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Abstract—Many classes of high-performance low-density
parity-check (LDPC) codes are based on parity check matrices
composed of permutation submatrices. We describe the design
of a parallel-serial decoder architecture that can be used to map
any LDPC code with such a structure to a hardware emulation
platform. High-throughput emulation allows for the exploration
of the low bit-error rate (BER) region and provides statistics of
the error traces, which illuminate the causes of the error floors
of the (2048, 1723) Reed-Solomon based LDPC (RS-LDPC) code
and the (2209, 1978) array-based LDPC code. Two classes of
error events are observed: oscillatory behavior and convergence
to a class of non-codewords, termed absorbing sets. The influence
of absorbing sets can be exacerbated by message quantization
and decoder implementation. In particular, quantization and
the log-tanh function approximation in sum-product decoders
strongly affect which absorbing sets dominate in the error-
floor region. We show that conventional sum-product decoder
implementations of the (2209, 1978) array-based LDPC code
allow low-weight absorbing sets to have a strong effect, and, as
a result, elevate the error floor. Dually-quantized sum-product
decoders and approximate sum-product decoders alleviate the
effects of low-weight absorbing sets, thereby lowering the error
floor.
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I. INTRODUCTION

LOW-density parity-check (LDPC) codes have been
demonstrated to perform very close to the Shannon limit

when decoded iteratively [1]. Sometimes excellent perfor-
mance is only observed up until a moderate bit error rate
(BER); at a lower BER, the error curve often changes its slope,
manifesting a so-called error floor [2]. Such error floors are
a major factor in limiting the deployment of LDPC codes in
high-throughput applications.

Exploring these error floors for realistic LDPC codes by
software simulation on a general-purpose computer is not
practical. Even an optimized decoder implemented in C
and executed on a high-end microprocessor provides a peak
throughput of only up to the order of 1 Mb/s. Consequently,
months of simulation time would be required to collect at
least tens of frame errors for a confident estimate of the BER
at 10−10. However, the use of field-programmable gate array
(FPGA) platforms allows for substantial acceleration in the
emulation of LDPC codes [2], [3].

This paper explores practical LDPC decoder design issues
using an emulation-based approach. This investigation is mo-
tivated by Richardson’s work on error floors [2], where he
identified and semi-empirically defined a class of trapping
sets using hardware emulation. Starting from the same point,
we confirm some of these earlier findings, and moreover,
we provide a combinatorial characterization of what we refer
to as absorbing sets in terms of the graph structure of the
code. For many LDPC codes, the associated factor graphs
contain absorbing sets of lower weight than the minimum
codeword weight. As a result, the performance of the code
in the low error rate region is determined by the distribution
and structure of the low-weight absorbing sets, rather than
the minimum distance of the code [2], [4]. This paper sheds
light on the effects of absorbing sets on the error floor
levels in practical implementations of some LDPC decoders.
Specifically, we advance the state-of-the-art in the following
aspects: 1) the use of the absorbing set objects to quantify how
the error counts are affected by wordlength, numerical quan-
tization, and decoding algorithm choices; 2) differentiation
of error mechanisms between oscillations and convergence
to absorbing sets; 3) differentiation of weak from strong
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absorbing sets – weak absorbing sets can be eliminated by
an optimal decoder implementation, while strong absorbing
sets dominate the error floor of even an optimized decoder
implementation; 4) propose dual quantization and demonstrate
modified algorithms for improving the error floor performance
by alleviating weak absorbing sets. We use high-performance
hardware emulation throughout the investigation to uncover
large datasets of error signatures and to verify conjectures.
Compared to other related work [5]–[9], our study is based
on the characterization of absorbing sets, which are classified
by their structures. Most importantly, we analyze and provide
intuition on why certain quantization choices and decoding
algorithms perform better in the error floor region, thereby
extending the definition of absorbing sets for practical usage.

In Section II, we provide background on the sum-product
decoding algorithm, the quantization procedure, and decoder
architecture of a family of high-performance regular LDPC
codes. We present an implementation of the (2048, 1723)
Reed-Solomon based LDPC (RS-LDPC) [10] decoder which
forms the basis of the hardware emulation platform. Error
traces are collected from hardware emulations. In Section III,
we analyze the error traces against the structure of the code to
reveal the nature of error floors. In a decoder implementation
with a sufficient wordlength, the hard decisions do not change
after a number of decoding iterations while some parity checks
remain unsatisfied. Such non-codeword errors are attributed to
a class of combinatorial structures termed absorbing sets. We
proceed with a series of experiments in Section IV using the
(2209, 1978) array-based LDPC code [11], which uncovers a
collection of different absorbing sets in the error floor region.
We develop methods to improve upon standard quantization
approaches and experiment with alternative decoder imple-
mentations, thereby reducing the effects of weak absorbing
sets and lowering the error floor.

II. LDPC DECODER DESIGN AND EMULATION

A. Decoding Algorithm and Approximation

A low-density parity-check code is defined by a sparse𝑀×
𝑁 parity check matrix H where 𝑁 represents the number of
bits in the code block and 𝑀 represents the number of parity
checks. The H matrix of an LDPC code can be illustrated
graphically using a factor graph, where each bit is represented
by a variable node and each check is represented by a factor
(check) node. An edge exists between the variable node 𝑖 and
the check node 𝑗 if and only if H(𝑗, 𝑖) = 1.

Low-density parity-check codes are usually iteratively de-
coded using the sum-product algorithm [1]. The algorithm
operates on a factor graph, where soft messages are exchanged
between variable nodes and check nodes. For suitably de-
signed codes, convergence can usually be achieved within a
small number of iterations. As a concrete example, assume a
binary phase-shift keying (BPSK) modulation and an additive
white Gaussian noise (AWGN) channel. The binary channel
bits {0, 1} are represented using {1,−1} for transmission over
the channel. In the first step of the algorithm, variable nodes
𝑥𝑖 are initialized with the prior log-likelihood ratios (LLR)
defined in (1) using the channel outputs 𝑦𝑖. This formulation
assumes the information bits take on 0 and 1 with equal

Fig. 1. A sum-product message-passing decoder (one processing unit).

probability.

𝐿𝑝𝑟(𝑥𝑖) = log
Pr (𝑥𝑖 = 0 ∣ 𝑦𝑖)
Pr (𝑥𝑖 = 1 ∣ 𝑦𝑖) =

2

𝜎2
𝑦𝑖, (1)

where 𝜎2 represents the channel noise variance.
1) Sum-product algorithm: Using a sum-product message-

passing (belief propagation) algorithm, the variable nodes send
messages to the check nodes along the edges defined by the
factor graph. The LLRs are recomputed based on the parity
constraints at each check node and returned to the neighboring
variable nodes. Each variable node then updates its decision
based on the channel output and the extrinsic information re-
ceived from all the neighboring check nodes. The marginalized
posterior information is used as the variable-to-check message
in the next iteration. A simplified illustration of the iterative
decoding procedure is shown in Fig. 1. Variable-to-check and
check-to-variable messages are computed using equations (2),
(3), and (4).

𝐿(𝑞𝑖𝑗) =
∑

𝑗′∈𝐶𝑜𝑙[𝑖]∖𝑗
𝐿(𝑟𝑖𝑗′ ) + 𝐿

𝑝𝑟(𝑥𝑖), (2)

𝐿(𝑟𝑖𝑗) = Φ−1

⎛
⎝ ∑

𝑖′∈𝑅𝑜𝑤[𝑗]∖𝑖
Φ (∣𝐿(𝑞𝑖′𝑗)∣)

⎞
⎠

×
⎛
⎝ ∏

𝑖′∈𝑅𝑜𝑤[𝑗]∖𝑖
sgn (𝐿(𝑞𝑖′𝑗))

⎞
⎠ , (3)

Φ(𝑥) = − log

(
tanh

(
1

2
𝑥

))
, 𝑥 ≥ 0. (4)

The messages 𝑞𝑖𝑗 and 𝑟𝑖𝑗 refer to the variable-to-check
and check-to-variable messages, respectively, that are passed
between the 𝑖th variable node and the 𝑗th check node. In
representing the connectivity of the factor graph, 𝐶𝑜𝑙[𝑖] refers
to the set of all the check nodes adjacent to the 𝑖th variable
node and 𝑅𝑜𝑤[𝑗] refers to the set of all the variable nodes
adjacent the 𝑗th check node.

The posterior LLR is computed in each iteration using (5)
and (6). A hard decision is made based on the posterior LLR
as in (7).

𝐿𝑒𝑥𝑡(𝑥𝑖) =
∑

𝑗′∈𝐶𝑜𝑙[𝑖]

𝐿(𝑟𝑖𝑗′ ), (5)

𝐿𝑝𝑠(𝑥𝑖) = 𝐿
𝑒𝑥𝑡(𝑥𝑖) + 𝐿

𝑝𝑟(𝑥𝑖), (6)

𝑥𝑖 =

{
0 if 𝐿𝑝𝑠(𝑥𝑖) ≥ 0,

1 if 𝐿𝑝𝑠(𝑥𝑖) < 0.
(7)
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The iterative decoding algorithm is allowed to run until the
hard decisions satisfy all the parity check equations or when
an upper limit on the iteration number is reached, whichever
occurs earlier.

2) Approximate sum-product algorithm: Equation (3) can
be simplified by observing that the magnitude of 𝐿(𝑟𝑖𝑗) is
usually dominated by the minimum ∣𝐿(𝑞𝑖′𝑗)∣ term. As shown
in [12] and [13], the update (3) can be approximated as

𝐿(𝑟𝑖𝑗) = min
𝑖′∈𝑅𝑜𝑤[𝑗]∖𝑖

∣𝐿(𝑞𝑖′𝑗)∣
∏

𝑖′∈𝑅𝑜𝑤[𝑗]∖𝑖
sgn (𝐿(𝑞𝑖′𝑗)) . (8)

Note that equation (8) precisely describes the check-node
update of the min-sum algorithm. The magnitude of 𝐿(𝑟𝑖𝑗)
computed using (8) is usually overestimated and correction
terms are introduced to reduce the approximation error. The
correction can be either in the form of a normalization factor
shown as 𝛼 in (9) [5], an offset shown as 𝛽 in (10) [5], or a
conditional offset [6].

𝐿(𝑟𝑖𝑗) =
min𝑖′∈𝑅𝑜𝑤[𝑗]∖𝑖 ∣𝐿(𝑞𝑖′𝑗)∣

𝛼

∏
𝑖′∈𝑅𝑜𝑤[𝑗]∖𝑖

sgn (𝐿(𝑞𝑖′𝑗)) .

(9)

𝐿(𝑟𝑖𝑗) = max

{
min

𝑖′∈𝑅𝑜𝑤[𝑗]∖𝑖
∣𝐿(𝑞𝑖′𝑗)∣ − 𝛽, 0

}
×

∏
𝑖′∈𝑅𝑜𝑤[𝑗]∖𝑖

sgn (𝐿(𝑞𝑖′𝑗)) . (10)

B. Message Quantization and Processing

Practical implementations only approximate the ideal re-
alizations of the aforementioned algorithms. Such approxi-
mations are inevitable since real-valued messages can only
be approximately represented, thus causing saturation and
quantization effects, and moreover, the number of iterations is
limited, so that the effectiveness of iterative decoding cannot
be fully realized.

The approximations are illustrated by considering a pass
through the sum-product decoding loop shown in Fig. 1. The
channel output is saturated and quantized before it is saved as
the prior LLR, 𝐿𝑝𝑟. During the first phase of message passing,
variable-to-check messages pass through the log-tanh transfor-
mation defined in (4), then the summation and marginalization,
and finally the inverse log-tanh transformation. The log-
tanh function is its own inverse, so the two transformations
are identical. We refer to them as Φ1 and Φ2. The log-
tanh function is approximated by discretization. The input
and output of the function are saturated and quantized, thus
the characteristics of this function cannot be fully captured,
especially in the regions approaching infinity and zero.

In the second phase of message passing, the extrinsic
messages 𝐿𝑒𝑥𝑡 are combined with the prior 𝐿𝑝𝑟 to produce
the posterior probability 𝐿𝑝𝑠. The prior, 𝐿𝑝𝑟, is the saturated
and quantized channel output; the extrinsic message, 𝐿𝑒𝑥𝑡, is
the sum of check-to-variable messages, which originate from
the outputs of the approximated Φ2 function. The messages
incur numerical errors, and these errors accumulate, causing a
decoder to perform worse than theoretically possible. The de-
ficiencies due to real-valued implementations manifest them-
selves via performance degradation in the waterfall region, and
a rise of the error floor.

The saturation and quantization effects are related to the
fixed-point number format that is used in the processing and
storage of data. We use the notation Q𝑚.𝑓 to represent a
signed fixed-point number with 𝑚 bits to the left of the radix
point to represent integer values, and 𝑓 bits to the right of the
radix point to represent fractional values. Such a fixed-point
representation translates to a quantization resolution of 2−𝑓

and a range of [−2𝑚−1, 2𝑚−1 − 2−𝑓 ]. Note that there is an
asymmetry between the maximum and the minimum because
0 is represented with a positive sign in this number format.
Values above the maximum or minimum are saturated, i.e.,
clipped. The wordlength of this fixed-point number is 𝑚+ 𝑓 .
As an example, a Q4.2 fixed-point quantization translates to
a quantization resolution of 0.25 and a range of [−8, 7.75].

In an approximate sum-product implementation (8), Φ1,
summation, and Φ2 are replaced by the minimum operation.
The approximate algorithm introduces errors algorithmically,
but it eliminates some numerical saturation and quantization
effects by skipping through the log-tanh and the summation
operations.

C. Structured LDPC Codes

A practical high-throughput LDPC decoder can be imple-
mented in a fully parallel manner by directly mapping the
factor graph onto an array of processing elements intercon-
nected by wires. In this parallel implementation, all messages
from variable nodes to check nodes and then in reverse
are processed concurrently, yielding a complex, interconnect-
dominated design. On the other hand, the memory bandwidth
limits the throughput of a serial decoder [14]. A balance
between throughput and memory bandwidth can be achieved
if the underlying parity check matrix is regular and structured.
The structure of the H matrix enables a parallel-serial archi-
tecture and a compact memory design.

Several known high-performance LDPC code constructions,
including the Reed-Solomon based codes [10], array-based
codes [11], as well as the ones proposed by Tanner et al.
[15], share the same property that their parity check matrices
can be written as a two-dimensional array of component
matrices of equal size, each of which is a permutation matrix.
Constructions using the ideas of Margulis and Ramanujan
[16] have a similar property that the component matrices
in the parity check matrix are either permutation or all-
zeros matrices. In this family of LDPC codes, the 𝑀 × 𝑁
H matrix can be partitioned along the boundaries of 𝛿 × 𝛿
permutation submatrices. For 𝑁 = 𝛿𝜌 and 𝑀 = 𝛿𝛾, column
partition results in 𝜌 column groups and row partition results
in 𝛾 row groups. This structure of the parity check matrix
proves amenable for efficient decoder architectures and recent
published standards have adopted LDPC codes defined by such
H matrices [17], [18].

D. Parallel-Serial Decoder Architecture for a Structured
LDPC Code

In order to illustrate the decoder design, we select a (6, 32)-
regular (2048, 1723) RS-LDPC code. This particular LDPC
code has been adopted as the forward error correction in the
IEEE 802.3an 10GBase-T standard [18], which governs the
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operation of 10 Gb/s Ethernet over up to 100 m of CAT-6a
unshielded twisted-pair (UTP) cable. The H matrix of this
code contains 𝑀 = 384 rows and 𝑁 = 2048 columns. This
matrix can be partitioned into 𝛾 = 6 row groups and 𝜌 = 32
column groups of 𝛿 × 𝛿 = 64× 64 permutation submatrices.
We design a resource-efficient and configurable architecture to
map the decoder to the FPGA emulation platform. Resource
efficiency in the decoder design allows for more block RAMs
to be allocated on-chip to capture soft traces for analysis;
and with a configurable architecture, the decoder can be
easily adapted to different codes in a short design cycle.
The resulting parallel-serial architecture resembles a partially-
parallel architecture [19], but we limit the parallelism by
partitioning the H matrix in only one direction (i.e., parallelize
among column partitions and process rows serially) to reduce
complexity. Each of the partitions is configurable based on
the structure of the H matrix. Compared to a fully parallel
architecture [20], which is not configurable, or a fully serial
architecture, which lacks the throughput [14], this parallel-
serial design represents a tradeoff for the purpose of code
emulation.

We apply column partition to divide the decoder into 32
parallel units, where each unit processes a group of 64 bits.
Fig. 2 illustrates the architecture of the RS-LDPC sum-product
decoder. Two sets of memories, 𝑀0 and 𝑀1, are designed
to be accessed alternately. 𝑀0 stores variable-to-check mes-
sages and 𝑀1 stores check-to-variable messages. Each set of
memories is divided into 32 banks. Each bank is assigned to
a processing unit that can access them independently. In a
check-to-variable operation defined in (3), the 32 variable-to-
check messages pass through the log-tanh transformation, and
then the check node computes the sum of these messages. The
sum is marginalized locally in the processing unit and stored
in𝑀1. The stored messages pass through the inverse log-tanh
transformation to generate check-to-variable messages. In the
variable-to-check operation defined in (2), the variable node
inside every processing unit accumulates check-to-variable
messages serially. The sum is marginalized locally and stored
in 𝑀0. This architecture minimizes the number of global
interconnects by performing marginalization within the local
processing unit.

The parallel-serial architecture allows efficient mapping of
a practical decoder. For example, an RS-LDPC code of up to
8kb in block length can be supported on a Xilinx Virtex-II Pro
XC2VP70 FPGA [21]. This architecture is also reconfigurable,
so that any member of the LDPC code family described in
Section II-C can be accommodated. Address lookup tables
can be reconfigured based on the H matrix. Processing units
can be allocated depending on the column partitions, and the
memory size can be adjusted to allow variable code rates.

An alternative version of the sum-product decoder can
be implemented using this same architecture. Following the
approximation (8), the lookup tables based on Φ are eliminated
and the summation in a check node is replaced by comparisons
to find the minimum. The approximation results in area
savings and the decoder throughput remains the same.

Fig. 2. A parallel-serial architecture of the (2048,1723) RS-LDPC decoder
composed of 32 processing units.

E. Decoder Implementation and Emulation Setup

A sum-product decoder for the (2048, 1723) RS-LDPC
code has been designed using the Xilinx Virtex-II Pro
XC2VP70 FPGA. The decoder is implemented using
wordlengths 𝑤 = 5, 6, 7 bits, following Q3.2, Q3.3, Q4.2,
and Q5.2 uniform quantization schemes.

Multiple independent AWGN generators have been incor-
porated on the FPGA using the Xilinx AWGN generator [22].
The probability density function (PDF) of the noise realization
deviates within 0.2% from the ideal Gaussian PDF up to
4.8𝜎 [22]. The input to the decoder has to be quantized and
clipped so that it can be stored using a limited wordlength.
We characterized the binned noise samples produced by the
Xilinx noise generator. Even using a crude estimate, we can
demonstrate that the true Gaussian error probability curve is
within a factor of 3.5 from the results obtained by hardware
emulation down to the 10−13 level. In our nonlinear finite-
wordlength decoding process based emulations we observe
that the decoder stalls at very low BERs because of specific
patterns of locations in the codeword being subject to noise
moderately out in the tail rather than because of noise values
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in the extreme tails. Thus accuracy of the random number
generator in the extreme tail distribution is not of concern in
this application, in contrast to what is stated in [23].

Block RAMs on the FPGA record final iterations of soft
decisions when decoding fails. An on-chip PowerPC mi-
croprocessor controls the decoder, noise generator, and the
interface with the memory module. Such a hardware emulation
platform allows the characterization of the code and evaluation
of practical implementation parameters [3]. Error traces enable
the exploration of patterns that cause the decoder to fail.

In a high signal-to-noise ratio (SNR) regime, the majority
of the received frames can be decoded in one iteration and
the decoder can reach a peak throughput of 240 Mb/s using
a 100 MHz clock rate. Hardware emulation of this LDPC
decoder extends the BER curve below 10−10 within hours. For
comparison, an optimized implementation of the same decoder
in C provides a peak throughput of only 260 kb/s on an Intel
Xeon 2.4 GHz microprocessor.

III. FIXED-POINT QUANTIZATION EFFECTS AND

CHARACTERIZATION OF DECODING ERRORS

Both the wordlength and the number of decoding iterations
are important design parameters that determine the area,
power, and performance of an LDPC decoder. In particular, a
short wordlength and a small number of iterations are always
desirable in practical implementations. As an illustration, the
frame error rate (FER) and the bit error rate versus the
signal-to-noise ratio are plotted in Fig. 3(a) showing the
effect of iteration number on the performance of a 6-bit (6-
b) Q4.2 fixed-point implementation of the (2048, 1723) RS-
LDPC sum-product decoder. More iterations result in better
performance, although the gain becomes marginal after 50
iterations. So as to minimize the effect of iteration number and
to isolate the error events caused by fixed-point implementa-
tions, we perform up to 200 iterations. The FER and BER
versus SNR curves are shown in Fig. 3(b) for sum-product
decoder implementations using Q3.2, Q3.3, Q4.2, and Q5.2
quantization choices.

A. Characterization of Error Events

The definition of absorbing sets has been introduced in
our previous work [3], [24], [25]. Absorbing sets provide a
valuable characterization of certain types of decoding failure.
In order to define an absorbing set, let 𝐺 = (𝑉, 𝐹,𝐸) be the
bipartite graph associated with a parity check matrix H, such
that the set 𝑉 corresponds to the columns of H, the set 𝐹
corresponds to the rows of H, and 𝐸 = {𝑒(𝑖, 𝑗)∣H(𝑗, 𝑖) = 1}.
Such a graph 𝐺H is commonly referred to as the Tanner or
factor graph of the parity check matrix H of a code [26],
[27]. For a subset 𝐷 of 𝑉 , let 𝑂(𝐷) be the set of neighboring
vertices of 𝐷 in 𝐹 with odd degree with respect to 𝐷. With
this setup we have the following.

Given an integer pair (𝑎, 𝑏), an (𝑎, 𝑏) absorbing set is a
subset 𝐷 of 𝑉 of size 𝑎, with 𝑂(𝐷) of size 𝑏, and with the
property that each element of 𝐷 has strictly fewer neighbors
in 𝑂(𝐷) than in 𝐹 ∖𝑂(𝐷). We say that an (𝑎, 𝑏) absorbing set
𝐷 is an (𝑎, 𝑏) fully absorbing set, if in addition, all variable
nodes in 𝑉 ∖ 𝐷 have strictly fewer neighbors in 𝑂(𝐷) than
in 𝐹 ∖𝑂(𝐷).

Related notions have been previously introduced in the
literature in the attempt to characterize the behavior of
the message-passing decoding algorithms when they do not
converge to a codeword, such as stopping sets [28], near-
codewords [4], and trapping sets [2]. A fully absorbing set, as
defined above, can be understood as a special type of near-
codeword or trapping set, one which is stable under the bit-
flipping decoding algorithm [1].

The notion of the absorbing set is being used in this
work to resolve the ambiguity in the definitions of objects
for describing the error floors. The original definition of the
trapping set by Richardson is semi-empirical and decoder-
dependent. As a result, three different types of errors could be
associated with trapping sets [29]: fixed patterns, oscillatory
patterns, and random-like patterns. Subsequent work defined
trapping set as a fixed point of the decoder [30]. In contrast, the
absorbing set is defined as a combinatorial object, and is de-
coder independent. Oscillations and random-like errors could
be disassociated from absorbing set errors. The combinatorial
definition of absorbing set only depends on the structure
of the Tanner graph, and therefore the relevant absorbing
sets can be systematically enumerated [24], [25]. This exact
enumeration of the absorbing sets under iterative decoding
can be viewed as being equivalent to identifying the weight
enumerator polynomial under maximum likelihood decoding.
As such, the absorbing sets of the smallest weight rather than
smallest distance codewords determine the performance in the
error floor region. In particular, the count of relevant absorbing
sets is a key component in developing accurate error floor
predictions using importance sampling [31].

Trapping sets are defined in [32] and [33] as any length-𝑛
bit vector denoted by a pair (𝑎, 𝑏), where 𝑎 is the Hamming
weight of the bit vector and 𝑏 is the number of unsatisfied
checks. An absorbing set could be understood as a special type
of such trapping set where each variable node is connected to
strictly more satisfied than unsatisfied checks. The satisfied
versus unsatisfied notion in the absorbing set definition ex-
plains how a fully absorbing set is stable under bit-flipping
operations; the implication on practical decoder designs is the
focal point of this paper.

Another related structure is an (𝑎, 𝑏) elementary trapping
set [32], [33], which is defined as a trapping set for which all
check nodes in the induced subgraph have either degree one
or two, and there are exactly 𝑏 degree-one check nodes. Here
again, the primary contrast with absorbing sets is the stability
of absorbing sets under bit-flipping operations, implied by
their definition. The notion of absorbing set can also be refined
further by imposing restrictions on vertex and check degree
profiles, as done, for instance, later in this paper (see Section
IV).

B. Error Analysis

In all the following experiments, an all-zeros codeword is
transmitted and the sum-product algorithm is employed to
decode the codeword. The final 16 iterations are recorded
when the decoder fails to converge to a codeword after 200
iterations. We observe absorbing set errors in cases when the
decoder fails to converge and the hard decisions of all bits
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Fig. 3. FER (dotted lines) and BER (solid lines) performance of (a) the Q4.2 sum-product decoder of the (2048,1723) RS-LDPC code using different
number of decoding iterations, and (b) the (2048,1723) RS-LDPC sum-product decoder with Q3.2, Q3.3, Q4.2, and Q5.2 fixed-point quantization using 200
iterations.

TABLE I
ERROR STATISTICS OF (2048,1723) DECODER IMPLEMENTATIONS USING 200 ITERATIONS

SNR (dB) Errors 5-b (Q3.2) 6-b (Q3.3) 6-b (Q4.2) 7-b (Q5.2)

5.2
Errors collected1 142 125 94 46

(8,8) absorbing sets 18 117 92 45

Oscillations 116 6 0 0

5.4
Errors collected1 56 49 44 40

(8,8) absorbing sets 8 40 42 37

Oscillations 47 8 0 0

5.6
Errors collected1 51 42 22 33

(8,8) absorbing sets 8 27 20 30

Oscillations 41 12 0 0

5.8
Errors collected1 52 27 14 20

(8,8) absorbing sets 6 18 13 16

Oscillations 44 8 0 0
1 The total number of frames is not uniform for different SNR levels and quantization

choices – more input frames were emulated for higher SNR levels and longer-wordlength
quantizations. The number of errors collected is divided by the total number of frames to
produce the FER plots in Fig. 3(b).

remain the same for the final iterations. The statistics of the
error events are listed in Table I for comparison.

In the 5-b Q3.2 fixed-point implementation, most of the
errors in the error floor region display an oscillatory behavior
and a small number of errors are caused by (8, 8) fully
absorbing sets. Examples of the bit error counts illustrating the
oscillatory behavior are given in [3]. The oscillatory behavior
can be attributed to the dynamics of the message exchange in
which a small number of bits propagate incorrect messages
through their neighboring unsatisfied checks. These in turn
make some of their other neighboring bits admit incorrect
values, which are propagated further to more bits. As the
number of incorrect bits increases, so do their neighboring
checks, which means that after about two steps there is a
sufficient number of unsatisfied checks to enforce the correct
values. As a result, the total number of incorrect bits decreases

again.
The error propagation leading to the oscillatory behavior

is related to the quantization choice. Using the Q3.2 uniform
quantization, reliable (large-valued) prior LLRs outside the
range [−4, 3.75] are clipped, causing underestimation. Vari-
able nodes with underestimated prior LLRs become vulner-
able to influence from extrinsic messages. The situation is
aggravated by limited resolution (two fractional bits for a
resolution of 0.25): the Φ1 outputs of both reliable (large-
valued) and some less reliable (smaller-valued) input messages
are both rounded down and the difference between them
is lost, resulting in the overestimation of the less reliable
extrinsic messages. Underestimated prior LLRs coupled with
overestimated less reliable extrinsic messages necessarily en-
courage error propagation, causing the oscillatory behavior.

A 6-b wordlength allows one more bit for quantization over
5-b. The extra bit can be allocated either to resolution or range
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increase. An increased resolution reduces the overestimation
error of less reliable extrinsic messages and limits error prop-
agation. This is demonstrated by the Q3.3 implementation,
where the majority of the errors are due to (8, 8) fully
absorbing sets and only a small number of errors are due to
oscillations. Alternatively, the extra bit can be allocated for
range, as in a Q4.2 implementation. A higher range allows
reliable prior LLRs to obtain stronger representations, thus
stabilizing the respective variable nodes to prevent oscillations.

The 7-b Q5.2 implementation further improves the error
floor performance. All errors collected in Q4.2 and Q5.2
implementations are absorbing errors, and the overwhelming
majority of these exhibit the (8, 8) absorbing set structure.

C. Absorbing Set Characterization

As previously discussed, almost all encountered absorbing
set errors are of (8, 8) type, all of which are fully absorbing.
They share the same structure in which these eight variable
nodes participate in a total of twenty-eight checks. Of these,
twenty checks are connected with degree-two to the eight
variable nodes. Since the girth of the code is at least six
[10], these variable node pairs are all different. The remaining
eight checks are each connected to a different variable node
in the absorbing set. The illustration of such configuration is
provided in Fig. 4. Although only a subgraph is drawn, all
the (8, 8) sets are indeed fully absorbing sets. For an intuitive
explanation of why the failures occur in such a set, suppose
that all eight bits in the absorbing set have incorrect values
and all other bits have correct values, resulting in all but
eight checks being satisfied. These incorrect bits then reinforce
each other’s incorrect values through the checks they share.
In particular, each such bit, along with its incorrect prior, re-
ceives five such messages. The correct extrinsic message from
its remaining neighboring check cannot overcome this joint
effect, and the values remain incorrect. This behavior is also
verified experimentally by simulating a floating-point decoder
for channel realizations with very noisy inputs in precisely
eight bits that constitute an absorbing set, and observing that
even the floating-point decoder cannot successfully decode
such realizations.

Even though this special (8, 8) configuration is intrinsic to
the code, and hence implementation-independent, its effect on
BER is highly implementation-dependent. In particular, when
the wordlength is finite, the effect of the absorbing sets can
be exacerbated. This effect is demonstrated in the difference
between the performance of the Q4.2 and Q5.2 decoders in the
error floor region, whereby in the former case the number of
absorbing set failures is higher, leading to a relatively higher
error floor.

D. Absorbing Behavior in Finite Number of Decoding Itera-
tions

The number of decoding iterations is usually limited in
practice, as it determines the latency and throughput of the
system. In the practical high-throughput implementations, the
maximum number of iterations for the LDPC decoder is
limited to less than ten.

Fig. 3(a) shows that a good performance in the waterfall
region can be achieved with as few as ten iterations. The loss

in performance in the waterfall region is due to an insufficient
number of iterations for the decoding to converge. The 10-
iteration BER curve eventually overlaps with the 200-iteration
in the error floor region. Analysis of the failures in this region
confirms that the (8, 8) fully absorbing set, the dominant cause
of error floors in the 200-iteration decoder, causes the 10-
iteration decoder to fail as well. This result suggests that in the
high SNR region, the absorbing process usually happens very
quickly and the absorbing structure emerges in full strength
within a small number of decoding iterations. Non-convergent
errors, however, become negligible in the error floor region.

IV. ALTERNATIVE DECODER IMPLEMENTATION AND

CLASSIFICATION OF ABSORBING SETS

Finite-wordlength decoders of importance for practical
implementations have been studied on a (5, 47)-regular
(2209, 1978) array-based LDPC code [34]. The class of array-
based LDPC codes is known to perform well under iterative
decoding [11]. The H matrix of this code can be partitioned
into 5 row groups and 47 column groups of 47× 47 permu-
tation submatrices. Note that the regular structure of the H
matrix is well suited for the emulation platform. We perform
the following experiments with the wordlength fixed to 6 bits.
Unless specified otherwise, we perform a maximum of 200
decoding iterations so as to isolate the quantization effect from
the iteration number effect. Using a Q4.2 quantization in a
sum-product decoder yields the results shown in Fig. 5(a).

Based on our emulation results, the failures in the error floor
region are entirely due to absorbing sets. The statistics of the
frequently observed absorbing sets are listed in Table II. The
structure of the dominant (4, 8) absorbing set is illustrated
in [34]. To facilitate further discussions, we introduce the
notation (𝑝 : 𝑞) to describe the connectivity of a variable node
with 𝑝 connections to satisfied check nodes and 𝑞 connections
to unsatisfied check nodes. In the (4, 8) absorbing set, each
variable node in the absorbing set has a (3 : 2) connection.
All the other absorbing sets listed in Table II contain variable
nodes with (4 : 1) and (5 : 0) connections.

A. Dual Quantization in a Sum-Product Decoder

As the decoder starts to converge, the variable-to-check
messages usually grow larger, as their certainty increases. In
this regime, the sum-product decoder is essentially operating
on the lower right corner of the Φ1 curve and subsequently
on the upper left corner of the Φ2 curve as highlighted in
Fig. 6. We refer to these corners as the operating regions
of the Φ1 and Φ2 functions. A more accurate representation
of extrinsic messages requires more output levels of the Φ2

function in its operating region, which also necessitates high-
resolution inputs to the Φ2 function. These requirements can
be both satisfied if the quantization scheme is designed to have
two quantization domains illustrated in Fig. 6. For instance,
suppose that Domain A uses a Q4.2 quantization whereas
Domain B uses a quantization with a higher resolution, such
as a Q1.5 quantization. The 6-b wordlength is preserved to
maintain a constant decoder complexity. The functions Φ1 and
Φ2 separate the two domains. The input to Φ1 is in a Q4.2
quantization and the output of Φ1 is in a Q1.5 quantization.
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Fig. 4. Illustration of the subgraph induced by the incorrect bits in an (8,8) fully absorbing set.
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Fig. 5. FER (dotted lines) and BER (solid lines) performance of a (2209,1978) array-based LDPC code using (a) 200 decoding iterations and (b) 10 decoding
iterations. (SPA: sum-product decoder, ASPA: approximate sum-product decoder. Q4.2/1.5 and Q6.0/1.5 denote dual quantizations using two domains. Refer
to Section IV-A and Fig. 6 for explanations and illustration.

Fig. 6. A sum-product decoder with two quantization domains (the operating
regions of Φ1 and Φ2 functions are circled).

The Φ2 function assumes the opposite quantization assign-
ment. We refer to this scheme as dual quantization, since the
quantization levels are tailored to the operating region within
each domain. There is no increase in hardware complexity for
implementing this scheme.

Fig. 5(a) shows that the Q4.2/1.5 dual quantization results
in better performance than the Q4.2 quantization in both
the waterfall and the error floor regions. We attribute the
performance advantage of the Q4.2/1.5 dual quantization

to more levels in the operating regions of the Φ1 and Φ2

functions, which enable a more accurate representation of the
extrinsic messages. Reliable extrinsic messages could poten-
tially obtain a stronger representation than the less reliable
extrinsic messages, so that the error propagation is limited
and the absorbing set errors become less likely.

The (4, 8) and (5, 9) absorbing sets, observed in the Q4.2
quantization, are much less frequent when decoding using the
dual quantization scheme, and the error floor is now dominated
by (6, 8) and (8, 6) absorbing sets. All of the collected
(6, 8) and (8, 6) sets are fully absorbing, with configurations
illustrated in [34]. The (6, 8) absorbing set consists of two
variable nodes with (3 : 2) connections and four variable
nodes with (4 : 1) connections. The (8, 6) absorbing set
consists of only variable nodes with (4 : 1) and (5 : 0)
connections. Both the (4 : 1) and the (5 : 0) configurations are
more stable as absorbing sets than the (3 : 2) configuration,
for which reason we consider the (6, 8) and (8, 6) absorbing
sets stronger than the (4, 8) absorbing set.

B. Representation of Channel Likelihoods

For practical SNR levels, a Q4.2 quantization scheme does
not offer enough range to capture the input signal distribution.
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TABLE II
ABSORBING SET PROFILE OF (2209,1978) DECODER IMPLEMENTATIONS

Algorithm1& Quantization SNR (dB) Errors collected2 (4,8) (5,9) (6,8) (7,9) (8,6) (8,8) (9,5) (10,4) (10,6)

SPA Q4.2

5.4 185 50 22 34 17 9 13 2

5.6 121 39 12 36 9 8 4

5.8 104 50 15 11 6 1

6.0 50 32 5 5 4

SPA Q4.2/1.5

5.4 149 16 3 57 9 17 4 3

5.6 87 21 5 33 8 7 2

5.8 42 1 6 2 15 8 2 2 2

6.0 21 2 8 7 2 1

SPA Q6.0/1.5

5.4 133 1 28 7 16 12 3 1 1

5.6 66 1 29 5 12 12

5.8 38 17 2 7 6 1 1

6.0 13 9 2 1

ASPA Q4.2
5.6 221 2 91 5 36 14 7

5.8 59 1 30 1 13 3

6.0 22 15 1 3 1

ASPA 𝛽=1 Q4.2

5.4 307 6 2 143 17 38 16 12

5.6 243 6 2 122 13 40 16 9

5.8 58 1 35 1 8 4 2

6.0 18 2 9 3 2 1
1 SPA: sum-product decoder, ASPA: approximate sum-product decoder.
2 The total number of frames is not uniform for different SNR levels, quantization, and algorithm choices. The number of errors collected

is divided by the total number of frames to produce the FER plots in Fig. 5(a).

Moreover, it clips correct priors and incorrect priors dispropor-
tionately. By selecting a Q6.0 quantization in Domain A, an
increased input range is accepted, which permits correct priors
to assume stronger values without being clipped excessively.
Variable nodes backed by stronger correct priors cannot be
easily attracted to an absorbing set, thus the probability of
absorbing set errors is reduced. Statistics in Table II show
that the (6, 8) and (8, 6) sets remain to be dominant. The
error floor performance of the Q6.0/1.5 dually-quantized
decoder improves slightly over the Q4.2/1.5 performance.
In particular, the Q6.0/1.5 dually-quantized decoder performs
well in the error floor region even in ten decoding iterations
as shown in Fig. 5(b).

C. Approximate Sum-Product Decoding

By using the approximate sum-product algorithm (8) to
bypass Φ1, summation, and Φ2 altogether, saturation and
quantization errors incurred in the log-tanh processing are
eliminated. We simplify the Q4.2 sum-product decoder of the
(2209, 1978) array-based LDPC code using the approximation
(8). The performance of the Q4.2 approximate sum-product
decoder is illustrated along with its sum-product counterpart
in Fig. 5(a). In the waterfall region, the approximate sum-
product decoder incurs nearly 0.2 dB of performance loss due
to approximation errors; however, it performs better in the
error floor region. The error floor is dominated by (8, 6) and
(9, 5) fully absorbing sets, which both consist of only variable
nodes with (4 : 1) and (5 : 0) connections. Lower-weight
weak absorbing sets (4, 8) and (5, 9) are eliminated and even
instances of (6, 8) and (7, 9) absorbing sets are reduced.

The lackluster error floor performance of a conventional
sum-product decoder compared to an approximate sum-

product decoder is largely due to the estimation of the two
log-tanh functions. As in the case of the oscillatory behavior, a
finite-wordlength quantization of the log-tanh functions causes
underestimations of reliable messages and overestimations of
unreliable messages. As a result, the reliability information is
essentially lost, and soft decoding degenerates to a type of
hard-decision decoding where the decisions are based entirely
on majority counting. Such a decoding algorithm is susceptible
to weak absorbing sets because it disregards the reliability in-
formation. In contrast, the approximate sum-product algorithm
is better in maintaining the reliability information, so that it
is not easily attracted to weak absorbing sets.

The approximate sum-product decoder can be improved
using a correction term [5]. We select an offset 𝛽 = 1 to
optimize the decoder performance. The performance of the
offset-corrected decoder is illustrated in Fig. 5(a), where we
observe that both the waterfall and the error floor performance
are improved. The absorbing set profile shows that the (8, 6)
and (9, 5) fully absorbing sets determine the error floor.

With reduced iteration count, the approximate sum-product
decoder incurs almost 0.5 dB of performance loss. However,
the loss can be easily compensated after applying the offset
correction. In ten iterations, the performance of the offset-
corrected approximate sum-product decoder surpasses all the
other sum-product decoder implementations as shown in Fig.
5(b).

D. Dominant Absorbing Sets

In previous discussions, we described the configurations of
(4, 8), (6, 8), (8, 6), and (9, 5) fully absorbing sets. Two simple
ways to characterize these sets are by weight and by stability.
Everything else being equal, low-weight absorbing sets appear
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much more frequently when decoding fails. This phenomenon
is more pronounced in higher SNR levels. The stability of an
absorbing set is related to the structure of the set and the
connectivity of the factor graph. In the (2209, 1978) array-
based LDPC code, the (8, 6) and (9, 5) absorbing sets are
stronger or more stable, as it is more difficult to escape such
absorbing configurations. In general, the ratio 𝑎/𝑏 provides
clues to how stable an (𝑎, 𝑏) absorbing set is – the higher
the 𝑎/𝑏 ratio, the more stable the (𝑎, 𝑏) absorbing set. Low-
weight absorbing sets and strong absorbing sets are of greater
importance because they dominate the error floors.

In suboptimal decoder implementations where severe mes-
sage saturations can occur, such as the Q4.2 sum-product
implementation, the performance is dictated by low-weight
weak absorbing sets, which lead to an elevated error floor.
The implementations can be improved to reduce the adverse
effects of message saturation and quantization. The error floor
performance of better decoder implementations, such as the
dually-quantized decoders and the approximate sum-product
decoders, are eventually determined by strong absorbing sets.

V. CONCLUSION

We proposed a parallel-serial, flexible, high-throughput
architecture that allows mapping of a family of high-
performance LDPC decoders on an emulation platform. We
demonstrated that this emulation platform can be used to
capture low BER traces down to 10−13 for a (2048, 1723)
RS-LDPC code and a (2209, 1978) array-based LDPC code.

In addition, we analyzed the error traces, thereby showing
that a class of combinatorial structures known as absorbing
sets ultimately determines the error floor performance of
these LDPC codes. Our study also established the connection
between fixed-point quantization choices and the error floor
performance of a sum-product decoder: in a low-resolution
implementation, the dominant cause of the error floor is
oscillatory behavior, which can be corrected with an increase
in resolution, or, more effectively, an increase in range,
whereas absorbing sets dominate error floors in a high-range
implementation and are due to the code construction.

Investigations based on the (2209, 1978) array-based LDPC
code allows further isolation of weak from strong absorbing
sets. The conventional quantization schemes applied to the
sum-product decoder can be suboptimal, thus allowing weak
absorbing sets of relatively small size to dominate, thereby
leading to an elevated error floor. The proposed dually-
quantized sum-product decoder improves the estimation of
log-tanh functions, and the approximate sum-product decoder
eliminates the log-tanh functions altogether. Both approaches
mitigate the effects of weak absorbing sets and lower the error
floor even with a small number of decoding iterations.

Results of this work provide insights into a more effective
implementation of a high-throughput LDPC decoder for low
error rate performance. Intuitions gained from this work enable
further characterization of absorbing sets that cause the error
floors.
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“Analysis of absorbing sets for array-based LDPC codes," in Proc. IEEE
International Conf. Commun., Glasgow, UK, June 2007, pp. 6261-6268.

[25] L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolić,
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