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ABSTRACT

The buckling load of laminated plates having midplane symmetry is maximized for a given total
thickness. The thicknesses of the layers are taken as the design variables. Buckling analysis is
carried out using the finite element method. The optimality equations are solved by a homotopy
method which permits tracing optima as a function of total thickness. It is shown that for any
design with.a given stacking sequence of ply orientations, there exists a design associated with any
other stacking sequence which possesses the same bending stiffness matrix and same total thickness.
Hence, from the optimum design for a given stacking sequence, one can directly determine the
optimum design for any rearrangement of the ply orientations, and the optimum buckling load is

independent of the stacking sequence.
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1. Introduction

Composite materials are ideal for structural applications where high strength-to-weight and
stiffness-to-weight ratios are required. Design optimization of composite structures has gained im-
portance in recent years as the engineering applications of fiber-reinforced materials have increased
and weight savings has become an essential design objective, especially for aircraft and spacecraft

structures.

Previous work on the optimal design of composite plates has focused on optimization with re-
spect to the fiber orientations [1-10], In Refs, {11-16}, however, laminate optimization is considered,
in which the thicknesses of plies with specified orientation angles are treated as the design variables.
The thickness of material at each preassigned orientation is treated as a continuous variable. More
sophisticated approaches dealing with discrete values for the thicknesses by employing integer var-
iables are presented by. Mesquita and Kamat [17, 18] and Olson and Vanﬂexplaats {19]. The present
paper avoids the difficulties associated with discrete or integer variables by treating the thickness

variables as continuous variables.

A recently developed design method for buckling load maximization [20] starts from a given op-
timum design point and traces optimum designs as a function of the amount of available material.
'The method employs a homotopy technique [21] that has been widely used in many fields of en-
gineering. In Ref. [20], the method was formulated using a simultaneous analysis and design ap-
proach and applied to the design of columns on elastic foundations. One objective of the present
paper is to apply the same method with the more traditional nested approach in which the buckling
analysis is performed repeatedly. A second objective is to study the effect of the stackmg sequence
on the optimum design. For this second objective we start by proving a useful result on the

equivalence of plates with different stacking sequences.



2. Bending stiffness matrix invariance to changes in stacking sequence

The laminates considered in this study are symmetric about the middle surface, so that the
bending response is not coupled to the membrane action. The moment-curvature relations are then

expressed in the form
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where [D] is the laminate bending stiffness matrix, {M} is the bending and twisting moments per

unit length, and {x} is the corresponding curvatures given by
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Figure 1 shows the geometry of a laminate with 2n layers. The Z axis is taken perpendicular to

the midplane of the laminate and is positive in the downward direction. Below the midplane, the

value of Z at the bottom of layer k is denoted Z,. The thicknesses of the layers are given by

Ty=Z - Zip1s fori=1,2, .., n, 3)

with Z,,, = 0.

Using classical lamination theory, the bending stiffness matrix {D] in Eq. (1) can be written as

[D1==% > [Qh (2} - 2}, (4
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where [Q], is the transformed reduced Stiffness matrix of the k-th layer, which can be defined in

terms of the ply angle ¢ and elastic constants B\, Ep vy and Gy, of the orthotropic layer as

[Ql = [T '[QHTL™ . )




‘The superscript -1 denotes the matrix inverse and -T denotes the transpose of the inverse atrix,
The matrix [T], is the coordinate transformation matrix and [Q] is the reduced stiffness matrix,

given by
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The bending stiffness matrix will now be shown to have an important property: when the

stacking sequence is changed, we can always recover the original bending stiffness matrix by ap-

propriately changing layer thicknesses while preserving the total laminate thickness. This property

is proved in two steps. First, it is shown that when the ply orientations in two adjacent layers are
mterchanged there exists an equivalent design with the same bending stlffness and the same total
thickness. Then we show by induction that the same property applies to the general rearrangement

of all layers.

Consider a symmetric laminated plate with 2n layers (Fig. 2-a). The clements of the original

bending stiffness matrix are given by
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When the ply orientations in the 7 ~1 and ¢ layers are interchanged (shown in Fig. 2-b), we can
still obtain the same Dy by changing the thicknesses of layers 7—1 and . The bending stiffness of

the laminate in Fig. 2-b is
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where Z. is the new height of the bottom of layer =, determined so that the two plates have the same

bending stiffness. Setting Dj = D from Egs. (7) and (8), we obtain
Qe =~ QM2 -Z + 7~ 22 ) =0 forij= 1,26 ©)

These equations are satisfied for arbitrary Qs if Z. is chosen such that

3
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Since Z, , > 7. >7,.,, 24}, —ZE < 0 and, from Eq. (10), Z. < Z,_, . Similarly, 23— Z2 > 050 that
Z.zZ,,,. Hence the height Z, always falls between Z,_| and Z.yy- This shows that there always
exists a design producing the same bending stiffness matrix [D] when ply orientations in two adja-

cent layers are interchanged.

The general results for interchanging ply orientations in any number of layers foﬂows by in-
duction, because a general interchange is a sequence of transpositions. For example, an equivalent
design for a (45°190°0°), laminate can be obtained from a (0°/90°/45°); laminate using three tran-
spositions and thicknesses recomputed by Eq. (10). First, we obtain an equivalent design for a
(90°/0°/45°); faminate from the (0°/90°/45°), laminate, then a (90°/45°/0°), laminate is obtained
from the (90°/0°/45°), laminate, and finally the (45°/90°/0°), laminate is obtained from the

(90°/45°/0°), .

1t should be noted that the above transformation changes the individual thicknesses of the ori-
ginal laminate. Therefore the membrane stiffness is changed, while the bending stiffness remains

the same. The existence of multiple laminate designs with the same total thickness and the same



bending stiffness has important implications for the optimization process in that it results in mul-

tiple optima, as will be shown in the examples in Section S.

3. Buckling analysis

'The plate we consider is simply supported along all four edges and subject to uniform in-plane
loading in the X-direction, as shown in Fig. 3. The dimensions of the plate in the X and Y di-
rections are a and b, respectively. Half the thickness of the plate is denoted by T, and is considered
small in comparison with the other dimensions. Shear deformation is not considered in the analy-

sis.

The differential equation for the buckling analysis is given by
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X2 OXOY © gy2 T X
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where Ny is the buckﬁng load and W denotes the transverse deflection of the middle surface of the

plate. The moments are given in Eq. (1).

The analysis is performed with dimensionless quantities. First, using the nondimensional mate-

rial properties,
Gy
=%, 8= (12)

the nondimensional reduced stiffness matrix is
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Quantities relating to plate thickness such as Z,, Tr, and T, are normalized by Ty,,,, the maxi-
mum total thickness considered in the optimization study:
Z Te T,
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Substituting Eqs. (13) and (14) into Eq. (4), we obtain the nondimensional laminate stiffness matrix

n
[@]=——1—D1=2 ) [@) &~ 74,.). (15)
11+ Tmax k=1

The coordinates and displacements are nondimensionalized by the plate length in the x-direction,

a:

X
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and the nondimensional moments, m,, m,, and m,, are defined as
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Finally, using Eqgs. (16) and (17) the original buckling differential equation is transformed to
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where n, is the nondimensional buckling load defined by

2

a
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The differential equation is solved by the finite element method using a 16—degree-of-freedom cle-

ment first introduced by Bogner, Fox, and Schmit [23].

Assuming the in-plane load is uniform, the finite element discretization of Eg. (18) is




[KI{U} ~n,[KsJ{U} =0, (20)

where {K] is the syétem stiffness matrix, [Kc] is the system geometric stiffness matrix, and {U} is
the buckling mode. The above matrix equation is solved using SNLASO, one of the subroutines
from the péckage LASO2 [24], which computes a few eigenvalues and the associated eigenvectors

of a large (sparse) symmetric matrix using the Lanczos algorithm [25].

The optimization procedure requires derivatives of the buckling load with respect to the thickness
Variables t. These are calculated explicitly by differentiating the Rayleigh quotient associated with

Eq. (20):
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The stiffness matrix derivatives are estimated by forward finite difference approximations.

Sometimes the optimum design is bimodal, in which case there are two eigenvectors corre-
sponding to the lowest eigenvalue, The buckling load is not differentiable for this case. To elimi-
nate this difficulty, we use a constraint, n, = 0.999n, in the bimodal formulation (see Appendix)
so that the buckling modes can be determined separately for the first buckling load, n,, , and the

second buckling load, N, .

4. Optimization method

The optimization problem that we consider here is to maximize the buckling load of a plate for
a given total plate thickness, The thickness of each layer is assumed to be constant over the plate,
and for a given stacking sequence of the layers, each thickness is taken as a design variable, The

nondimensional thicknesses, t,, are subject to bound constraints

tin <4 S by fori=1, .., n, (22)



where t,,,, and t,.., are upper and lower bounds, respectively,

The optimization problem is written as

max  ng (23)

t

n
such that Zti —tr=0

i=1

and tmingtigtmax fori=1, .. » I

where the nondimensional buckling load, n,, is obtained by solving Bq. (20).

A typical optimization method, applied to solve this problem, starts from a given design and
continuously searches for better designs until it finds one optimum design. The intermediate de-
signs along the path are of no interest to the structural designer. Here, instead, we use a method
which traces an entire one-parameter famnily of optimal designs without going through ény inter-
mediate nonoptimal designs. For this we employ the homotopy method, a technique which has
been used widely to solve nonlinear systems of equations. The basic idea of the method is to
convert the system of equations irito a set of ordinary differential equations with a parameter, called
a homotopy parameter. Under certain assurnptions, the method is guaranteéd to converge to a
solution even for highly nonlinear problems for which Newton-type iteration methods fail. The
total thickness of the plate, t, , is chosen as the homotopy parameter, and for thé initial conditions
for the initial value problem we use thé minimum-thickness plate with t, corresponding to all design
variables at their lower bound. The trajectory of the initial value problem is a path of optima
corresponding to varying t,. The independent variable for the ordinary differential equation is arc
length along this trajectory. This use of the homotopy method for tracing optima was suggested
in {20} with a siraultaneous analysis and design formulation for a column with a variable elastic
foundati_on. Here the method is used with the traditional nested formulation in which the buckling

loads are computed in a separate analysis.




The equations defining the path of optimal designs are obtained using Lagrange multipliers, and
are solved by the homotopy method as described in {21]. The optimum path consists of several
smooth segments, with breaks in smoothness at points where the active constraint set changes.
Changes in active constraints are associated with nequality constraints (here bound constraints on
design variables) which may become active or inactive along the path. Along cach segment, the

active inequality constraints are treated as equality constraints,

ti=tp, or t=tg. for jel,, (24)

where I, is the set of indices of thicknesses which are at a lower or upper bound. These variables
are eliminated from the optimization problem, while the other variables are left unconstrained. The

optimization problem along a segment can, therefore, be written as
max  n, for ié1, (25)
1
such that > t; 17 =0, (26)
i=1
The solution of the above problem requires dealing with three related problems: solving the
optimization problem along a segment, locating the end of the segment where the set I, changes,
and finding the set I, for the next segment.

4.1 Stationary conditions

Using a Lagrange multiplier z, the augmented function n,* is

Bt == u )ty —tr] @
jmel .

Taking the first derivatives of n,* with respect to t; and u, and setting them equal to zero, we obtain

the optimality conditions

10



dn,,
ot;

—p=0 for i¢ 1, (28)

and the total thickness constraint of Eq. (26). Equations (26) and (28) form a system of nonlinear
equations to be solved for tiand u. A homotopy method is used to find the solution of thess

equations for varying t..

In certain ranges of structural resources, the optimal solution may be bimodal, i.e., the lowest
buckling load may be a repeated eigenvalue. The formulation for bimodal solutions is given in the
Appendix. The existence of bimoda] solutions also introduces additional transitions (bimodal to

unimodal and vice versa) along the path of optimum solutions.

4.2 Locating transition points

There are four types of events which end a segment and start a new one:

Type 1: A bound constraint becoming active (i.e., being satisfied as an equalityy;
Type 2: A bound constraint becoming inactive; |

Type 3: Transition from a unimodal solution to a bimodal solution;

Type 4: Transition from a bimodal solution to a unimodal solution.
Transition points of type 1 are located by checking the bound constraints (22).

Transition points of type 2 are checked by using the Kuhn-Tucker conditions. The solution
satisfies the Kuhn-Tucker conditions when all Lagrange multipliers are nonnegative, so a transition
of type 2 is detected by a Lagrange multiplier associated with a bound constraint becoming negative.
These multipliers are obtained by replacing the augmented function n,* (for the unimodal case) in

Eq. (27) by

11
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Taking the first derivatives of n* with respect to t; and setting them equal to zero, we obtain -
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Since Ay =0fort=t, and i,=0fort= twins Ay and 1y are given by
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Similar equations for the bimodal case are given in the Appendix.

A transition of type 3 occurs when two buckling loads approach together and meet, as shown in
Fig. 4. Previous works [20, 26] indicate that the optimal design may remain bimodal for the sub-
sequent segment on the solution path. The homotopy routine traces solutions on a smooth path
using sensitivity information obtained from the previous point. To preserve the smoothness of the_
solution path, the tracing routine picks at each step the eigenvalue n, corresponding to the critical
n, in the previous step. As soon as the transition is passed this n, is no longer the lowest one, and

this event identifies transition type 3.

The bimodal formulation inc}ude_s an additional constraint for the bimodality requirement (see
Appendix), and this constraint is handled with a Lagrange multiplier y. The fo]loWing inequality
is necessary in the bimodal range and can be used to detect the type 4 transition from bimodal to

unimodal;

0<y<l. | (32)
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4.3 Choosing an optimum path

At a transition point there are a number of solution paths which satisfy the stationary equations,
so we need to choose a path which satisfies the optimality conditions. Choosing an optimum path
constitutes finding a set of active bound constraints for type 1 and 2 transitions and the cormrect
buckling modes for type 3 and 4 transitions., These are obtained by using the Lagrange multipliers
of the previous path and the buckling load derivatives. The procedure is explained separately for

each type of transition.

A type 1 transition occurs when one of design variables, t, , reaches its upper or lower bound.
Then t; is set to 1, or t,,, and treated as a constant value. The number of design variables is re-

duced by one.

At a type 2 transition, one of the Lagrange multipliers for the bound constraints, 1,; or 4y, is
found to be negative. The bound constraint corresponding to the negative 4, or 4, is set to be

inactive and the number of design variables is increased by one.

At a transition from a unimodal solution to a bimodal solution (a type 3 transition), the bimodal
stationary conditions given in the Appendix replace the unimodal stationary conditions (Eqgs. (26)

and (28)).

At a transition from a bimodal to a unimodal solution (a type 4 transition), two buckling modes
are given from the bimodal solution, and only one has to be chosen for the forthcoming unimodal
solution path. The Lagrange mﬁlﬁplier for the bimodality constraint, y, is checked with respect to
the inequality (32) at the previous transition point. When y is larger than 1, the mode corre-

sponding to n,, is chosen, and when v is smaller than 0, the mode corresponding to n,, is chosen.

Some of the above transitions can occur simultaneously. Special treatment is required in certain
cases where the Lagrange multipliers are not available. In general, the optimum design requires at

least one design variable t, for a unimodal case and two design variables for a bimodal case. At a

13



type 1 transition, the number of design variables is reduced by one, and at a type 3 iransition the
bimodal formulation requires one more design variable in case the previous unimodal path has only
one design variable. Therefore some type 1 or type 3 transitions occur simultaneously with a type
2 transition which allows an additional design variable. In that case, the Lagrange multipliers
Ay and 1y, which are used at a type 2 transition to determine a new design variable, are not avail-
able. We then rely on the derivative of n, with respect to t. For a unimodal case, the location of
the new design variable t, is determined where dn,/dt; is maximized. For a bimodal case, we need
to find a combination of t; and t; which maximizes the value of the dn,/dt;. Considering the bound
constraints in the formulation, the new design variables are determined by
doy;  dng | dy  ony  dy

N R T dip Ty di 33

such that i d + Onyy dtj = Ony, dy Onyy dtj
o dtp  at, T

]
dt;
'ag =0 for L=t

dt;
E't":["* <0 for ti =ty

dt,
———=0 for 1j=t

dty =

dt
and —<0 for =t ay

dty =

min

where n,, and n,;2 are the first and the second buckling load, respectively.

After we obtain the design variables t,, we need the Lagrange multipliers p and 7 at the transition
point to complete the set of starting values for the next solution path. These are obtajned. by
solving the stationary conditions for the given t;. For example, in the unimodal case, u 15 obtained

by solving one of the optimality conditions (28).
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5. Results

Some examples are presented to demonstrate the effect of optimization of layer thicknesses on
the buckling of laminated plates. A graphite/epoxy composite plate is selected and its material
properties are given by E, = 31.0x10° psi, By =3.4x106 psi, Gy, = 0.75x10° psi, and v, = 0.28,
corresponding to nondimensional properties ¢,, = 0. 1097, gy, = 0.02419. The plate aspect ratio (a/b)

is chosen to be 1.2.

To determine an appropriate mesh size for the finite element analysis, a series of numerical tests
were performed for a (0°/90°/45°), laminate, The nondimensional thickness of each layer was set
at 1/3. Table 1 shows the first and second buckling loads for different meshes. The first buckling
load is quite accurate even for a 2x2 mesh (less than 1 % difference compared to the 6x6 mesh);
however, the second buckling load, which has a full sine mode in the x-direction, 'converges more
slowly as the mesh is refined. Since the optimum designs are often bimodal, the first two buckling

loads must be considered in the analysis, and a 4x4 mesh is chosen for the finjte clement analysis.

First, optimization results are presented for this (0°/90°/45°%), laminate for which the thickness
of cach layer is taken as a design variable. This laminate consists of six layers; however, only three
of them are treated as design variables due to symmetry. The nondimensional minimum gauge,

trins 15 set at 0.01, so the design starts from tr = 0.03 where all design variables are at the minimum

gauge.

Figure 5 shows the nondimensional height of each layer of the optimum design (above the middle
surface) obtained for 0.03 <t, < 0.3, The thickness of each layer is the distance between the two
adjacent heights. In Fig. 5, cach curve has three transition points and consists of four solution
segments. The circles on the curves indicate the transition points and the dots are the solutions
traced along the optimum path. Along the ﬁrst two segments (0.03 < t; < 0.185), the optimum
designs are unimodal, and along the last two segments (0-185 < t; < 0.3), the optimum designs are
bimodal. Along the first segment, only one layer (corresponding to the 45° fibers) varies its thick-

ness, along the second and the third segments two Iayérs (90° and 45°) vary, and along the last

15



segment all three layers change thickness. In Fig. 6, the nondimensiona] buckling loads, n,, corre-
sponding to these optimum designs are shown in semi-log scale for the same range of t;.. The
dashed line indicates the buckling loads of reference designs in which all layers have the same
thickness. Once all design variables are above their minimum gauges (t, > 0.274) we reach the
Optirnum unconstrained ratios of layer thicknesses. These optimum ratios are preserved as we in-
crease the total thickness of the plate, t; . Above ty = 0.274 the design variables are increased
proportionally 1o t., the buckling load is proportional to 13, and the set of active constraints is fixed.

Therefore, there is no need to trace the optimal path beyond t; = 0.274,

Next, a (43°/90°/0°), laminate is considered. Figure 7 shows the height of each layer of the op-
timum design for 0.03 < tr < 0.05 and Fig. 8 shows the corresponding nondimensional buckling
loads. This path has two transition points and consists of three solution segments. Along the first
segment 0.03 <t < 0.0337 the optimum designs are unimodal, and along the last two segments the
optimum designs are bimodal. Along the first segment, only the 0° layer varies ité thickness, along
the second segment two layers (90° and 0%) vary, and along the last segment (i > 0.0449) all three
layers change thickness, The nondimensional buckling load at t, > 0.0449 i obtained by scaling
the buckling load at tr = 0.0449 by (t;/0,0449)3.

It should be noted that the optimum designs at t;= 1.0 give the same buckling loads
(n, = 16.232) for both (0“’/90"}'45"}s and (45°/90°/0°), laminates. The operation described in Sec-
tion 2 enables us to obtain a (45°/90°/0°), design transforming from a (0°/90°/45°), design with the
same stiffness matrix and the same total thickness. In fact, there are six possible stacking sequences
for this case. Designs for all five other sequences were obtained from the (0°/90°/45°), design using
Eq. (10) and the results are summarized in Table 2, The thickness distribution of the
(45°/90°/0°), laminate matches the result obtained from the optimization procedure, as it must,
The buckling loads for all six designs are the same. Their relationéhjps to the buckling loads for
the plate with equal thicknesses are given in the last column of Table 2. In transforming to an
equivalent design we assume all the design variables for both designs are free from the bound con-
straints. Therefore the buckling loads in the two examples are the same when 0.274 <t <10,

where both designs are free from the bound constraints.
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In practical design, the thickness of each layer can take only discrete values due to manufacturing
requirements. For example, assume that there is a total of S0 plies in the laminate so that each layer
is made up from laminas of nondimensional thickness 0.04. The optimal thicknesses from Table 2
are rounded off to the nearest multiple of 0.04. If this leads to a total thickness which is not unity,
we modify one of the thickness such that the percentage change from the continuous solution is
minimal, The results are presented in Table 3. It is scen that the buckling loads for all six laminates

are within 1% of each other and are close to the previous optimal value n, = 16.232,

The existence of equivalent designs with various stacking sequences has two important impli-
cations in terms of multiplicity of optimal designs. First, when an optimum design for a given
stacking sequence is obtained, all the designs (with the same total thickness and bending stiffnesses)
obtained by permuting the stacking sequences are also optimum. This can be proven as follows:
If there is another design for a rearranged stacking sequence which has a higher buckling load than
the transformed design, a backward transformation should give a design which has a higher buckling
load than the optimum design for the original stacking sequence. This is impossible, so the trans-
formed design is also optimum. In fact, the results in Table 2 were verified to be optimum by direct

optimization.

Second, for a given stacking sequence, when two or more layers have the same ply orentation,
the optimum design is not unique. For example, consider a four-layer (45°/0°/45°/90°), lamipate
with thicknesses t,, t,, t;, andt,, We can exchange. the 0° and 45° layers to get a
(45°/45°/0°/90°), design with thicknesses t,, tys 3, t,, and then change the division between the
two adjacent 45° layers. For example, we can redefine the thicknesses as A, Yt +ty, ),
Finally, we can switch the adjacent 45° and 0° layers to get a (45°/0°/45°/90°), laminate with
thjcknesses ¥at), 1", ty", t,, which has the same stacking sequence, the same buckling load and
the same total thickness as the original design (so that it is also optimum), but different individual

thicknesses. -
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We reiterate that these properties assume that the thicknesses are not equal to one of their
bounds, and that the plate behavior is governed by Egs. (1), (2), and (I1) so the membrane

stiffnesses are not included.
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APPENDIX Bimodal Formulation

To seek the solutions with double eigenvalues, the problem is formulated assuming bimodality
of solutions, or equality of the two lowest eigenvalues, 1,; and n,,. The bimodality of the solution
results in difficulties in obtaining eigenvalue derivatives. As a remedy, the bimodality constraint is

changed slightly so that the two eigenvalues are not exactly the same:

ﬂxl - 0999 nxz = (.

This equation is included as an additional constraint in forming the augmented function n, * :

1t
Ot =1y~ yEny —0.999 0,7 — M[Zti —ty].

=1

The stationary conditions are obtained by taking the first derivatives of n,* with respect to

t, ¥, and u and setting them equal to zero. Thus we obtain

i) Optimality conditions

5nx1 611X2 .
3, + 0,999y &, —pu=1{ for i¢ 1,

(I-v
i) Bimodality constraint

Ny — 0,999 Nyy = 0

iif} Total resource constraint
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n
tT —_ Ztl = 0.
i=1

The Lagrange muiltipliers for the bound constraints, A, and 1, , are required for the transition

check. These are obtained by adding the bound constraints to the augmented function n* and

taking the first derivatives of n,* with respect to t; . They are given by

anx 2

-——(1—'}’) 0999)’ +u f(}rti*—-tmin

A= (1 - ?)

6 — i for ti-'-—-t

max-
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Table 1.

Comparison of buckling loads for different meshes;

(6°/90°/45°), laminate with t, =t, = ty=1/3

Mesh.

2x2 Ix3 4x%x4 5x5 6x6
First _
buckling load 11.800 11.742 11.729 11.725 11.724
Second
buckling load 27.196 23.369 23.089 23.000 22.969
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Table 3. Buckling loads for 6 optimal laminates with integer number of plies

Stacking

sequence tt ) i3 ny

of lamina
(0°/90°,/45°,,), 0.04 0.16 0.80 16.21
(0°/45°6190°,,), 0.04 0.24 0.72 16.21
(45°510°,/90° ), 0.20 0.08 0.72 16.09
(45°6/90°5/0° ), 0.20 0.32 0.48 16.05
(90°4{45°,4/0°,,), 0.12 0.40 0.48 16.10

(90°,/0°/45°,)), 0.12 0.04 0.84 16.19
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Figure 1: Geometry of half of a 2n-layered symmetric laminate
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Figure 2: Symmetric 2n-layered laminates




Figure 3: Geometry of plate under uniform uniaxial in-plane load
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Figure 4: Transition from unimodal 1o bimodal segment
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