
190 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON KNOWLEDGE A N D DATA ENGINEERING. VOL. 2. NO. 2. J U N E 1990

Design of LDV: A Multilevel Secure Relational

Database Management System

PAUL D. STACHOUR AND BHAVANI THURAISINGHAM

Abstract-In a multilevel secure database management system (MLS/
DBMS) users cleared at different security levels access and share a da-
tabase consisting of data at a variety of sensitivity levels. The system
should ensure that the users only acquire the information to which they
are authorized. This is difficult as users could pose multiple queries
and deduce unauthorized information. In this paper, we describe the
design of Lock Data Views (LDV), a MLSlDBMS which is hosted on
the Logical Coprocessing Kernel (LOCK) Trusted Computing Base
(TCB). LDV’s security policy builds on the security policy of LOCK.
Its design is based on three assured pipelines for the query, update,
and metadata management operations. We describe the security policy
of LDV, its system architecture, the designs of the Query Processor,
the Update processor, the Metadata Manager, and the operating sys-
tem issues. LDV’s solution to the inference and aggregation problems
are also described.

Index Terms-Classification constraint, classification level, infer-
ence and aggregation, LDV, LOCK, multilevel secure relational da-
tabase management system, pipelines, polyinstantiation, secure policy,
type enforcement.

I. INTRODUCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProblem DeJinition

ITHIN the Department of Defense (DoD), the num- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ber of computerized databases containing classified
or otherwise sensitive data is increasing rapidly. Access

to these databases must be restricted and controlled to limit
the unauthorized disclosure, or malicious modification, of

data contained in them. Present database management
systems (DBMS’s) do not provide adequate mechanisms

to support such control. Penetration studies have clearly
shown that the mechanisms provided even by “security

enhanced” database systems can be bypassed, often due

to fundamental flaws in the systems which host the
DBMS. This has led to a reliance on a number of tech-

niques for isolating sensitive database information. These
include physical protection, “system high” operations,
and use of manual techniques for data sharing. These ac-

tions are very costly and detrimental to operational utility

and flexibility.
Trusted Computing Bases (TCB’s), such as

Honeywell’s LOCK [4], have been designed to provide

Manuscript received November 28, 1988; revised August zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15, 1989. This
work was supported under Contract F30602-86-C-0003 from the Distrib-

uted Systems SectioniCOTD of the Rome Air Development Center.
P. D. Stachour is with Secure Computing Technology Corporation, St.

Anthony, MN 55418.
B. Thuraisingham is with The MITRE Corporation, Bedford, MA 01730.
IEEE Log Number 9035102.

this type of control in terms of abstract entities and op-
erations which refect an operating system orientation. The

LOCK security policy consists of a discretionary security

policy and a mandatory security policy. The discretionary
security policy enforces need to know structures, while

the mandatory security policy provides a multilevel con-

trol policy. The multilevel control policy is a noninterfer-
ence policy which addresses both access to data and the
flow of information in the system.

A DBMS presents a more difficult problem than that
dealt with the current TCB’s with their operating system

orientation. This results from the ability of the DBMS to

preserve or even enhance the information value of the data
it contains. This is possible because it captures informa-

tion in addition to the raw data values themselves through
the incorporation of knowledge about the types of data
and relationships among the data elements. A DBMS also

allows for the creation of new data and relationships

through the application of complex functions to the data.
Because of these capabilities, one is forced to consider a
number of factors beyond those normally addressed when

dealing with operating system security. These include the
impact of data context, aggregation, and inference poten-

tial.

B. Design Approach
Honeywell’s LOCK Data Views (LDV) system, which

is a multilevel secure relational database system (MLS/
RDBMS) hosted on LOCK, addresses the above problems

by allowing individuals possessing a range of clearances
to create, share, and manipulate relational databases [7]
containing information spanning multiple sensitivity lev-

els. In LDV, the relational query language, Structured

Query language (SQL) [l], [26] , is enhanced with con-
structs for formulating security assertions. These security

assertions serve to imply sensitivity labels for all atomic
values, contexts, and aggregations in a database. The la-
beled data are partitioned across security levels, assigned
to containers with dominating security markings or levels,

and may only flow upward in level unless authorized oth-
erwise. The ability of LDV to perform in this manner is

a function of its design, and the operating system upon
which it is hosted.

This paper describes the complete design of LDV. Sec-

tion I1 presents the security policy of LDV. An overview
of the design is described in Section 111. The LDV lan-

guage is described in Section IV. Sections V, VI, and VI1

1041-4347/90/0600-0190$01 .OO O 1990 IEEE

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

STACHOUR AND THURAISINGHAM: LDV: SECURE DATABASE MANAGEMENT SYSTEM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
191

describe the query, update, and metadata processing op-

erations, respectively, in LDV. Operating system support
for LDV is addressed in Section VIII. The paper is con-
cluded in Section IX.

11. LDV SECURITY POLICY OVERVIEW

To meet the DoD security policy requirement, as stated

in DoD directives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5200.28 [lo], 54200.28-M [l l] , and

5200.1 -R [121, both the operating system (LOCK) and a
secure application (LDV) must itself define a security pol-
icy that it enforces. In order to understand the LDV se-

curity policy, it is essential to understand the LOCK se-
curity policy. Therefore, we first describe the LOCK

security policy and then describe the DBMS security pol-
icy requirements and extensions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A . LOCK TCB Security Policy

The LOCK TCB satisfies the security policy require-

ments defined for the A1 level in the Trusted Computer
Security Evaluation Criteria [131. These include require-

ments regarding mandatory and discretionary access con-
trol, object reuse and maintenance, integrity, and export

of sensitivity labels for subjects, objects, and devices. In
addition, it supports the A 1 requirements for accountabil-

ity, audit, and assurance. The LOCK security policy at
the highest level states that:

“Data is labeled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith a level andjows upward in level
unless authorized to do so otherwise.” This captures the
DoD notion of security, which focuses on the confine-

ment and protection of information (data in a context)
from compromise. The policy is interpreted in terms of
increasingly detailed specifications of the security rele-

vant mechanisms for the system. This provides the basis

for the enforcement of the security policy within LOCK.
Supporting mechanisms, such as user authentication and

accountability, provide assurance that the security policy

mechanisms act in a manner consistent with the security
policy. In addition to the mandatory and discretionary se-

curity policies, LOCK provides labeling, integrity and au-
thentication, and accountability mechanisms. These are
described in [171.

The mechanisms which implement the LOCK security
policy are defined in terms of abstract entities and oper-

ations. There are three principal entities in the LOCK se-

curity policy; subjects, objects, and the Effective Access
Matrix (EAM). Subjects are the active process-like enti-

ties in the system and objects are the passive file-like en-

tities. The EAM defines the permissible flows of infor-

mation within the system. The EAM is computed based
on the security relevant attributes associated with the sub-
jects and objects. The LOCK policy describes these attri-

butes and the allowed accesses based on the notion of po-
tential interferences between subjects.

The security attributes associated with the subjects in-
clude 1) clearance level (subject-level (S)), 2) user on

whose behalf it is executing, and 3) domain in which it is
executing (subject-domain (S)). Objects have a set of

corresponding security attributes which include 1) clas-

sification level (object-level (O)) , 2) access control list

(ACL (0)), and 3) type (object type (0)) .
The term “level” (subject-level (S) or ob-

ject-level (0)) represents a sensitivity level that captures

both the hierarchical classification levels and nonhier-
archical categories which from a part of the DoD security

policy. Within LOCK it is assumed that the sensitivity

levels from a partially ordered set (POSET). Level L1 is
said to dominate L2 if L1 I L2 in the POSET (e .g . , Un-

classified < Confidential < Secret < Topsecret). The
term “User” refers to the human on whose behalf a sub-
ject is executing. The ACL(0) is a list of permissible

access modes to an object, on a per user basis, which are
maintained for all objects in the LOCK system. The sub-
ject domain (subject-domain (S)) and the object type
(object-type (U)) are introduced to support the Type En-
forcement mechanisms. The relationships between do-
mains and types in terms of allowable access modes are
captured in a Domain Definition Table (DDT). The DDT

is a matrix which is indexed by domain and type, and has
as entries those modes allowed to objects of the given type

of subjects in the given domain.
The LOCK security consists of a policy discretionary

security policy and a mandatory security policy. The dis-
cretionary security policy allows for users to specify and

control sharing of objects. A subject’s access to an object
is restricted based on the ACL and the user on whose be-

half it is executing. The mandatory security policy is
based on controlling the potential interferences among
subjects. It consists of a mandatory access control policy

and a type enforcement policy.

The mandatory access control policy restricts the access
of a subject to an object based on the sensitivity levels of

the subject and object. The system enforces the simple

security property and the *-property of the Bell and
LaPadula security policy [3]. The simple security prop-

erty states that a subject has read access to an object if the

subject’s sensitivity level dominates the sensitivity level

of the object. The *-property states that a subject has write

access to an object if the subject’s sensitivity level is dom-
inated by the sensitivity level of the object. The type en-
forcement policy deals with aspects of security policy that
are inherently nonhierarchical in nature. It restricts ac-

cesses of subjects to objects based on the domain of the
subject and type of the object.

B. DBMS Security Policy Requirements
The LOCK security policy is incomplete in dealing with

DBMS security because of its operating system orienta-

tion. The most significant contributor to complexity within
the DBMS environment is the information carrying poten-

tial of the database structure. The DBMS preserves or
even enhances the information content of the database by
incorporating knowledge of the types of data and relation-
ship among the data. The data manipulation capabilities

of the DBMS also allow the creation of new data relation-
ships through the application of complex functions to the

stored data.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

192 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2. NO. 2. JUNE 1990

Our approach to providing a complete and tractable
DBMS security policy extends the basic LOCK security
policy through the incorporation of an explicit classifica-

tion policy. The classification policy must address those
factors which are crucial to a correct determination of the

sensitivity level of data within the DBMS context. In par-
ticular, the policy includes the following classifications: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Name Dependent Classijication: rules that refer to data
items by name. This provides classification at the granu-

larity of relations and attributes (for example, all the val-
ues of the salary attribute in the relation Employee are
Secret).

Content Dependent Classijication: rules that refer to the

content of data item occurrences. This provides classifi-
cation at the granularity of tuples and elements (for ex-

ample, the values of the name attribute in the relation Em-
ployee are Secret if the corresponding salary values exceed
100 K) .

Context Dependent Classijication: rules that refer to

combinations of data items. This can be used to reflect
sensitivity of specific fields when accessed together (for

example, each name value, salary value pair in the rela-
tion Employee is Secret).

Aggregate Classijication: rules that classify collections
of data items (for example, more than 10 name values
taken together has a Secret classification).

Inference Control: the determination of data sensitivity

based on the potential inferences that can be made based
on a sequence of access requests.

C. DBMS Policy Extensions

The additional concern for a DBMS in a multilevel se-
cure environment beyond that of LOCK is the proper la-

beling of information. To provide for that concern, two

extensions to the policy of the TCB are required. One ex-

tension summarizes the actions that happen when a data-
base is updated and the other when a query is made to the

database. These extensions are described briefly here. A
detailed discussion on these extensions is given in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[181.

Update Classijication Extension: The update classifi-
cation policy addresses the problem of proper classifica-
tion of the database data. That is, when the database is
updated, the classification level of the data is determined.
The data are then inserted into an object whose level dom-

inates the level of the data.

Formally stated, we have the following: For all security
levels L1 and L2 (L1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 12) and all base relations R in

the database (where L1 is the basic-level of R) , a tuple T
being stored securely in a partition P (at level L2) of R
implies that the basic-level of any data of T stored in P
is 5 L2.

We define the BASIC-LEVEL(T) of a tuple (or por-
tion of a tuple) as the lowest level of the set of levels at
which T can be securely stored. The security level of the

subject who attempts the update operation, the name-de-

pendent, content-dependent, and context-dependent clas-
sification rules are used to determine the basic-level of a

tuple.

Informally, this means that we partition the data in the

database into file objects based on the basic-level classi-

fication level of the data. We use LOCK enforcement on
objects to provide most of the security, with the database
extension mechanisms only handling special cases such
as classification by context.

Response Classijication Extension: The response clas-

sification policy addresses the problem of proper classi-
fication of response to queries. This is a problem because
the response may be built based on the data in many base
relations. In the process of manipulating and combining

the data, it is entirely possible that the data will be used
in a manner that reveals higher level information. The

problem becomes more acute when one realizes that the
response will be released into an environment in which
many responses may be visible. Thus, the problem be-

comes one of aggregation and inference over time as well

as across relations. In light of this, it seems fairly clear
that a response can only be released if it is placed in an

object whose level dominates the derived level of the re-

sponse. This derived level is the maximum level of any
information that can be deduced from the response by a

user reading this response.

Formally stated, we have the following: For
all responses R , and all objects 0, a response R being

written into object 0 implies that the security level of
the object 0 is in the set of levels defined by

Admissible-Derived-Level-Set (R) . This set consists of

all levels for which releasing the information in the re-
sponse R at that level will not enable any user to infer any
further information whose sensitivity level exceeds the

user’s level.
Informally, this means that the response is written into

an ordinary object that can be shared in any arbitrary way,
subject to operating system security policy. The appro-
priate security level of the object containing the response

depends not only on the response, but upon what can be
inferred by the response being released at that level.

D. Type Enforcement

Lock’s type enforcement mechanism allows us to en-

capsulate applications such as DBMS in a protected sub-
system, by declaring the DBMS objects to be of special

types which are only accessible to subjects executing in

the DBMS domain. We then carefully restrict the subjects
which are allowed to execute in this domain. It is this
approach that makes LDV a unique design.

The underlying LOCK security mechanisms are avail-
able within the DBMS domain. However, since only

DBMS programs are allowed to execute in this domain,

we can extend the underlying security policy to account
for functional requirements of the MLS/DBMS without
affecting other applications code. The principal concern

is how to securely release data from the DBMS domain to
the user domain. Fortunately, the underlying LOCK type
enforcement mechanism supports the implementation of

assured pipelines [5] . This provides a way to ensure that
data passed between the DBMS and user domains are pro-

. _ _

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

STACHOUR A N D THURAISINGHAM: LDV: SECURE DATABASE MANAGEMENT SYSTEM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cessed through appropriate trusted import and export fil-

ters. These pipelines can be proven to be both unbypass-

able and tamper-proof. Using this mechanism, in
conjunction with some trusted (and we believe small) sub-
set of the DBMS code, it is feasible to implement a clas-
sification policy which guarantees that any set of data re-

leased to the user domain has been properly labeled as to
classification based on the set of static and dynamic de-
pendencies known to the DBMS.

Such a classification policy can be as simple as merely

classifying a set of data at the high water mark of the
levels of the individual data elements in the set. It can

also be extremely sophisticated, incorporating such fea-

tures as history files for inference control or automatic
downgrading of the results of certain numerical functions,

such as averages or counts, of raw data. The type enforce-

ment mechanism makes this possible. The integrity of the
history files will be maintained by using type enforcement

to restrict write access to a specific domain within the

DBMS and then ensuring that such a write is always done
correctly. Similarly, the automatic downgrade will be

limited by domain, and we plan to ensure that subjects in
this domain only perform the downgrade under very spe-

cific conditions.

111. OVERVIEW OF THE LDV DESIGN

In this section, we provide an overview of the LDV

design. In particular, data classification issues dealt with
by LDV, the system architecture of LDV, and the pro-

cessing of the three major operations; query, update, and

metadata management, are described. Finally we revisit

type enforcement upon which the design is built. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAData ClassiJcation

Due to the data manipulation potential of a DBMS, de-
termining the proper classification of data is nontrivial.

Factors which may affect the proper classification of a set

of data include:
-data content

-context of the data
-functional manipulations of the data

-external dependencies
-potential for inference.

Inference is the most difficult factor to treat adequately.
Determining the potential for inference from an arbitrary
collection of information is generally very difficult. We
believe that it is possible to arrive at partial, yet meaning-

ful, solutions to this problem within the context of a spe-

cific application.
It is important to observe that these classification fac-

tors can be partitioned into two categories: static and dy-
namic. Static dependencies (e.g., content) can be applied
to the data at any point between its creation and release

from the DBMS. Dynamic dependencies (e.g., functional
transforms), on the other hand, can only be applied at the
time a particular set of data is instantiated for output. In
addition, what has been released from the database before zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~

193

may partially determine the classification of the current
item to be released.

DBMS security requirements are most naturally ex-
pressed in terms of the user visible output of the DBMS.
However, one must also be concerned as to what consti-
tutes a secure write to the DBMS. Writes to a database

will be secure, provided that they are done in a manner
consistent with secure queries and do not introduce covert
channels.

Data content dependencies arise when certain values,
within the simple context of being in the database, are

considered sensitive. Context dependencies are typified

by intelligence information. Typically intelligence data

and sources are individually of significantly different sen-

sitivity than their combination. Functional manipulations

of data involve the application of deterministic functions
such as counting the number of elements, average, and

rounding. Such functions may significantly lower the sen-
sitivity level of the response relative to the raw data that

was processed. Alternatively, the joining of two items of
data may raise the joint classification beyond that of any

individual one. There are also external dependencies, such
as time. An aircraft destination may be highly classified

until after departure, at which point its flight plan is openly

disseminated to air traffic control.
The factors affecting classification which we address re-

flect our belief that aggregation and inference represent a

significant security problem in a DBMS. Instances where
the sensitivity of data is enhanced due to inference and
aggregation frequently, but are significant when they oc-

cur. We note that if inference and aggregation frequently
raise the security level of the output, then it is much more

economical and safer to simply overclassify the data. For

example, if a database consisting of largely Unclassified
data returns the bulk of its results at the confidential level,
then it is operationally more effective to simply treat the

data as Confidential, and manually downgrade the occa-
sional Unclassified response. We believe that real-world

databases contain data at a mixture of classifications.
Thus , the approach of running everything at database-high

and manually downgrading severely limits the flexibility

and usability of the database.

Incorporation of an explicit classification policy into our
design reflects a radically different view than that taken

by simple access control policies, and most secure DBMS

research (see for example [161). These systems assume
that its is statically possible to bind a sensitivity level to
each piece (or grouping) of data. The appropriate classi-

fication for any collection of data is then determined
through a simple “high water mark” calculation over the

set of sensitivity levels. Such an approach can result in

either overclassification or a breach of security.

B. LDV System Architecture

LDV is hosted on the LOCK TCB. The user interacts

with LDV through a request importer and a request ex-
porter as shown in Fig. 1. Access to data as well as the

metadata is controlled by LOCK. Information in the da-

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

194 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON KNOWLEDGE A N D DATA ENGINEERING. VOL. 2. NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJUNE 1990

Request Request
lmponer

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Lock Data

Result Result DBMS Result

Fig. 1. LOCK to LDV interface.

User Request
Manager

Data Dicoonary Relaoonal File

DBMS Result 1

Fig. 2 . LDV system data flow

tabase as well as the metadatabase are stored in single

level files, i .e., LOCK objects. LOCK ensures that these

database files may be opened for read/write operations
only by subjects executing at the appropriate levels, and
in the appropriate database domains. LOCK enforces the

operations provided that the LDV application defines

properly in the LOCK DDT the allowed operations upon
objects by subjects.

The LDV system architecture is illustrated in Fig. 2. It
shows the major subsystems and the data flow between
them. These subsystems are the Data Dictionary Manager

(DDM), the User Request Manager (URM), the Rela-

tional Access Manager (RAM), and the Execution Man-
ager (EM). Each of these subsystems is described.

DDM-this subsystem is responsible for maintaining all
information about the multilevel database and acts as a
server of this information to the other subsystems of LDV.
That is, all of the metadata are handled by the DDM. The

metadata include the database schemas, security con-
straints (both the discretionary security constraints and the

mandatory constraints which are also referred to as clas-

sification constraints), integrity constraints, and history
information.

URM-this subsystem provides an SQL interface to

LDV that is consistent with the ANSUSQL standards. It
parses both SQL data definition and data manipulation re-
quests, and translates them into an internal representation

of SQL. Its function also includes discretionary access
checks on views, enforcing semantic integrity constraints,

and query modification. The modified request is passed to
the RAM.

RAM-this subsystem takes the internal representation

of a query or update request and performs optimization.
Information on access paths is obtained from the DDM.
The output of RAM is the execution strategy which is

passed to the EM.
EM-this subsystem uses the services of two major

modules; the Relational File Manager (RFM) and the
Transaction Execution Manager (TEM). The EM carries

out the execution strategy by making appropriate calls to
the RFM and TEM. In the case of a query, it also builds

the result. The RFM is responsible for managing the files

and TEM is responsible for concurrency control, recov-
ery, and integrity maintenance.

The LDV design described here assumes a single user

updating environment. It allows multiple users if those
users are only querying the database. Extending this de-

sign to a multiple user update environment is under cur-
rent investigation.

C. LDV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPipeline Organization

The three major operations performed by LDV are

query, update, and metadata management. Each of the
operations is an interaction between a non-LDV subject
representing a user, and the LDV subjects that manipulate

the database. In our design of LDV, each of these oper-
ations is processed by an assured, enforced pipeline.

Therefore, the LDV design consists of three pipelines
which pass through a number of subjects in order to sup-

port encapsulation and the security and/or integrity poli-
cies. The three pipelines are 1) the Response Pipeline 2)
the Update Pipeline, and 3) the Metadata Pipeline.

The Response Pipeline maps a query from the appli-
cation domains to the DBMS, processes the query to pro-

duce a result relation, labels this result, and exports it to
the user domain. This pipeline runs untrusted in the early

stages (e.g., the SQL parser and the Query Modifier); the
portion of the Pipeline which determines the classification

level of the data to be released is an example of a trusted
component.

The Update Pipeline allows subjects executing in spe-
cial data input domain to prepare records for input to the
DBMS, identify records to delete, and transforms them

into a data type readable by the DBMS domain. This up-
date pipeline also runs untrusted in the early stages; the
portion which determines the data classification and
where-to-write are trusted code.

The final pipeline provides the mechanisms for defining

a database structure, specifying relations, views, attri-
butes, classifications, and would normally be restricted to

access by the database administrator (DBA) or the data-
base systems security officer (DBSSO). As with the oth-

ers, the Metadata Pipeline allows untrusted code in the
early stages; an example of the trusted portion is that
which actually stores the classification constraints.

We need to make a distinction between the trustworthi-

ness of the code and the correctness of the code. If the
trusted code is not correct, then there can be breach of

security. If the untrusted code is not correct, then the worst

thing that can happen is that the result is incorrect; it can-
not cause a breach of security. This is why we can accept

unverified design code in the untrusted portions of a pipe-
line. The categorization into untrusted portions of a pipe-

line is based on the security needs, and not on the effect

on the correctness of results.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

STACHOUR AND THURAISINGHAM: LDV: SECURE DATABASE MANAGEMENT SYSTEM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA195

The LOCK TCB is responsible for spawning processes,
for efficient context switching, and for preserving inter-

ference among processes at different levels. Even though
the DBMS obtains these services from the LOCK TCB,

the overall design of each pipeline must ensure that the
security critical code is minimal, traceable, verifiable, and

that the number of processes performing trusted write-
downs is minimized. The pipelines are a collection of

communicating processes each of which could be verified
in isolation and all of which could be proven to commu-

nicate in ways that do not permit overt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor covert disclo-
sure of information. Since a DBMS is a large application,

there are numerous possible configurations for the pipe-
line’s processes. The choice of configuration is motivated
by the goal to reduce the amount of design verification

needed without compromising security. A module is se-
curity critical if an accidental or deliberate malfunction in

that module could result in improper leakage of informa-

tion to the outside world. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALOCK Interactions, Dependencies and Benejts

We have taken a design approach towards protection

which is significantly different from other approaches (see
for example [16] and [9]) and yet retains their best fea-
tures. The approach is attractive in that it retains the sim-

plicity and assurance associated with the access control
policies, yet by extending the model to include an explicit

classification policy, one can support the requirements for
an MLS/DBMS. It does raise some interesting implemen-
tation problems. Among these are

-how is DBMS information isolated from application

domains?
-how is information (data and associated classification

rules) imported to the DBMS?
-how is information exported from the DBMS to the

application domains?

Our mechanism for solving these problems is the LOCK

type enforcement mechanisms. Using type enforcement,
it is possible to encapsulate the DBMS code in isolated

domains over which subjects can read and write only spe-

cific types of data. This allows a layered system. The im-
portant features of this design are that

-DBMS queries can be forced to pass through an im-
porter domain which implements filters to perform con-
sistency checks and input canonicalization

-only subjects in the DBMS domain can both read and
write DBMS data; even within the DBMS we have ex-
plicit limitations.

-All responses exported from the DBMS domains to

the application domains must pass through an export do-
main,

Our design uses type enforcement to restrict the ability

of portions of the DBMS code to write and/or read certain
types of data. We note that the underlying LOCK security

kernel is available in all domains. This allows us to take

advantage of the LOCK mechanisms as needed to enforce
the underlying extensions to the basic security policy to
deal specifically with the needs of that domain. This is

feasible since only code within that domain must exhibit
special properties required for the “local” interpretation

of security; thus, the domain’s security proof can be sep-

arate from that of LOCK.
LOCK enforces types in the following way. Each

DBMS subject has a domain attribute. Similarly, each ob-
ject is of a particular type. Access to objects of certain
types is restricted to subjects in designated domains. This

access information is recorded in the Domain Definition
Table. The observation underlying the role of type en-
forcement is that the format and organization of data are

security relevant. Thus, the raw application data are dif-

ferent from other data such as mailboxes, engineering
drawings, labeled text, database data, database metadata,

and database history. Domains are essentially mecha-

nisms for encapsulating managers of different data types
and the transformation between data types. This provides

a way to decompose the proof of security for the system
into manageable pieces and to tailor the security policy
for a system in an application dependent fashion. The

basic idea is that as data are transformed from one type

into another, they are moving along an assured pipeline.
That is, the design code in each domain of the pipeline

has been verified to assure that it possesses the appropri-
ate security relevant functionality, and the type enforce-
ment mechanism provides assurance that data cannot be

transformed from one type to another except via the pipe-

line.
There are three theorems necessary to guarantee an as-

sured pipeline.
-The verified transforms are unbypassable.

-The transforms in the assured pipeline are correct.
-Data of the transformed type cannot be tampered

with.
The truth of the second of these theorems must be es-

tablished by a separate analysis. The formal top level

specification (FTLS) for LDV has performed this analysis
[20]. The first and third are corollaries of the fact that any

access allowed by LOCK is consistent with the DDT.

Nothing more must be verified to assure the truth of these
theorems. It is only necessary to configure the DDT ap-

propriately.

So by using the type enforcement mechanisms to create
a set of assured pipelines for the DBMS, it is possible to

encapsulate the DBM’s as a protected subsystem on a

multilevel secure TCB. This gives us a basic structure
whose bottom level consists of TCB hardware and soft-
ware, whose next level consists of the encapsulated DBMS

subsystem, and whose highest level consists of untrusted

and presumed hostile applications programs which access
the DBMS. Within the DBMS subsystem there will be

both security critical and noncritical subsets of programs;

the detailed security analysis of an entire DBMS is clearly
impractical, and the alternative of a design for a MLSI
DBMS without verification of the security critical por-

tions of the design is not possible. The verified subset of
the DBMS must enforce the DBMS security policy exten-

sions which refine the basic TCB security policy to clas-

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

196 IEEE TRANSACTIONS ON KNOWLEDGE A N D DATA ENGINEERING. VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 . NO. 2. J U N E 1990

sify data appropriately in cases where the information-
value based classification of data exceeds the inherent

classification level of that data, and to limit the possibility
of covert channels through the DBMS.

IV. LDV LANGUAGE

The DBMS must provide zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa language for use in describ-

ing the various schemas and for retrieving and maintain-
ing the data in the database. This language allows users

to deal with the database in abstract terms; to be con-
cerned with what must be done and not how it must be

done. Three distinct user roles are considered; ordinary
users, database administrators (DBA’s), and the database

system security officers (DBSSO’s). Ordinary users per-
form query insert, delete, and update operations on the

data. DBA’s maintain the metadata, i.e., the data that de-
scribe the database data. DBSSO’s maintain the funda-

mental classification rules.
The LDV language consists of two parts: a data defi-

nition language (DDL) and a data manipulation language
(DML). The DDL is used by the DBA and the DBSSO to

describe the data and the DML is used by the ordinary

users to retrieve and maintain the data. The DDL and
DML for this design [19] were originally based on the

American National Standards Institute (ANSI) Database
Language SQL [I] . In [26] the LDV DDL and DML have
been made compatible with a later version of ANSI SQL

[2]. We have extended the DDL to allow for the specifi-
cation of classification constraints, primary keys, and the
derivation of values of one tuple from those of other tu-

ples. The DML has been extended with a time-oriented
construct that refers to points in time, and a level-oriented

construct that refers to the classification levels of data.

V. RESPONSE PIPELINE

This section presents the design of the Response Pipe-
line of the LDV system. This pipeline is the query pro-
cessor. The LDV data distribution scheme, reconstructing
views at a given level, handling aggregate constraints and

inference control, overview of the major modules, and the
security critical components are described.

A . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALDV Data Distribution Scheme

The basic scheme for data distribution across LOCK

files is to assign a set of files per security level. There is

no replication of data across levels. The Update pipeline
determines the appropriate assignment of data to files by

examining the name-dependent, content-dependent, and

context-dependent classification constraints. The view at
any particular level is reconstructed by the MERGE op-

eration to be described later in this section. Since partial
relations that are stored at each level may have numerous
null values, these nulls can be squeezed out by padding
each partial tuple with a tuple descriptor. A tuple descrip-
tor is a bitstring whose length is the order of the relation.

A “1” in a position indicates that a value exists for that

attribute, and a 0 indicates that the field is null. A “D”
in the first position indicates that the tuple has been log-

ically deleted. In addition to the tuple descriptor, a time-

stamp and the level of the tuple are stored. The level of

the tuple is the level at which the tuple was inserted. These
three fields are not displayed to the user by default; they
are manipulated internally by LDV. However, the user

may request the retrieval of the timestamp and level fields.
The tuple descriptor always precede the tuple, followed

by the timestamp, level, and values for the attributes that

have “1”s in their corresponding positions in the tuple
descriptor.

The data distribution scheme used by LDV is described
using the sample relation EMPLOYEE illustrated in Ta-
ble I. The constraints on EMPLOYEE are the following:

SSN is the key
Default level for Name zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis (U)
Name is (TS) where Name zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ON
Default level for Address is (S)
Default level for Salary is (S)
(Name, salary) is (TS) when taken together.

One way to distribute this relation across LOCK data
files is to use the method of [16] and assign one file per
attribute. This is also the method used in [9]. A discussion

on this method is given in [151. Since LDV handles se-
curity constraints, additional files have to be created for
each additional level incurred by the content-based con-
straints. This method has security advantages as the attri-

butes are strictly separated. However, it has performance
disadvantages due to the large number of files that have
to be maintained. LDV does not use this scheme because

of the performance disadvantage [15]. Instead the LDV
distribution scheme packs as many attributes into a file as
possible, but at the same time ensuring security. The fol-

lowing distribution schemes were studied and compared
with respect to security and performance.

Method I-Each Level in a Separate File: If one file is

assigned per security level, the EMPLOYEE relation can
be distributed across files as shown in Tables 11-IV. Each
file contains the partial relation visible at the level of that

file or higher. The partial relation for the view at any given
level is computed from the data stored at that level and
from lower level data using the MERGE. The tuple de-

scriptor at the beginning of each partial tuple indicates the
attribute values represented by the partial tuple.

With this method of storing multiple attributes at the

same level in the message file, the enforcement of context
based constraints is difficult. This problem is illustrated

in the following examples.

1) No Trojan Horse in the System (A Trojan Horse is
malicious or hostile code): Suppose the S-user (Secret

user) issues the request: SELECT Name, Address, which
is then transformed into the following operations:

T1 + MERGE F-U, F-S over SSN
Result + PROJECT T1 over Name, Address.

The result is shown in Table V. The File Manager deter-
mines that nothing is being released at a higher level, and

releases the data.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

STACHOUR A N D THURAISINGHAM: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALDV: SECURE DATABASE MANAGEMENT SYSTEM

F-S

1011 1 DC lOOK

1011 2 NY l l O K

1011 3 LA llOK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

197

TABLE I

TABLE I1

1100

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111

TABLE IV

l*l
TABLE V

Result zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Eo

2) Trojan Horse in MERGE or PROJECT operators:

Suppose the same request is posed by the S-user. The re-

quest is transformed into the same operations described in
the earlier example. The result is shown in Table VI. The
address fields have values for salaries in them because the

Tojan Horse has switched those fields. The File Manager
must detect the Trojan horse in the buffer Manager that

switched the salary with the address, thus violating the
context-based constraint that Name and Salary cannot be
seen together. Another altemative is to verify all of the

design of the low level buffer management and file re-
trieval operations. Both alternatives seem difficult. The
performance of this method is promising because there is

a manageable set of files. Query processing and response

times are likely to improve considerably over the attribute
per file method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Method 2: By Context Upgrade in an Upgraded
File: One way to avoid the costly verification or compli-
cated File Manager design implied by the file-per-level

method is to do a “by context upgrade.” In this method,

the “by context” constraints arc taken into account when
inserting the values into files. That is, an Upgrader (in the

TABLE VI

110K

Update Pipeline) upgrades one of the attributes involved
in the “by context” constraint. For the example consid-
ered here, the files shown in Tables VII-IX are created.

A disadvantage with this method is that the Secret sub-

ject cannot read salary by itself (without name) as in-
tended by the constraints. A Downgrader would be nec-

essary to provide the required functionality. However, it
is impossible for a Trojan Horse running at Secret level
to switch the salary and address fields because the Salary

data are stored in a TopSecret file. As with the previous

method, there is a manageable set of files. Query pro-
cessing and response times are likely to improve consid-

erably over the attribute per file method.

Method 3: By Context Upgrade zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin Separate File: In this
method, initially there is one file per security level as in

method 1 . In addition, each attribute involved in a “by

context” constraint is placed in a separate file. For the
example considered the files created are shown in tables
x-XIII.

The advantage of this method is described with exam-
ples.

1) No Trojan Horse in the system: Suppose a S-user

makes the same request described in the example of
method 1 . The request is transformed into the following

operations:

T1 + MERGE F-U, F1-S over SSN

Result + PROJECT T1 over Name, Address

The result is shown in Table XIV. Here, the File Manager
opens the files F-U and F1-S. It then gets the context con-
straints relevant to the files opened. In this case, there arc
none. So the response is assigned the level (S).

2) Trojan Horse in the File Manager: Suppose an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS-
user makes the same request. The request is transformed
into the same operations as in case 1. The result is shown

in Table XV. Here, the Trojan Horse has changed the

MERGE so that it opens F2-S instead of F1-S. The File
Manager gets the relevant context constraints based on the

files opened. The constraint obtained is: Name, Salary is
TS located in F-U, F2-S.

The File Manager upgrades the result, thus frustrating

the Trojan Horse attempt. The level of the response is

(TS).
As with methods 1 and 2, there is a manageable set of

files. Method 3 is basically Method 1 with attributes rel-

evant to the context constraints isolated. The other attri-
butes can still be grouped. This is the method used in

LDV. It has the security advantages of the attribute per

level method and the performance advantages of the
methods 1 and 2 discussed here.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

198 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1100

1100

1100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IEEE TRANSACTIONS ON KNOWLEDGE A N D DATA ENGINEERING, VOL. 2. NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. JUNE 1990

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPD

2 BT

3 Eo

TABLE VI11

1010

TABLE IX

TABLE X

EO

TABLE XI

TABLE XI1

TABLE XI11

F--IS

ON S F 200K

TABLE XIV

I Result I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReconstruction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a View for a Given Level

The query processor reconstructs a partial relation rep-
resenting a given user view from the data distributed

across files. There is one such partial relation correspond-

TABLE XV

Result

110K

ing to each base relation in the user’s query. The remain-
ing query processing (for example join) is performed using

these partial relations. In order to reconstruct a partial re-
lation at a particular level, the query processor must take

into account context-dependent classification constraints,
and merge tuples from different files with the same pri-
mary key. For the second step, an operator called the

MERGE is presented. This operator works with a knowl-

edge of the properties of the tuples in the different parti-
tions of a relation. These properties are discussed first.

Characterizing Multilevel Tuples of a 3NF Rela-
tion: There is a relationship between tuples in a multi-
level view and the tuples in the partial relations that are

distributed in single level files. The tuple in a multilevel
view is formed by merging disjoint sets of attributes from
tuples of partial relations in lower level files. In this case,

we can say that the tuple at a higher level subsumes partial
tuples from lower levels. Another way to look at it is that
a tuple that was previously partitioned across levels is

being reconstructed by concatenating attribute values that
are at or below the level at which the reconstruction is
being done. The partial tuples involved in this reconstruc-

tion have the following property.

Key = Keyll = Key,* = . . . = Key,, (1)

where Key,, is the key of the higher level tuple being con-
structed and Key,, (1 I i I n) is the key of a tuple (from

the lower level partial relations) that is being used in the
reconstruction. The keys are the same because one is sim-

ply reconstructing the same tuple whose values were dis-
persed during the distribution. The reconstruction of a
multilevel 3NF relation is simply to sort each file on the

primary key and then MERGE as in sort-merge. Since
this is a common operation, one way to optimize it is to
maintain multilevel clustered indexes on the primary key

The remaining group of tuples in a multilevel relation

are those that are at a single level. For example, a U-user

could enter a tuple that is not distributed across levels.

After subsuming tuples that are distributed across levels,
the MERGE then adds on the single level tuples to the

resulting relation. These single level tuples can be con-
sidered special cases of the subsumed ones, except that
they only subsume themselves. They can be characterized
in terms of their keys as:

m i , [301).

Key single + Keyother (2)

where Keyslngle is the key of the single level tuple and

Keyother is any key in any file in the system.

- .-

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

STACHOUR A N D THURAISINGHAM: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALDV: SECURE DATABASE MANAGEMENT SYSTEM 199 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The Polyinstantiation Problem for 3NF Relations: The

major kind of integrity constraint on a 3NF relation is the

PRIMARY KEY CONSTRAINT which stipulates that a

set of attributes must uniquely identify each row in the
relation. For example, if SSN must uniquely identify the

rows in the EMPLOYEE relation, then the next version

of the same relation in which a user has completed an
update and inserted another tuple with SSN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 , has vi-

olated the primary key constraint as shown in Table XVI.
In a multilevel environment, it is possible for users at

different security levels to have different views of the same

tuple. That is, there could be two different tuples with the

same primary key at different security levels. This is
known as polyinstantiation. When polyinstantiation is
present, the primary key constraint is violated. LDV pro-

vides mechanisms for stipulating and enforcing primary
key constraints. The assumption is that the relations are

normalized up to 3NF. Suppose a TS-user adds the new
tuple (SSN = I , name = PS, Address = BO, Salary =
100 K), which violates the primary key constraint. The

Update Pipeline stores the new tuple along with its time-

stamp and level. Following a TS-user request to retrieve

all of the EMPLOYEE relation, LDV’s Relational File

Manager reconstructs EMPLOYEE for this particular user
as shown in Table XVII.

The user has the ability to choose which tuples are dis-
played based on the timestamp and level. The default is

to display all tuples. Suppose the TS-user’s query was the
following:

SELECT* FROM EMPLOYEE WHERE Level(*) =
S

The result produced is shown in Table XVIII.

Option to Derive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa Tuple: In addition to adding con-
structs in the retrieval language to allow user to specify
time and to add a classification factor to a selection con-
dition, the data definition language supports the deriva-

tion of data. As an example, the definitions of Address
and Salary could contain the following derivation factor.

DERIVE LEVEL TS FROM LEVEL S.

The derivation factor says that, for this attribute, values

are derived from the S-level tuple having the same pri-
mary key, because the primary key is being enforced (in

the Update Pipeline) at each level. Even with polyinstan-

tiation, there can be one tuple with each primary key value
at the S-level.

Reconstruction Process: The multilevel 3NF relation

is constructed as follows.
1) Open the files containing data required for compu-

tation of the result. Take into account context-dependent
classification constraints and the history of opened files at

this level. Using this history, context-dependent classifi-
cation constraints are considered not only for current
query, but for previous queries also.

2) Merge the files that were opened by performing the
following steps:

TABLE XVI

TABLE XVII

TABLE XVIII

I EMPLOYEE I
SSNName ddress Salary

2a) SUBSUME all the tuples that are partitioned at or
below the level at which the reconstruction is being done.

2b) DERIVE all those tuples that have derived attri-

butes.

2c) Tag on all the single level tuples
After the execution of the MERGE, the RFM then fil-

ters the remaining spurious tuples by enforcing the pri-
mary key constraint in the manner requested by the user
using the time and level constructs. If the user has not
requested any other filtering outside of what the MERGE

has already performed, then the result of the MERGE is
passed on.

The user may request that timestamps and levels be in-

cluded in the result. This enables later updates and ex-
pedites manual declassification of part of the output. In

addition, we distinguish between a “blank” and a “null”

field. A “blank” can be used to prevent lower level data
from being merged into higher level field, whereas a

“null” always results in a merge.

The MERGE operation is illustrated using the follow-
ing example. In this example, the Address and Salary at
level TS are derived from level S if not specified by the

user. The tuple descriptors, timestamps, and levels are
shown and are carried along in each step of the MERGE

for each attribute. The abbreviations used for tuple de-
scriptors, timestamp, level, SSN, Name, Address and
Salary are TD, T, L, S , N , A , and SA, respectively. Sup-
pose that we need to build a TS view of the EMPLOYEE
relation by merging the following files shown in Tables

XIX-XXII. Note that F-TS contains a pointer (repre-

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

200 IEEE TRANSACTIONS ON KNOWLEDGE A N D DATA ENGINEERING. VOL 2. NO 2. JUNE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1990 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

’ID

1111

1111

TABLE XIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T L S N A SA

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATS 4 ON SF 200K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 TS 1 PS BO F2-S(1)

TABLE XX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ID

TABLE XXI

T L S T L N T L A T L S A

TABLE XXII

I F-TS I

TABLE XXIII

I SUBSUME Result I

sented by F2-S(1)) to the appropriate file containing the

values specified in the DERIVE construct. These are
initialized in the Update Pipeline when the tuple is in-

serted.
The first step in merging these four files is to SU13-

SUME all of the tuples that are partitioned into files at or
below TS. The result of the SUBSUME is shown in Table

XXIII. The second step in merging these four files is to

derive all of the tuples that have derived attributes. The
result of the derive is shown in Table XXIV. The third

step is to combine the results of the first two steps with the

single level tuples producing the result shown in Table

TABLE XXV

XXV. This result can now be passed on for further query
processing or for display to the user. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Enforcement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Constraints on Aggregate and
General Inference Control

Aggregation constraints are enforced by the EX-
PORTER after the result of the query has been built. Ag-

gregation constraints are defined using the extended SQL,
i.e., using the aggregate functions COUNT, AVG, MAX,
MIN, SUM, and COUNT. The EXPORTER examines the

aggregation constraints relevant to the query and may re-

classify the result. Initially, the EXPORTER is an appli-
cation specific downgrader. We believe that this is the

correct place for general inference control as well.
As an altemative to the EXPORTER, we considered

using the LDV data distribution scheme to partition data

used in the computation of aggregates, and to enforce the

aggregation constraints in the same way that context-de-
pendent constraints were enforced by ensuring that certain

files are never accessed together.
Consider the constraint: “COUNT (EMPLOYEE) >

10 is SECRET”. One way to enforce this constraint is to

split all UNCLASSIFIED EMPLOYEE files so that no

single file ever has more than 10 tuples, and use the same
data structure used for the context-based constraints to

make sure that some files are never accessed together. The

problem is that there are many possible aggregation con-
straints and many possible combinations of such con-
straints that could be defined per relation. This method

could potentially lead to one partial tuple per file, or to
constraints that would make only one file accessible to the

first user that logs on, and none of anyone else. As a re-

sult, we used the first altemative, i.e., the EXPORTER.

D. Overview of the Major Modules

The Response Pipeline is illustrated in Fig. 3 . The ma-

jor modules are the URM, the RAM, the EM and the
RFM. Each of these modules are described here.

URM: This module provides an SQL interface to LDV

for queries that is consistent with the ANSI SQL standard.
It performs discretionary access control on views as de-

fined by the ANSI standard (i.e,, not LOCK’S discretion-
ary control policy). Modification of queries on views to
form queries on base relations, and modification of quer-

ies using security constraints to ensure that the response

is classified so that it is observable to the user [14]. All
information needed for translation is provided by the

DDM (Data Dictionary Manager).

RAM: This module takes the intemal representation of

I-
_ -

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

STACHOUR AND THURAISINGHAM: LDV: SECURE DATABASE MANAGEMENT SYSTEM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA201

DBMS Request Parser User Request
Manager zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Y + i Modified Query zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Query Srrategy

f
Execuoon
Manager

Fig. 3. Response pipeline

the query built by the URM, produces a relational algebra
representation of the query, and builds an optimal exe-
cution strategy. The information on access paths is ob-
tained from the DDM. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

EM: This module takes the execution strategy pro-
duced by the RAM and builds the result of the query by
executing each operation in the relational algebra repre-
sentation. It has a procedure called Build-Result which

uses the service of RFM to build the response. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RFM: This module is used in the Response Pipeline by

the EM to build a view of a single relation at a particular
level as described earlier. The RFM is composed of the
Relation Manager, the Record Manager, the Index Man-

ager, and the File Manager. The Relation Manager man-
ages the relations by using the services of the data storage
and retrieval managers. The Record Manager manages

collections of records stored as tuples by the Relation
Manager. The Record Manager uses the services of the
File Manager and Index Manager to store and retrieve
records. The Index Manager is used by the Relation Man-

ager to store keys in an index and manages them in sorted
order. The Index Manager uses the services of the File

Manager to store and retrieve keys. The File Manager
manipulates the data management files.

E . Security Critical Modules

The content-based constraints are enforced by LOCK
due to the distribution scheme that partitions data into ap-
propriately labeled files. For context-based constraints, a

data structure is maintained to indicate what files may or

may not be accessed together (this data structure is cre-
ated and maintained by transforming context-based con-
straints expressed in SQL into an equivalent internal form

expressed as constraints on sets of files). Whenever a file

is to be accessed, the File Manager must first read the
history of previous accesses to determine if the file re-

quest can be granted. If so, the File Manager appends the
new file request to the history file and then opens the re-
quested file. Because it maintains this history file and re-
stricts file access requests using context-based con-
straints, the File Manager is security critical. In addition,

it is security critical that the File manager opens the right

files and not switch file names (otherwise a file involved
in a context-based constraint whose violation cannot be

detected may be opened).

A module can be security critical for any one of the

1) It controls the order-of-processing security critical

2) It processes security critical data (potential mispro-

3) It transmits security critical data from one place to

4) It acts as a guard for security critical data (potential

5) It would provide a covert channel (potential signal-

The security critical components of the Response Pipe-

following reasons.

modules.

cessing).

another (potential substitution).

misauthorized deposit or withdrawal).

ing on the data).

line are portions of the EM and the EXPORTER.

VI. UPDATE PIPELINE

This section presents an overview of the Update Pipe-

line design. Processing an insert request, delete request,

and a modify request, an overview of the major modules,
and the security critical components are described.

A . Insert Request

An insert request must be processed so that data are

inserted into the correct file at the correct level based upon
the classification constraints and the inserting subject’s

level. Upgrades are determined by the values of the ele-

ments of the tuple to be inserted.
The insert request is first imported into the DBMS do-

main. The imported request is then sent to an Upgrader

which computes the level of the insert operation as fol-

lows [2 3] .
1) The level of each attribute specified in the insert re-

quest is set to the corresponding default level.

2) The relevant constraints visible at the processing

subject’s level are retrieved. Each relevant constraint sat-
isfies the following condition:

It classifies an attribute which is specified in the insert

request at the level which dominates the processing sub-
ject’s level, and it has not been examined during a pre-
vious iteration of this algorithm.

3) For each relevant constraint, a new level is com-

puted for each attribute that is classified by the constraint
as follows:

new level = least upper bound (old level, level speci-
fied in the constraint).

4) Compute the least upper bound of the levels of the

processing subject and all the attributes specified in the

insert request.
5) If the new level dominates the level of the process-

ing subject, then create a new subject at this new level
and pass the parameters associated with the current pro-

cessing subject to the new subject. Delete the current pro-

cessing subject. The new subject becomes the current pro-
cessing subject. Go back to step 2.

6) Otherwise, if the new level is equal to the current
processing subject’s level, then continue with the remain-

_ _

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

202 IEEE TRANSACTIONS ON KNOWLEDGE A N D DATA ENGINEERING. VOL. 2. NO. 2. J U N E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1990

111

110

111

ing processing of the insert operation, i.e., this is the level

of the insert operation.
We illustrate this algorithm with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa simple example. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R (A 1 , A 2 , A 3) be a relation with the following con-
straints:

C1: I f A 2 = 5, then A1 is TS
C2: If A 3 = ttt then A 2 is S
C3: C1 is S
C4: C2 is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU
C5: Default level of A l , A 2 , A 3 is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU.

A U (Unclassified) subject requests to insert (alpha, 5,
ttt) into R . Initially the processing subject’s level is U and

the default levels of all three attributes are U. During the
first pass of the Upgrader, the relevant constraint is C2.

The level of the attribute A 2 is computed to be S . Then

the new level is set to the least upper bound of the levels
of A l , A 2 , A 3 , and the processing subject’s level. This
new level is S . A new processing subject is created at the

Secret level. During the second pass, the relevant con-
straint is C1. The level of A1 is computed to be TS. The
new level is the least upper bound of the levels A1 , A 2 ,
A 3 , and the processing subject’s level. This new level is

TS. A new processing subject is created at the TS level.

During the third pass, no relevant constraints are re-

trieved. The levels of the attributes remain the same. The
new level is computed to be TS. This new level is the
same as the processing subject’s level. Therefore, the in-

sertion is performed at the TS level.

After the level of the insertion is computed, a view of
the relation specified in the insert request is built using

the MERGE operation of the Response Pipeline. Once the

view is built, the request may be modified if necessary as
follows:

If the primary key value specified in the request al-

ready exists and the tuple is visible at the level of
the insert operation and not below this level, then

the request is rejected as it is a duplicate tuple with

the same primary key. If it is not a duplicate tuple
at the level of the insert operation, then the tuple is
inserted with a new timestamp and the level of in-

sertion into a file at the level of the insert operation.

The modified request is passed to the RAM for opti-

mization, and the EM for execution. RAM translates the

request into requests on files. In the example considered
here, the request is translated into operations on a TS file,
say, F1, as follows:

OPEN F1

INSERT (alpha, 5, ttt) INTO F1
CLOSE F1.

Information about the file F1 is retrieved from the
DDM. This is because the data dictionary includes the

association between the file F1 and the relation R .
We illustrate the insert operation with some examples.
Consider the relation R (A 1 , A 2 , A 3) with the follow-

ing constraints: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

00 S alpha 17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxxx

01 s beta 34

02 S delta 2Ouuu

TABLE XXVII

I F-TS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1
101 p l FSlbeta lwwy.1

111 p3 pIga” ”a l5 pyy

TABLE XXVIII

TABLE XXIX

A1 is primary key
A1 is TS if A 2 = 5
A2 is TS if A 2 = 5
A3 is TS if A 3 = www or yyy
default value of A l , A 2 , A 3 is S
level of the constraints is U.

The relation R is stored in a S file F-S and a TS file F-

TS as shown in Tables XXVI and XXVII. Recall that the
first field is the tuple descriptor, the second field is the

timestamp, and the third field is the level. The views at
levels S and TS are V-S and V-TS, respectively. These
views are shown in Tables XXVIII and XXIX. They are
computed using the MERGE operation in the Response

Pipeline. Note that the timestamp and level precede each
attribute.

In the examples to be given here, it is assumed that the

level of the insert operation has already been computed.
Example I : Suppose that a S subject requests to insert

(gamma, 22, zzz).
This example illustrates the case where a subject at-

tempts to insert new data where data already exist with

the same primary key at a higher level. The solution is to
insert the tuple at level S with a timestamp and level. The
primary key and level uniquely identify the tuple. After
the insertion, the file F-TS does not change. F-S, V-S,

and V-TS are changed as shown in Tables XXX-XXXII.
Example 2: Let F-S, F-TS, V-S, and V-TS contain the

values at the end of Example 1.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

STACHOUR AND THURAISINGHAM: LDV: SECURE DATABASE MANAGEMENT SYSTEM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

203

TABLE XXX

TABLE XXXl

TABLE XXXII

Suppose that a TS subject requests to insert (alpha, 18,

aaa) .
This example illustrates the case where there is a tuple

at the lower level with the same primary key. The solution
is to insert the tuple at the higher level with a new time-

stamp and level. After the insertion only F-TS and V-TS
are changed. The new values are shown in Tables XXXIII
and XXXIV. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Example 3: Let F-S, F-TS, V-S, and V-TS contain the

values at the end of Example 2.
Suppose that a TS subject requests to insert (pi, 10,

bbb).
This example illustrates the case where a subject at-

tempts to build a tuple and no tuple exists in the database

with the same primary key. The solution is to insert the
tuple into F-TS. After the insertion, only F-TS and V-TS
change. The new values are shown in Tables XXXV and
XXXVI.

Example 4: Let F-S, F-TS, V-S, and V-TS contain the
values at the end of Example 3 .

Suppose that a TS subject requests to insert (pi, 10,

kkk).
This example illustrates the case where a subject at-

tempts to insert a tuple and there is already a tuple with

the same primary key at the same level. The solution is
to reject the insert request. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Delete Request

Processing of a delete request is less complex than that
of an insert request. In this case, it is not necessary to
compute the level of the delete operation as it is assumed

to be that of the processing subject. This is because the

TABLE XXXIII

TABLE XXXIV

1 1 1 I I I I I I
111 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlOSlTSlalpha IOS[rSjl8 (OSITSpaa

TABLE XXXV

TABLE XXXVI

*-property enforced by LOCK prevents higher level sub-

jects from deleting information from lower level files.
Therefore, upgrading the level of the delete operation does

not make sense. A delete request is first imported. Then
a request is made to the Response Pipeline to build a view
of the relation specified in the delete request at the level

of the processing subject. The delete request is modified

according to the view just built as follows.

1) For each tuple being deleted, if any part of the tuple
is visible at the lower level, then the delete request is re-

jected. This is because a higher level subject cannot write

into a lower level file.
2) If the subject wants to delete the portion of the tuple

visible at its level, then the values corresponding to this

portion are changed to NULL.
3) If no part of the tuple to be deleted is visible at a

lower level, then the tuple is marked as deleted in the file

at the level of the delete operation. The tuple is not re-
moved from the file immediately because it may be re-

quired by a higher level subject in reconstructing the

higher level view using MERGE. An expunge daemon

periodically reviews the files and remove the tuples that

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

204 IEEE TRANSACTIONS O N KNOWLEDGE A N D DATA ENGINEERING. VOL. 2. NO. 2. J U N E 1990

are marked as deleted. Before removing the tuples, the

daemon inserts them into the appropriate higher level files.
We expect the expunge daemon to be a set of subjects

running at various levels under the control of the DBSSO

(database systems security officer). They would zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlook at
tuples logically deleted over some period and do the phys-

ical deletion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Example 5: Let F-S, F-TS, V-S, and V-TS contain the

values at the end of Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4
Suppose that a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS subject requests to delete the tuple

where A1 = beta.
This example illustrates the case where a lower level

subject deletes a tuple that is used in building a view at a
higher level. The solution is not to remove the tuple but
to mark it as deleted. After the delete operation, no
changes are made to F-TS and V-TS. F-S and V-S are
changed as shown in Tables XXXVII and XXXVIII.

C. Modib Request

The modify request is treated as a delete request fol-
lowed by an insert request. Therefore, the details are not

described here. We illustrate the modify request with an

example.
Example 6: Let F-S, F-TS, V-S, and V-TS contain the

values at the end of Example 5 .
Suppose that a TS subject requests to modify A2 = 81

where A1 = delta.
This example illustrates the case where a subject at-

tempts to modify an element with a lower access class.

The solution is to insert the tuple with a different time-
stamp and level at the higher level. (Note that the lower

level information cannot be deleted due to the *-prop-

erty.) F-S and V-S do not change as a result of the modify
operation. F-TS and V-TS are changed as shown in Ta-

bles XXXIX and XL.

D. Overview of the Major Modules

The major modules in the update Pipeline are the URM,
RAM, and the EM. The relationship between these mod-

ules is shown in Fig. 4. Each of these modules is de-

scribed here.
URM: This module provides an SQL interface to LDV

for updates that is consistent with the ANSI standard. It

performs discretionary access control on views as defined

by the ANSI standard (i.e., not LOCK’S discretionary ac-

cess control policy), modification of the updates on views
to form updates on base relations, integrity checking, and

classification constraint enforcement. All information
needed for the translation is provided by the DDM.

Among the functions of URM, of particular interest are

update security modification and insert level calculation
as these are peculiar to multilevel systems. The update

security modification process modifies the update request
using the classification constraints. For an insert request
it computes the level of the insert using the Upgrader,

builds the view of the relation being updated using
MERGE, and checks for a tuple with the same primary

key visible at the level of the insert and not below (it re-

TABLE XXXVII

TABLE XXXVIII

TABLE XXXIX

TABLE XL

DBMS Request Parser

Updates and Levels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f

DBMS Result Exeunon
Manager

Fig. 4. Update pipeline.

jects the insert if it finds one). The Upgrader determines

the level of an insert using classification constraints. If a
predicate of a constraint evaluates to TRUE, it is used to
assign a new level, otherwise, the constraint is ignored.
The output is the modified insert request and its level.

For a delete request, it builds a view of the relation
being updated using MERGE, builds a list of tuple iden-

tifiers (timestamp, level, primary key) being deleted by
eliminating those that are visible at a lower level, and
builds a delete request to delete those tuples. The output

is the delete request and its level. For a modify request,

it does the delete processing followed by the insert pro-
cessing. The output is a delete request and its level, and

an insert request and its level.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

STACHOUR A N D THURAISINGHAM: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALDV: SECURE DATABASE MANAGEMENT SYSTEM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

205

RAM: This module takes the internal representation of
the update built by the URM, and builds an optimal exe-

cution strategy. The information on access paths required
by the optimization process is obtained from the DDM.

EM: This module takes the execution strategy pro-

duced by the RAM and executes each operation in the

strategy using the services of the Relational File Manager
(RFM). The RFM is composed of the Relation Manager,

the Record Manager, the Index Manager, and the File

Manager. The RFM carries out the requests issued to it
by the RAM by making use of the services of its compo-
nent modules.

E. Security Critical Modules

As described earlier, in LDV, we restrict security crit-

ical code to a subset of the modules. Because of the or-
ganization of LDV, subjects performing designated con-

trolled roles, and objects touchable only by certain role-

players, only those modules executed by subjects that
compute security critical information (such as the level of
an insert) or that touch security-critical data (such as file

containing the database data) are security critical. There-
fore, in the Update Pipeline, the only security critical

component is the Upgrader, when it computes the level

of the insert. This is because once the level is computed,
the remaining processing will continue at this level and

LOCK will provide the necessary protection.

VII. METADATA PIPELINE

This section describes the Metadata Pipeline. The ma-

jor design issues, an overview of the major modules, and
the security critical modules are described. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A . Design Issues

The Metadata Pipeline is used to create, delete, and
maintain metadata. The major component of the Metadata
Pipeline is the DDM that maintains all metadata, and acts

as a server of the metadata to the Response and Update

Pipelines. The metadata include information about all of

the schemas (conceptual, external, and internal), rela-
tions, attributes, classification constraints, privileges, se-

mantic integrity constraints, views, indexes, and database
files. All of the metadata are stored in LOCK files. The
only security critical functions of the Metadata Pipeline
are those concerned with the classification constraints,

i .e., it is security critical that the classification constraints
be created, deleted, and maintained correctly. The incor-

rect modification of other metadata would not result in
any security violation. Therefore, the design issues we
addressed were the completeness and consistency of clas-

sification constraints and the translation of the classifica-

tion constraints on relations into classification constraints
on files. We discuss these issues here.

Completeness and Consistency of Classijication Con-
straints: A set of classification constraints is complete if
every piece of data is assigned a classification level via
the classification constraints. We enforce completeness by

ensuring that every piece of data has a default classifica-
tion level.

Checking for consistency of a set of constraints was one
of the more difficult tasks in the design. Our primary ob-

jective here is to ensure that the security constraints are
defined in such a way that there is no security violation.

Towards this direction, we have developed a set of rules
that a set of classification constraints must satisfy. These

rules include the following [24]:
Rule 1: The level of the value of the primary key in

any tuple must be dominated by the levels of the values

of all the other elements in the tuple.
Rule 2: The minimum level of any database entity must

dominate the level of the existence of the entity.

Rule 3 : The level of the existence of a database entity

must be dominated by the level of any metadata that refers
to that entity.

Rule 4: The classification level specified in the classi-
fication constraint must dominate the default levels of all

the attributes which are included in the classification.

Rule 5 : The level assigned to each classification con-
straint must be dominated by the level of at least one at-
tribute referenced in the classification constraint.

Rule 6: The level assigned to a foreign key attribute

must dominate the level assigned to the corresponding
primary key attribute.

We justify some of the rules stated here. For example,

consider rule 1. If the primary key of a tuple is not visible
to a user, this user will not be able to uniquely identify a

tuple. In the case of rule 2, if the level of the statement

“the salary is 20 K” is Secret and the level of the state-
ment “there exists an attribute salary” is Topsecret, then
by getting the information “the salary is 20 K”, a Secret

user has acquired Topsecret information.
Ensuring the consistency of the classification con-

straints does not have to be done automatically by the sys-

tem; it can be done off-line by the DBSSO. An automatic
system for enforcing these rules would ensure that they

are satisfied whenever a classification constraint is up-
dated. Current logic programming systems such as those

described in [6] and [22] can be used to develop such a

tool.
Constraint Storage and Translation: The classification

constraints as specified by the DBSSO at the conceptual
level have to be stored with the metadata and also trans-

lated into classification constraints on the physical files.
We use relations (system tables) to store both the con-

straints on relations and the constraints on the physical
files, When a new classification constraint is inserted, de-
leted, or modified, the appropriate system tables which

store the classification constraints at the conceptual level

are first updated. If the classification constraints under
consideration cause the security levels of the attributes or

parts of the attributes to change, new files for the attri-

butes are created at the new levels and the system tables
are updated to reflect this change. The classification con-
straints may be specified when a relation is created or at
a later time. The informal algorithm which translates the

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

206 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CONTEXT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACONSTRAINTS

L-onsuaint name table name column name condition classifjcation level

c1 EMPLOYEE Name NULL Secret
c1 EMPLOYEq Salary NULL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsecret

IEEE TRANSACTIONS ON KNOWLEDGE A N D DATA ENGINEERING. VOL. 2. NO 2, JUNE 1990

classification constraints specified at the conceptual level

to classification constraints on files, and creates the ap-

propriate files, is given below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Assumption: For each attribute there is a default level.

Therefore, a file at this default level exists which stores
the attribute. The application of additional simple, con-

tent-based or context-based classification constraints can

only result in upgrades.
Translation of Simple or Content-Based Classijication

Constraints: If the level specified in the classification

constraint dominates the current level of the attribute
specified in the constraint, then create a new file for this
attribute at the level specified in the constraint. Translate

the classification constraint to one on files, and update the
appropriate system tables (note that the current level could

be the default level or a level assigned to this attribute by
another constraint).

Translation of Context-Based Classzfication Con-
straints: If the level specified in the classification con-

straint dominates the current levels of the attributes, then
for each attribute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA classified by the classification con-

straint do the following. For each file which stores A , if
this file stores other attributes as well, then remove at-

tribute A from this file and create a new file at the same
level which will store A in the future. Translate the clas-

sification constraint to one on files, and update the appro-
priate system tables (note that the current levels of the
attributes could be their default levels or the levels as-

signed by other constraints).

Suppose a context constraint which classifies the names
and salaries of employees taken together at the Secret level

is enforced. Table XLI shows how this constraint is
stored. The condition field is “null” because there is no
condition attached to the constraint (for example, if the

names and salaries taken together is Secret if the em-

ployee is not PD, then the condition field will specify
“name # PD”) . Assuming that the names of employees

are stored in file F1 and the salaries of employees are
stored in file F 2 , Table XLII illustrates how this con-

straint is stored as a constraint on files.

B. Overview of the Major Modules

The major modules in the Metadata Pipeline are the

URM and the DDM. The relationship between these mod-
ules is shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 . Each of these modules is de-
scribed here.

URM: Creation, deletion, and modification of meta-
data are specified in the SQL DDL. The DDL provides
a create statement, drop statement, alter statement, integ-
rity assertion statement, index definition statement, priv-

ilege definition statement, privilege revocation statement,
and security assertion statement. The URM processes

these statements. It invokes the DDM to update the me-
tadata.

DDM: The DDM has three major components:
1) the dictionary which consists of the conceptual, ex-

ternal, and internal schemas,

TABLE XLII

CONTEXT CONSTRAINTS ON FILES

ser Request

Fig. 5 . Metadata pipeline

2) the dictionary schema which is a description of the
generic structure of the dictionary, and

3) the dictionary processing system which is the set of

programs that interact with the dictionary and the dictio-
nary schema to provide the functionality of the DDM.

The relational model is used to represent the dictionary

component of the DDM. The dictionary consists of a set
of tables which describe the conceptual, external, and in-

ternal schemas of the database. They are stored at the se-

curity level of the DBA or DBSSO who inserted the
metadata. The conceptual schema consists of the descrip-
tion of the relations, attributes, classification constraints,

privileges, and semantic integrity constraints. The exter-
nal schemas consist of the description of views and view

privileges. The internal schema describes the physical im-
plementation of each relation. It includes a description of
the files that correspond to each relation, the indexes de-
fined by the user, and the classification constraints on files.

The dictionary processing system consists of modules
that manipulate the dictionary tables. These modules can

be grouped into two categories: 1) The modules used by
the response and update pipelines to provide information

of the metadata, and 2) the modules used by the metadata
pipeline to update the metadata. Each SQL DDL state-

ment results in updates to the dictionary table. These up-
dates are processed at the level of the DBA or the DBSSO

performing the update.

C. Security Critical Modules

The security critical components of the Metadata Pipe-
line are the components which are responsible for the

maintenance of the classification constraints. The classi-

fication constraints are parsed by the URM and passed to
the DDM. DDM first checks for the consistency of the
classification constraints (this operation can be performed

offline by the DBSSO). The classification constraint is

then inserted into the appropriate dictionary tables at the
level of the DBSSO inserting the classification constraint.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

STACHOUR AND THURAISINGHAM: LDV: SECURE DATABASE MANAGEMENT SYSTEM 207

These classification constraints are later used by the Up-

date Pipeline to determine the level at which the update
request has to be processed. After the classification con-

straints are stored in the appropriate tables, they have to
be translated into classification constraints on files. This

is because the Response Pipeline needs these classifica-
tion constraints on files to determine which files to open.

The security critical modules are the process assertion
statement and process drop statement. The functions of

the process assertion statement module include the inser-
tion of security constraints while the functions of the pro-
cess drop statement module include the deletion of secu-

rity constraints.

VIII. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOPERATING SYSTEM SUPPORT FOR LDV

The operating system issues that have been identified
are concerned with process management, file manage-
ment, buffer management, and consistency control zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25] .
Process management issues affect all aspects of the LDV

system design, file management issues affect the design
of the Relational File Manager, and buffer management

and consistency control issues affect the design of the
Transaction Execution Manager. We describe the issues
of process management, file management, and buffer

management. Consistency control issues are only appli-

cable to a multiple user updating environment. These is-
sues are currently being investigated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Process Management

There are two process management issues that arise in

the system design of LDV: process isolation and process
control.

Process Isolation: LDV is a set of processes running

under the control of LOCK. Assured pipelines (Response,
Update, and Metadata Pipelines) are used to provide pro-

cess isolation. These pipelines consist of a series of sub-
jects executing in special domains on special types of ob-

jects that ensure tamper-proof maintenance of sensitive
data. Each subject and object have a associated set of

characteristics.
The characteristics of a subject are:

Subject-Name zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= The name we use to identify this sub-

Purpose = What this subject does
Role = The generalized role that this subject plays

Domain = The LOCK domain of objects this subject

Read-Datatype = Datatypes of objects this subject will

Write-Datatype = Datatypes of objects this subject will

Update-Datatype = datatypes of objects this subject

Parameter-Datatype = Datatypes of parameter object,

ject

will read

read

write

will read and write

not data-object.

The characteristics of an object are:

Object-Name = The namer we use to identify this ob-

Purpose = Why we have this object

Datatype = the LOCK datatype of this object

Contents = What it is that this object contains
Read-Domain = Domains of subjects that can read this

Write-Domain = Domains of subjects that can write

Update-Domain = Domains of subjects that can update

A sample subject and object belonging to the Response

Subject-Name = Importer

Purpose = “Act as a first-gate into the database do-

Role = Data-Importer
Domain = Importer

Read-Datatype = Vanilla
Write-DataType = DBMS-Request

Update-Datatype =

Parameter-Datatype =

Object-Name = DBMS-Request
Purpose = “Hold the input as typed by the user”
Datatype = DBMS-Request

Contents = “An SQL DML or DDL request as a

Read-Domain = URM

Write-Domain = Importer
Update-Domain =

Process Control: LDV relies on LOCK for process
creation, scheduling, and synchronization. Various alter-

natives have been examined for the organization of the set

of processes in the assured pipelines for LDV [25] . Our
choice for a single user updating environment is to have
a set of processes per user, with those processes running

at appropriate levels for that user.
LDV uses the services provided by LOCK such as cre-

ate subject, destroy subject, delete object, wait on signal,

and signal subject in order to create subjects and objects

in the proper domains and of the proper types as needed.

Some objects exist within the database only for the life-
time of a single database transaction, and are deleted as
its conclusion to prevent potential intertransaction covert
channels. Which subjects are created at database startup,

which at user entry to the database, and which with a par-
ticular transaction is an open question. One possibility

would be to start up subjects as soon as possible, and use
the LOCK signaling mechanism to pass the control action
of “the next transaction is ready to process” down the
pipelines.

B. File Management

A typical DBMS uses an Operating system file system
to store the data, metadata, and log data for recovery. For
performance reasons it is useful for a DBMS to be able to

ject

object

this object

this object.

Pipeline are given here:

mains”

string”

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

208 IEEE TRANSACTIONS ON KNOWLEDGE A N D DATA ENGINEERING. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL 2. NO 2. JUNE 1990

store the data in physically contiguous blocks if desired.
This is useful for sequential file access to a single relation

stored in a single file. In addition, the DBMS usually im-

plements multilevel directories, hashing, and indexes on
top of the file system.

LDV will be built on top of the LOCK TCB which pro-
vides services for the manipulation of objects. LOCK pro-

vides the following services that are used for file manage-
ment: create object and delete object. Data values will be
stored in the individual records of the database, rather than

having pointers to the data values. These records will be

manipulated as pointers in virtual storage. As a result, all
of the data values of a record can be fetched by a single

LOCK I/O operation, since they will be contiguous in a
single LOCK object. Indexes will be implemented in the

form of B-trees. Each relation may have anywhere from
zero indexes up to an index on each column. It is also
possible to create an index on a combination of columns,

provided they are all at the same security level. Indexes

make it possible to scan a relation in order by the indexed
values, or to directly access the records which match a

particular value or range of values. The relationship be-
tween a table and a set of files will be maintained in the
data dictionary.

LDV subjects in the DDT are defined so that object of

particular types can only be created and destroyed by par-
ticular subjects. This prevents object-substitution by a

trojan horse elsewhere in the database. Since LOCK does
not provide directory management, LDV will need to
maintain its own internal directory that maps relation
names to file names. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABuffer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAManagement

A typical DBMS does not use the operating system
buffer management for performance reasons [27]. In order
to implement its own buffer management, LDV must be

able to partially control the main storage replacement pol-
icy provided by LOCK.

LDV will implement its own buffer management in the
form of a main memory cache for the stored files that nor-

mally reside in secondary storage. The buffer manager
loads pages in main memory for manipulation and selects

pages to be written back to disk when required. Since a
physical access to a database page on disk is much more
expensive than an access to a database page in the buffer,
the main goal of the buffer manager is the minimization

of physical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA110.
The interface to the buffer manager consists of a request

to access a page and an optional statement of update in-
tent. This is done by issuing a FIX operator with a virtual

storage page identifier, e.g., page 8 of the object whose
id is 438. As a result, the page is located and fixed in main

memory to prevent replacement during use. The virtual
address of the frame containing the page is known so that
the data on the page may be directly manipulated by LDV.

When the page is no longer being addressed by a trans-
action, an UNFIX operation on the page is issued and the
page is made eligible for replacement.

LDV must implement its own buffer management in or-
der to have control over prefetching of blocks, the re-

placement strategy, and the ability to do selected force.

The buffer manager will provide three functions: pre-
fetch, block management, and selected force. The pre-

fetch function is used during query processing. The query
processor can give advice to the buffer manager concern-
ing what blocks to prefetch into the main memory cache.

The block management function is concerned with the

strategy for replacing blocks in the buffer pool. One such
strategy is least recently used (LRU), in which blocks for

which there is locality of reference will remain in the

cache over repeated reads and writes. The block manage-
ment function can accept advice from the query processor
concerning alternative replacement strategies. The se-

lected force function is necessary for recovery. The re-
covery manager must be able to force data to disk at cer-

tain times in the transaction execution, in order to recover
from a system crash. Since LOCK is a virtual storage op-

erating system, the lack of LDV buffer management, or
the accidental reference to an item on a page that had not

been fixed by the LDV buffer manager, would not result
in an error, only poorer performance.

IX. CONCLUSION

Given the additional problems introduced by increasing

granularity of items in a database over files, the possibil-

ities of inference and aggregation, and the need to manage
metadata as well as data in a secure way, the way in which
to design and organize a secure database is not obvious.

In this paper, we have described the design of a secure

database system, LDV, that builds upon the classical se-
curity policies for operating systems. We have described

our policy for LDV and shows how it builds on the policy

for LOCK TCB. We have also discussed the design ap-
proach of LDV which is based on assured pipelines and

described the design of the query, update, and metadata
management operations. Finally we described the oper-
ating system issues involved. In addition to the security
policy and the design, the design specification, the formal

model, and the formal top-level specification (FTLS) for
LDV are also completed [20].

Future work includes investigating the inference, ag-
gregation, and consistency issues. The LDV design al-
ready addresses certain inference and aggregation prob-

lems. Furthermore, the design is such that logic-based
inference controllers such as those described in [28], [29],
and [21] can be implemented on top of LDV. At present,

the LDV design team is extending the design to handle a
multiple user updating environment. The issues being in-
vestigated include concurrency control and recovery when

multilevel transactions operate concurrently.
The implementation issues concerning a multilevel se-

cure (MLS) application like LDV include the application

needs specific to MLS applications, module organization,

and reusability considerations. The design team has also
examined these issues in order to obtain an implementa-

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

STACHOUR A N D THURAISINGHAM: LDV: S E C U R E DATABASE M A N A G E M E N T SYSTEM 209

tiOn Strategy for LDV. We look forward to describing our
implementation at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa future date.

[23] P. Stachour, M. B. Thuraisingham, and P. A. Dwyer, “Update pro-

cessing in LDV: A multilevel secure relational database management
system,’’ presented at the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 Ith National Comput. Security Conf.,
Baltimore. MD, Oct. 1988.

I241 P. Stachour and M. B. Thuraisingham, “Metadata management in ACKNOWLEDGMENT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.~

RADC,s support of the LDV application and their in-
LDV: A multilevel secure relational database management system,”

Tech. Note, Honeywell Inc.. Dec. 1988.
teractions with the National Computer Security Center [25] -, “Operating system support for LDV,” Tech. Note, Honeywell

LOCK program is gratefully acknowledged. We thank J.
Giordano of RADC for his encouragement and support
throughout the LDV project. We thank P. Dwyer, T.
Haigh, and E. Onuegbe for their contributions to the LDV

Inc., Dec. 1988.
[26] -, ”SQL extensions for security assertions,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACompur. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStandards

Interfaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ . , to be published.

127) M . Stonebraker, “Operating systems support for database manage-
ment,” Cummun. ACM, vol. 24, no. 7, pp. 412-418, July 1981.

1281 M. B. Thuraisingham, “Security checking in relational database
management systems augmented with inferences engines,” Comput. design.

REFERENCES

“ANSI SQL,” American National Standards Institute. ANSI X3H2-

86-2, Jan. 1986.
“ISO-ANSI Database Language SQL2,” International Organization
for Standardization and American National Standards Institute, ANSI

D. E. Bell and L. J . LaPadula, “Secure computer system: Unified
exposition and multics interpretation,” Tech. Rep., MTR-2997, The

MITRE Corp., July 1975.
W. E. Boebert, W. D. Young, R. Y . Kain, and S . A. Hansohn, “Se-
cure Ada target: Issues, system design and verification,” in Proc.
IEEE Symp. Security Privacy, Oakland, CA. 1985. pp. 176-184.

W. E. Boebert and R. Y. Kain, “A practical alternative to hierarchi-
cal integrity policies,” in Proc. 8th Nat. Coniput. Security Conf.,
Gaithersburg, MD, Sept. 1985, pp. 18-27.

F. Bry and R. Manthes, “Checking consistency of database con-
straints: A logical approach,” in Proc. Very Large Data Bases Conf.,
Kyoto, Japan, 1986. pp. 13-20.
E. F. Codd, “A relational model of data for large shared data banks,“
Commun. A C M . vol. 13, no. 6, pp. 377-387. June 1970.

X3H2-88-259, July 1988.

[XI C. J. Date, An Introduction to Duyabase S~sterns, 2nd ed. London,
England: Addison-Wesley, 1983.

[9] D. E. Denning et a l . , “A multilevel relational data model,” in Proc.
IEEE Symp. Security Privacy, Oakland. CA. Apr. 1987. pp. 220-
234.

[IO] “Security Requirements for Automatic Data Processing (ADP) Sys-
tems,” Department of Defense Number 5200.28, May 6, 1977.

[I I] “ADP Security Manual,” Department of Defense Number 5200.28M.

June 25, 1979.
1121 “Information Security Program Regulations,” Dep. of Defense

Number 5200.1R. Oct. 2, 1984.
1131 “Trusted Computer Systems Evaluation Criteria.’. Department of

Defense Standard 5200.28-STD. Dec. 26, 1985.

1141 P . A. Dwyer, G. Jelatis, and M. B. Thuraisingham, “Multilevel se-
curity in database management systems,” Comput. Security, vol. 6.
no. 3, pp. 252-260, June 1987.

P. A. Dwyer, E. Onuegbe. P. Stachour. and M. B. Thuraisingham,
“Query processing in LDV: A multilevel secure relational database

management system,” in Proc. 4th Aerospace Comput. Security
Con&, IEEE, Orlando, FL, Dec. 1988, pp. 118-124.
T. Hinke and M. Schaefer, “Secure data management system,” Tech.

Rep. RADC-75-266, Systems Development Corp., Nov. 1975.
“B-level design specification for the LOCK operating system,’’ CDRL

A009, Contract MDA 904-87-C-6011, Honeywell Inc., June 1987.
“Secure distributed data views-Security policy extensions,” Interim
Rep. A002. RADC Contract F30602-86-C-0003, Honeywell Inc.,
Apr. 1987.

“Secure distributed data views-Implementation specifications,” In-
terim Rep. A003, RADC Contract F30602-86-C-0003, Honeywell

Inc.. May 1988.
“Secure distributed data views,” Final Rep.. Vols. 1-6, RADC Con-
tract F30602-86-C-0003, Honeywell Inc., May 1989.

T. F. Keefe, M. B. Thuraisingham, and W. T . Tsai, “Secure query
processing strategies,” IEEE Coniput. Mag., vol. 22, no. 3. pp. 63-
70, Mar. 1989.
F. Sadri and R. A. Kowalski. ”Theorem proving approach to data-

base integrity,” in Foundations of DeductiLv Databases, J . Minker,

Ed. Morgan Kaufmann. 1988.

Secun‘ty, vol. 6 , no. 6 , pp. 479-492, Dec. 1987.

ment system,” Dura Knowledge Eng. J . , to be published.

puter Science Press, 1982.

1291 -. “Towards the design of secure dataiknowledge base manage-

1301 J . Ullman, Principles of Database Sysrems. Rockville MD: Com-

Paul D. Stachour received the B S degree in
mathematics from Iowa State University, Ames,
the M S degree in computer science from Ohio
State University, Columbus, and the Ph D de-

gree in computer science from the University of
Waterloo, Waterloo, Ont , Canada

He is a Principal Research Scientist at Secure
Computing Technology Corporation. His primary

research areas are secure multilevel applications,
software component design, program design
methodologies, and software development styles

using Ada He currently works two roles with Honeywell SCTC He is the
technical director of the Secure Distributed Database Views project The

objective of SDDV is to design a secure relational database system His

second role involves his interests at Honeywell in technology, tools. pro-
ceases, and practices that enable software engineering. This theme has dri-

ven his Ada-related activities He previously worked at Honeywell’s Cor-
porate Systems Development Division and Honeywell’s Computer Sciences
Center Prior to that he worked on the PLiS Compiler at IBM’s Systems
Development Division and on a U S Army Curriculum Management sys-
tem at the Army Chemical School. He is d coauthor of the book Ada, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA
Programmer ’J Guide, with Microcomputer Examples and ten refereed pa-
pers in the computer security and software methodology areas He is an
Adjunct Professor in Computer Science at both the University of Minnesota

and the College of St Thomas
Dr Stachour is a member of the Association for Comoutine Machinerv

Bhavani Thuraisingham received the B.Sc. de-

gree in mathematics and physics from the Uni-
versity of Sri-Lanka. the M.S. degree in computer

science from the University of Minnesota, the
M.Sc. degree in mathematical logic from the Uni-
versity of Bristol, U.K., and the Ph.D. degree in
recursive functions and computability theory from
the University of Wales, Swansea, U.K.

She is a lead engineer at the MITRE Corpora-

tion. Her research interests include database se-
curity and the applications of mathematical logic

in computer science. Previously, she was at Honeywell, Inc., where she
was involved in the design of lock data views, and at Control Data Cor-
poration. She was also an Adjunct Professor and member of the graduate
faculty in the Department of Computer Science at the University of Min-
nesota. She has published more than 25 journal papers in database security,

computability theory, AI, and distributed processing.
Dr. Thuraisingham is a member of the IEEE Computer Society, the As-

sociation for Computing Machinery, and Sigma Xi.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

210 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2. NO. 2. JUNE 1990

Design of an Integrated Information Retrieval/

Database Management System

LAWRENCE V. SAXTON AND VIJAY V. RAGHAVAN, MEMBER, IEEE

Abstract-The problem of increasing the semantics available in a da-
tabase management system has received considerable attention in re-
cent years. Information retrieval systems provide well-studied and well-
understood models that lead to meaningfully ranked responses to quer-
ies. A number of approaches for the integration of these systems have
been considered and each has been found to be restricted in some way.
A new, unified architecture is presented in this paper. This architec-
ture provides the flexibility of integrating any information retrieval
model with any type of database management system. More impor-
tantly, the approach provides for the ability to use “aggregation” and
“generalization” operations automatically to provide more meaning-
ful responses. As well, this framework enables the systematic investi-
gation of the potential of employing IR models as a general tool for
supporting management decisions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Zndex Terms-Database design, database management systems, de-
cision support systems, information retrieval systems, integration.

I. INTRODUCTION

ATABASE management systems (DBMS) are de- D signed to represent and manipulate objects or events

of the real world as well as associations between these

entities. The major objective of a database system is to
provide an enterprise with a facility for the centralized

control of its operational data in order to reduce the

amount of redundancy in the stored data, avoid inconsis-
tency in the stored data, share the stored data among users,

enforce standards, apply security restrictions, and main-

tain data integrity [3].
DBMS’s are widely used nowadays in many application

systems needed in businesses, govemment agencies, and

professional offices. A DBMS has become one of the ma-
jor components of today’s information systems. Most of
today’s DBMS’s are very sophisticated and provide many

and varied data management facilities. However, the fa-

cilities provided by DBMS’s are not catching up with the
increase in requirements of today’s information systems.
For example, there is increasing pressure from manage-

ment to have information systems that support unstruc-
tured decision making and weighted evaluations, and pro-
vide ranking facilities in cases where there are

overwhelming amounts of information. Many researchers

Manuscript received November 28, 1988: revised August 12, 1989.

L. V. Saxton is with the Department of Computer Science, University

V . V . Raghavan is with The Center for Advanced Computer Studies.

IEEE Log Number 9025105.

of Regina, Regina, Sask.. S4S OA2 Canada.

University of Southwestern Louisiana, Lafayette. LA 70504.

have attempted to use artificial intelligence (AI) for

achieving certain kinds of improvement. Another direc-
tion for achieving such improvement is to adopt proven
methods from information retrieval.

The discipline of information retrieval deals with the

organizing, structuring, retrieving, and displaying of bib-
liographic information zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[131, [141. In this context, docu-
ments or document surrogates (e.g., abstracts) are ana-

lyzed and a representation for each document is generated.
The simplest, and the most common, representation con-

sists of describing each document by a set of keywords or

a vector in which each element corresponds to the impor-
tance of a particular keyword to the document. These doc-
ument representations are very much like the records in a

DBMS environment and they have to be organized on
storage devices to enable efficient search and retrieval.

However, research on IRS’s places more emphasis on the
handling of imprecise concepts and the efficiency of the
search rather than on the controls which are obtained from

the sophisticated architectural design of the DBMS. The

documents should or should not be retrieved for any given
user query on the basis of their relevance to the query. A

document is relevant if, with respect to a specific query,

the user judges that it has the information that is desired

by the user; it is nonrelevant otherwise.

A document may or may not be relevant to a user query
depending on many variables of the document (style of

writing, comprehensiveness, quality, etc.) as well as nu-
merous user characteristics (previous knowledge, the rea-

son for the search, etc.). The influence of all these fac-

tors on the decision of whether a certain document is
relevant to a given request is quite involved and cannot
be exactly represented in the choice of keywords or de-

scriptors. In this sense, the descriptors used to represent
the content of a document or the user need are not precise

[6]. Therefore, it is recognized that an IRS cannot pre-

cisely select only and all relevant documents. Rather, it
is suggested that the system should adopt a method that

facilitates the ranking of documents in the order of their
estimated relevance to a user query. More details of an
IRS can be seen in [131 and [141.

The abilities of IRS’s in handling imprecisely described

objects and relationships, handling imprecise user quer-

ies, and ranking of responses from overwhelming amounts
of information according to their relevance should add an

interesting dimension to the database management sys-
tem. It is believed that the integration of a DBMS and an

1041-4347/90/0600-02 10$01 .OO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO 1990 IEEE

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore. Restrictions apply.

