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Design of LDV: A Multilevel Secure Relational 

Database Management System 

PAUL D. STACHOUR AND BHAVANI THURAISINGHAM 

Abstract-In a multilevel secure database management system (MLS/ 
DBMS) users cleared at different security levels access and share a da- 
tabase consisting of data at a variety of sensitivity levels. The system 
should ensure that the users only acquire the information to which they 
are authorized. This is difficult as users could pose multiple queries 
and deduce unauthorized information. In this paper, we describe the 
design of Lock Data Views (LDV), a MLSlDBMS which is hosted on 
the Logical Coprocessing Kernel (LOCK) Trusted Computing Base 
(TCB). LDV’s security policy builds on the security policy of LOCK. 
Its design is based on three assured pipelines for the query, update, 
and metadata management operations. We describe the security policy 
of LDV, its system architecture, the designs of the Query Processor, 
the Update processor, the Metadata Manager, and the operating sys- 
tem issues. LDV’s solution to the inference and aggregation problems 
are also described. 

Index Terms-Classification constraint, classification level, infer- 
ence and aggregation, LDV, LOCK, multilevel secure relational da- 
tabase management system, pipelines, polyinstantiation, secure policy, 
type enforcement. 

I. INTRODUCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProblem DeJinition 

ITHIN the Department of Defense (DoD), the num- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ber of computerized databases containing classified 
or otherwise sensitive data is increasing rapidly. Access 

to these databases must be restricted and controlled to limit 
the unauthorized disclosure, or malicious modification, of 

data contained in them. Present database management 
systems (DBMS’s) do not provide adequate mechanisms 

to support such control. Penetration studies have clearly 
shown that the mechanisms provided even by “security 

enhanced” database systems can be bypassed, often due 

to fundamental flaws in the systems which host the 
DBMS. This has led to a reliance on a number of tech- 

niques for isolating sensitive database information. These 
include physical protection, “system high” operations, 
and use of manual techniques for data sharing. These ac- 

tions are very costly and detrimental to operational utility 

and flexibility. 
Trusted Computing Bases (TCB’s), such as 

Honeywell’s LOCK [4], have been designed to provide 
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this type of control in terms of abstract entities and op- 
erations which refect an operating system orientation. The 

LOCK security policy consists of a discretionary security 

policy and a mandatory security policy. The discretionary 
security policy enforces need to know structures, while 

the mandatory security policy provides a multilevel con- 

trol policy. The multilevel control policy is a noninterfer- 
ence policy which addresses both access to data and the 
flow of information in the system. 

A DBMS presents a more difficult problem than that 
dealt with the current TCB’s with their operating system 

orientation. This results from the ability of the DBMS to 

preserve or even enhance the information value of the data 
it contains. This is possible because it captures informa- 

tion in addition to the raw data values themselves through 
the incorporation of knowledge about the types of data 
and relationships among the data elements. A DBMS also 

allows for the creation of new data and relationships 

through the application of complex functions to the data. 
Because of these capabilities, one is forced to consider a 
number of factors beyond those normally addressed when 

dealing with operating system security. These include the 
impact of data context, aggregation, and inference poten- 

tial. 

B.  Design Approach 
Honeywell’s LOCK Data Views (LDV) system, which 

is a multilevel secure relational database system (MLS/ 
RDBMS) hosted on LOCK, addresses the above problems 

by allowing individuals possessing a range of clearances 
to create, share, and manipulate relational databases [7]  
containing information spanning multiple sensitivity lev- 

els. In LDV, the relational query language, Structured 

Query language (SQL) [ l ], [26] ,  is enhanced with con- 
structs for formulating security assertions. These security 

assertions serve to imply sensitivity labels for all atomic 
values, contexts, and aggregations in a database. The la- 
beled data are partitioned across security levels, assigned 
to containers with dominating security markings or levels, 

and may only flow upward in level unless authorized oth- 
erwise. The ability of LDV to perform in this manner is 

a function of its design, and the operating system upon 
which it is hosted. 

This paper describes the complete design of LDV. Sec- 

tion I1 presents the security policy of LDV. An overview 
of the design is described in Section 111. The LDV lan- 

guage is described in Section IV. Sections V, VI, and VI1 
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describe the query, update, and metadata processing op- 

erations, respectively, in LDV. Operating system support 
for LDV is addressed in Section VIII. The paper is con- 
cluded in Section IX. 

11. LDV SECURITY POLICY OVERVIEW 

To meet the DoD security policy requirement, as stated 

in DoD directives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5200.28 [lo], 54200.28-M [ l l ] ,  and 

5200.1 -R [ 121, both the operating system (LOCK) and a 
secure application (LDV) must itself define a security pol- 
icy that it enforces. In order to understand the LDV se- 

curity policy, it is essential to understand the LOCK se- 
curity policy. Therefore, we first describe the LOCK 

security policy and then describe the DBMS security pol- 
icy requirements and extensions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  LOCK TCB Security Policy 

The LOCK TCB satisfies the security policy require- 

ments defined for the A1 level in the Trusted Computer 
Security Evaluation Criteria [ 131. These include require- 

ments regarding mandatory and discretionary access con- 
trol, object reuse and maintenance, integrity, and export 

of sensitivity labels for subjects, objects, and devices. In 
addition, it supports the A 1 requirements for accountabil- 

ity, audit, and assurance. The LOCK security policy at 
the highest level states that: 

“Data is labeled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith a level andjows upward in level 
unless authorized to do so otherwise.” This captures the 
DoD notion of security, which focuses on the confine- 

ment and protection of information (data in a context) 
from compromise. The policy is interpreted in terms of 
increasingly detailed specifications of the security rele- 

vant mechanisms for the system. This provides the basis 

for the enforcement of the security policy within LOCK. 
Supporting mechanisms, such as user authentication and 

accountability, provide assurance that the security policy 

mechanisms act in a manner consistent with the security 
policy. In addition to the mandatory and discretionary se- 

curity policies, LOCK provides labeling, integrity and au- 
thentication, and accountability mechanisms. These are 
described in [ 171. 

The mechanisms which implement the LOCK security 
policy are defined in terms of abstract entities and oper- 

ations. There are three principal entities in the LOCK se- 

curity policy; subjects, objects, and the Effective Access 
Matrix (EAM). Subjects are the active process-like enti- 

ties in the system and objects are the passive file-like en- 

tities. The EAM defines the permissible flows of infor- 

mation within the system. The EAM is computed based 
on the security relevant attributes associated with the sub- 
jects and objects. The LOCK policy describes these attri- 

butes and the allowed accesses based on the notion of po- 
tential interferences between subjects. 

The security attributes associated with the subjects in- 
clude 1) clearance level (subject-level ( S  )), 2)  user on 

whose behalf it is executing, and 3) domain in which it is 
executing (subject-domain ( S  ) ). Objects have a set of 

corresponding security attributes which include 1) clas- 

sification level (object-level ( O ) ) ,  2)  access control list 

( ACL ( 0 )  ), and 3)  type (object type ( 0) ) .  
The term “level” ( subject-level ( S  ) or ob- 

ject-level ( 0 ) )  represents a sensitivity level that captures 

both the hierarchical classification levels and nonhier- 
archical categories which from a part of the DoD security 

policy. Within LOCK it is assumed that the sensitivity 

levels from a partially ordered set (POSET). Level L1 is 
said to dominate L2 if L1 I L2 in the POSET (e .g . ,  Un- 

classified < Confidential < Secret < Topsecret). The 
term “User” refers to the human on whose behalf a sub- 
ject is executing. The ACL( 0 )  is a list of permissible 

access modes to an object, on a per user basis, which are 
maintained for all objects in the LOCK system. The sub- 
ject domain ( subject-domain ( S  ) ) and the object type 
(object-type ( U ) )  are introduced to support the Type En- 
forcement mechanisms. The relationships between do- 
mains and types in terms of allowable access modes are 
captured in a Domain Definition Table (DDT). The DDT 

is a matrix which is indexed by domain and type, and has 
as entries those modes allowed to objects of the given type 

of subjects in the given domain. 
The LOCK security consists of a policy discretionary 

security policy and a mandatory security policy. The dis- 
cretionary security policy allows for users to specify and 

control sharing of objects. A subject’s access to an object 
is restricted based on the ACL and the user on whose be- 

half it is executing. The mandatory security policy is 
based on controlling the potential interferences among 
subjects. It consists of a mandatory access control policy 

and a type enforcement policy. 

The mandatory access control policy restricts the access 
of a subject to an object based on the sensitivity levels of 

the subject and object. The system enforces the simple 

security property and the *-property of the Bell and 
LaPadula security policy [3]. The simple security prop- 

erty states that a subject has read access to an object if the 

subject’s sensitivity level dominates the sensitivity level 

of the object. The *-property states that a subject has write 

access to an object if the subject’s sensitivity level is dom- 
inated by the sensitivity level of the object. The type en- 
forcement policy deals with aspects of security policy that 
are inherently nonhierarchical in nature. It restricts ac- 

cesses of subjects to objects based on the domain of the 
subject and type of the object. 

B. DBMS Security Policy Requirements 
The LOCK security policy is incomplete in dealing with 

DBMS security because of its operating system orienta- 

tion. The most significant contributor to complexity within 
the DBMS environment is the information carrying poten- 

tial of the database structure. The DBMS preserves or 
even enhances the information content of the database by 
incorporating knowledge of the types of data and relation- 
ship among the data. The data manipulation capabilities 

of the DBMS also allow the creation of new data relation- 
ships through the application of complex functions to the 

stored data. 

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 20,2010 at 15:06:46 UTC from IEEE Xplore.  Restrictions apply. 



192 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2. NO. 2. JUNE 1990 

Our approach to providing a complete and tractable 
DBMS security policy extends the basic LOCK security 
policy through the incorporation of an explicit classifica- 

tion policy. The classification policy must address those 
factors which are crucial to a correct determination of the 

sensitivity level of data within the DBMS context. In par- 
ticular, the policy includes the following classifications: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Name Dependent Classijication: rules that refer to data 
items by name. This provides classification at the granu- 

larity of relations and attributes (for example, all the val- 
ues of the salary attribute in the relation Employee are 
Secret). 

Content Dependent Classijication: rules that refer to the 

content of data item occurrences. This provides classifi- 
cation at the granularity of tuples and elements (for ex- 

ample, the values of the name attribute in the relation Em- 
ployee are Secret if the corresponding salary values exceed 
100 K ) .  

Context Dependent Classijication: rules that refer to 

combinations of data items. This can be used to reflect 
sensitivity of specific fields when accessed together (for 

example, each name value, salary value pair in the rela- 
tion Employee is Secret). 

Aggregate Classijication: rules that classify collections 
of data items (for example, more than 10 name values 
taken together has a Secret classification). 

Inference Control: the determination of data sensitivity 

based on the potential inferences that can be made based 
on a sequence of access requests. 

C. DBMS Policy Extensions 

The additional concern for a DBMS in a multilevel se- 
cure environment beyond that of LOCK is the proper la- 

beling of information. To provide for that concern, two 

extensions to the policy of the TCB are required. One ex- 

tension summarizes the actions that happen when a data- 
base is updated and the other when a query is made to the 

database. These extensions are described briefly here. A 
detailed discussion on these extensions is given in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 181. 

Update Classijication Extension: The update classifi- 
cation policy addresses the problem of proper classifica- 
tion of the database data. That is, when the database is 
updated, the classification level of the data is determined. 
The data are then inserted into an object whose level dom- 

inates the level of the data. 

Formally stated, we have the following: For all security 
levels L1 and L2 (L1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 12) and all base relations R in 

the database (where L1 is the basic-level of R ) ,  a tuple T 
being stored securely in a partition P (at level L2 ) of R 
implies that the basic-level of any data of T stored in P 
is 5 L2. 

We define the BASIC-LEVEL( T )  of a tuple (or por- 
tion of a tuple) as the lowest level of the set of levels at 
which T can be securely stored. The security level of the 

subject who attempts the update operation, the name-de- 

pendent, content-dependent, and context-dependent clas- 
sification rules are used to determine the basic-level of a 

tuple. 

Informally, this means that we partition the data in the 

database into file objects based on the basic-level classi- 

fication level of the data. We use LOCK enforcement on 
objects to provide most of the security, with the database 
extension mechanisms only handling special cases such 
as classification by context. 

Response Classijication Extension: The response clas- 

sification policy addresses the problem of proper classi- 
fication of response to queries. This is a problem because 
the response may be built based on the data in many base 
relations. In the process of manipulating and combining 

the data, it is entirely possible that the data will be used 
in a manner that reveals higher level information. The 

problem becomes more acute when one realizes that the 
response will be released into an environment in which 
many responses may be visible. Thus, the problem be- 

comes one of aggregation and inference over time as well 

as across relations. In light of this, it seems fairly clear 
that a response can only be released if it is placed in an 

object whose level dominates the derived level of the re- 

sponse. This derived level is the maximum level of any 
information that can be deduced from the response by a 

user reading this response. 

Formally stated, we have the following: For 
all responses R ,  and all objects 0, a response R being 

written into object 0 implies that the security level of 
the object 0 is in the set of levels defined by 

Admissible-Derived-Level-Set ( R ) .  This set consists of 

all levels for which releasing the information in the re- 
sponse R at that level will not enable any user to infer any 
further information whose sensitivity level exceeds the 

user’s level. 
Informally, this means that the response is written into 

an ordinary object that can be shared in any arbitrary way, 
subject to operating system security policy. The appro- 
priate security level of the object containing the response 

depends not only on the response, but upon what can be 
inferred by the response being released at that level. 

D. Type Enforcement 

Lock’s type enforcement mechanism allows us to en- 

capsulate applications such as DBMS in a protected sub- 
system, by declaring the DBMS objects to be of special 

types which are only accessible to subjects executing in 

the DBMS domain. We then carefully restrict the subjects 
which are allowed to execute in this domain. It is this 
approach that makes LDV a unique design. 

The underlying LOCK security mechanisms are avail- 
able within the DBMS domain. However, since only 

DBMS programs are allowed to execute in this domain, 

we can extend the underlying security policy to account 
for functional requirements of the MLS/DBMS without 
affecting other applications code. The principal concern 

is how to securely release data from the DBMS domain to 
the user domain. Fortunately, the underlying LOCK type 
enforcement mechanism supports the implementation of 

assured pipelines [ 5 ] .  This provides a way to ensure that 
data passed between the DBMS and user domains are pro- 

. _ _  
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cessed through appropriate trusted import and export fil- 

ters. These pipelines can be proven to be both unbypass- 

able and tamper-proof. Using this mechanism, in 
conjunction with some trusted (and we believe small) sub- 
set of the DBMS code, it is feasible to implement a clas- 
sification policy which guarantees that any set of data re- 

leased to the user domain has been properly labeled as to 
classification based on the set of static and dynamic de- 
pendencies known to the DBMS. 

Such a classification policy can be as simple as merely 

classifying a set of data at the high water mark of the 
levels of the individual data elements in the set. It can 

also be extremely sophisticated, incorporating such fea- 

tures as history files for inference control or automatic 
downgrading of the results of certain numerical functions, 

such as averages or counts, of raw data. The type enforce- 

ment mechanism makes this possible. The integrity of the 
history files will be maintained by using type enforcement 

to restrict write access to a specific domain within the 

DBMS and then ensuring that such a write is always done 
correctly. Similarly, the automatic downgrade will be 

limited by domain, and we plan to ensure that subjects in 
this domain only perform the downgrade under very spe- 

cific conditions. 

111. OVERVIEW OF THE LDV DESIGN 

In this section, we provide an overview of the LDV 

design. In particular, data classification issues dealt with 
by LDV, the system architecture of LDV, and the pro- 

cessing of the three major operations; query, update, and 

metadata management, are described. Finally we revisit 

type enforcement upon which the design is built. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAData ClassiJcation 

Due to the data manipulation potential of a DBMS, de- 
termining the proper classification of data is nontrivial. 

Factors which may affect the proper classification of a set 

of data include: 
-data content 

-context of the data 
-functional manipulations of the data 

-external dependencies 
-potential for inference. 

Inference is the most difficult factor to treat adequately. 
Determining the potential for inference from an arbitrary 
collection of information is generally very difficult. We 
believe that it is possible to arrive at partial, yet meaning- 

ful, solutions to this problem within the context of a spe- 

cific application. 
It is important to observe that these classification fac- 

tors can be partitioned into two categories: static and dy- 
namic. Static dependencies (e.g., content) can be applied 
to the data at any point between its creation and release 

from the DBMS. Dynamic dependencies (e.g., functional 
transforms), on the other hand, can only be applied at the 
time a particular set of data is instantiated for output. In 
addition, what has been released from the database before zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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may partially determine the classification of the current 
item to be released. 

DBMS security requirements are most naturally ex- 
pressed in terms of the user visible output of the DBMS. 
However, one must also be concerned as to what consti- 
tutes a secure write to the DBMS. Writes to a database 

will be secure, provided that they are done in a manner 
consistent with secure queries and do not introduce covert 
channels. 

Data content dependencies arise when certain values, 
within the simple context of being in the database, are 

considered sensitive. Context dependencies are typified 

by intelligence information. Typically intelligence data 

and sources are individually of significantly different sen- 

sitivity than their combination. Functional manipulations 

of data involve the application of deterministic functions 
such as counting the number of elements, average, and 

rounding. Such functions may significantly lower the sen- 
sitivity level of the response relative to the raw data that 

was processed. Alternatively, the joining of two items of 
data may raise the joint classification beyond that of any 

individual one. There are also external dependencies, such 
as time. An aircraft destination may be highly classified 

until after departure, at which point its flight plan is openly 

disseminated to air traffic control. 
The factors affecting classification which we address re- 

flect our belief that aggregation and inference represent a 

significant security problem in a DBMS. Instances where 
the sensitivity of data is enhanced due to inference and 
aggregation frequently, but are significant when they oc- 

cur. We note that if inference and aggregation frequently 
raise the security level of the output, then it is much more 

economical and safer to simply overclassify the data. For 

example, if a database consisting of largely Unclassified 
data returns the bulk of its results at the confidential level, 
then it is operationally more effective to simply treat the 

data as Confidential, and manually downgrade the occa- 
sional Unclassified response. We believe that real-world 

databases contain data at a mixture of classifications. 
Thus , the approach of running everything at database-high 

and manually downgrading severely limits the flexibility 

and usability of the database. 

Incorporation of an explicit classification policy into our 
design reflects a radically different view than that taken 

by simple access control policies, and most secure DBMS 

research (see for example [ 161). These systems assume 
that its is statically possible to bind a sensitivity level to 
each piece (or grouping) of data. The appropriate classi- 

fication for any collection of data is then determined 
through a simple “high water mark” calculation over the 

set of sensitivity levels. Such an approach can result in 

either overclassification or a breach of security. 

B. LDV System Architecture 

LDV is hosted on the LOCK TCB. The user interacts 

with LDV through a request importer and a request ex- 
porter as shown in Fig. 1. Access to data as well as the 

metadata is controlled by LOCK. Information in the da- 
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Request Request 
lmponer 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Lock Data 

Result Result DBMS Result 

Fig. 1.  LOCK to LDV interface. 

User Request 
Manager 

Data Dicoonary Relaoonal File 

DBMS Result 1 

Fig. 2 .  LDV system data flow 

tabase as well as the metadatabase are stored in single 

level files, i .e.,  LOCK objects. LOCK ensures that these 

database files may be opened for read/write operations 
only by subjects executing at the appropriate levels, and 
in the appropriate database domains. LOCK enforces the 

operations provided that the LDV application defines 

properly in the LOCK DDT the allowed operations upon 
objects by subjects. 

The LDV system architecture is illustrated in Fig. 2. It 
shows the major subsystems and the data flow between 
them. These subsystems are the Data Dictionary Manager 

(DDM), the User Request Manager (URM), the Rela- 

tional Access Manager (RAM), and the Execution Man- 
ager (EM). Each of these subsystems is described. 

DDM-this subsystem is responsible for maintaining all 
information about the multilevel database and acts as a 
server of this information to the other subsystems of LDV. 
That is, all of the metadata are handled by the DDM. The 

metadata include the database schemas, security con- 
straints (both the discretionary security constraints and the 

mandatory constraints which are also referred to as clas- 

sification constraints), integrity constraints, and history 
information. 

URM-this subsystem provides an SQL interface to 

LDV that is consistent with the ANSUSQL standards. It 
parses both SQL data definition and data manipulation re- 
quests, and translates them into an internal representation 

of SQL. Its function also includes discretionary access 
checks on views, enforcing semantic integrity constraints, 

and query modification. The modified request is passed to 
the RAM. 

RAM-this subsystem takes the internal representation 

of a query or update request and performs optimization. 
Information on access paths is obtained from the DDM. 
The output of RAM is the execution strategy which is 

passed to the EM. 
EM-this subsystem uses the services of two major 

modules; the Relational File Manager (RFM) and the 
Transaction Execution Manager (TEM). The EM carries 

out the execution strategy by making appropriate calls to 
the RFM and TEM. In the case of a query, it also builds 

the result. The RFM is responsible for managing the files 

and TEM is responsible for concurrency control, recov- 
ery, and integrity maintenance. 

The LDV design described here assumes a single user 

updating environment. It allows multiple users if those 
users are only querying the database. Extending this de- 

sign to a multiple user update environment is under cur- 
rent investigation. 

C.  LDV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPipeline Organization 

The three major operations performed by LDV are 

query, update, and metadata management. Each of the 
operations is an interaction between a non-LDV subject 
representing a user, and the LDV subjects that manipulate 

the database. In our design of LDV, each of these oper- 
ations is processed by an assured, enforced pipeline. 

Therefore, the LDV design consists of three pipelines 
which pass through a number of subjects in order to sup- 

port encapsulation and the security and/or integrity poli- 
cies. The three pipelines are 1) the Response Pipeline 2) 
the Update Pipeline, and 3 )  the Metadata Pipeline. 

The Response Pipeline maps a query from the appli- 
cation domains to the DBMS, processes the query to pro- 

duce a result relation, labels this result, and exports it to 
the user domain. This pipeline runs untrusted in the early 

stages (e.g., the SQL parser and the Query Modifier); the 
portion of the Pipeline which determines the classification 

level of the data to be released is an example of a trusted 
component. 

The Update Pipeline allows subjects executing in spe- 
cial data input domain to prepare records for input to the 
DBMS, identify records to delete, and transforms them 

into a data type readable by the DBMS domain. This up- 
date pipeline also runs untrusted in the early stages; the 
portion which determines the data classification and 
where-to-write are trusted code. 

The final pipeline provides the mechanisms for defining 

a database structure, specifying relations, views, attri- 
butes, classifications, and would normally be restricted to 

access by the database administrator (DBA) or the data- 
base systems security officer (DBSSO). As with the oth- 

ers, the Metadata Pipeline allows untrusted code in the 
early stages; an example of the trusted portion is that 
which actually stores the classification constraints. 

We need to make a distinction between the trustworthi- 

ness of the code and the correctness of the code. If the 
trusted code is not correct, then there can be breach of 

security. If the untrusted code is not correct, then the worst 

thing that can happen is that the result is incorrect; it can- 
not cause a breach of security. This is why we can accept 

unverified design code in the untrusted portions of a pipe- 
line. The categorization into untrusted portions of a pipe- 

line is based on the security needs, and not on the effect 

on the correctness of results. 
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The LOCK TCB is responsible for spawning processes, 
for efficient context switching, and for preserving inter- 

ference among processes at different levels. Even though 
the DBMS obtains these services from the LOCK TCB, 

the overall design of each pipeline must ensure that the 
security critical code is minimal, traceable, verifiable, and 

that the number of processes performing trusted write- 
downs is minimized. The pipelines are a collection of 

communicating processes each of which could be verified 
in isolation and all of which could be proven to commu- 

nicate in ways that do not permit overt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor covert disclo- 
sure of information. Since a DBMS is a large application, 

there are numerous possible configurations for the pipe- 
line’s processes. The choice of configuration is motivated 
by the goal to reduce the amount of design verification 

needed without compromising security. A module is se- 
curity critical if an accidental or deliberate malfunction in 

that module could result in improper leakage of informa- 

tion to the outside world. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALOCK Interactions, Dependencies and Benejts 

We have taken a design approach towards protection 

which is significantly different from other approaches (see 
for example [16] and [9]) and yet retains their best fea- 
tures. The approach is attractive in that it retains the sim- 

plicity and assurance associated with the access control 
policies, yet by extending the model to include an explicit 

classification policy, one can support the requirements for 
an MLS/DBMS. It does raise some interesting implemen- 
tation problems. Among these are 

-how is DBMS information isolated from application 

domains? 
-how is information (data and associated classification 

rules) imported to the DBMS? 
-how is information exported from the DBMS to the 

application domains? 

Our mechanism for solving these problems is the LOCK 

type enforcement mechanisms. Using type enforcement, 
it is possible to encapsulate the DBMS code in isolated 

domains over which subjects can read and write only spe- 

cific types of data. This allows a layered system. The im- 
portant features of this design are that 

-DBMS queries can be forced to pass through an im- 
porter domain which implements filters to perform con- 
sistency checks and input canonicalization 

-only subjects in the DBMS domain can both read and 
write DBMS data; even within the DBMS we have ex- 
plicit limitations. 

-All responses exported from the DBMS domains to 

the application domains must pass through an export do- 
main, 

Our design uses type enforcement to restrict the ability 

of portions of the DBMS code to write and/or read certain 
types of data. We note that the underlying LOCK security 

kernel is available in all domains. This allows us to take 

advantage of the LOCK mechanisms as needed to enforce 
the underlying extensions to the basic security policy to 
deal specifically with the needs of that domain. This is 

feasible since only code within that domain must exhibit 
special properties required for the “local” interpretation 

of security; thus, the domain’s security proof can be sep- 

arate from that of LOCK. 
LOCK enforces types in the following way. Each 

DBMS subject has a domain attribute. Similarly, each ob- 
ject is of a particular type. Access to objects of certain 
types is restricted to subjects in designated domains. This 

access information is recorded in the Domain Definition 
Table. The observation underlying the role of type en- 
forcement is that the format and organization of data are 

security relevant. Thus, the raw application data are dif- 

ferent from other data such as mailboxes, engineering 
drawings, labeled text, database data, database metadata, 

and database history. Domains are essentially mecha- 

nisms for encapsulating managers of different data types 
and the transformation between data types. This provides 

a way to decompose the proof of security for the system 
into manageable pieces and to tailor the security policy 
for a system in an application dependent fashion. The 

basic idea is that as data are transformed from one type 

into another, they are moving along an assured pipeline. 
That is, the design code in each domain of the pipeline 

has been verified to assure that it possesses the appropri- 
ate security relevant functionality, and the type enforce- 
ment mechanism provides assurance that data cannot be 

transformed from one type to another except via the pipe- 

line. 
There are three theorems necessary to guarantee an as- 

sured pipeline. 
-The verified transforms are unbypassable. 

-The transforms in the assured pipeline are correct. 
-Data of the transformed type cannot be tampered 

with. 
The truth of the second of these theorems must be es- 

tablished by a separate analysis. The formal top level 

specification (FTLS) for LDV has performed this analysis 
[20]. The first and third are corollaries of the fact that any 

access allowed by LOCK is consistent with the DDT. 

Nothing more must be verified to assure the truth of these 
theorems. It is only necessary to configure the DDT ap- 

propriately. 

So by using the type enforcement mechanisms to create 
a set of assured pipelines for the DBMS, it is possible to 

encapsulate the DBM’s as a protected subsystem on a 

multilevel secure TCB. This gives us a basic structure 
whose bottom level consists of TCB hardware and soft- 
ware, whose next level consists of the encapsulated DBMS 

subsystem, and whose highest level consists of untrusted 

and presumed hostile applications programs which access 
the DBMS. Within the DBMS subsystem there will be 

both security critical and noncritical subsets of programs; 

the detailed security analysis of an entire DBMS is clearly 
impractical, and the alternative of a design for a MLSI 
DBMS without verification of the security critical por- 

tions of the design is not possible. The verified subset of 
the DBMS must enforce the DBMS security policy exten- 

sions which refine the basic TCB security policy to clas- 
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sify data appropriately in cases where the information- 
value based classification of data exceeds the inherent 

classification level of that data, and to limit the possibility 
of covert channels through the DBMS. 

IV. LDV LANGUAGE 

The DBMS must provide zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa language for use in describ- 

ing the various schemas and for retrieving and maintain- 
ing the data in the database. This language allows users 

to deal with the database in abstract terms; to be con- 
cerned with what must be done and not how it must be 

done. Three distinct user roles are considered; ordinary 
users, database administrators (DBA’s), and the database 

system security officers (DBSSO’s). Ordinary users per- 
form query insert, delete, and update operations on the 

data. DBA’s maintain the metadata, i.e., the data that de- 
scribe the database data. DBSSO’s maintain the funda- 

mental classification rules. 
The LDV language consists of two parts: a data defi- 

nition language (DDL) and a data manipulation language 
(DML). The DDL is used by the DBA and the DBSSO to 

describe the data and the DML is used by the ordinary 

users to retrieve and maintain the data. The DDL and 
DML for this design [19] were originally based on the 

American National Standards Institute (ANSI) Database 
Language SQL [I] .  In [26] the LDV DDL and DML have 
been made compatible with a later version of ANSI SQL 

[2]. We have extended the DDL to allow for the specifi- 
cation of classification constraints, primary keys, and the 
derivation of values of one tuple from those of other tu- 

ples. The DML has been extended with a time-oriented 
construct that refers to points in time, and a level-oriented 

construct that refers to the classification levels of data. 

V. RESPONSE PIPELINE 

This section presents the design of the Response Pipe- 
line of the LDV system. This pipeline is the query pro- 
cessor. The LDV data distribution scheme, reconstructing 
views at a given level, handling aggregate constraints and 

inference control, overview of the major modules, and the 
security critical components are described. 

A .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALDV Data Distribution Scheme 

The basic scheme for data distribution across LOCK 

files is to assign a set of files per security level. There is 

no replication of data across levels. The Update pipeline 
determines the appropriate assignment of data to files by 

examining the name-dependent, content-dependent, and 

context-dependent classification constraints. The view at 
any particular level is reconstructed by the MERGE op- 

eration to be described later in this section. Since partial 
relations that are stored at each level may have numerous 
null values, these nulls can be squeezed out by padding 
each partial tuple with a tuple descriptor. A tuple descrip- 
tor is a bitstring whose length is the order of the relation. 

A “1” in a position indicates that a value exists for that 

attribute, and a 0 indicates that the field is null. A “D” 
in the first position indicates that the tuple has been log- 

ically deleted. In addition to the tuple descriptor, a time- 

stamp and the level of the tuple are stored. The level of 

the tuple is the level at which the tuple was inserted. These 
three fields are not displayed to the user by default; they 
are manipulated internally by LDV. However, the user 

may request the retrieval of the timestamp and level fields. 
The tuple descriptor always precede the tuple, followed 

by the timestamp, level, and values for the attributes that 

have “1”s in their corresponding positions in the tuple 
descriptor. 

The data distribution scheme used by LDV is described 
using the sample relation EMPLOYEE illustrated in Ta- 
ble I. The constraints on EMPLOYEE are the following: 

SSN is the key 
Default level for  Name zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis (U) 
Name is (TS) where Name zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ON 
Default level for  Address is (S) 
Default level for  Salary is (S) 
(Name, salary) is (TS) when taken together. 

One way to distribute this relation across LOCK data 
files is to use the method of [16] and assign one file per 
attribute. This is also the method used in [9]. A discussion 

on this method is given in [ 151. Since LDV handles se- 
curity constraints, additional files have to be created for 
each additional level incurred by the content-based con- 
straints. This method has security advantages as the attri- 

butes are strictly separated. However, it has performance 
disadvantages due to the large number of files that have 
to be maintained. LDV does not use this scheme because 

of the performance disadvantage [15]. Instead the LDV 
distribution scheme packs as many attributes into a file as 
possible, but at the same time ensuring security. The fol- 

lowing distribution schemes were studied and compared 
with respect to security and performance. 

Method I-Each Level in a Separate File: If one file is 

assigned per security level, the EMPLOYEE relation can 
be distributed across files as shown in Tables 11-IV. Each 
file contains the partial relation visible at the level of that 

file or higher. The partial relation for the view at any given 
level is computed from the data stored at that level and 
from lower level data using the MERGE. The tuple de- 

scriptor at the beginning of each partial tuple indicates the 
attribute values represented by the partial tuple. 

With this method of storing multiple attributes at the 

same level in the message file, the enforcement of context 
based constraints is difficult. This problem is illustrated 

in the following examples. 

1) No Trojan Horse in the System (A Trojan Horse is 
malicious or hostile code): Suppose the S-user (Secret 

user) issues the request: SELECT Name, Address, which 
is then transformed into the following operations: 

T1 + MERGE F-U, F-S over SSN 
Result + PROJECT T1 over Name, Address. 

The result is shown in Table V.  The File Manager deter- 
mines that nothing is being released at a higher level, and 

releases the data. 
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2) Trojan Horse in MERGE or PROJECT operators: 

Suppose the same request is posed by the S-user. The re- 

quest is transformed into the same operations described in 
the earlier example. The result is shown in Table VI. The 
address fields have values for salaries in them because the 

Tojan Horse has switched those fields. The File Manager 
must detect the Trojan horse in the buffer Manager that 

switched the salary with the address, thus violating the 
context-based constraint that Name and Salary cannot be 
seen together. Another altemative is to verify all of the 

design of the low level buffer management and file re- 
trieval operations. Both alternatives seem difficult. The 
performance of this method is promising because there is 

a manageable set of files. Query processing and response 

times are likely to improve considerably over the attribute 
per file method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Method 2: By Context Upgrade in an Upgraded 
File: One way to avoid the costly verification or compli- 
cated File Manager design implied by the file-per-level 

method is to do a “by context upgrade.” In this method, 

the “by context” constraints arc taken into account when 
inserting the values into files. That is, an Upgrader (in the 

TABLE VI 

110K 

Update Pipeline) upgrades one of the attributes involved 
in the “by context” constraint. For the example consid- 
ered here, the files shown in Tables VII-IX are created. 

A disadvantage with this method is that the Secret sub- 

ject cannot read salary by itself (without name) as in- 
tended by the constraints. A Downgrader would be nec- 

essary to provide the required functionality. However, it 
is impossible for a Trojan Horse running at Secret level 
to switch the salary and address fields because the Salary 

data are stored in a TopSecret file. As with the previous 

method, there is a manageable set of files. Query pro- 
cessing and response times are likely to improve consid- 

erably over the attribute per file method. 

Method 3: By Context Upgrade zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin Separate File: In this 
method, initially there is one file per security level as in 

method 1 .  In addition, each attribute involved in a “by 

context” constraint is placed in a separate file. For the 
example considered the files created are shown in tables 
x-XIII. 

The advantage of this method is described with exam- 
ples. 

1) No Trojan Horse in  the system: Suppose a S-user 

makes the same request described in the example of 
method 1 .  The request is transformed into the following 

operations: 

T1 + MERGE F-U, F1-S over SSN 

Result + PROJECT T1 over Name, Address 

The result is shown in Table XIV. Here, the File Manager 
opens the files F-U and F1-S. It then gets the context con- 
straints relevant to the files opened. In this case, there arc 
none. So the response is assigned the level (S). 

2) Trojan Horse in the File Manager: Suppose an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS- 
user makes the same request. The request is transformed 
into the same operations as in case 1. The result is shown 

in Table XV. Here, the Trojan Horse has changed the 

MERGE so that it opens F2-S instead of F1-S. The File 
Manager gets the relevant context constraints based on the 

files opened. The constraint obtained is: Name, Salary is 
TS located in F-U, F2-S. 

The File Manager upgrades the result, thus frustrating 

the Trojan Horse attempt. The level of the response is 

(TS). 
As with methods 1 and 2, there is a manageable set of 

files. Method 3 is basically Method 1 with attributes rel- 

evant to the context constraints isolated. The other attri- 
butes can still be grouped. This is the method used in 

LDV. It has the security advantages of the attribute per 

level method and the performance advantages of the 
methods 1 and 2 discussed here. 
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B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReconstruction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a View for a Given Level 

The query processor reconstructs a partial relation rep- 
resenting a given user view from the data distributed 

across files. There is one such partial relation correspond- 

TABLE XV 

Result 

110K 

ing to each base relation in the user’s query. The remain- 
ing query processing (for example join) is performed using 

these partial relations. In order to reconstruct a partial re- 
lation at a particular level, the query processor must take 

into account context-dependent classification constraints, 
and merge tuples from different files with the same pri- 
mary key. For the second step, an operator called the 

MERGE is presented. This operator works with a knowl- 

edge of the properties of the tuples in the different parti- 
tions of a relation. These properties are discussed first. 

Characterizing Multilevel Tuples of a 3NF Rela- 
tion: There is a relationship between tuples in a multi- 
level view and the tuples in the partial relations that are 

distributed in single level files. The tuple in a multilevel 
view is formed by merging disjoint sets of attributes from 
tuples of partial relations in lower level files. In this case, 

we can say that the tuple at a higher level subsumes partial 
tuples from lower levels. Another way to look at it is that 
a tuple that was previously partitioned across levels is 

being reconstructed by concatenating attribute values that 
are at or below the level at which the reconstruction is 
being done. The partial tuples involved in this reconstruc- 

tion have the following property. 

Key = Keyll = Key,* = . . . = Key,, (1)  

where Key,, is the key of the higher level tuple being con- 
structed and Key,, ( 1 I i I n )  is the key of a tuple (from 

the lower level partial relations) that is being used in the 
reconstruction. The keys are the same because one is sim- 

ply reconstructing the same tuple whose values were dis- 
persed during the distribution. The reconstruction of a 
multilevel 3NF relation is simply to sort each file on the 

primary key and then MERGE as in sort-merge. Since 
this is a common operation, one way to optimize it is to 
maintain multilevel clustered indexes on the primary key 

The remaining group of tuples in a multilevel relation 

are those that are at a single level. For example, a U-user 

could enter a tuple that is not distributed across levels. 

After subsuming tuples that are distributed across levels, 
the MERGE then adds on the single level tuples to the 

resulting relation. These single level tuples can be con- 
sidered special cases of the subsumed ones, except that 
they only subsume themselves. They can be characterized 
in terms of their keys as: 

m i ,  [301). 

Key single + Keyother ( 2 )  

where Keyslngle is the key of the single level tuple and 

Keyother is any key in any file in the system. 

- .- 
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The Polyinstantiation Problem for 3NF Relations: The 

major kind of integrity constraint on a 3NF relation is the 

PRIMARY KEY CONSTRAINT which stipulates that a 

set of attributes must uniquely identify each row in the 
relation. For example, if SSN must uniquely identify the 

rows in the EMPLOYEE relation, then the next version 

of the same relation in which a user has completed an 
update and inserted another tuple with SSN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 ,  has vi- 

olated the primary key constraint as shown in Table XVI. 
In a multilevel environment, it is possible for users at 

different security levels to have different views of the same 

tuple. That is, there could be two different tuples with the 

same primary key at different security levels. This is 
known as polyinstantiation. When polyinstantiation is 
present, the primary key constraint is violated. LDV pro- 

vides mechanisms for stipulating and enforcing primary 
key constraints. The assumption is that the relations are 

normalized up to 3NF. Suppose a TS-user adds the new 
tuple (SSN = I ,  name = PS, Address = BO, Salary = 
100 K),  which violates the primary key constraint. The 

Update Pipeline stores the new tuple along with its time- 

stamp and level. Following a TS-user request to retrieve 

all of the EMPLOYEE relation, LDV’s Relational File 

Manager reconstructs EMPLOYEE for this particular user 
as shown in Table XVII. 

The user has the ability to choose which tuples are dis- 
played based on the timestamp and level. The default is 

to display all tuples. Suppose the TS-user’s query was the 
following: 

SELECT* FROM EMPLOYEE WHERE Level(*) = 
S 

The result produced is shown in Table XVIII. 

Option to Derive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa Tuple: In addition to adding con- 
structs in the retrieval language to allow user to specify 
time and to add a classification factor to a selection con- 
dition, the data definition language supports the deriva- 

tion of data. As an example, the definitions of Address 
and Salary could contain the following derivation factor. 

DERIVE LEVEL TS FROM LEVEL S. 

The derivation factor says that, for this attribute, values 

are derived from the S-level tuple having the same pri- 
mary key, because the primary key is being enforced (in 

the Update Pipeline) at each level. Even with polyinstan- 

tiation, there can be one tuple with each primary key value 
at the S-level. 

Reconstruction Process: The multilevel 3NF relation 

is constructed as follows. 
1) Open the files containing data required for compu- 

tation of the result. Take into account context-dependent 
classification constraints and the history of opened files at 

this level. Using this history, context-dependent classifi- 
cation constraints are considered not only for current 
query, but for previous queries also. 

2) Merge the files that were opened by performing the 
following steps: 

TABLE XVI 

TABLE XVII 

TABLE XVIII 

I EMPLOYEE I 
SSNName ddress Salary 

2a) SUBSUME all the tuples that are partitioned at or 
below the level at which the reconstruction is being done. 

2b) DERIVE all those tuples that have derived attri- 

butes. 

2c) Tag on all the single level tuples 
After the execution of the MERGE, the RFM then fil- 

ters the remaining spurious tuples by enforcing the pri- 
mary key constraint in the manner requested by the user 
using the time and level constructs. If the user has not 
requested any other filtering outside of what the MERGE 

has already performed, then the result of the MERGE is 
passed on. 

The user may request that timestamps and levels be in- 

cluded in the result. This enables later updates and ex- 
pedites manual declassification of part of the output. In 

addition, we distinguish between a “blank” and a “null” 

field. A “blank” can be used to prevent lower level data 
from being merged into higher level field, whereas a 

“null” always results in a merge. 

The MERGE operation is illustrated using the follow- 
ing example. In this example, the Address and Salary at 
level TS are derived from level S if not specified by the 

user. The tuple descriptors, timestamps, and levels are 
shown and are carried along in each step of the MERGE 

for each attribute. The abbreviations used for tuple de- 
scriptors, timestamp, level, SSN, Name, Address and 
Salary are TD, T, L,  S ,  N ,  A ,  and SA, respectively. Sup- 
pose that we need to build a TS view of the EMPLOYEE 
relation by merging the following files shown in Tables 

XIX-XXII. Note that F-TS contains a pointer (repre- 
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’ID 

1111 

1111 

TABLE XIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T L  S N A  SA 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATS 4 ON SF 200K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 TS 1 PS BO F2-S(1) 

TABLE XX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ID 

TABLE XXI 

T L S T L N T L  A T L S A  

TABLE XXII 

I F-TS I 

TABLE XXIII 

I SUBSUME Result I 

sented by F2-S(1)) to the appropriate file containing the 

values specified in the DERIVE construct. These are 
initialized in the Update Pipeline when the tuple is in- 

serted. 
The first step in merging these four files is to SU13- 

SUME all of the tuples that are partitioned into files at or 
below TS. The result of the SUBSUME is shown in Table 

XXIII. The second step in merging these four files is to 

derive all of the tuples that have derived attributes. The 
result of the derive is shown in Table XXIV. The third 

step is to combine the results of the first two steps with the 

single level tuples producing the result shown in Table 

TABLE XXV 

XXV. This result can now be passed on for further query 
processing or for display to the user. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Enforcement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Constraints on Aggregate and 
General Inference Control 

Aggregation constraints are enforced by the EX- 
PORTER after the result of the query has been built. Ag- 

gregation constraints are defined using the extended SQL, 
i.e., using the aggregate functions COUNT, AVG, MAX, 
MIN, SUM, and COUNT. The EXPORTER examines the 

aggregation constraints relevant to the query and may re- 

classify the result. Initially, the EXPORTER is an appli- 
cation specific downgrader. We believe that this is the 

correct place for general inference control as well. 
As an altemative to the EXPORTER, we considered 

using the LDV data distribution scheme to partition data 

used in the computation of aggregates, and to enforce the 

aggregation constraints in the same way that context-de- 
pendent constraints were enforced by ensuring that certain 

files are never accessed together. 
Consider the constraint: “COUNT (EMPLOYEE) > 

10 is SECRET”. One way to enforce this constraint is to 

split all UNCLASSIFIED EMPLOYEE files so that no 

single file ever has more than 10 tuples, and use the same 
data structure used for the context-based constraints to 

make sure that some files are never accessed together. The 

problem is that there are many possible aggregation con- 
straints and many possible combinations of such con- 
straints that could be defined per relation. This method 

could potentially lead to one partial tuple per file, or to 
constraints that would make only one file accessible to the 

first user that logs on, and none of anyone else. As a re- 

sult, we used the first altemative, i.e.,  the EXPORTER. 

D. Overview of the Major Modules 

The Response Pipeline is illustrated in Fig. 3 .  The ma- 

jor modules are the URM, the RAM, the EM and the 
RFM. Each of these modules are described here. 

URM: This module provides an SQL interface to LDV 

for queries that is consistent with the ANSI SQL standard. 
It performs discretionary access control on views as de- 

fined by the ANSI standard (i.e,, not LOCK’S discretion- 
ary control policy). Modification of queries on views to 
form queries on base relations, and modification of quer- 

ies using security constraints to ensure that the response 

is classified so that it is observable to the user [14]. All 
information needed for translation is provided by the 

DDM (Data Dictionary Manager). 

RAM: This module takes the intemal representation of 

I- 
_ -  
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Fig. 3. Response pipeline 

the query built by the URM, produces a relational algebra 
representation of the query, and builds an optimal exe- 
cution strategy. The information on access paths is ob- 
tained from the DDM. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

EM: This module takes the execution strategy pro- 
duced by the RAM and builds the result of the query by 
executing each operation in the relational algebra repre- 
sentation. It has a procedure called Build-Result which 

uses the service of RFM to build the response. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RFM: This module is used in the Response Pipeline by 

the EM to build a view of a single relation at a particular 
level as described earlier. The RFM is composed of the 
Relation Manager, the Record Manager, the Index Man- 

ager, and the File Manager. The Relation Manager man- 
ages the relations by using the services of the data storage 
and retrieval managers. The Record Manager manages 

collections of records stored as tuples by the Relation 
Manager. The Record Manager uses the services of the 
File Manager and Index Manager to store and retrieve 
records. The Index Manager is used by the Relation Man- 

ager to store keys in an index and manages them in sorted 
order. The Index Manager uses the services of the File 

Manager to store and retrieve keys. The File Manager 
manipulates the data management files. 

E .  Security Critical Modules 

The content-based constraints are enforced by LOCK 
due to the distribution scheme that partitions data into ap- 
propriately labeled files. For context-based constraints, a 

data structure is maintained to indicate what files may or 

may not be accessed together (this data structure is cre- 
ated and maintained by transforming context-based con- 
straints expressed in SQL into an equivalent internal form 

expressed as constraints on sets of files). Whenever a file 

is to be accessed, the File Manager must first read the 
history of previous accesses to determine if the file re- 

quest can be granted. If so, the File Manager appends the 
new file request to the history file and then opens the re- 
quested file. Because it maintains this history file and re- 
stricts file access requests using context-based con- 
straints, the File Manager is security critical. In addition, 

it is security critical that the File manager opens the right 

files and not switch file names (otherwise a file involved 
in a context-based constraint whose violation cannot be 

detected may be opened). 

A module can be security critical for any one of the 

1) It controls the order-of-processing security critical 

2) It processes security critical data (potential mispro- 

3) It transmits security critical data from one place to 

4) It acts as a guard for security critical data (potential 

5 )  It would provide a covert channel (potential signal- 

The security critical components of the Response Pipe- 

following reasons. 

modules. 

cessing). 

another (potential substitution). 

misauthorized deposit or withdrawal). 

ing on the data). 

line are portions of the EM and the EXPORTER. 

VI. UPDATE PIPELINE 

This section presents an overview of the Update Pipe- 

line design. Processing an insert request, delete request, 

and a modify request, an overview of the major modules, 
and the security critical components are described. 

A .  Insert Request 

An insert request must be processed so that data are 

inserted into the correct file at the correct level based upon 
the classification constraints and the inserting subject’s 

level. Upgrades are determined by the values of the ele- 

ments of the tuple to be inserted. 
The insert request is first imported into the DBMS do- 

main. The imported request is then sent to an Upgrader 

which computes the level of the insert operation as fol- 

lows [ 2 3 ] .  
1 )  The level of each attribute specified in the insert re- 

quest is set to the corresponding default level. 

2) The relevant constraints visible at the processing 

subject’s level are retrieved. Each relevant constraint sat- 
isfies the following condition: 

It classifies an attribute which is specified in the insert 

request at the level which dominates the processing sub- 
ject’s level, and it has not been examined during a pre- 
vious iteration of this algorithm. 

3 )  For each relevant constraint, a new level is com- 

puted for each attribute that is classified by the constraint 
as follows: 

new level = least upper bound (old level, level speci- 
fied in the constraint). 

4) Compute the least upper bound of the levels of the 

processing subject and all the attributes specified in the 

insert request. 
5) If the new level dominates the level of the process- 

ing subject, then create a new subject at this new level 
and pass the parameters associated with the current pro- 

cessing subject to the new subject. Delete the current pro- 

cessing subject. The new subject becomes the current pro- 
cessing subject. Go back to step 2. 

6 )  Otherwise, if the new level is equal to the current 
processing subject’s level, then continue with the remain- 

_ _  
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ing processing of the insert operation, i.e.,  this is the level 

of the insert operation. 
We illustrate this algorithm with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa simple example. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R ( A 1 ,  A 2 ,  A 3 )  be a relation with the following con- 
straints: 

C1: I f A 2  = 5, then A1 is TS 
C2: If A 3 = ttt then A 2  is S 
C3: C1 is S 
C4: C2 is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU 
C5: Default level of A l ,  A 2 ,  A 3  is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. 

A U (Unclassified) subject requests to insert (alpha, 5, 
ttt) into R .  Initially the processing subject’s level is U and 

the default levels of all three attributes are U. During the 
first pass of the Upgrader, the relevant constraint is C2. 

The level of the attribute A 2  is computed to be S .  Then 

the new level is set to the least upper bound of the levels 
of A l ,  A 2 ,  A 3 ,  and the processing subject’s level. This 
new level is S .  A new processing subject is created at the 

Secret level. During the second pass, the relevant con- 
straint is C1. The level of A1 is computed to be TS. The 
new level is the least upper bound of the levels A1 , A 2 ,  
A 3 ,  and the processing subject’s level. This new level is 

TS. A new processing subject is created at the TS level. 

During the third pass, no relevant constraints are re- 

trieved. The levels of the attributes remain the same. The 
new level is computed to be TS. This new level is the 
same as the processing subject’s level. Therefore, the in- 

sertion is performed at the TS level. 

After the level of the insertion is computed, a view of 
the relation specified in the insert request is built using 

the MERGE operation of the Response Pipeline. Once the 

view is built, the request may be modified if necessary as 
follows: 

If the primary key value specified in the request al- 

ready exists and the tuple is visible at the level of 
the insert operation and not below this level, then 

the request is rejected as it is a duplicate tuple with 

the same primary key. If it is not a duplicate tuple 
at the level of the insert operation, then the tuple is 
inserted with a new timestamp and the level of in- 

sertion into a file at the level of the insert operation. 

The modified request is passed to the RAM for opti- 

mization, and the EM for execution. RAM translates the 

request into requests on files. In the example considered 
here, the request is translated into operations on a TS file, 
say, F1, as follows: 

OPEN F1 

INSERT (alpha, 5, ttt) INTO F1 
CLOSE F1. 

Information about the file F1 is retrieved from the 
DDM. This is because the data dictionary includes the 

association between the file F1 and the relation R .  
We illustrate the insert operation with some examples. 
Consider the relation R ( A 1 ,  A 2 ,  A 3 )  with the follow- 

ing constraints: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

00 S alpha 17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxxx 

01 s beta 34 

02 S delta 2Ouuu 

TABLE XXVII 

I F-TS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
101 p l  FSlbeta lwwy.1 

111 p3 pIga” ”a l5  pyy 

TABLE XXVIII 

TABLE XXIX 

A1 is primary key 
A1 is TS if A 2  = 5 
A2 is TS if A 2  = 5 
A3 is TS if A 3  = www or yyy 
default value of A l ,  A 2 ,  A 3  is S 
level of the constraints is U. 

The relation R is stored in a S file F-S and a TS file F- 

TS as shown in Tables XXVI and XXVII. Recall that the 
first field is the tuple descriptor, the second field is the 

timestamp, and the third field is the level. The views at 
levels S and TS are V-S and V-TS, respectively. These 
views are shown in Tables XXVIII and XXIX. They are 
computed using the MERGE operation in the Response 

Pipeline. Note that the timestamp and level precede each 
attribute. 

In the examples to be given here, it is assumed that the 

level of the insert operation has already been computed. 
Example I :  Suppose that a S subject requests to insert 

(gamma, 22, zzz). 
This example illustrates the case where a subject at- 

tempts to insert new data where data already exist with 

the same primary key at a higher level. The solution is to 
insert the tuple at level S with a timestamp and level. The 
primary key and level uniquely identify the tuple. After 
the insertion, the file F-TS does not change. F-S, V-S, 

and V-TS are changed as shown in Tables XXX-XXXII. 
Example 2: Let F-S, F-TS, V-S, and V-TS contain the 

values at the end of Example 1. 
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TABLE XXX 

TABLE XXXl 

TABLE XXXII 

Suppose that a TS subject requests to insert (alpha, 18, 

aaa ) . 
This example illustrates the case where there is a tuple 

at the lower level with the same primary key. The solution 
is to insert the tuple at the higher level with a new time- 

stamp and level. After the insertion only F-TS and V-TS 
are changed. The new values are shown in Tables XXXIII 
and XXXIV. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Example 3: Let F-S, F-TS, V-S, and V-TS contain the 

values at the end of Example 2. 
Suppose that a TS subject requests to insert (pi, 10, 

bbb). 
This example illustrates the case where a subject at- 

tempts to build a tuple and no tuple exists in the database 

with the same primary key. The solution is to insert the 
tuple into F-TS. After the insertion, only F-TS and V-TS 
change. The new values are shown in Tables XXXV and 
XXXVI. 

Example 4: Let F-S, F-TS, V-S, and V-TS contain the 
values at the end of Example 3 .  

Suppose that a TS subject requests to insert (pi, 10, 

kkk). 
This example illustrates the case where a subject at- 

tempts to insert a tuple and there is already a tuple with 

the same primary key at the same level. The solution is 
to reject the insert request. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Delete Request 

Processing of a delete request is less complex than that 
of an insert request. In this case, it is not necessary to 
compute the level of the delete operation as it is assumed 

to be that of the processing subject. This is because the 

TABLE XXXIII 

TABLE XXXIV 

1 1 1  I I I I I I  
111 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlOSlTSlalpha IOS[rSjl8 (OSITSpaa 

TABLE XXXV 

TABLE XXXVI 

*-property enforced by LOCK prevents higher level sub- 

jects from deleting information from lower level files. 
Therefore, upgrading the level of the delete operation does 

not make sense. A delete request is first imported. Then 
a request is made to the Response Pipeline to build a view 
of the relation specified in the delete request at the level 

of the processing subject. The delete request is modified 

according to the view just built as follows. 

1) For each tuple being deleted, if any part of the tuple 
is visible at the lower level, then the delete request is re- 

jected. This is because a higher level subject cannot write 

into a lower level file. 
2) If the subject wants to delete the portion of the tuple 

visible at its level, then the values corresponding to this 

portion are changed to NULL. 
3 )  If no part of the tuple to be deleted is visible at a 

lower level, then the tuple is marked as deleted in the file 

at the level of the delete operation. The tuple is not re- 
moved from the file immediately because it may be re- 

quired by a higher level subject in reconstructing the 

higher level view using MERGE. An expunge daemon 

periodically reviews the files and remove the tuples that 
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are marked as deleted. Before removing the tuples, the 

daemon inserts them into the appropriate higher level files. 
We expect the expunge daemon to be a set of subjects 

running at various levels under the control of the DBSSO 

(database systems security officer). They would zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlook at 
tuples logically deleted over some period and do the phys- 

ical deletion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Example 5: Let F-S, F-TS, V-S, and V-TS contain the 

values at the end of Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 
Suppose that a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS subject requests to delete the tuple 

where A1 = beta. 
This example illustrates the case where a lower level 

subject deletes a tuple that is used in building a view at a 
higher level. The solution is not to remove the tuple but 
to mark it as deleted. After the delete operation, no 
changes are made to F-TS and V-TS. F-S and V-S are 
changed as shown in Tables XXXVII and XXXVIII. 

C. Modib Request 

The modify request is treated as a delete request fol- 
lowed by an insert request. Therefore, the details are not 

described here. We illustrate the modify request with an 

example. 
Example 6: Let F-S, F-TS, V-S, and V-TS contain the 

values at the end of Example 5 .  
Suppose that a TS subject requests to modify A2 = 81 

where A1 = delta. 
This example illustrates the case where a subject at- 

tempts to modify an element with a lower access class. 

The solution is to insert the tuple with a different time- 
stamp and level at the higher level. (Note that the lower 

level information cannot be deleted due to the *-prop- 

erty.) F-S and V-S do not change as a result of the modify 
operation. F-TS and V-TS are changed as shown in Ta- 

bles XXXIX and XL. 

D. Overview of the Major Modules 

The major modules in the update Pipeline are the URM, 
RAM, and the EM. The relationship between these mod- 

ules is shown in Fig. 4. Each of these modules is de- 

scribed here. 
URM: This module provides an SQL interface to LDV 

for updates that is consistent with the ANSI standard. It 

performs discretionary access control on views as defined 

by the ANSI standard (i.e., not LOCK’S discretionary ac- 

cess control policy), modification of the updates on views 
to form updates on base relations, integrity checking, and 

classification constraint enforcement. All information 
needed for the translation is provided by the DDM. 

Among the functions of URM, of particular interest are 

update security modification and insert level calculation 
as these are peculiar to multilevel systems. The update 

security modification process modifies the update request 
using the classification constraints. For an insert request 
it computes the level of the insert using the Upgrader, 

builds the view of the relation being updated using 
MERGE, and checks for a tuple with the same primary 

key visible at the level of the insert and not below (it re- 

TABLE XXXVII 

TABLE XXXVIII 

TABLE XXXIX 

TABLE XL 

DBMS Request Parser 

Updates and Levels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f 

DBMS Result Exeunon 
Manager 

Fig. 4. Update pipeline. 

jects the insert if it finds one). The Upgrader determines 

the level of an insert using classification constraints. If a 
predicate of a constraint evaluates to TRUE, it is used to 
assign a new level, otherwise, the constraint is ignored. 
The output is the modified insert request and its level. 

For a delete request, it builds a view of the relation 
being updated using MERGE, builds a list of tuple iden- 

tifiers (timestamp, level, primary key) being deleted by 
eliminating those that are visible at a lower level, and 
builds a delete request to delete those tuples. The output 

is the delete request and its level. For a modify request, 

it does the delete processing followed by the insert pro- 
cessing. The output is a delete request and its level, and 

an insert request and its level. 
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RAM: This module takes the internal representation of 
the update built by the URM, and builds an optimal exe- 

cution strategy. The information on access paths required 
by the optimization process is obtained from the DDM. 

EM: This module takes the execution strategy pro- 

duced by the RAM and executes each operation in the 

strategy using the services of the Relational File Manager 
(RFM). The RFM is composed of the Relation Manager, 

the Record Manager, the Index Manager, and the File 

Manager. The RFM carries out the requests issued to it 
by the RAM by making use of the services of its compo- 
nent modules. 

E. Security Critical Modules 

As described earlier, in LDV, we restrict security crit- 

ical code to a subset of the modules. Because of the or- 
ganization of LDV, subjects performing designated con- 

trolled roles, and objects touchable only by certain role- 

players, only those modules executed by subjects that 
compute security critical information (such as the level of 
an insert) or that touch security-critical data (such as file 

containing the database data) are security critical. There- 
fore, in the Update Pipeline, the only security critical 

component is the Upgrader, when it computes the level 

of the insert. This is because once the level is computed, 
the remaining processing will continue at this level and 

LOCK will provide the necessary protection. 

VII. METADATA PIPELINE 

This section describes the Metadata Pipeline. The ma- 

jor design issues, an overview of the major modules, and 
the security critical modules are described. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  Design Issues 

The Metadata Pipeline is used to create, delete, and 
maintain metadata. The major component of the Metadata 
Pipeline is the DDM that maintains all metadata, and acts 

as a server of the metadata to the Response and Update 

Pipelines. The metadata include information about all of 

the schemas (conceptual, external, and internal), rela- 
tions, attributes, classification constraints, privileges, se- 

mantic integrity constraints, views, indexes, and database 
files. All of the metadata are stored in LOCK files. The 
only security critical functions of the Metadata Pipeline 
are those concerned with the classification constraints, 

i .e.,  it is security critical that the classification constraints 
be created, deleted, and maintained correctly. The incor- 

rect modification of other metadata would not result in 
any security violation. Therefore, the design issues we 
addressed were the completeness and consistency of clas- 

sification constraints and the translation of the classifica- 

tion constraints on relations into classification constraints 
on files. We discuss these issues here. 

Completeness and Consistency of Classijication Con- 
straints: A set of classification constraints is complete if 
every piece of data is assigned a classification level via 
the classification constraints. We enforce completeness by 

ensuring that every piece of data has a default classifica- 
tion level. 

Checking for consistency of a set of constraints was one 
of the more difficult tasks in the design. Our primary ob- 

jective here is to ensure that the security constraints are 
defined in such a way that there is no security violation. 

Towards this direction, we have developed a set of rules 
that a set of classification constraints must satisfy. These 

rules include the following [24]: 
Rule 1: The level of the value of the primary key in 

any tuple must be dominated by the levels of the values 

of all the other elements in the tuple. 
Rule 2: The minimum level of any database entity must 

dominate the level of the existence of the entity. 

Rule 3 :  The level of the existence of a database entity 

must be dominated by the level of any metadata that refers 
to that entity. 

Rule 4: The classification level specified in the classi- 
fication constraint must dominate the default levels of all 

the attributes which are included in the classification. 

Rule 5 :  The level assigned to each classification con- 
straint must be dominated by the level of at least one at- 
tribute referenced in the classification constraint. 

Rule 6: The level assigned to a foreign key attribute 

must dominate the level assigned to the corresponding 
primary key attribute. 

We justify some of the rules stated here. For example, 

consider rule 1. If the primary key of a tuple is not visible 
to a user, this user will not be able to uniquely identify a 

tuple. In the case of rule 2, if the level of the statement 

“the salary is 20 K” is Secret and the level of the state- 
ment “there exists an attribute salary” is Topsecret, then 
by getting the information “the salary is 20 K”,  a Secret 

user has acquired Topsecret information. 
Ensuring the consistency of the classification con- 

straints does not have to be done automatically by the sys- 

tem; it can be done off-line by the DBSSO. An automatic 
system for enforcing these rules would ensure that they 

are satisfied whenever a classification constraint is up- 
dated. Current logic programming systems such as those 

described in [6] and [22] can be used to develop such a 

tool. 
Constraint Storage and Translation: The classification 

constraints as specified by the DBSSO at the conceptual 
level have to be stored with the metadata and also trans- 

lated into classification constraints on the physical files. 
We use relations (system tables) to store both the con- 

straints on relations and the constraints on the physical 
files, When a new classification constraint is inserted, de- 
leted, or modified, the appropriate system tables which 

store the classification constraints at the conceptual level 

are first updated. If the classification constraints under 
consideration cause the security levels of the attributes or 

parts of the attributes to change, new files for the attri- 

butes are created at the new levels and the system tables 
are updated to reflect this change. The classification con- 
straints may be specified when a relation is created or at 
a later time. The informal algorithm which translates the 
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L-onsuaint name table name column name condition classifjcation level 

c1 EMPLOYEE Name NULL Secret 
c1 EMPLOYEq Salary NULL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsecret 
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classification constraints specified at the conceptual level 

to classification constraints on files, and creates the ap- 

propriate files, is given below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Assumption: For each attribute there is a default level. 

Therefore, a file at this default level exists which stores 
the attribute. The application of additional simple, con- 

tent-based or context-based classification constraints can 

only result in upgrades. 
Translation of Simple or Content-Based Classijication 

Constraints: If the level specified in the classification 

constraint dominates the current level of the attribute 
specified in the constraint, then create a new file for this 
attribute at the level specified in the constraint. Translate 

the classification constraint to one on files, and update the 
appropriate system tables (note that the current level could 

be the default level or a level assigned to this attribute by 
another constraint). 

Translation of Context-Based Classzfication Con- 
straints: If the level specified in the classification con- 

straint dominates the current levels of the attributes, then 
for each attribute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA classified by the classification con- 

straint do the following. For each file which stores A ,  if 
this file stores other attributes as well, then remove at- 

tribute A from this file and create a new file at the same 
level which will store A in the future. Translate the clas- 

sification constraint to one on files, and update the appro- 
priate system tables (note that the current levels of the 
attributes could be their default levels or the levels as- 

signed by other constraints). 

Suppose a context constraint which classifies the names 
and salaries of employees taken together at the Secret level 

is enforced. Table XLI shows how this constraint is 
stored. The condition field is “null” because there is no 
condition attached to the constraint (for example, if the 

names and salaries taken together is Secret if the em- 

ployee is not PD, then the condition field will specify 
“name # PD”) .  Assuming that the names of employees 

are stored in file F1 and the salaries of employees are 
stored in file F 2 ,  Table XLII illustrates how this con- 

straint is stored as a constraint on files. 

B. Overview of the Major Modules 

The major modules in the Metadata Pipeline are the 

URM and the DDM. The relationship between these mod- 
ules is shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  Each of these modules is de- 
scribed here. 

URM: Creation, deletion, and modification of meta- 
data are specified in the SQL DDL. The DDL provides 
a create statement, drop statement, alter statement, integ- 
rity assertion statement, index definition statement, priv- 

ilege definition statement, privilege revocation statement, 
and security assertion statement. The URM processes 

these statements. It invokes the DDM to update the me- 
tadata. 

DDM: The DDM has three major components: 
1) the dictionary which consists of the conceptual, ex- 

ternal, and internal schemas, 

TABLE XLII 

CONTEXT CONSTRAINTS ON FILES 

ser Request 

Fig. 5 .  Metadata pipeline 

2) the dictionary schema which is a description of the 
generic structure of the dictionary, and 

3) the dictionary processing system which is the set of 

programs that interact with the dictionary and the dictio- 
nary schema to provide the functionality of the DDM. 

The relational model is used to represent the dictionary 

component of the DDM. The dictionary consists of a set 
of tables which describe the conceptual, external, and in- 

ternal schemas of the database. They are stored at the se- 

curity level of the DBA or DBSSO who inserted the 
metadata. The conceptual schema consists of the descrip- 
tion of the relations, attributes, classification constraints, 

privileges, and semantic integrity constraints. The exter- 
nal schemas consist of the description of views and view 

privileges. The internal schema describes the physical im- 
plementation of each relation. It includes a description of 
the files that correspond to each relation, the indexes de- 
fined by the user, and the classification constraints on files. 

The dictionary processing system consists of modules 
that manipulate the dictionary tables. These modules can 

be grouped into two categories: 1) The modules used by 
the response and update pipelines to provide information 

of the metadata, and 2) the modules used by the metadata 
pipeline to update the metadata. Each SQL DDL state- 

ment results in updates to the dictionary table. These up- 
dates are processed at the level of the DBA or the DBSSO 

performing the update. 

C.  Security Critical Modules 

The security critical components of the Metadata Pipe- 
line are the components which are responsible for the 

maintenance of the classification constraints. The classi- 

fication constraints are parsed by the URM and passed to 
the DDM. DDM first checks for the consistency of the 
classification constraints (this operation can be performed 

offline by the DBSSO). The classification constraint is 

then inserted into the appropriate dictionary tables at the 
level of the DBSSO inserting the classification constraint. 
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These classification constraints are later used by the Up- 

date Pipeline to determine the level at which the update 
request has to be processed. After the classification con- 

straints are stored in the appropriate tables, they have to 
be translated into classification constraints on files. This 

is because the Response Pipeline needs these classifica- 
tion constraints on files to determine which files to open. 

The security critical modules are the process assertion 
statement and process drop statement. The functions of 

the process assertion statement module include the inser- 
tion of security constraints while the functions of the pro- 
cess drop statement module include the deletion of secu- 

rity constraints. 

VIII. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOPERATING SYSTEM SUPPORT FOR LDV 

The operating system issues that have been identified 
are concerned with process management, file manage- 
ment, buffer management, and consistency control zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25 ] .  
Process management issues affect all aspects of the LDV 

system design, file management issues affect the design 
of the Relational File Manager, and buffer management 

and consistency control issues affect the design of the 
Transaction Execution Manager. We describe the issues 
of process management, file management, and buffer 

management. Consistency control issues are only appli- 

cable to a multiple user updating environment. These is- 
sues are currently being investigated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Process Management 

There are two process management issues that arise in 

the system design of LDV: process isolation and process 
control. 

Process Isolation: LDV is a set of processes running 

under the control of LOCK. Assured pipelines (Response, 
Update, and Metadata Pipelines) are used to provide pro- 

cess isolation. These pipelines consist of a series of sub- 
jects executing in special domains on special types of ob- 

jects that ensure tamper-proof maintenance of sensitive 
data. Each subject and object have a associated set of 

characteristics. 
The characteristics of a subject are: 

Subject-Name zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= The name we use to identify this sub- 

Purpose = What this subject does 
Role = The generalized role that this subject plays 

Domain = The LOCK domain of objects this subject 

Read-Datatype = Datatypes of objects this subject will 

Write-Datatype = Datatypes of objects this subject will 

Update-Datatype = datatypes of objects this subject 

Parameter-Datatype = Datatypes of parameter object, 

ject 

will read 

read 

write 

will read and write 

not data-object. 

The characteristics of an object are: 

Object-Name = The namer we use to identify this ob- 

Purpose = Why we have this object 

Datatype = the LOCK datatype of this object 

Contents = What it is that this object contains 
Read-Domain = Domains of subjects that can read this 

Write-Domain = Domains of subjects that can write 

Update-Domain = Domains of subjects that can update 

A sample subject and object belonging to the Response 

Subject-Name = Importer 

Purpose = “Act as a first-gate into the database do- 

Role = Data-Importer 
Domain = Importer 

Read-Datatype = Vanilla 
Write-DataType = DBMS-Request 

Update-Datatype = 

Parameter-Datatype = 

Object-Name = DBMS-Request 
Purpose = “Hold the input as typed by the user” 
Datatype = DBMS-Request 

Contents = “An SQL DML or DDL request as a 

Read-Domain = URM 

Write-Domain = Importer 
Update-Domain = 

Process Control: LDV relies on LOCK for process 
creation, scheduling, and synchronization. Various alter- 

natives have been examined for the organization of the set 

of processes in the assured pipelines for LDV [25 ] .  Our 
choice for a single user updating environment is to have 
a set of processes per user, with those processes running 

at appropriate levels for that user. 
LDV uses the services provided by LOCK such as cre- 

ate subject, destroy subject, delete object, wait on signal, 

and signal subject in order to create subjects and objects 

in the proper domains and of the proper types as needed. 

Some objects exist within the database only for the life- 
time of a single database transaction, and are deleted as 
its conclusion to prevent potential intertransaction covert 
channels. Which subjects are created at database startup, 

which at user entry to the database, and which with a par- 
ticular transaction is an open question. One possibility 

would be to start up subjects as soon as possible, and use 
the LOCK signaling mechanism to pass the control action 
of “the next transaction is ready to process” down the 
pipelines. 

B. File Management 

A typical DBMS uses an Operating system file system 
to store the data, metadata, and log data for recovery. For 
performance reasons it is useful for a DBMS to be able to 

ject 

object 

this object 

this object. 

Pipeline are given here: 

mains” 

string” 
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store the data in physically contiguous blocks if desired. 
This is useful for sequential file access to a single relation 

stored in a single file. In addition, the DBMS usually im- 

plements multilevel directories, hashing, and indexes on 
top of the file system. 

LDV will be built on top of the LOCK TCB which pro- 
vides services for the manipulation of objects. LOCK pro- 

vides the following services that are used for file manage- 
ment: create object and delete object. Data values will be 
stored in the individual records of the database, rather than 

having pointers to the data values. These records will be 

manipulated as pointers in virtual storage. As a result, all 
of the data values of a record can be fetched by a single 

LOCK I/O operation, since they will be contiguous in a 
single LOCK object. Indexes will be implemented in the 

form of B-trees. Each relation may have anywhere from 
zero indexes up to an index on each column. It is also 
possible to create an index on a combination of columns, 

provided they are all at the same security level. Indexes 

make it possible to scan a relation in order by the indexed 
values, or to directly access the records which match a 

particular value or range of values. The relationship be- 
tween a table and a set of files will be maintained in the 
data dictionary. 

LDV subjects in the DDT are defined so that object of 

particular types can only be created and destroyed by par- 
ticular subjects. This prevents object-substitution by a 

trojan horse elsewhere in the database. Since LOCK does 
not provide directory management, LDV will need to 
maintain its own internal directory that maps relation 
names to file names. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABuffer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAManagement 

A typical DBMS does not use the operating system 
buffer management for performance reasons [27]. In order 
to implement its own buffer management, LDV must be 

able to partially control the main storage replacement pol- 
icy provided by LOCK. 

LDV will implement its own buffer management in the 
form of a main memory cache for the stored files that nor- 

mally reside in secondary storage. The buffer manager 
loads pages in main memory for manipulation and selects 

pages to be written back to disk when required. Since a 
physical access to a database page on disk is much more 
expensive than an access to a database page in the buffer, 
the main goal of the buffer manager is the minimization 

of physical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA110. 
The interface to the buffer manager consists of a request 

to access a page and an optional statement of update in- 
tent. This is done by issuing a FIX operator with a virtual 

storage page identifier, e.g., page 8 of the object whose 
id is 438. As a result, the page is located and fixed in main 

memory to prevent replacement during use. The virtual 
address of the frame containing the page is known so that 
the data on the page may be directly manipulated by LDV. 

When the page is no longer being addressed by a trans- 
action, an UNFIX operation on the page is issued and the 
page is made eligible for replacement. 

LDV must implement its own buffer management in or- 
der to have control over prefetching of blocks, the re- 

placement strategy, and the ability to do selected force. 

The buffer manager will provide three functions: pre- 
fetch, block management, and selected force. The pre- 

fetch function is used during query processing. The query 
processor can give advice to the buffer manager concern- 
ing what blocks to prefetch into the main memory cache. 

The block management function is concerned with the 

strategy for replacing blocks in the buffer pool. One such 
strategy is least recently used (LRU), in which blocks for 

which there is locality of reference will remain in the 

cache over repeated reads and writes. The block manage- 
ment function can accept advice from the query processor 
concerning alternative replacement strategies. The se- 

lected force function is necessary for recovery. The re- 
covery manager must be able to force data to disk at cer- 

tain times in the transaction execution, in order to recover 
from a system crash. Since LOCK is a virtual storage op- 

erating system, the lack of LDV buffer management, or 
the accidental reference to an item on a page that had not 

been fixed by the LDV buffer manager, would not result 
in an error, only poorer performance. 

IX. CONCLUSION 

Given the additional problems introduced by increasing 

granularity of items in a database over files, the possibil- 

ities of inference and aggregation, and the need to manage 
metadata as well as data in a secure way, the way in which 
to design and organize a secure database is not obvious. 

In this paper, we have described the design of a secure 

database system, LDV, that builds upon the classical se- 
curity policies for operating systems. We have described 

our policy for LDV and shows how it builds on the policy 

for LOCK TCB. We have also discussed the design ap- 
proach of LDV which is based on assured pipelines and 

described the design of the query, update, and metadata 
management operations. Finally we described the oper- 
ating system issues involved. In addition to the security 
policy and the design, the design specification, the formal 

model, and the formal top-level specification (FTLS) for 
LDV are also completed [20]. 

Future work includes investigating the inference, ag- 
gregation, and consistency issues. The LDV design al- 
ready addresses certain inference and aggregation prob- 

lems. Furthermore, the design is such that logic-based 
inference controllers such as those described in [28], [29], 
and [21] can be implemented on top of LDV. At present, 

the LDV design team is extending the design to handle a 
multiple user updating environment. The issues being in- 
vestigated include concurrency control and recovery when 

multilevel transactions operate concurrently. 
The implementation issues concerning a multilevel se- 

cure (MLS) application like LDV include the application 

needs specific to MLS applications, module organization, 

and reusability considerations. The design team has also 
examined these issues in order to obtain an implementa- 
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tiOn Strategy for LDV. We look forward to describing our 
implementation at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa future date. 
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Design of an Integrated Information Retrieval/ 

Database Management System 

LAWRENCE V. SAXTON AND VIJAY V. RAGHAVAN, MEMBER, IEEE 

Abstract-The problem of increasing the semantics available in a da- 
tabase management system has received considerable attention in re- 
cent years. Information retrieval systems provide well-studied and well- 
understood models that lead to meaningfully ranked responses to quer- 
ies. A number of approaches for the integration of these systems have 
been considered and each has been found to be restricted in some way. 
A new, unified architecture is presented in this paper. This architec- 
ture provides the flexibility of integrating any information retrieval 
model with any type of database management system. More impor- 
tantly, the approach provides for the ability to use “aggregation” and 
“generalization” operations automatically to provide more meaning- 
ful responses. As well, this framework enables the systematic investi- 
gation of the potential of employing IR models as a general tool for 
supporting management decisions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Zndex Terms-Database design, database management systems, de- 
cision support systems, information retrieval systems, integration. 

I. INTRODUCTION 

ATABASE management systems (DBMS) are de- D signed to represent and manipulate objects or events 

of the real world as well as associations between these 

entities. The major objective of a database system is to 
provide an enterprise with a facility for the centralized 

control of its operational data in order to reduce the 

amount of redundancy in the stored data, avoid inconsis- 
tency in the stored data, share the stored data among users, 

enforce standards, apply security restrictions, and main- 

tain data integrity [3]. 
DBMS’s are widely used nowadays in many application 

systems needed in businesses, govemment agencies, and 

professional offices. A DBMS has become one of the ma- 
jor components of today’s information systems. Most of 
today’s DBMS’s are very sophisticated and provide many 

and varied data management facilities. However, the fa- 

cilities provided by DBMS’s are not catching up with the 
increase in requirements of today’s information systems. 
For example, there is increasing pressure from manage- 

ment to have information systems that support unstruc- 
tured decision making and weighted evaluations, and pro- 
vide ranking facilities in cases where there are 

overwhelming amounts of information. Many researchers 
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have attempted to use artificial intelligence (AI) for 

achieving certain kinds of improvement. Another direc- 
tion for achieving such improvement is to adopt proven 
methods from information retrieval. 

The discipline of information retrieval deals with the 

organizing, structuring, retrieving, and displaying of bib- 
liographic information zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 131, [ 141. In this context, docu- 
ments or document surrogates (e.g., abstracts) are ana- 

lyzed and a representation for each document is generated. 
The simplest, and the most common, representation con- 

sists of describing each document by a set of keywords or 

a vector in which each element corresponds to the impor- 
tance of a particular keyword to the document. These doc- 
ument representations are very much like the records in a 

DBMS environment and they have to be organized on 
storage devices to enable efficient search and retrieval. 

However, research on IRS’s places more emphasis on the 
handling of imprecise concepts and the efficiency of the 
search rather than on the controls which are obtained from 

the sophisticated architectural design of the DBMS. The 

documents should or should not be retrieved for any given 
user query on the basis of their relevance to the query. A 

document is relevant if, with respect to a specific query, 

the user judges that it has the information that is desired 

by the user; it is nonrelevant otherwise. 

A document may or may not be relevant to a user query 
depending on many variables of the document (style of 

writing, comprehensiveness, quality, etc.) as well as nu- 
merous user characteristics (previous knowledge, the rea- 

son for the search, etc.). The influence of all these fac- 

tors on the decision of whether a certain document is 
relevant to a given request is quite involved and cannot 
be exactly represented in the choice of keywords or de- 

scriptors. In this sense, the descriptors used to represent 
the content of a document or the user need are not precise 

[6]. Therefore, it is recognized that an IRS cannot pre- 

cisely select only and all relevant documents. Rather, it 
is suggested that the system should adopt a method that 

facilitates the ranking of documents in the order of their 
estimated relevance to a user query. More details of an 
IRS can be seen in [ 131 and [ 141. 

The abilities of IRS’s in handling imprecisely described 

objects and relationships, handling imprecise user quer- 

ies, and ranking of responses from overwhelming amounts 
of information according to their relevance should add an 

interesting dimension to the database management sys- 
tem. It is believed that the integration of a DBMS and an 
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