13) 
and (14). (His results indicate, however, that a V = 0 
nrnodel should be used, i.e. (12) should be augmented 
with the acceleration as well.) The disadvantages of 
the kinematic approach are: 

1. If V # 0 or 3 # 0 the (erroneous) model makes 
the time update imprecise. 

’[71 did not consider a mobile robot but j u t  an encoder shaft. 
:W results, however, can easily be transferred to robots. 

2. The filter is more computationally demanding (not 
much though). 

The odometric and kinematic filter models are now 
compared in simulations. 

3 Results 

To evaluate the performance of the two types of fil- 
ters, simulations are now performed using an advanced 
nonlinear Simulink model of the mobile robot contem- 
plating both linear and nonlinear friction forces as well 
as the dynamics of the robot. The Simulink model is 
described in [SI. The advantage of using simulations 
as opposed to physical experiments is that the ground 
truth is known and the estimation errors therefore can 
be evaluated. The simulated robot, which like the real 
robot is equipped with dual encoders sampled every 
40ms and with a camera detecting guide marks every 
3s, is send down a corridor with visual guide marks 
placed on both walls as shown in figure 2. 

Figure 2: The robot moving down a corridor. 

3.1 The Estimation Errors 
The performances of the two filters can be observed 
in figure 3 where the estimation errors for the odo- 
metric and kinematic filters are compared. The two 
filters are seen to perform quite similarly, although the 
kinematic filter is lagging somewhat when the robot 
accelerates. Intuitively this is not surprising as the as- 
sumption of constant velocity in the filter equations is 
expected to have some lowpass filtering effect or rather 
to “fight” changes in velocity reported by the measure- 
ments. This, however, is not the real reason for the dif- 
ferences in filter performance. As the kinematic filter 
is implemented using the standard Kalman filter equa- 
tions in (7)-(11), the velocity measurements in (13) and 
(14) are fused after the time update in equation (12). 
As the velocity measurements available at time k in fact 
are mean velocities for the time period from k - 1 to 
k, a more accurate approach would be to fuse the mea- 
surements before the time update, see figure 4. This 
will make the time update more accurate as more re- 
cent values of the linear and angular velocities are used 
in the time propagation. A simulation where the data 
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Figure 3: Squared estimation errors for odometric and 
kinematic (dashed) filter. The lower plot shows 
the velocity profiles for the driving wheels. 

I I * 
k - 1  k Time 

Figure 4: The time update to time k follows the dashed 
line if it is performed prior to  fusing the encoder 
measurement, V A .  As Is..,x, reports of the 
mean velocity from time k - 1 to k, a more 
accurate time update is obtained by fusing the 
encoder measurement before the time update. 

update is performed before the time update, is shown 
in figure 5 .  Clearly, the performances of the two filters 
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Figure 5: Squared estimation errom for odometric an, 
modified kinematic (dashed) filter. 

are more alike here, 

3.2 The Velocity Estimates 
If the velocity estimates P and D are needed when tk; 
odometric filter is used, they must be calculated nain: 
equation (13)-(14) which are also denoted the finite dif 
jerence estimates. The estimates from the kinematis 
filter can be made more smooth and noise reject.in: 
than these, especially if the encoder resolution is rek  
tively low, or the sampling rate is high compared to th: 
velocity of the robot. In figure 6 the velocity estimat:. 
using the two methods are compared. It is seen t,he 

2 
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Figure 6: Velocity estimates from kinematic filter m. 
finite difference (dotted). 

the estimates from the kinematic filter are less noia 
but lag a little. This compromise between noise filtii 
ing and fast tracking can be adjusted by tuning t,k 
filter noise covariance matrix, Q. When the eigenvr 
ues of Q is increased the kinematic filter will put maL 
weight in the measurements, and in the limit ( w h  
11Q11 + 00) the velocity estimates from the kinemati 
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Figure 7: Velocity estimates for kinematic filter and finite 
difference (dotted). In the uppermost graph 
the process noise is modelled high and the two 
methods yield identical results (the two curves 
are overlapping). In the bottom plot the pro- 
cess noise is modelled low and the estimates 
from the kinematic filter are seen to he very 
smooth and slow (lowpass filtered). 1 

In all of the simulations, the encoder resolution was 
very high and there was no wheel slippage. Under these 
circumstances, the process noise estimate can there- 
fore he chosen high, and the velocity estimates from 
the kinematic and odometric filter will be practically 
identical. 

3.3 When the Wheels  Slip 
The real advantage of the kinematic approach lies in 
ihe increased robustness towards erroneous encoder 
data. This becomes obvious for instance in the pres- 
:ace of wheel slippage. A simulation of this where the 
left wheel suddenly slips and the encoder readings are 
.:xoneous for a period of 2 seconds, is shown in figure 8. 
Here, the influence of the bad encoder data has been 
7reatly reduced, without affecting the performance of 
:he filter significantly during the usual maneuvers. 

20 

4 Conclusion 

Figure 8: Squared estimation errors for odometric and 
modified kinematic (dashed) filter when the left 
wheel slips (from second 8 to 10) as 'shown on 
the bottom graph. 

advantages that make this filter interesting. Firstly, 
if the eigenvalues of the process noise matrix are cho- 
sen high, the estimates using the kinematic filter will 
be very similar to the estimates using the odometric 
filter. Then when the eigenvalues are decreased, the 
kinematic filter will lowpass filter the estimates and 
thereby reject noise and make the estimates smoother. 
Especially when the encoder resolution is low or the 
wheels slip, this can reduce the estimation error. The 
kinematic filter therefore provides the designer with one 
more degree of freedom that can be very useful. 
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