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Foreword 

(1) The EN Eurocodes are a series of European Standards which provide a 
common series of methods for calculating the mechanical strength of 
elements playing a structural role in construction works, i.e. the structural 
construction products. 

 

 They make it possible to design construction works to check their stability 
and to give the necessary dimensions of the structural construction 
products. 

 

(2) They are the result of a long procedure of bringing together and 
harmonizing the different design traditions in the Member States. In the 
same time, the Member States keep exclusive competence and 
responsibility for the levels of safety of works. 

 

(3) According to the Commission Recommendation of 11 December 2003 on 
the implementation and use of Eurocodes for construction works and 
structural construction products, Member States should undertake 
research to facilitate the integration into the Eurocodes of the latest 
developments in scientific and technological knowledge. Member States 
should pool the national funding available for such research so that it can 
be used at Community level to contribute to the existing technical and 
scientific resources for research within the European Commission, in 
cooperation with the Joint Research Centre, thus ensuring an ongoing 
increased level of protection of buildings and civil works. 

 

(4) This report is a part of activities for the maintenance, further 
harmonisation, further development and promotion of the Eurocodes. It 
has been prepared in a field where so far no unified design rules applicable 
across different materials and ways of construction exists in the 
Eurocodes, namely in the field of limiting human induced vibrations of foot 
bridges. 

It is a contribution to the evolution of EN´s 1990 and 1991 and may also 
be used together with some specific rules in EN 1995-2 that apply to 
timber bridges as a source of support to 

 

- further harmonize design rules across different materials, and 

- further develop the Eurocodes. 

 

(5) The rules for the “Design of lightweight footbridges for human induced 
vibrations” given in this report are the result of projects funded by the 
Research Fund for Coal and Steel (RFCS), initiated and carried out by a 
group of experts from RWTH Aachen, Germany, Arcelor Mittal, 
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Table of frequent ly used sym bols 
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amax maximum acceleration calculated for a defined design 
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fs step frequency of a pedestrian [Hz] 
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ki* modal stiffness [N/m] 
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M mass [kg] 
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(N = S  d) 

[P] 

n’ equivalent number of pedestrians on a loaded surface S [P/m²] 

p(t) distributed surface load [kN/m²] 

S area of the loaded surface [m²] 

 logarithmic decrement for damping [-] 

 mass distribution per unit length [kg/m] 

(x) mode shape [-] 

 reduction coefficient account for the probability of a 
footfall frequency in the range the natural frequency for 
the considered mode 

[-] 

 structural damping ratio [-] 
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1 I nt roduct ion 

Vibrations are an issue of increasing importance in current footbridge design 
practice. More sophisticated bridges (such as cable supported or stress ribbon 
footbridges) with increasing spans and more effective construction materials 
result in lightweight structures and in a high ratio of live load to dead load. As a 
result of this trend, many footbridges have become more susceptible to 
vibrations when subjected to dynamic loads. The most common dynamic loads 
on footbridges, other than wind loading, are the pedestrian induced footfall 
forces due to walking or jogging. 

The fundamentals of these rules and of the accompanying background 
information (presented in grey background) were prepared by: 

 Christiane Butz and Christoph Heinemeyer from RWTH Aachen University, 
Germany, 

 Andreas Keil, Mike Schlaich, Arndt Goldack and Stefan Trometer from 
Schlaich Bergermann und Partner, Germany, 

 Mladen Lukić, Bruno Chabrolin, Arnaud Lemaire and Pierre-Olivier Martin, 
from Centre Technique Industriel de la Construction Métallique, France, 

 Álvaro Cunha and Elsa Caetano from Faculdade de Engenharia da 
Universidade do Porto, Portugal. 

The editing of this report was made by Christoph Heinemeyer, Christiane Butz 
and Gerhard Sedlacek together with Michel Géradin, JRC. 

 

Background information 

In recent years, there has been a growing trend towards the construction of 
lightweight footbridges. Due to the increased flexibility of such structures, the 
dynamic forces can cause larger amplitudes of the vibration. The more slender 
the structures become, the more attention must be paid to vibration phenomena. 

The increase of vibration problems in modern footbridges shows that footbridges 
should no longer be designed for static loads only. But fulfilling the natural 
frequency requirements that are given in many codes ([ 1 ] , [ 2 ] , [ 3 ] , [ 4 ] ) 
restricts footbridge design: very slender, lightweight structures, such as stress 
ribbon bridges and suspension bridges may not satisfy these requirements. 
Moreover not only natural frequencies but also damping properties, bridge mass 
and pedestrian loading altogether determine the dynamic response. The design 
tools should consider all of these factors. Provided that the vibration behaviour 
due to expected pedestrian traffic is checked with dynamic calculations and 
satisfies the required comfort, any type of footbridge can be designed and 
constructed. If the vibration behaviour does not satisfy some comfort criteria, 
changes in the design or damping devices could be considered. 

These lightweight footbridges have lower natural frequencies, resulting in a 
greater risk of resonance. Resonance occurs if one natural frequency of the 
bridge coincides with the frequency of the excitation, e.g. the step frequency of 
pedestrians. Pedestrian induced excitation is an important source of vibration of 
footbridges. Pedestrian loading is by nature unsteady, transient and waddling in 
a small range of excitation frequency. It is therefore obvious that dynamic 
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responses play a fundamental role in the design of vibration susceptible 
structures. Vibrations of footbridges may lead to serviceability problems, as 
effects on the comfort and emotional reactions of pedestrians might occur. 
Collapse or even damage due to human induced dynamic forces have occurred 
very rarely. 

Vibrations of footbridges may occur in vertical and horizontal directions, even 
torsion of the bridge deck is possible. Dynamic actions of cyclists are negligible 
compared to the actions caused by walking and running individuals. 

In recent years some footbridges were excited laterally by dense pedestrian 
streams in which pedestrian motion and bridge vibration were strongly coupled, 
in which case a self-excited response of large amplitude may take place and 
cause discomfort. Footbridges should be designed in such a way that this 
pedestrian-bridge-interaction phenomenon, also called ‘lock-in’, does not arise. 

Another dynamic loading on footbridges is intentional excitation by people that 
are jumping on the spot, bouncing, swaying body horizontally, shaking stay 
cables etc. at resonance frequency to produce large vibrations. In that case, the 
comfort is certainly not fulfilled but the structure must not collapse. 

Hence, in modern footbridge design, the assessment of human-induced 
vibrations needs to be considered by the designer to ensure that 

● Vibrations due to pedestrian traffic is acceptable for the users, 

● The lock-in phenomenon does not arise, 

● The footbridge does not collapse when subjected to intentional excitation. 

In order to help the bridge designer, dynamic response of various footbridges 
under pedestrian loading was investigated by means of measurements and 
numerical simulations, providing these design guidelines which include 

● Design requirements, 

● Comfort range in terms of acceleration, 

● Load models for pedestrian streams, 

● Criterion to avoid lock-in phenomenon. 

If a footbridge is susceptible to vibrations that might affect the comfort, 
additional information is given concerning 

● Measurement procedures and methods for evaluation of dynamic 
properties, 

● Design modification and introduction of damping devices. 
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2 Definit ions 

The definitions given here relate to the application of this guideline. 

Acceleration A quantity that specifies the rate of change of velocity 
with time (denoted as dv / dt or d2x / dt2), usually along a 
specified axis. Normally expressed in terms of g or 
gravitational units. 

Amplification The process of increasing the magnitude of a variable 
quantity, without altering any other property. 

Damper Device mounted in structures to reduce the amplitudes 
of vibration through energy dissipation. 

Damping Damping is any effect, either inherent to a system or 
specifically added for the purpose, that tends to reduce 
the amplitude of vibration of an oscillatory system. The 
total damping in a structure consists of 

 Material and structural damping, 

 Damping associated to furniture and finishing, 

 Energy dissipation through special devices. 

Dynamic action Action that causes significant time-dependent force 
input to the structure or structural members 

Modal mass =  

generalised mass 

A multiple degree of freedom system can be reduced to 
an uncoupled set (i=1,N) of single degree of freedom 
(SDOF) systems with same natural frequencies as the 
original system: 

*
*

*

1

2
i

i
i

k
f

m
  

where fi
*     is the ith natural frequency, expressed in Hz 

 ki
*     is the modal stiffness of mode i 

 mi
*    is the modal mass of mode i. 

Thus, the modal mass can be interpreted to be the 
mass activated in a specific mode of vibration. 

Mode of vibration A characteristic pattern assumed by a vibrating system 
in which every particle is in synchronous harmonic 
motion with the same frequency. Two or more modes 
may coexist in a multiple degree of freedom system. 

Natural frequency =  

eigenfrequency 

A natural frequency is a frequency of free vibration of a 
system. For a multiple degree of freedom system, the 
natural frequencies are the frequencies of the modes of 
vibration. Each structure has as many natural 
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frequencies and associated modes of vibration as 
degrees of freedom. They are commonly sorted by the 
amount of energy that is activated by the oscillation; 
the first natural frequency is that on the lowest energy 
level and is the most likely to be activated. 

The equation for the natural frequency of a single 
degree of freedom (SDOF) system is: 

M

K
f

2

1
  

where K is the stiffness 

 M is the mass. 

The derivation of natural frequencies is described in 
chapter 4.1. 

The frequency f is the reciprocal of the oscillation 
period T (f = 1 / T). 

Resonance 

 

A system is at resonance when any change in the 
frequency of a forced vibration, however small, causes 
a decrease in the response of the system. When 
damping is small, the resonant frequency is 
approximately equal to the natural frequency of the 
system (the frequency of free vibrations). 

Response spectrum A response spectrum is a plot of the peak or steady-
state response (displacement, velocity or acceleration) 
of a series of linear single degree of freedom oscillators 
of varying natural frequency that are forced into 
motion by the vibration. The resulting plot can then be 
used to pick off the response of any linear system, 
given its natural frequency of oscillation. The response 
spectrum contains precise information about the 
distribution of vibration energy for various frequencies. 

Spectrum Description of any time dependent signal as a series of 
single-frequency components, each with an amplitude 
and, if appropriate, phase. 
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3 Design procedure 

An increasing number of vibration problems for footbridges encountered in the 
last few years show that footbridges should no longer be designed only for static 
loads, but also for their dynamic behaviour. The design should take into account 
the vibration performance of the footbridge due to walking pedestrians. It is 
important to note that there are currently no code regulations available. 

Although from designers’ point of view this lack of regulation allows a large 
amount of freedom and therefore a large variety of innovative bridge structures, 
it is nevertheless of vital importance that the bridge will meet comfort 
requirements which are required by the client or owner. The question “Will the 
footbridge meet the comfort criteria when vibrating?” plays an important role in 
the design process, as dampers are not only additional bridge furniture, but may 
need to be included in the design. 

The general principles of a proposed design methodology are given in Figure 3-1. 

A client  t ogether w ith the consultant  … 

 
… defines several design situations by combinations of possible traffic 

classes and required comfort levels: 
 
 
 
 
 
 

A design off ice… 

 
 
 
 
 

… and (for each “design situation ” chosen by the client)… 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Yes 

I m provem ent  of t he dynam ic 

behaviour: 

Modification of structure 
Decrease of natural frequencies 
Installation of dampers 

… checks: 

I s t he footbridge  com fortable? 

Comparison of the accelerations for each 
design situation with the corresponding 
comfort criteria 

… undertakes t he  st ructural analysis by 

- modelling the footbridge and 
- calculating its natural frequencies 

… calculates the accelerat ions and … 

“design situat ion:  t raff ic class +  com fort  class” ( 1 )  

“design situat ion:  t raff ic class +  com fort  class” ( 2 )  

… 
“design situat ion:  t raff ic class +  com fort  class” ( n)  

OK 

J
R

C
-R

e
p

o
r
t:

 D
e

s
ig

n
 o

f 
fo

o
tb

r
id

g
e

s
 

 

 

Figure 3 - 1 : Methodology for  the design 
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The flowchart in Figure 3-2 shows how to check the dynamic behaviour of the 
footbridge in the design phase and how this guideline can be employed. The 
various steps mentioned in the flowchart will be discussed in section 4. 

Safety problems due to overstressing or fatigue may also occur and should also 
be considered in the design of footbridges - this guideline only treats reversible 
serviceability, as defined by the Eurocodes. Design rules for overstressing and 
fatigue are given elsewhere. It should be noted that all the usual verifications in 
Serviceability Limit State (SLS) and Ultimate Limit State (ULS) must be carried 
out according to the standards in use. 

 

Background information: 

It is recommended to consider dynamic actions and the vibration behaviour of 
the structure in an early design stage, even when damping and some foundation 
properties are unknown and have to be estimated. Hence, the calculated 
vibration behaviour gives only an indication of the real behaviour. If the response 
is in the critical range, provisions for change structural properties or introduction 
of damping devices should be made in the early design stage. Damping and 
accelerations caused by several dynamic loads should then be measured after 
finishing the construction. Based on the real dynamic properties it should be 
decided whether the damping devices are necessary or not. 
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Design Steps: 

W ill the footbridge m eet  com fort  cr iter ia  w hen 
vibrat ing? 

Step 1 : Evaluation of natural frequencies 

Step 3 : Assessment of design situations: 
 
 
 
 
 
 

no 

yes 
End 

Step 4 : Assessment of structural damping 
parameters 

Step 7 : Check of comfort  level: 

a m ax <  a lim it? 

Control of vibrat ion: m odificat ion of m ass, 
m odificat ion of frequency, addit ional dam ping devices 

no 

yes 

Step 2 : Check of critical range of natural frequency 

OK? 

Step 3 a: 
Assessment of 
traffic classes 
 

Step 3 b: 
Assessment of comfort 
classes:  
Limit acceleration a lim it 

Step 5 : Evaluation of maximum acceleration amax for 
each design situation 

Step 6 : Check of cr iter ia  for  lateral lock- in: 
a m ax <  a lock- in? 

OK? End 

Check 

 
Figure 3 - 2 : Flow chart  for  the use of this guideline 
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4 Design steps 

4 .1  Step 1 : Evaluat ion of natural frequencies 

There are several ways to calculate the natural frequency of a footbridge during 
design, especially for the preliminary check of the bridge vibration, e.g.: 

 By the finite element (FE) method 

 Using hand formulas derived e.g. from closed-form solutions for beams, 
cables and plates. 

It must be kept in mind that properties of materials, complexity of the structure, 
the type of deck surfacing and furniture, boundary conditions and railings may 
cause discrepancies in natural frequencies between the results of calculations 
and the measured data of the real structure. 

It is recommended that the mass of pedestrians should be considered when 
calculating the natural frequencies only when the modal mass of the pedestrians 
is more than 5 % of the modal deck mass. 

 

Background information: 

Although hand formulas and simplified methods can be used in a preliminary 
evaluation of natural frequencies, whenever these are close to a critical range 
from the point of view of pedestrian excitation, a more precise numerical model 
should be used. In modern bridge design the use of finite element software is 
widely spread in all stages of design, even during the conceptual one. 
Consequently, it is suggested to use a FE-Model of the bridge not only to 
calculate the stress distribution and deformation of the footbridge but also to 
determine its natural frequencies. Hence, preliminary dynamic calculations can 
easily be performed without additional means. 

A first approach is to keep the model as simple as possible and to model the 
bridge with beam elements, cable elements, spring or truss elements in a three 
dimensional FE model. The latter should always allow for vertical, horizontal, and 
torsional mode shapes. A rough overview over the natural frequencies and the 
corresponding mode shapes is obtained and problems regarding the dynamic 
behaviour can be identified. The more complex the static system and the higher 
the mode shape order, the more finite elements are required. A more refined 
model may take advantage of various types of finite elements such as plate, 
shell, beam, cable or truss elements. To get reliable results for natural 
frequencies, it is absolutely necessary that bearing conditions, foundation 
stiffness, stiffness and mass distribution are modelled in a realistic way. All dead 
load, superimposed dead load and pre-stressing of cables have to be considered 
for the calculation of natural frequencies. The superimposed dead load of the 
bridge caused by furniture, barriers, pavement and railings is considered as 
additional mass distribution as exactly as possible. A lumped mass approach, in 
which rotational masses are neglected, is in many cases sufficient. For the 
modelling of abutments and foundations, dynamic soil stiffness should be used. 
Otherwise the obtained results will be very conservative or very inaccurate. 

In any case it is recommended to determine first and foremost the natural 
frequencies of a built footbridge by experimental investigation in addition to 
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computer calculations before the final configuration of the damping units are 
determined. 

The modal mass for each mode shape should be available, when verification of 
comfort is done with the SDOF-method (cf. section 4.5.1.2). 

The investigation of dynamic characteristics for selected footbridges shows 
clearly that, especially for lightweight structures, the additional mass due to 
pedestrians has a great influence on the natural frequencies of the system. For 
individuals and group loading this effect is usually negligible, but if pedestrian 
streams have to be taken into account, this influence may cause a significant 
decrease in natural frequency. This depends on the ratio between mass 
distribution of the deck and pedestrian mass distribution. The decrease in 
frequencies is higher for footbridges having less dead load. 

The natural frequencies might fall to a more or to a less critical frequency range 
(cf. section 4.2) for pedestrian induced dynamic excitation. With additional dead 
load or live load, the natural frequencies of the footbridge could decrease and 
shift into the critical frequency range or leave it. Furthermore, it has to be noted 
that the given limit values of critical frequency ranges should not be taken as 
sharp values but rather as soft values. 

In some cases the obtained increase of modal mass can be even greater than 
50 % of the modal mass of the bridge. 

The influence of the static pedestrian mass can be estimated easily: the modal 
mass m** including the additional static pedestrian mass is calculated according to 
eq. 4-1. 

  2

* *

D

D

L

m* ρ μ x dx ρm          

 Eq. 4-1 

where  

Dμ  [kg/m] is the bridge deck mass per unit length 

D

PD

μ
μμρ 

  is the influence factor for additional pedestrian mass 

Pμ  [kg/m] is the pedestrian mass per unit span length 

(x) is the mode shape 

An answer to the question of the threshold of taking the additional pedestrian 
mass into account can be given by eq. 4-2, which shows that the influence of a 
5 % higher modal mass results in a decrease of the natural frequency by 2,5 %. 

' 1 05 0 976
1 05

* *

*

k k
f (ρ , ) , f

ρ m , m*
   


     Eq. 4-2 

This is within the accuracy of the whole model compared to the natural 
frequencies that will be measured in reality. Therefore, it is recommended to 
neglect the influence of an increased modal mass lower than 5 % on the natural 
frequency. 
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4 .2  Step 2 : Check of cr it ical range of natural frequencies 

The critical ranges for natural frequencies fi of footbridges with pedestrian 
excitation are: 

 for vertical and longitudinal vibrations: 

1,25 Hz  ≤ fi ≤ 2,3 Hz  

 for lateral vibrations: 0,5 Hz  ≤ fi ≤ 1,2 Hz  

Footbridges with frequencies for vertical or longitudinal vibrations in the range 

2,5 Hz  ≤ fi ≤ 4,6 Hz  

might be excited to resonance by the 2nd harmonic of pedestrian loads [1]. In 
that case, the critical frequency range for vertical and longitudinal vibrations 
expands to: 

1,25Hz  fi  4,6Hz 

Lateral vibrations are not affected by the 2nd harmonic of pedestrian loads.  

Note: A vertical vibration excitation by the second harmonic of pedestrian forces 
might take place. Until now there is no hint in the literature that significant 
vibration of footbridges due to the second harmonic of pedestrians have 
occurred. 

 

Background information: 

Pedestrian effects are generally characterised on the basis of harmonic load 
models which coefficients are systematised in Section 9. The dominant 
contribution of the first harmonic leads to the following critical range for natural 
frequencies fi: 

● for vertical and longitudinal vibrations: 

    1,25 Hz  ≤ fi ≤ 2,3 Hz  

● for lateral vibrations: 0,5 Hz  ≤ fi ≤ 1,2 Hz  

There are situations in which natural frequencies lie in an interval susceptible of 
excitation by the second harmonic of pedestrian excitation. Under these 
circumstances, if it is considered relevant to investigate the effects associated 
with the second harmonic of pedestrian loads, the critical range expands to: 

● for vertical and longitudinal vibrations: 

    1,25 Hz  fi  4,6 Hz 

Footbridges which have natural frequencies fi in the critical range should be 
subject to a dynamic assessment to pedestrian excitation.  

Lateral vibrations are not affected by the 2nd harmonic of pedestrian loads.  

Note: A vertical vibration excitation by the second harmonic of pedestrian forces 
might take place. Until now there is no hint in the literature that significant 
vibration of footbridges due to the second harmonic of pedestrians have 
occurred.  
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The critical range of natural frequencies is based on empirical investigation of the 
step frequencies fs of pedestrians. In order to be coherent with the Eurocodes 
principles, the characteristic values fs,5%,slow and fs,95%,fast used are based on the 5th 
and 95th percentile values. 

 

4 .3  Step 3 : Assessm ent  of Design Situat ion 

The design of a footbridge starts with specifying several significant design 
situations - sets of physical conditions representing the real conditions occurring 
during a certain time interval. Each design situation is defined by an expected 
traffic class (cf. section 4.3.1) and a chosen comfort level (cf. section 4.3.2). 

There are design situations which might occur once in the lifetime of a 
footbridge, like the inauguration of the bridge, and others that will occur daily, 
such as commuter traffic. Table 4-1 gives an overview of some typical traffic 
situations which may occur on footbridges. The expected type of pedestrian 
traffic and the traffic density, together with the comfort requirements, has a 
significant effect on the required dynamic behaviour of the bridge. 
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Table 4 -1 : Typical t raffic situat ions 

 

I ndividual pedest r ians and sm all groups 

Number of pedestrians: 11 

Group size: 1-2 P 

Density: 0,02 P/m2 

 

Note: P = pedestrian 

 

Very w eak t raffic 

Number of pedestrians: 25 

Group size: 1-6 P 

Density: 0,1 P/m2 

 

W eak t raffic 

Here: event traffic 

Number of pedestrians: 60 

Group size: 2-4 P 

Density: 0,2 P/m2 

 

Except ionally dense t raffic 

Here: opening ceremony traffic 

Density: > 1,5 P/m2 

 

To get an insight into the dynamic bridge response, it is recommended that the 
different probable design situations are specified. An example of this is given in 
Table 4-2. 
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Table 4 -2 : Exam ple of a  specificat ion of m ult iple design situat ions 

Design 
Situation 

Description 
Traffic Class 
(cf. 4.3.1) 

Expected 
occurrence 

Comfort Class 
(cf. 4.3.2) 

1 
inauguration of 
the bridge 

TC4 
once in the 
lifetime 

CL3 

2 commuter traffic TC2 daily CL1 

3 
rambler at the 
weekend 

TC1 weekly CL2 

…
 

…
 

…
 

…
 

…
 

Background information: 

It is strongly recommended to discuss comfort requirements and expected 
pedestrian traffic – in relation to the obtained dynamic response – with the 
owner to develop realistic limits and boundary conditions for the design of the 
particular structure. A constructive dialogue about the vibration susceptibility 
between the designer and the owner may help clarifying issues such as comfort 
requirements and the potential need for damping measures (cf. section 6). 

Eurocode principles for reliability [ 5 ]  state some design situations out of which 
the ones listed below could be relevant for footbridges subjected to pedestrian 
loading. They can be associated with the frequency of exceeding a certain limit 
state like a comfort criterion in question: 

● Persistent design situations, which refer to the conditions of permanent 
 use 

● Transient design situations, which refer to temporary conditions 

● Accidental design situations, which refer to exceptional conditions. 

There are design situations which might occur once in the lifetime of a footbridge 
like the inauguration of the bridge. But on the other hand there might be a 
design situation where few commuters will pass daily. 

Realistic assumptions of the different design situations should be taken into 
account by using defined traffic classes (cf. section 4.3.1) for the verification of 
pedestrian comfort. As aforesaid, an event such as the inauguration of the 
footbridge could by itself govern entirely although it happens only once in the 
lifetime of the bridge. It must therefore be decided which comfort criteria are to 
be taken into account in the footbridge design (cf. section 4.3.2) for an extreme 
and rare situation such as the inauguration and for the everyday density of 
pedestrians on the structure. 
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4.3.1 Step 3a: Assessment of traffic classes 

Pedestrian traffic classes and corresponding pedestrian stream densities are 
given in Table 4-3. 

Table 4 -3 : Pedest r ian t raffic classes and densit ies 

Traffic 
Class 

Density d 

(P = pedestrian) 
Description Characteristics 

TC 1*) 
group of 15 P; 
d=15 P / (B L) Very weak traffic 

(B=width of deck; 
L=length of deck) 

TC 2 d = 0,2 P/m² 

Weak traffic 

 

Comfortable and 
free walking 
Overtaking is 
possible 
Single 
pedestrians can 
freely choose 
pace 

TC 3 d = 0,5 P/m² 

Dense traffic 

 

Still unrestricted 
walking 
Overtaking can 
intermittently be 
inhibited 

TC 4 d = 1,0 P/m² 

Very dense traffic 

 

Freedom of 
movement is 
restricted 
Obstructed 
walking 
Overtaking is no 
longer possible 

TC 5 d = 1,5 P/m² Exceptionally dense traffic 

Unpleasant 
walking 
Crowding begins 
One can no 
longer freely 
choose pace 

*) An equivalent pedestrian stream for traffic class TC1 is calculated by dividing the 
number of pedestrians by the length L and width B of the bridge deck. 
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Pedestrian formations, processions or marching soldiers are not taken into 
account in the general traffic classification, but need additional consideration. 

 

Background information: 

The expected type of pedestrian traffic and traffic density governs the dynamic 
loading and influences the design of footbridges. Structures in more remote 
locations with sparse pedestrian traffic are not subjected to the same dynamic 
loading as those in city centres with dense commuter traffic. 

Pedestrian formations, processions or marching soldiers are not taken into 
account in the general traffic classification, but need additional considerations. 
The difference between pedestrian formations and the aforesaid pedestrian traffic 
is that all pedestrians of the formation march in time. The pace is thus highly 
synchronized and may be enforced by music. 

 

4.3.2 Step 3b: Assessment of comfort classes 

Criteria for pedestrian comfort are most commonly represented as a limiting 
acceleration for the footbridge. Four comfort classes are recommended by this 
guideline and are presented in Table 4-4. 

 

Table 4 -4 : Defined com fort  classes w ith com m on accelerat ion ranges 

Comfort class Degree of comfort Vertical alimit Lateral alimit 

CL 1 Maximum < 0,50 m/s² < 0,10 m/s² 

CL 2 Medium 0,50 – 1,00 m/s² 0,10 – 0,30 m/s² 

CL 3 Minimum 1,00 – 2,50 m/s² 0,30 – 0,80 m/s² 

CL 4 Unacceptable discomfort > 2,50 m/s² > 0,80 m/s² 

Note that the given acceleration ranges are just comfort criteria; lock-in criteria 
for horizontal vibrations are given in section 4.6. 

 

Background information: 

Criteria for pedestrian comfort are most commonly represented as limit 
acceleration for the footbridge. National and international standards as well as 
literature propose limit values which differ among themselves for many reasons. 
Nevertheless, most of these values coincide within a certain bandwidth. 

Generally, the perception and assessment of motion and vibration are subjective 
and therefore different for each pedestrian. Users of pedestrian bridges that are 
located near hospitals and nursing homes may be more sensitive to vibrations 
than hikers crossing a pedestrian bridge along a hiking trail. 
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Even the visual appearance and the location of the bridge may influence the 
assessment by each pedestrian. Figure 4-1 shows the bandwidth of personal 
subjective perception regarding bridge vibration. Although the two analysed 
bridges have very similar dynamic properties the vibration assessment of the 
questioned persons differs greatly. The percentage of individuals feeling 
disturbed while crossing the sturdier-looking Wachtelsteg Footbridge, Pforzheim, 
Germany, on the right, is 4 times higher than for the lighter-looking 
Kochenhofsteg Footbridge, Stuttgart, Germany, on the left. Similarly, the 
likeliness that a person is excited or amused by the vibrations is nearly 3 times 
higher in the second case. 

 

  

  

Figure 4 - 1 : Com parison of vibrat ion assessm ent  of tw o footbridges  

 

Hence, the assessment of horizontal and vertical footbridge vibration includes 
many ‘soft’ aspects such as: 

● Number of people walking on the bridge 

● Frequency of use 

● Height above ground 

● Position of human body (sitting, standing, walking) 

● Harmonic or transient excitation characteristics (vibration frequency) 

● Exposure time 

● Transparency of the deck pavement and the railing 

● Expectancy of vibration due to bridge appearance. 
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4 .4  Step 4 : Assessm ent  of st ructural dam ping 

The amount of damping present is very significant in the evaluation of the 
amplitude of oscillations induced by pedestrians. The attenuation of vibrations, 
i.e., the energy dissipation within the structure, depends both on the intrinsic 
damping of construction materials, which is of distributed nature, and on the 
local effect of bearings or other control devices. Additional damping is also 
provided by non-structural elements, like handrails and surfacing. 

In general, the amount of damping depends on the vibration level, as higher 
amplitudes of vibration cause more friction between structural and non-structural 
elements and bearings. 

The co-existence of various mechanisms of dissipation within the structure 
makes damping a complex phenomenon whose accurate characterisation can 
only rely on measurements taken once the footbridge has been constructed, 
including installation of handrails, surfacing and any type of furniture. 

Flexible and light footbridges are further affected by wind, which generates 
aerodynamic damping, and an increase of wind velocity can lead to increased 
damping. This added damping can be taken into consideration for the purpose of 
wind studies, but not for the evaluation of pedestrian induced effects. 

 

4.4.1 Damping model 

For the purpose of design and numerical modelling, it is necessary to specify a 
model and define the corresponding parameters. The common approach uses 
linear viscous dampers (sometimes referred to as dashpot dampers), which 
implies that the generation of damping forces is proportional to the rate of 
change of the displacements with time (velocity). This model has the advantage 
of leading to linear dynamic equilibrium equations, whose analytical solution can 
be easily obtained. However, it only approximates the real damping of a 
structure for low levels of oscillation. 

The inclusion of control systems (cf. section 6.4.3) may lead to structures for 
which the damping matrix is no longer proportional and consequently 
conventional modal analysis is no longer applicable. The tuning of the damper 
system and the calculation of the damped structure response then requires more 
powerful algorithms, namely iterative calculations based on direct integration 
methods, or else on a state space formulation. 

 

Background information: 

Considering that civil engineering structures are normally lightly damped and 
develop low levels of stress under service loads, the hypothesis of linear 
behaviour is normally accepted. The combination of this hypothesis with the 
assumption of a damping distribution along the structure characterised by a 
damping matrix C proportional to the mass M and stiffness K matrices (Rayleigh 
damping assumption) 

KMC           Eq. 4-3 
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allows a decoupling of the dynamic equilibrium equations and the use of the 
modal superposition analysis in the evaluation of dynamic effects induced by 
pedestrians. Idealising the N-degrees-of-freedom system as N single-degree-of-
freedom (SDOF) systems (cf. section 4.5.1.2), a set of N damping ratios n are 
defined, which represent the fraction of the damping of a mode of order n to the 
critical damping, defined as a function of the modal mass mn* and of the circular 
frequency n  

nDnn mC   *
2/         Eq. 4-4 

These damping ratios relate to the constants  and  in eq. 4-3 by 

1

2
n n

n

αξ βω
ω

 
  

 
        Eq. 4-5 

Therefore, by fixing two values of n associated with two different modes, a 
damping matrix can be obtained. These values are normally based on past 
experience in the construction of structures of the same type and material. 

 

4.4.2 Damping ratios for service loads 

For the design of footbridges for adequate comfort level, which is in terms of 
Eurocode reliability consideration a serviceability condition, Table 4-5 
recommends minimum and average damping ratios. 

 

Table 4 - 5 : Dam ping rat ios according to construct ion m ateria l for  serviceability 

condit ions 

Construction type Minimum   Average   

Reinforced concrete 0,8% 1,3% 

Prestressed concrete 0,5% 1,0% 

Composite steel-concrete 0,3% 0,6% 

Steel 0,2%
 

0,4% 

Timber 1,0%
 

1,5% 

Stress-ribbon 0,7% 1,0% 

 

Background information: 

Values comparable to these from Table 4-5 are proposed by the SETRA/AFGC 
guidelines [9], by Bachmann and Amman [10], by EN 1991 [11] and by 
EN 1995 [12]. 

Figure 4-2 and Figure 4-3 summarise the variation with frequency and span, 
respectively, of measured damping ratios on various footbridges within the 
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SYNPEX Project [13]. These figures include also additional data published in the 
literature. Despite the large scatter, it is shown that numerous steel bridges 
exhibit damping ratios lower than 0,5% for natural frequencies that are critical 
from the point of view of pedestrian excitation. 
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Figure 4 - 2 : Measured dam ping rat ios under service loads: variat ion w ith 

natural frequency 
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Figure 4 - 3 : Measured dam ping rat ios under service loads: variat ion w ith 

span 

 

4.4.3 Damping ratios for large vibrations 

Intentional loads can produce large levels of oscillation in light footbridges, which 
lead to higher damping ratios, as listed in Table 4-6. 
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Table 4 -6 : Dam ping rat io according to construct ion m ateria l for  large vibrat ions 

Construction type Damping ratio   

Reinforced concrete 5,0% 

Prestressed concrete 2,0% 

Steel, welded joints 2,0%
 

Steel, bolted joints 4,0% 

Reinforced elastomers 7,0% 

 

Background information: 

EN 1998 [14] gives the range of structural damping ratios for dynamic studies 
under earthquake loads. These values can be used as a reference for large 
amplitudes. 

Table 4 - 7 : Dam ping rat ios according to EN 1 9 9 8 [ 1 4 ]  for  dynam ic 

responses under earthquake loads  

Construction type Interval of variation of damping ratio  

Concrete 2,0  7,0% 

Steel 1,0  4,0% 

 

4 .5  Step 5 : Determ inat ion of m axim um  accelerat ion 

When one or several design situations (cf. section 4.3) are defined and the 
values for damping are determined (cf. section 4.4), the next step is to calculate 
the maximum acceleration amax for each design situation. 

There are various methods for calculating the acceleration of bridges. This design 
guideline recommends using one of the methods shown in Figure 4-4, which will 
be discussed in the following chapters. 

 

 

Harmonic load model for TC1 to TC5 

Acceleration amax 

Finite Element Method SDOF Method Response Spectra Method 

Application of load models 

 
Figure 4 - 4 : Methods for ca lculat ing the m axim um  accelerat ion 
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Note: It is important to check whether the acceleration calculated with the 
assumed damping parameters for large or small vibrations (cf. section 4.4) 
corresponds to the acceleration on the built structure (cf. section 5). Experience 
has shown that it is very difficult to predict the structural damping of the finished 
footbridge. Therefore, damping always has a broad scatter and consequently 
acceleration also has a broad scatter. 

 

Background information: 

Footbridges are in reality most often subjected to simultaneous action of several 
pedestrians whereas this action is not simply the sum of individual actions of 
single pedestrians. Hence, pedestrian loads on bridges are stochastic loads. 
Depending on the density of pedestrians on a bridge, pedestrians walk more or 
less synchronously and possibly interact with a vibrating footbridge. 

The loading depends on the density of pedestrian streams, the individual pace 
frequency, the track people are walking, the synchronisation of people walking, 
persons’ weight, etc. The system answer depends on the loading and on 
structural properties as (modal) mass of the bridge, natural frequencies and 
damping. As it is not possible to determine structural properties as e.g. 
frequencies and damping without uncertainties, there is also uncertainty on the 
calculated system response. 

There are various methods for calculating the acceleration of the bridge. The 
ones recommended within the current document will be discussed in the 
following sections. 

 

4.5.1 Harmonic load models 

4.5.1.1 Equivalent number of pedestrians for streams 

Once a numerical model of the footbridge has been developed, the design 
situations and corresponding load models chosen and the damping ratios 
specified, the footbridge response can be calculated. Harmonic load models are 
required to calculate the acceleration when using either Finite Element methods 
or Single Degree of Freedom (SDOF) methods (cf. section 4.5.1.3). For the 
modelling of a pedestrian stream consisting of n “random” pedestrians, the 
idealised stream consisting of n’ perfectly synchronised pedestrians should be 
determined (cf. Figure 4-5). The latter would be synchronised only among 
themselves (without taking into account the influence of the vibrating structure 
on their footfall frequency). The two streams are supposed to cause the same 
effect on a structure, but the equivalent one can be modelled as a deterministic 
load. 
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Q j  

Φi(x) 

} n  


Q j  n’ /  n 

Φi(x) 

} n’ 

 
Figure 4 - 5 : Equivalence of st ream s 

 

For the evaluation of the response with respect to group or pedestrian stream 
loading, the application of a distributed harmonic load along the bridge deck 
(simulating an equivalent number of pedestrians at fixed locations) meets almost 
all requirements for practical design of footbridges. 

Care is needed in the choice of the range of frequencies for which this kind of 
calculation makes sense. The problem of the influence of the structure on the 
behaviour of the pedestrians is not taken into account and this can aggravate the 
response. 

 

Background information: 

I nt roduct ion 

If a harmonic load (  tfF  00 2sin  ) is applied to a damped SDOF system, the 

response of the system can then be given in the form which will be used 
throughout the procedure for the assessment of an equivalent number n’ of 
pedestrians using modal analysis: 

 
 

 φtfπ
ffξff

MπF
tx 


 0
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2222
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0 2sin

4

4
     Eq. 4-6 

with: F0 amplitude of the harmonic load, 

 M system mass, 

 f system natural frequency, 

 f0 harmonic load frequency, 

  structural damping ratio, 












2

0

2

02
arctan

ff

ffξφ  phase shift

Modal analysis 

Let a beam be modelled as a system with N degrees of freedom (cf. Figure 4-6) 
and let a loading be represented as point loads on each of the (loaded) nodes. 
When a solution to describe the dynamic behaviour of a system is sought by 
modal analysis, displacements of the nodes are found in the form of 
superposition of displacements belonging to different vibration modes: 

    Nr,
r

i
i
Φt

i
xty 




1

       Eq. 4-7 
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where: 

y(t) is the vector of the displacements of the concentrated masses, 

i are the vectors of modal displacements taken into consideration, 

xi(t) are the responses of the system for each mode i taken into  
  consideration. 

Fj  

Φi 

φij 
m j  m 1  m N 

 

Figure 4 - 6 : n  N harm onic loads 

 

If all the loads share the same frequency, f0 ≠ fi, the response of the system for 
one mode only (e.g. mode i, with modal displacements φij, cf. Figure 4-6) is: 

 
 

 i

iii

i

T

i
i φtfπ

ffξff

m*πFΦ
tx 


 0

2

0

2222

0

2

2

0 2sin

4

4
     Eq. 4-8 

with: i
T = {φi1, φi2,… φij,… φiN} vector of modal displacements, 

F0 vector of load amplitudes (F0
T = {F1, F2,… Fj,… FN}), 





N

j

ijji φmm*
1

2  modal mass, 

fi frequency for mode i

f0 loading frequency, 

i damping ratio for mode i

i phase shift for mode i

 

Response to a dist r ibuted harm onic load –  Determ inist ic approach 

In the m ost  general case, the distributed harmonic load is represented as n = N 
point loads (Qj sin (2  f0j t – ψj)), regularly distributed on half-waves of the mode i 
(cf. Figure 4-7), where: 

● The amplitudes of the loads are Qj, j = 1 to n; 

● Each point load has a frequency f0j, j = 1 to n; 

● Each point load has a phase shift ψj, j = 1 to n. 
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Q j  

Φi(x) 

φi,max 

L 

L/n 

φij 

 

Figure 4 - 7 : n = N harm onic loads 

If the loaded length is L, the position of each point load is found within the 

interval 



 

L
n

j
,L

n

j 1
 (cf. Figure 4-7). In order to take into account the mode rank 

and the distributed character of the loads: 
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The response is found as a superposition of responses to particular loads as: 
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where the phase shift for mode i and a point load at node j is: 
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If the assumption that all the loads share the same amplitude but are not 
necessarily in phase ( jj ψQQ sin ) is adopted, the response becomes: 
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    Eq. 4-9 

 

Response to a dist r ibuted harm onic load –  Probabilist ic approach 

The effect of a pedestrian stream consisting of n = N “random” pedestrians is now 
to be analysed. The differences comparing to the case given above are: 

● Each point load has a random frequency fsj which follows a normal 
 distribution N [fs1, ]; 

● Each point load has a random phase shift ψj which follows a uniform 
 distribution U [0, 2π]; 
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● The response/displacement (eq. 4-9) is here a random variable, too – 
 because of fsj and ψj – and hence its mean value and its standard deviation 
 could be assessed. 

If the following notation is adopted: 

● λi = fi / fs1  ratio between the natural frequency for mode  
   i and the mean of the loading frequencies, 

● μ = σ / fs1:  coefficient of variation of the loading frequencies, 

● fsj = fs1 (1 + μ uj):  random frequency of a point load placed at a node j, 

where uj is a standardised normal random variable, and if – instead of 
displacements – accelerations are considered, each component of the sum in eq. 
4-9 should be multiplied by: 
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22
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The absolute maximum acceleration is then: 
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with the phase shift for mode i and a point load at node j: 
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and, finally: 
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Note: For λi = 1, μ = 0 and ψj = 0 (deterministic resonant loading case): 
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  Eq. 4-11 

 

Determ inat ion of the equivalent  num ber of pedestr ians 

The equivalent number of pedestrians in an equivalent, idealised stream – i.e. 
the number of pedestrians, all with footfalls in the natural frequency of the mode 
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i and with no phase shift causing the same behaviour of the structure as the one 
caused by the random stream of pedestrians – can be obtained by equalising the 
absolute maximum accelerations from the following two cases (cf. Figure 4-5): 

Random stream with n = N pedestrians (eq. 4-10):   ii zQπZ
2

2  

Equivalent stream with n’ ≤ n pedestrians (eq. 4-11):  
n

n'
'zQπZ ii,eq

2
2  

Q j 
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Figure 4 - 8 : Equivalence of st ream s 
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If the approach proposed in [9] is adopted, 

ieq ξnkn'  ,         Eq. 4-12 

and the coefficient keq can be obtained as follows: 
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The random feature in equation 4-13 is zi. The mean value E(zi) and the standard 
deviation σ(zi) can all be assessed by simulations for different values of 
intervening parameters: 
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  Eq. 4-14 

 

Results 

Sensitivity analyses were done on the basis of Monte-Carlo simulations carried 
out on a half-sine mode shape Φi (cf. Figure 4-5) in order to represent the 
random nature of pedestrian loading. In those analyses, the following 
parameters have been varied: 

● Damping ratio, ξi 

● Ratio of frequencies, λi 

● Coefficient of variation, μ 

● Number of pedestrians, n. 
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Histograms of maxima of zi (eq. 4-14) are firstly obtained on the basis of 2500 
simulations for each set of parameters, every simulation consisting of taking n 
random values of both the standardized normal variable uj and the phase shift ψj. 
A maximum of zi is taken on a 2-period range (simulations carried out have 
shown that an 8-period range gives the same results). Coefficient keq is then 
calculated (eq. 4-13) on the basis of values of zi obtained as explained above. 
Figure 4-9 gives an example of histogram of keq. Finally, 95th percentile of keq is 
determined. 

 

 

Figure 4 - 9 : An exam ple of result ing histogram  

 

With such a value of keq, the equivalent number of pedestrians, n’ can be 
obtained. Expressions for this equivalent number have been derived by 
regression as a function of the damping ratio and the total number of pedestrians 
on the footbridge. 

 

4.5.1.2 Application of load models 

In the recommended design procedure, harmonic load models are provided for 
each traffic class TC1 to TC5 (cf. Table 4-3). There are two different load models 
to calculate the response of the footbridge due to pedestrian streams depending 
on their density: 

 Load model for TC1 to TC3 (density d < 1,0 P/m²) 

 Load model for TC4 and TC5 (density d ≥ 1,0 P/m²) 

Both load models share a uniformly distributed harmonic load p(t) [N/m²] that 
represents the equivalent pedestrian stream for further calculations: 

  ψn't)fπ(Ptp s  2cos  Eq. 4-15 

where  tfP s2cos  is the harmonic load due to a single pedestrian, 

P is the component of the force due to a single pedestrian with a 
walking step frequency fs, 

N =400;  =2%; V =5%
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fs is the step frequency, which is assumed equal to the footbridge 
natural frequency under consideration, 

n’ is the equivalent number of pedestrians on the loaded surface S, 

S is the area of the loaded surface, 

 is the reduction coefficient taking into account the probability that 
the footfall frequency approaches the critical range of natural 
frequencies under consideration. 

The amplitude of the single pedestrian load P, equivalent number of pedestrians 
n’ (95th percentile) and reduction coefficient  are defined in Table 4-8, 
considering the excitation in the first harmonic or second harmonic of the 
pedestrian load (see Section 4.2). 

 

Table 4 -8 : Param eters for  load m odel of TC1  to TC5  

P [N] 

Vertical Longitudinal Lateral 

280 140 35 

Reduction coefficient  

Vertical and longitudinal Lateral 

1. Harmonic

0

0,25

1

0 1,25 2,1 3,4 4,2 4,6 Frequency2,31,7

0

1

0 0,70,5 1,2 1,7 2,11,0 2,4

2. Harmonic

Frequency2,5  

Equivalent number n’ of pedestrians on the loaded surface S for load model of: 

TC1 to TC3 (density d < 1,0 P/m²): n’=
S

n8,10
 [m-²] 

TC4 and TC5 (density d ≥ 1,0 P/m²): n’=
S

n85,1
 [m-²] 

where  is the structural damping ratio and, 

n is the number of the pedestrians on the loaded surface S (n = S  d). 

 

The load model for pedestrian groups (TC1) takes into account a free movement 
of the pedestrians. Consequently, the synchronization among the group 
members is equal to a low density stream. In the case of dense streams (TC4 
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and TC5) walking gets obstructed, the forward movement of the stream gets 
slower and the synchronisation increases. Beyond the upper limit value of 
1,5 P/m² walking of pedestrians is impossible, so that dynamic effects 
significantly reduce. When a stream becomes dense, the correlation between 
pedestrians increases, but the dynamic load tends to decrease. 

In Figure 4-10 a harmonic load p(t) is applied to the structure for a particular 
mode shape. 

 

 

p(t) [N/mm²] 

 
Figure 4 - 1 0 : Applicat ion of a  harm onic load according to m ode shape (x) 

 

The harmonic load models above describe the loads induced by streams of 
pedestrians when walking along the footbridge. Some footbridges may be further 
affected by the action of joggers which is further described in [1]. 

 

4.5.1.3 SDOF method 

Generally, the dynamic behaviour of a structure can be evaluated by a modal 
analysis, where an arbitrary oscillation of the structure is described by a linear 
combination of several different harmonic oscillations in the natural frequencies 
of the structure. Therefore, the structure can be transformed into several 
different equivalent spring mass oscillators, each with a single degree of 
freedom. Each equivalent single degree of freedom (SDOF) system (cf. Figure 
4-11) has one natural frequency and one mass that is equal to each natural 
frequency of the structure and the accompanying modal mass. 

 

 

  

Figure 4 -1 1 : Equivalent  SDOF oscillator for  one natura l frequency /  vibrat ion 

m ode of the st ructure 

The basic idea is to use a single equivalent SDOF system for each natural 
frequency of the footbridge in the critical range of natural frequencies and to 
calculate the associated maximum acceleration for a dynamic loading.  

The maximum acceleration amax at resonance for the SDOF system is calculated 
by: 
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


2

1
*

*

*

*

max
m

p

m

p
a   Eq. 4-16 

where p* is the generalised load 

m* is the generalised (modal) mass 

 is the structural damping ratio and 

 is the logarithmic decrement of damping. 

 

Background information: 

As an example of application of the SDOF method, a simple supported beam is 
considered. This beam has a distributed mass μ [kg/m], which corresponds to the 
cross section area times the specific weight, a stiffness k and a length L. The 
uniform load p(x) sin(ω t) is distributed over the total length. 

The mode shapes (x) of the bending modes are assumed to be represented by a 
half sine function  (x) = sin(m  x/L  π) whereas m is the number of half waves. 

μ

mode shape Φ(x) 

0.

00

L 

p(x)sin(ωt) 

 

Figure 4 - 1 2 : Sim ple beam  w ith harm onic m ode shape  (x), m= 1  

 

The generalised mass m* and the generalised load p* sin(ω t) are calculated as 
follows: 

  
DL

dxΦ(x)μm*
2         Eq. 4-17 

   tωdxΦ(x)p(x)tωp*

DL

sinsin         Eq. 4-18 

Expressions for the generalised mass m* and the generalised load p* sin(ω t) are 
systematised in Table 4-9 for a simple supported beam. The generalised load for 
a single load Pmov sin(ω t), moving across the simple beam is also given in this 
table. This excitation is limited by the tuning time which is defined as the time 
for the moving load to cross one belly of the mode shape. 
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Table 4 - 9 : Generalised ( m odal)  m ass and generalised load 

Mode shape 

 
generalised 
mass 

generalised load 
p* for distributed 
load p(x) 

generalised p* 
load for moving 
load Pmov 

tuning 
time 

 m* p* p* tmax 

m=1: 

  





 π

L

x
xφ sin  Lμ

2

1
 Lp(x)

π
2

 movP
π
2

 L/v 

m=2: 

  





 π

L

x
xφ 2

sin  Lμ
2

1
 Lp(x)

π
1

 movP
π
2

 L/(2v) 

m=3: 

  





 π

L

x3
sinxφ  Lμ

2

1
 Lp(x)

π3
2

 movP
π
2

 L/(3v) 

with: 

Pmov [kN]: moving load L [m]: length 

p(x) [kN/m]: distributed load m [-]: number of half waves 

μ [kg/m]: mass distribution per length v [m/s]: velocity of moving load 

The 2nd mode shape of a single span beam has two half waves (m = 2). When 
loading the entire length and when half of the uniformly distributed load is acting 
against the displacements of one belly and the other half is acting within the 
sense of displacements, then the generalized load will result in a value of p* = 0. 
The generalised load in the given table is based on the assumption that each 
belly of the mode shape is loaded, which results in larger oscillations. In doing 
so, the load is always acting in the sense of displacements of the bellies and the 
generalised load p* for all mode shapes is the same as for the first bending mode 
(m = 1). It must be noted that this approach may differ from other 
recommendations. According to some approaches [32], the loaded surface 
depends on the shape of the normal mode under consideration, according to 
others [9] the whole ‘loadable’ surface should be considered. 

 

4.5.2 Response Spectra Method for pedestrian streams 

At the design stage it is not necessary to apply a time domain analysis in every 
case. 

The aim of a spectral design method is to find a simple way to describe the 
stochastic loading and system response that provide design values with a specific 
confidence level. 
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It is assumed that: 

 the mean step frequency, fs,m, of the pedestrian stream coincides with the 
considered natural frequency of the bridge, fi, 

 the mass of the bridge is uniformly distributed, 

 the mode shapes are sinusoidal, 

 no modal coupling exists, 

 the structural behaviour is linear-elastic. 

The system response – “maximum peak acceleration” – was chosen as the 
design value. In the design check, this acceleration is compared with the 
tolerable acceleration according to the comfort class to be proofed. 

For different pedestrian densities, the characteristic acceleration, which is the 
95th percentile of the maximum acceleration, can be determined according to the 
formulas and tables given below. 

This maximum acceleration is defined by the product of a peak factor ka,d and a 
standard deviation of acceleration a: 

aa,d,d σka max  Eq. 4-19 

Note: The peak factor ka,d serves to transform the standard deviation of the 
response a to the characteristic value amax,d. In serviceability states, the 
characteristic value is the 95th percentile, ka,95%. 

Both factors are derived from Monte Carlo simulations based on numerical time 
step simulations of various pedestrian streams on various bridges geometries. 

The result is an empirical equation for the determination of the variance of the 
acceleration response: 

2*

2

1

2 2

i

Fk

a

m

C
k

 
  Eq. 4-20 

where 32

2

11 afafak ii   

32

2

12 bfbfbk ii   

a1, a2, a3, b1, b2, b3 are constants 

fi is the considered natural frequency that coincides with the 
mean step frequency of the pedestrian stream 

 is the structural damping ratio 

C is the constant describing the maximum of the load 
spectrum 

nkFF 2  is the variance of the loading (pedestrian induced forces) 

kF [kN2] is a constant 

n = d×L×B number of pedestrians on the bridge, with 

d: pedestrian density, L: bridge length, B: bridge width 

m*i is the modal mass of the considered mode i 
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The constants a1 to a3, b1 to b3, C, kF and ka,95% can be found in Table 4-10 for 
vertical accelerations and in Table 4-10 for lateral accelerations. 

 

Table 4 -1 0 : Constants for  vert ical accelerat ions 

d [P/m2] kF C a1 a2 a3 b1 b2 b3 ka,95% 

 ≤ 0,5 1,20×10-2 2,95 -0,07 0,60 0,075 0,003 -0,040 -1,000 3,92 

 1,0 7,00×10-3 3,70 -0,07 0,56 0,084 0,004 -0,045 -1,000 3,80 

 1,5 3,34×10-3 5,10 -0,08 0,50 0,085 0,005 -0,060 -1,005 3,74 

 

Table 4 -1 1 : Constants for  lateral accelerat ions 

d [P/m2] kF C a1 a2 a3 b1 b2 b3 ka,95% 

 ≤ 0,5 

2,85×10-4 

6,8 -0,08 0,50 0,085 0,005 -0,06 -1,005 3,77 

 1,0 7,9 -0,08 0,44 0,096 0,007 -0,071 -1,000 3,73 

 1,5 12,6 -0,07 0,31 0,120 0,009 -0,094 -1,020 3,63 

 

Alternatively, for a simplified estimation of the required modal mass for a given 
pedestrian traffic to ensure a given comfort limit alimit, an expression is derived 
that is valid for fs,m = fi: 

 2 4

1 3*

lim

1.65
k k

i

it

n k k
m

a

 
  

where m*
i modal mass for the considered mode i 

 n number of pedestrians on the bridge 

  structural damping coefficient 

 k1 to k4 constants (cf. Table 4-12 for vertical bending and torsion modes 
and Table 4-10 for lateral bending modes) 

 

Table 4 -1 2 : Constants for  the vert ical bending and tension m odal m ass 

d [P/m2] k1 k2 k3 k4 

 ≤ 0,5 0,7603 

0,468 

0,050 

0,675  1,0 0,5700 0,040 

 1,5 0,4000 0,035 
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Table 4 -1 3 : Constants for  the lateral m odal m ass 

d [P/m2] k1 k2 k3 k4 

 ≤ 0,5 

0,1205 0,45 0,012 0,6405  1,0 

 1,5 

 

The design method was elaborated with beam bridge models. If the structural 
behaviour of a bridge differs significantly from that of beam bridge, limits of 
application of the spectral method may be reached. 

 

Background information: 

The general design procedure is adopted from wind engineering where it is used 
to verify the effect of gusts on sway systems. Pedestrian loads on bridges are 
stochastic loads. As it is not possible to determine structural properties as e.g. 
frequencies without uncertainties, these properties are also stochastic. 

As design value the system response “maximum peak acceleration” was chosen. 
In the design check this acceleration is compared with the tolerable acceleration 
according to the comfort class to be proofed. 

This maximum acceleration is defined by the product of a peak factor ka,d and a 
standard deviation of acceleration, σa: 

aa,d,d σka max  

Both factors were derived from Monte Carlo simulations which are based on 
numerical time step simulations of various pedestrian streams on various bridges 
geometries. 

The standard deviation of acceleration is obtained as a result of application of 
stochastic loads to a determined system. These loads have been defined 
considering bridges with spans in the range of 20 m to 200 m and a varying 
width of 3 m and 5 m, loaded with four different stream densities (0,2 P/m², 
0,5 P/m², 1,0 P/m² and 1,5 P/m²). For each bridge type and stream density 
5 000 different pedestrian streams have been simulated in time step calculations 
where each pedestrian has the following properties, taken randomly from the 
specific statistical distribution: 

● Persons' weight (mean = 74,4 kg; standard deviation = 13 kg), 

● Step frequency (mean value and standard deviation depend on stream 
 density), 

● Factor for lateral footfall forces (mean = 0,0378, standard 
 deviation = 0,0144), 

● Start position (randomly) and 

● Moment of first step (randomly). 
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The peak factor ka,d is used to determine the characteristic response of the 
system. In serviceability limit states the characteristic value is the 95th percentile 
ka,95%. This factor is also a result of Monte Carlo simulations. 

Another result of the simulations where the first 4 vertical and the first two 
horizontal and torsional modes have been considered is the risk of lateral lock-in. 

To identify this risk a trigger amplitude of horizontal acceleration of 0,1 m/s² has 
been defined. The following frequency range is relevant for horizontal lock-in: 

Hz,
/f

f
,

s,m

i 21
2

80  , 

where: fi is the horizontal lateral natural frequency and 

 fs,m is the mean value of step frequency. 

Natural frequencies to be considered should coincide with mean step frequencies 
of pedestrian streams. 

 

4 .6  Step 6 : Check of cr iter ia  for  lateral lock- in 

The triggering number of pedestrians for lateral lock-in, that is the number of 
pedestrians NL that could lead to a vanishing of the overall damping producing a 
sudden amplified response, can be defined as: 

k

fm
N L




*8 
 Eq. 4-21 

where:  is the structural damping ratio 

m* is the modal mass 

f is the natural frequency 

k is a constant (300 Ns/m approximately over the range 0,5-1,0 Hz). 

Another approach is to define the trigger acceleration amplitude when the lock-in 
phenomenon begins: 

alock-in = 0,1 to 0,15 m/s2 Eq. 4-22 

Recent experiments have shown the adequacy of both formulae to describe the 
triggering for lock-in. 

Note: Pedestrian streams synchronising with vertical vibrations have not been 
observed on footbridges. 

 

Background information: 

As for walking the centre of gravity is not only varying vertically but also laterally 
from one foot to the other, the frequency of the movement of the human centre 
of gravity being half of the walking frequency. 

Pedestrian streams synchronising with vertical vibrations have not been observed 
on footbridges. Vertical vibrations are absorbed by legs and joints which provide 
a certain amount of damping so that the centre of gravity is not affected by 
vertical vibrations. People are able to react on vibrations by adjusting their 
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walking pattern. Although generally not considered, from experimental 
investigations it is known that single pedestrians can synchronise with harmonic 
vertical vibrations of 1,5 m/s2 [7]. 

On the contrary, they react much more sensibly to lateral vibrations compared to 
vertical ones. If a pedestrian walks on a laterally vibrating bridge, he tries to 
compensate this additional movement of his centre of gravity by swaying with 
the bridge displacement. This behaviour is intuitive and even small not 
perceptible vibrations are assumed to cause an adjustment of the movement of 
the centre of gravity. Such a change of movement of the centre of gravity is 
accompanied by an adaptation of the walking frequency and a widening of the 
gait. The person tends to walk with twice the vibration frequency to move his 
centre of gravity in time with the vibration [2]. The swaying of the body in time 
with the lateral vibration causes that the lateral ground reaction forces are 
applied in resonance. The widening of the gait causes an increase in the lateral 
ground reaction forces. The forces are applied in such a way that they introduce 
positive energy into the structural system of the bridge (Figure 4-13). Hence, if a 
footbridge vibrates slightly in lateral direction and it happens that the 
pedestrians adjust their walking pattern, then due to this synchronisation effect a 
low-damped bridge can be excited to large vibrations. 

 

Lateral movement of 
the centre of gravity

ground reaction force 
of the right foot

ground reaction 
force of the left foot

lateral deck 
displacement 

lateral deck 
velocity

performed work
(pos. work = raising,
neg. work = reducing)

ground reaction force 
of the right foot

ground reaction 
force of the left foot

+
-

+
-

+
-

+
-

Time

Time
 

Figure 4 - 1 3 : Schem at ic descript ion of synchronous w alking 

 

Experiments on a test rig within the project SYNPEX [13] indicate that a single 
person walking with a step frequency fi ± 0,2 Hz tends to synchronise with deck 
vibration. Faster walking persons are nearly not affected by the vibration of the 
deck, as the contact time of the feet is short and the walking speed high. They 
seem to be less instable than those walking with slow and normal speed. 

The lock-in trigger amplitude is expressed in terms of acceleration. Further 
frequency dependence could exist but has not been detected in measurements. 
Tests in France [6] on a test rig and on the Passerelle Solferino indicate that a 
trigger amplitude of 0,1 to 0,15 m/s2 exist when the lock-in phenomenon begins: 
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alock-in = 0,1 to 0,15 m/s2       Eq. 4-23 

On a different perspective, the research centred in the Millennium footbridge 
[16] has led to an interpretation of lock-in as a phenomenon associated with the 
generation of a negative damping dependent on the number of pedestrians on 
the bridge. The triggering number of pedestrians for lock-in, that is the number 
of pedestrians NL that could lead to a vanishing of the overall damping producing 
a sudden amplified response, has been defined as a function of the structural 
damping ratio ξ, of the modal mass m*, of the natural frequency f, and of a 
constant k as  

k

fm*ξπ
N L




8
        Eq. 4-24 

On the basis of the Millennium footbridge tests, Dallard et al. [16] derived the 
constant k to be approximately equal to 300 Ns/m over the range 0,5-1,0 Hz. 

Recent experiments on two footbridges in Coimbra and Guarda, Portugal [17] 
have shown the adequacy of the Millennium formula to describe the triggering for 
lock-in. Amplitudes of acceleration of the order of 0,15-0,2 m/s2 have been 
observed in correspondence, suggesting that the two approaches may be related. 

 

4 .7  Step 7 : Check of com fort  level 

According to the design verification methodology specified in Figure 3-2, the 
response calculated for the specified design situations and the corresponding 
load models has to be compared with the specified comfort limits given in Table 
4.4. The non-compliance with those limits implies the need of measures that 
improve the dynamic behaviour of the footbridge. These measures include: 

 modification of the mass 

 modification of frequency 

 modification of structural damping 

 addition of damping 

For an already constructed bridge, the simplest approach is based on the 
increase of structural damping, which can be achieved either by implementation 
of additional control devices, or by actuation on non-structural finishings, like the 
hand-rails and surfacing (cf. chapter 6). 
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5 Evaluat ion of dynam ic propert ies of footbridges 

5 .1  I nt roduct ion 

The experimental characterisation of the dynamic behaviour of a footbridge may 
be an important component of the project and can be performed based on two 
different levels of complexity: 

 Level 1 - Identification of structural parameters, with the purpose of 
calibrating numerical models and eventually tuning control devices. Natural 
frequencies, vibration modes and damping coefficients are the parameters of 
interest; 

 Level 2 - Measurement of the bridge dynamic response under human 
excitation for assessment of comfort criteria and/or correlation with the 
simulated response. 

The adoption of one of the above mentioned strategies depends on the 
characteristics of the structure and on the aims of the study. 

Level 2  tests can be characterised as standard tests that should be developed at 
the end of construction of any potentially lively footbridge, providing important 
information for design and verification purposes. Based on the results of these 
tests, the bridge owner may decide whether to implement control measures or 
not. It should be noted that the use of experimental tests to check the comfort 
class of a specific footbridge requires the performance of measurements for all 
vibration phenomena and design situations considered in the development of 
design load models and involves the obtainment of characteristic values of the 
response. 

Level 1  tests are required when it is clear that the dynamic behaviour of the 
footbridge is beyond acceptability limits and control measures are necessary. The 
appropriate design of control devices requires an accurate knowledge of 
structural parameters, namely natural frequencies and vibration modes. 

The current chapter presents general guidelines for testing and data analysis of 
footbridges. 

Background information: 

Although a comprehensive knowledge of materials and loads and a significant 
modelling capacity provide a high degree of understanding of the structural 
behaviour at the current state-of-art, numerous uncertainties remain present at 
the design stage of civil engineering structures. As a consequence, the 
corresponding dynamic properties and behaviour can only be fully assessed after 
construction. This fact has special importance in the context of pedestrian 
bridges, considering the narrow band of frequency excitation that frequently 
includes important bridge frequencies, and the typical low damping ratios of 
modern footbridges. 

Standard tests, here designated as Level 2  tests, should be developed at the 
end of construction of any potentially lively footbridge and should consider the 
identification of critical natural frequencies, damping ratios and the response 
measurement to a single, a small group or a stream of pedestrians.  

Whenever the use of control devices is expected, Level 1  tests are required; 
they additionally involve the identification of vibration modes. 
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5 .2  Response m easurem ents 

The performance of Level 2  tests should consider the following items: 

1. Identification of critical natural frequencies; 

2. Identification of damping ratios; 

3. Measurement of response induced by one pedestrian; 

4. Measurement of the response induced by a small group of pedestrians; 

5. Measurement of the response induced by a continuous flow of pedestrians. 

The verification of acceptability limits of vibration for a particular pedestrian 
bridge should be based on the results of these tests, under consideration of the 
particular use of the bridge. 

 

5.2.1 Measurements of ambient response for identification of 
critical natural frequencies 

Tests should preferably be conducted on the bridge closed to pedestrian traffic. 
Assuming that a preliminary dynamic analysis of the bridge has been conducted, 
providing an estimation of natural frequencies and vibration modes, the 
instrumented sections should correspond to the sections of maximum estimated 
modal response for the estimated critical frequencies. 

 

Background information: 

In the simplest situation one single sensor, an accelerometer normally, is used 
for response measurement. The following procedure can be employed: for each 
measurement section, the sensor is mounted and the ambient response is 
collected, on the basis of two test series. 

One of the series is collected, if possible, with the bridge closed to pedestrians, 
subjected to ambient loads, in order to eliminate the frequency content 
associated with pedestrian excitation, provided the transducers sensitivity is 
sufficiently high to capture ambient vibration response (typical acceleration peak 
amplitudes of the order of 2-5 mg). That procedure allows for an identification of 
the critical natural frequencies for vertical and/or lateral vibrations. 

The second series should be collected under the current pedestrian excitation 
which provides a better characterization of bridge frequencies, as well as a 
measure of the intensity of vibrations under current use. 

The choice of sampling rate and processing parameters should respect the 
following points: 

● Assuming the frequencies of interest lie in the range 0,1-20 Hz, a 
 sampling frequency of 50 Hz to 100 Hz should be selected. The acquisition 
 equipment should include analogue filters in order to avoid aliasing errors, 
 otherwise higher sampling rates may be required; 



 

40 

● Designating by flow the expected lowest natural frequency of the bridge, 
 the collected time series should have a minimum duration given by the 
 formula 

 (A / flow) [n – (n-1) overl] [s]      Eq. 5-1 

 where A is a constant, with a value of 30 to 40, n is the number of records 
 that will be employed in the obtainment of an average power spectral 
 density (PSD) estimate of the response, and overl represents the rate of 
 overlap used for that estimate. Current values of n are 8-10, and a 
 common rate of overlap is 50 %. Considering as an example a structure 
 with a lowest natural frequency of 0,5 Hz, the averaging over a number n 
 of records of 10, and an overlap rate of 50 %, the minimum duration of 
 the collected time series should be 330-440 s. So a total number of 
 33 000 to 44 000 samples should be collected at a sampling frequency of 
 100 Hz, leading to average power spectra with frequency resolution of 
 0,017 Hz to 0,0125 Hz; 

● The collected time series should be processed in order to obtain an 
 average Power Spectrum Density (PSD) estimate. One procedure to form 
 this PSD is as follows: divide the collected series into n records, 
 considering the defined overlapping rate; remove trend for each record; 
 apply time window (Hanning window, for example) in correspondence; 
 evaluate normalised PSD of each record; average the set of raw PSDs; 

● The analysis of PSD estimates collected at one or various sections allows 
 for a former identification of the prototype natural frequencies; 

● The peak response of the series collected under current pedestrian 
 walking should be retained for comparison with acceptability limits. 

 

5.2.2 Raw measurement of damping ratios associated with 
critical natural frequencies 

Raw estimates of the damping ratios associated with critical natural frequencies 
can be obtained from a simple free vibration test in which a pedestrian 
jumps / bends knees / bounces on a fixed location at a particular frequency, 
trying to induce resonant response of the bridge for the corresponding vibration 
mode. After a few cycles of excitation, the pedestrian action is suddenly 
interrupted and the free vibration response is recorded. This process should be 
repeated a number of times, in order to provide average estimates of damping 
coefficient as a function of amplitude of oscillation. 

 

Background information: 

The application of a single degree of freedom identification algorithm to the free 
decay response (eventually band-pass filtered, whenever close modes or noise 
are present) allows for a raw estimation of damping coefficient by segments of 
the time series. A plot of damping coefficient versus amplitude of oscillation can 
be made, where the amplitude of oscillation is taken as the average peak 
amplitude of oscillation within the analyzed series segment. 
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5.2.3 Measurement of the response induced by one pedestrian 

The tests described above provide an update of the expected critical natural 
frequencies. The response of the footbridge is now measured at the relevant 
sections (the maximum modal displacement section for each critical frequency), 
considering the motion of a single pedestrian over the bridge. Several types of 
motion should be explored, as a function of the frequencies of interest: 

 walking, for critical natural frequencies below 2,5 Hz; 

 walking or running, for critical natural frequencies between 2 Hz and 3 Hz; 

 running, for natural frequencies above 3 Hz. 

Given the random characteristics of excitation, a number of tests should be 
performed for each combination of frequency and motion, typically about 5. A 
metronome should be used to ensure the correct walking rate is obtained. The 
maximum acceleration and dynamic displacement (which can also be derived 
from acceleration) of the bridge should be recorded for each collected series, and 
the peak response induced by one pedestrian can be taken as the maximum of 
the peak responses from the various tests. The weight of the pedestrian should 
be noted. Whenever the bridge has a non-symmetric incline, the response should 
be recorded with the pedestrian travelling down the slope. 

 

Background information: 

The response of the bridge to the action induced by one pedestrian crossing the 
bridge at the relevant step frequency is measured at the most critical section(s). 
Given the random characteristics of excitation, a number of realisations should 
be performed for each combination frequency / motion. A reference number is 5. 

 

5.2.4 Measurement of the response induced by a group of 
pedestrians 

The response should be measured in two conditions: 

 walking / running of group under current use, and 

 walking / running of the group with the goal of inducing high response 
(vandalism). 

Whenever possible the group should be formed of 10 pedestrians if the deck 
width is no greater than 2,5 m and 15 pedestrians for larger widths. The 
response should be measured based on the specification made in section 5.2.3 
for the crossing of one pedestrian. The response associated with the 
synchronised group should be collected, again making use of a metronome in 
order to achieve synchronisation at a particular frequency. 

Given that it is expected that the presence of people on the deck might result in 
higher damping ratios and that for high amplitudes of vibration these ratios 
increase, it is suggested that measurements are made of the free vibration 
response after resonant excitation of the bridge by the group, jumping at a fixed 
position. 
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Background information: 

Looking in the literature, it can be noticed that the number of pedestrians used in 
group tests varies in the range 10-20 pedestrians. 

The response should be measured based on the considerations for the crossing of 
one pedestrian, i.e., for each motion type / frequency combination, 5 realisations 
of one crossing of the bridge in declining sense (for non-symmetric slope) should 
be collected, at a sampling frequency of 50 Hz-100 Hz. The weight of the group 
members should be retained, and the group response should be the highest of 
the peak responses recorded. 

 

5.2.5 Measurement of the response induced by a continuous 
flow of pedestrians 

The measurement of the response induced by a continuous flow of pedestrians is 
also of interest for determining the footbridge response under different usage 
conditions. This measurement should especially be considered for footbridges 
that clearly exhibit a lively behaviour, namely a trend for synchronisation effects. 
The measurement procedures are identical to the ones adopted for single 
pedestrian and group tests described in sections 5.2.3 and 5.2.4. 

 

5 .3  I dent ificat ion tests 

The identification of modal parameters, i.e., natural frequencies, vibration modes 
and damping coefficients, of a structure is performed through the above 
designated Level 1  tests. A conventional modal analysis technique can be 
applied, based on forced vibration tests or, alternatively, identification can be 
performed based on free or ambient vibration tests. The basic parameters of the 
tests are established for the two cases in the following sections. 

 

Background information: 

The identification of modal parameters, i.e., natural frequencies, vibration modes 
and damping coefficients can be based on forced, free or on ambient vibration 
tests. 

 

5.3.1 Forced vibration tests 

Forced vibration tests are the basis of the traditional modal analysis techniques 
and provide the most precise results, given that they rely on controlled inputs 
and outputs. This is particularly relevant for damping coefficient estimates, 
where the quality is highly affected by measurement uncertainties. The 
identification technique to apply depends on the type of excitation employed. 
However, there is a risk that the input energy associated with the low natural 
frequencies is very small and so the signal-to-noise ratio may be very low. 

The devices used for these tests, 



 

43 

 impact hammer and 

 vibrator, 

are described in section 5.4.2.1. 

 

Background information: 

 

5 .3 .1 .1  Ham m er excitat ion 

Even for the softest tips, hammer excitation produces a short duration pulse 
(typically 10 ms, on a concrete surface), whose frequency content is defined in a 
wide range, such as DC-200 Hz. Although analogue filters may be incorporated in 
the conditioning or acquisition equipment, the spectral content of the input can 
only be accurately defined if the time description is accurate. Assuming this pulse 
is represented by a half sinusoid, three points should be used to describe 
accurately this curve, with a minimum spacing of 5 ms. Hence, a minimum 
sampling frequency of 200 Hz should be employed, even though the frequency 
content of interest lies in the range 0,1 Hz-20 Hz. 

Another aspect to retain is that, given that the input force is applied manually, 
some differences in the quality of the signal applied may occur. In particular, it is 
important for the operator to avoid double hits on each recorded time series, 
which significantly affect the quality of frequency response estimates. 

Referring to the length of each recorded time series, it should be defined, if 
possible, in such a way that the structural response to hammer impulse vanishes 
within the collected series. In that case, time windowing is not necessary, 
therefore increasing the quality of damping estimates. A reference maximum 
duration of the series is 20,48 s, corresponding to a number of 4096 points 
sampled at 200 Hz. This corresponds to obtaining spectral estimates with a 
frequency resolution of 0,04 Hz, which is manifestly insufficient to characterise 
mode shapes at very low frequencies. Hammer excitation should not in effect be 
used for the characterisation of those modes. It should be noted that, even 
though longer records can be collected, the last part of the signal may contain 
only ambient vibration response and therefore does not provide an input 
correlated signal. 

Assuming the sampling frequency and duration of records are defined, one 
procedure for the obtainment of a set of frequency response function estimates 
is as follows: 

(i) Selection of a section along the deck where to apply the hits. This section 
 should be chosen considering preliminary numerically calculated mode 
 shapes, in such a way that the minimum number of modal nodes is close. 
 More than one section may have to be defined, depending on the 
 configuration of mode shapes of interest; 

(ii) For each input section Ri, and depending on the number of available 
 accelerometers, install successively the accelerometer(s) on the 
 measurement sections. For each (set of) instrumented section(s), using 
 the sampling parameters above defined, collect the response to the 
 impulse hammer applied at Rj, as well as the input signal at the force 
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 sensor. For each set-up, a total of 5 to 10 time sets of series are 
 recorded; 

(iii) Remove trend to all response time series. Obtain a spectral description of 
 the input and response, through estimation of auto-power spectra )(

~
fSii  

 and )(
~

fS jj . Estimate the cross-spectrum )(
~

fSij  relating the response at 

 each measurement section Ri, with the input applied at section Rj. Average 
 the set of auto and cross power spectra, for the set of 5 to 10 series 
 collected at each location 

  (f)SE(f)S jjjj
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 Estimate frequency response functions )(fH ij , based on estimator H2 
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 and coherence (f)γ2 , defined as 
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2         Eq. 5-3 

 The functions Hij(f) are intrinsic of the system and form the basis for 
 application of a System Identification algorithm (in the frequency domain) 
 to extract natural frequencies fk, vibration modes 

k
φ and associated 

 damping coefficients k , while )(2 f  provides a measure of the 

 correlation between the measured input and response signals. 

 Considering a viscous damping model and response measurements 
 expressed in terms of accelerations, the frequency response functions 
  fH ij  relate to the modal components of mode k,  

kiφ and  
kjφ , at 

 sections Ri and Rj, respectively, through 
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
       Eq. 5-4 

5 .3 .1 .2  Vibrator excitat ion, w ide- band 

Wide-band excitation induced by hydraulic or electrodynamic vibrators can be of 
transient or continuous type. Transient signals, like burst random, are treated in 
a way similar to those produced by hammer excitation. Continuous signals 
require time windowing applied to each time segment of the series, in order to 
reduce leakage effects. Moreover, since time windowing reduces the contribution 
of the edge samples, it is frequent to overlap time segments. A common 
procedure consists in the application of Hanning windows to the input and 
response time segments, combined with an overlapping rate of 50 %. This allows 
a considerable reduction of the duration of the time series collected at each pair 
of input-output sections. Common wide-band generated signals are random or 
chirp-sine. 



 

45 

5 .3 .1 .3  Vibrator excitat ion, sinusoidal tests 

The performance of sinusoidal tests provides the best results, as long as the 
vibrator has sufficient power to induce the vibration modes of interest. This point 
is critical for very low natural frequencies, even though pedestrian bridges are 
very flexible. 

The procedure for construction of frequency response functions and identification 
of vibration modes and damping coefficients comprehends a preliminary 
collection of ambient response, which provides an approximation of natural 
frequencies. Once the vicinity of each natural frequency of interest has been 
identified, a sinusoidal test is developed that consists in the construction of parts 
of the frequency response function, point by point, each point corresponding to 
the pair frequency of excitation, frequency content of the measured response at 
each measurement section. The following points should be considered: 

(i) Although it is desirable to measure the applied force, that is not always 
 possible, particularly if an eccentric mass shaker is employed. The force 
 applied by such type of shakers can however be estimated with a certain 
 precision; 

(ii) The precise identification of the natural frequency of the structure is made 
 by application of a sinusoidal excitation and recording of the response at 
 one particular location where the estimated mode shape has a significant 
 component. For each excitation frequency a time series of the response at 
 a particular location can be extracted, with a short duration, 
 corresponding for example to 512 samples. Assuming the induced signal 
 is a perfect sinusoid, the amplitude and phase of the response can be 
 extracted by single degree-of-freedom time domain data fit. The 
 frequency response function dot is obtained by the ratio to the input 
 excitation amplitude measured or estimated; 

(iii) Although very short time series are required, it is necessary that the 
 shaker operates for each frequency for a period of at least one minute, in 
 order to guaranty that stabilisation of the response has been achieved; 

(iv) Once the natural frequency has been identified, the vibrator is tuned to 
 that frequency and one accelerometer, or a set of accelerometers are 
 successively mounted at each measurement location to collect a small 
 time series of response. When a force sensor is not employed, it is 
 necessary to install an accelerometer close by the vibrator, which remains 
 fixed. Simultaneous records of response at two locations are then 
 collected, for an evaluation of the relative phase and amplitude to the 
 reference section. The set of amplitudes and phase ratios to the reference 
 point constitute mode shape components; 

(v) The best quality of damping estimates is obtained with sinusoidal tests. 
 Damping estimates are obtained from the analysis of the measured free 
 vibration response obtained by sudden interruption of sinusoidal 
 excitation at resonance. Provided that no close modes are present, a 
 single degree-of-freedom algorithm is sufficient to identify the damping 
 ratio. Given that this ratio depends on the amplitude of response, the free 
 vibration response should be analysed by segments of the response 
 record in the form described at Section 5.2.2. 
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5.3.2 Ambient vibration tests 

Ambient vibration tests employ the current ambient loads on the structure as 
input loads, assuming that the frequency content of these is approximately 
constant in the frequency range of interest. Although this hypothesis is not 
necessarily valid, ambient vibration tests are becoming an extremely attractive 
alternative for identification of modal parameters in civil engineering structures, 
given the limited required resources, and the high precision of currently available 
sensors. The use of these techniques can provide significant errors in 
determining the damping coefficient estimates. 

 

Background information: 

The basic hypothesis for ambient vibration tests is that the input, i.e., the 
ambient excitation, can be idealized as a white-noise defined in a bandwidth 
corresponding to the frequency range of interest. This means that, within a 
certain frequency range, all mode shapes are excited at a constant amplitude 
and phase. The recorded response is therefore an operational response, and the 
technique of constructing so-called frequency response functions, relating the 
responses at two measurement sections, leads to identification of operational 
deflection shapes, instead of modal shapes. Assuming that the frequencies of the 
system are well separated, and that the damping coefficients are low, a good 
approximation exists between operational deflection shapes and modal shapes. 
However, if frequencies are close, the operational deflection modes comprehend 
a non-negligible superposition of adjacent modes, therefore providing erroneous 
results. Although some possibilities exist for providing a separation of mode 
shapes, like separating bending and tensional response on a bridge by 
constructing two signals, the half-sum and half-difference of the edge deck 
measured response, some other possibilities are offered in terms of signal 
processing, that allow identification of modal components and damping 
coefficients. That is the case of the stochastic subspace identification method, 
which is an output-only parametric modal identification technique that can be 
applied directly to acceleration time series or to the corresponding response 
covariance matrices [33]. This method has been implemented as a toolbox for 
Matlab (Macec) [37]. Also commercially available is a software based on the 
stochastic subspace identification and frequency domain decomposition methods 
(Artemis) [38], as well as another one based on Polymax method, which are also 
powerful tools for modal shape identification. 

Although damping estimates are provided by the more powerful algorithms, the 
precision in the estimates is limited and so results should be used with care. In 
effect, not only the precision of sensors is currently so high, that the structural 
response can be measured for very small levels of vibration, but also powerful 
data processing techniques are available ([33], [34], [35]) that can be employed 
to identify modal parameters. 

The conventional technique for identification of operational deflection shapes 
requires the building of frequency response functions between outputs. This is 
done exactly as described in section 5.3.1.2 for forced vibration tests with wide-
band excitation. 
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5.3.3 Free vibration tests 

Free vibration tests consist of recording the structural response associated with 
the sudden release of a tensioned cable or other device that causes an initial 
deviation from the equilibrium position of the structure. These tests are relatively 
inexpensive when conducted at the end of construction of the footbridge and 
provide accurate estimates of damping ratios of the excited modes. They 
constitute an alternative to forced vibration tests, and it is expected that higher 
quality modal estimates are obtained than those resulting from ambient vibration 
tests. 

For the purpose of damping identification, measurements should be performed at 
wind velocities lower than 2-5 m/s. 
 

Background information: 

Considering that the sudden release of a tensioned cable is equivalent to the 
application of an impulse, the identification of modal parameters from a free 
vibration test can follow the procedure described in section 5.3.1.2, in which the 
frequency spectrum of the input is assumed constant for the range of analysis. 
Alternatively, the output-only identification algorithms of the type described in 
section 5.3.2 can be applied. In any case, it is expected that higher quality modal 
estimates are obtained than those resulting from ambient vibration tests. 
 

5 .4  I nst rum entat ion 

5.4.1 Response devices 

Acceptability limits for pedestrian comfort are generally defined in terms of 
acceleration, and so the usual measured response quantity is acceleration.  

Accelerometers are sensors that produce electrical signals proportional to the 
acceleration in a particular frequency band, and can be based on different 
working principles. For most pedestrian bridges the frequency range of interest is 
0,5 – 20 Hz. Accordingly, common specifications for accelerometers are: 

 Frequency range (with 5% linearity): 0,1 – 50 Hz; 

 Minimum sensitivity: 10 mV/g 

 Range: ±0,5 g 

 

Background information: 

Given that acceptability limits for pedestrian comfort are generally defined in 
terms of acceleration, the usual measured response quantity is acceleration.  

Three main categories can be employed in civil engineering measurements: 

1. piezoelectric; 

2. piezoresistive and capacitive; 

3. force-balanced. 
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Compared with the other two types, piezoelectric accelerometers have several 
advantages, such as: not requiring an external power source; being rugged and 
stable in the long term, and relatively insensitive to the temperature; being 
linear over a wide frequency and dynamic range. A serious inconvenience exists 
in applications involving very flexible structures, which is the limitation for 
measurement in the low frequency range. Many piezoelectric accelerometers only 
provide linear response for frequencies higher than 1 Hz, although some 
manufacturers produce accelerometers that operate for very low frequencies. 

Both piezoresistive and capacitive and force-balanced accelerometers are passive 
transducers, which require external power supply, normally an external 5 VDC-
15 VDC excitation. These accelerometers operate however in the low frequency 
range, i.e., from DC to approximately 50 – 200 Hz, therefore being adequate for 
almost all types of measurements in civil engineering structures. 
 

5.4.2 Identification devices 

5.4.2.1 Force devices 

For forced vibration tests of pedestrian bridges, possible input devices are an 
impact hammer (cf. Figure 5-1) or a vibrator (cf. Figure 5-2). 
 

 

Figure 5 - 1 : I m pact  ham m er for civil engineering applicat ions 

 

 

Figure 5 - 2 : Elect rom agnet ic shaker for  civil engineering applicat ions. Vert ical 

m ount ing 
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Background information: 

Impact hammer excitation is the most well-known and simple form of providing a 
controlled input to a Mechanical Engineering structure or component. For Civil 
Engineering applications, the same technique can be employed, provided that the 
impact hammer has adequate characteristics. For these particular structures, one 
solution available in the market is the hammer represented in Figure 5-1, 
weighting about 55 N, whose tip is instrumented with a piezoelectric force 
sensor, having a sensitivity of 1 V/230 N and a dynamic range of 22,0 kN. The 
hammer operates in the range 0 - 500 Hz. Given that pedestrian bridges are 
normally flexible and relatively small, the impact hammer meets for this type of 
structures one of the most interesting applications. It is noticed however that the 
energy input in the very low frequencies is very small, meaning that mode 
shapes of very low natural frequency are not possibly mobilised into a 
measurable level. 

 

Figure 5 - 3 : I m pact  ham m er for civil engineering applicat ions 

Vibrators employed in Civil Engineering applications can be of three different 
types, electromagnetic, hydraulic and mechanical. The shaker represented in 
Figure 5-2 is one of the solutions available in the market, and weights around 
800 N, operating in the range 0-200 Hz, and delivering a maximum force of 
445 N for frequencies greater than 0,1 Hz. This device is configurable for 
excitation both in horizontal or vertical directions and is driven by means of a 
signal generator, which feeds the shaker amplifier. Typical generated signals for 
tests are sinusoidal or random. The measurement of applied force is possible 
through load cells installed between the shaker and the structure. Given the 
limitations in the amplitude of generated load, electro-dynamic shakers can only 
be used for excitation of small and medium sized structures. On the contrary, 
both hydraulic and mechanical shakers can be employed for excitation of large 
structures. Mechanical shakers based on the rotation of eccentric masses apply a 
sinusoidal excitation in a varying frequency range. These devices are seldom 
used at the current state of art, given the significant requirements for the setup 
and operation. 
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Figure 5 - 4 : Elect rom agnet ic shaker for  civil engineering applicat ions. 

Vert ical m ount ing 

 

5.4.2.2 Input sensor devices 

One important topic in the testing of pedestrian bridges is the measure of input 
loads induced by pedestrians, both when walking alone or in groups. 

The direct assessment of the concentrated load applied by a pedestrian can be 
made through instrumentation of a walking platform with force plates. For a 
walking group, it is also important to measure the degree of synchronisation of 
pedestrians, which can be assessed by means of video recording and image 
processing. 

 

Background information: 

Former work developed by Fujino et al. [36] has shown that the trajectory of 
pedestrians can be measured through measurement of the motion of pedestrians 
head and shoulders by means of video recording and image processing. 
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6 Control of vibrat ion response 

6 .1  I nt roduct ion 

Following the design verification methodology specified in section 3, the response 
calculated for the specified load models has to be compared with the comfort 
limits. The non-compliance with those limits or with the lock-in criteria implies 
the need to develop measures that improve the dynamic behaviour of the 
footbridge. These measures include modification of the mass, frequency or 
structural damping. 

 

Background information: 

The control of the vibration response in a footbridge implies the introduction of 
modifications, which can comprehend variation of the mass, frequency or 
structural damping. For an already constructed structure, the simplest approach 
is based on the increase of the structural damping, which can be achieved either 
by implementation of control devices, or by actuation on non-structural finishing, 
like the hand-rail and surfacing. 

 

6 .2  Modificat ion of m ass 

For very light footbridges, the use of heavy concrete deck slabs can improve 
dynamic response to pedestrian loads, as a consequence of the increased modal 
mass. This approach is particularly relevant for stress-ribbon structures. 

 

6 .3  Modificat ion of frequency 

Traditionally structural stiffness is modified to raise the frequency out of the 
critical range for both vertical and lateral vibration. Frequency is proportional to 
the square root of the ratio between stiffness and mass, and so significant 
structural changes are generally required to sufficiently raise the frequency. In 
modern bridge design, where the aim is to build light and graceful structures, 
these changes are usually impractical once construction has been completed, but 
can be considered at the design stage. 

 

Background information: 

Possible strategies for modification of structural frequency comprehend, for 
example, the replacement of a reinforced concrete deck slab formed by non-
continuous panels by a continuous slab, or the inclusion of the handrail as a 
structural element, participating to the overall deck stiffness. 

Other more complex measures can be of interest, like the addition of a stabilising 
cable system. For vertical vibrations, alternatives are the increase of depth of 
steel box girders, the increase of the thickness of the lower flange of composite 
girders, or the increase of depth of truss girders. For lateral vibrations, the most 
efficient measure is to increase the deck width. In cable structures, the 
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positioning of the cables laterally to the deck increases the lateral stiffness. In 
cable-stayed bridges, a better tensional behaviour can be attained by anchoring 
of the cables at the central plane of the bridge on an A-shape pylon, rather than 
anchoring them at parallel independent pylons. 

 

6 .4  Modificat ion of st ructural dam ping 

6.4.1 Introduction 

The increase of structural damping is another possible measure to reduce the 
dynamic effects of pedestrians on a footbridge. For an existing bridge, the 
simplest approach is based on the increase of the structural damping, which can 
be achieved either by actuation on particular elements within the structure, or by 
implementation of external damping devices. 

The use of external damping devices for absorbing excessive structural vibrations 
can be an effective solution in terms of reliability and cost. These devices can be 
based on active, semi-active or passive control techniques. Considering aspects 
like cost, maintenance requirements and practical experience, the usual option is 
for passive devices, which include viscous dampers, tuned mass dampers (TMD), 
pendulum dampers, tuned liquid column dampers (TLCD) or tuned liquid 
dampers (TLD). The most popular of these are viscous dampers and TMDs. 

 

6.4.2 Simple measures 

Hand-rails are generally considered non-structural elements whose geometry and 
characteristics are specified according to architectural considerations. It has been 
observed, however, that these elements can contribute to stiffen and dampen 
the footbridge, especially in the case of very slender structures. The use of wire 
mesh fencing, for example, has shown to contribute to a significant increase of 
damping of the footbridge, because of the friction generated between wires 
during vibrations. However, it is not possible to quantify the damping increase as 
it is strongly dependant on the amplitude of vibrations. 

In a similar way, the use of elastomers in bearings and surfacing can contribute 
to an increased damping of the footbridge, but it should be remembered that the 
properties of elastomers degrade with time and regular maintenance will be 
required. 

The choice of bolted instead of welded joints is another measure that can 
contribute to an overall higher damping, as a consequence of the friction 
developed in the load transfer between elements. 

 

6.4.3 Additional damping devices 

Table 6-1 lists some examples of footbridges where damping systems have been 
implemented, indicating the characteristics of those measures and the overall 
effect on the dynamic behaviour. 
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Table 6 -1 : Footbridges w here dam ping system s have been im plem ented 

Bridge 
Number of 
spans /  
length [m] 

Type 
Controlled 
frequencies 
[Hz] 

Dominant 
vibration 
direction 

Type of 
damping 
system 
implemented 

Effect of the 
damping 
system on the 
overall 
behaviour 

T-Bridge, 
Japan 

2 spans, 

45+134 

Cable-
stayed, 
continuous 
steel box 
girder 

0,93 Lateral 

Tuned liquid 
dampers of 
sloshing type, 
inside box 
girder. Total of 
600 containers 
used, mass 
ratio of 0,7% of 
generalised 
mass of girder 
lateral vibration 
mode. 

Lateral girder 
displacement 
reduced from 
around 8,3mm 
to 2,9mm 

Millennium 
Bridge, 
London 

3 spans, 

108+144+
80 

Suspension 
tension-
ribbon 

0,8 (main) 

0,5 

1,0 

Lateral 

Viscous 
dampers and 
tuned mass 
damper used to 
control 
horizontal 
movements. 
Vertical mass 
dampers used 
to control 
vertical 
oscillation, 
frequencies 
between 1,2 to 
2,0Hz 

Vibrations 
became 
imperceptible 
for users 

Forchheim 
Bridge, 
Germany 

1 span, 

117,5 

Cable-
stayed  1,0 to 3,0 Vertical 1 TMD   

Solférino 
Bridge, 
Paris 

central 
span, 

106 

Arch 

0,81 

1,94 

2,22 

Lateral 

Vertical 

Vertical 

1 lateral TMD 
with mass 
15000kg and 2 
vertical TMDs 
with masses 
10000kg and 
7600kg  

Increased 
structural 
damping from 
0,4% to 3,5% 
(lateral), and 
from 0,5% to 
3% and 2% 
(vertical) 

Pedro e 
Inês 
Bridge, 
Coimbra 

central 
span, 

110 

Shallow 
arch /  
girder 

0,85 

1,74; 
1,80;2,34; 
2,74; 3,07; 
3,17 

Lateral 

Vertical 

 

 

1 lateral TMD 
with 14800kg 
and 6 vertical 
TMDs 

Increased 
lateral 
damping from 
0,5% to 4% 
and vertical 
damping from 
0,3%-2,2% to 
3%- 6% 
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Background information: 

External damping devices comprehend viscous dampers, tuned mass dampers 
(TMD), pendulum dampers, tuned liquid column dampers (TLCD) or tuned liquid 
dampers (TLD). The most popular of these are viscous dampers and TMDs. 

Table 6-2 systematizes some examples of footbridges where damping systems 
have been implemented, referring characteristics of implemented measures and 
the overall effect in the dynamic behaviour. 

Table 6 - 2 : Footbridges w here dam ping system s have been im plem ented 
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6.4.3.1 Viscous dampers 

Viscous dampers (cf. Figure 6-1) are devices used to dissipate vibrations through 
the deformation of a viscous fluid or solid material. 

One of the most common devices consists on a piston inside a cylinder, which 
causes deformation and flow of a fluid and generation of heat. The output force 
of such devices depends on the viscosity of the fluid and is proportional to the 
relative velocity of both ends, therefore the efficiency of a viscous damper 
depends on the possibility of installation of the damper connecting points of the 
structure with significant relative velocity. In some configurations, the motion of 
the piston induces motion of the fluid through calibrated openings, in which case 
dissipation occurs by volume variation of fluid. This latter type of damper is less 
dependent on temperature than the former, which relies essentially on the 
viscous properties of the fluid. 

Viscous elastic dampers constitute a different category of dampers which 
dissipate energy by shearing deformation of a solid material, normally a polymer. 
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Figure 6 - 1 : Exam ple of viscous dam pers 

 

Background information: 

The output of a viscous damper is generally defined by 
vCFdamper           Eq. 6-1 

where: C = damping constant (N.sec/m) 

 v = velocity (m/sec) 

  = velocity exponent (0,3 ≤  ≤ 1,0) 

The inclusion of such a device into a structure results therefore necessarily in a 
non-proportional damping matrix that can be obtained from the original 
proportional damping matrix added by the appropriate damping coefficients in 
correspondence with the degrees of freedom associated with the damper 
locations. One particular advantage of viscous dampers is the possibility of 
simultaneous control of various vibration modes. In curved bridges, where 
modes have typically more than one type of significant displacement component, 
the use of a concentrated damper at the abutment, for instance, can effectively 
damp several modes that involve displacements in such direction. However, in 
several cases, viscous dampers may not be the best solution when compared to 
other alternatives. This is because viscous dampers work from the relative 
displacements of their two extremities. If available retrofitting locations only 
allow small relative displacements velocities, then these dampers are not of 
interest and TMDs or TLDs should be considered instead. Figure 6-12 shows an 
example of installation of viscous dampers interposed between the deck and the 
pylons. 

 

  

Figure 6 - 2 : Viscous dam pers installed at  Minden footbridge ( Germ any)  
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6.4.3.2 Tuned mass dampers 

Tuned Mass Dampers (TMDs) consist of concentrated masses that are connected 
to a structure via some stiffness and damping elements. These devices are 
designed to split the critical frequency into two new frequencies (one below and 
another above the initial one), and the relative motion between structure and 
TMD allows for energy dissipation. Since the structural mass is much higher than 
the TMDs’, the movement of the TMD usually comprises large displacements 
when compared to the structure motion. 

Figure 6-3 shows two examples of TMDs, one vertical and one horizontal, 
installed in footbridges. 

 

  

Figure 6 - 3 : Exam ples of TMDs 

 

Background information: 

Tuned Mass Dampers (TMDs) are normally tuned so that the two peaks of the 
damped system frequency response curve have the same dynamic amplification, 
when expressed in terms of displacements. Design curves have been derived 
from the dynamic equations of motion and are available in the literature [18], 
[23]. 
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μ - mass ratio 

q – frequency ratio 

ζ – TMD damping ratio 

ξ – structural damping ratio 

Figure 6 - 4 : Design curves of TMDs 

The design procedure may be as follows: 

1. Choice of TMD mass md, based on the ratio μ to the structural modal mass 
 ms (μ=md/ms). Typical values of the mass ratio can range from 0,01 to 
 0,05. 

2. Calculation of optimum TMD frequency ratio, expressed by the ratio  
 between the TMD’s, fd, and the system’s frequency fs (=fd/fs) [18]. 

 
1

1
optδ

μ



        Eq. 6-2 

3. Calculation of optimum TMD damping ratio optξ  [18] 

 
 318

3

μ
μξopt 

        Eq. 6-3 

4. Calculation of the TMD constants: 

 Spring constant:   ddd mπfk
2

2      Eq. 6-4 

 Damping constant:   optddd ξπfmc 22     Eq. 6-5 

The performance of a TMD is extremely sensitive to frequency de-tuning, which 
can occur as consequence of slight frequency changes associated with pedestrian 
loads or with modifications within the structure during its lifetime. Therefore it is 
of interest to evaluate the TMD efficiency for an estimated range of frequencies. 
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6.4.3.3 Pendulum dampers 

Pendulum dampers (cf. Figure 6-5) are a specific type of tuned mass dampers, 
which are used for suppressing horizontal vibrations. The main difference with a 
TMD is that no springs are used, except in cases when the frequencies to 
suppress are higher than 1 Hz. The mass is hung by truss elements, which 
reduces friction forces when compared to a normal horizontal support. 

 
Figure 6 - 5 : Exam ples of pendulum  system s 

 

Background information: 

Neglecting the rotational inertia of the pendulum mass, the pendulum frequency 
can be calculated as follows: 

1. Choice of mass ratio μ=md/ms 

2. Calculation of the parameter 
Lm

I
r

d

d
d  , where Id is the mass moment of 

 inertia about the pivot, md the damper mass and L is the distance from the 
 pivot to the centre of mass. If the mass is to be considered as a point 
 mass, rd=1. 

3. Calculation of optimum frequency ratio, considering a white noise 
 excitation force [24] 

 
μ

r
μ

κ d

opt 












1

2

1
11

       Eq. 6-6 

4. Calculation of optimum damping ratio [24] 

    1221424

4

1
1

2

2
















ddd

d

opt
rμrμr

r
μμ

ξ      Eq. 6-7 

5. Calculation of pendulum length 
 22 dπf

g
L  , where g is the acceleration of 

 gravity and d s optf f κ   
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6.4.3.4 Tuned liquid column dampers 

A Tuned Liquid Column Damper (TLCD) consists of U-shaped tube (cf. Figure 
6-6), filled with a fluid (usually water), which properties are tuned in such a way 
that the forces at the base of the device, resultant from the movement of the 
liquid, counteract the horizontal movement of its support. This principle is 
therefore identical to that of a TMD. However, there are several advantages over 
other types of damping devices, such as easy tuning of frequency and damping, 
simple accommodation, simple construction and almost zero maintenance costs. 

 

R
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HH

Y

f

Ah Ah

A
b

 
Figure 6 - 6 : TLCD schem e 

 

The optimum damping of the TLCD should be the same as the analogue TMD. 
The TLCD has intrinsic damping due to fluid turbulence and, by inserting a 
control valve or an orifice plate in the horizontal tube, the TLCD damping can be 
further enhanced. However, there is no specific literature with information 
concerning the quantification of TLCD damping, so it must always be obtained 
from tests on the TLCD prototypes. 

 

Background information: 

The tuning procedure of TLCDs is based on an analogy to the parameters of an 
equivalent TMD. Based on that principle, Reiterer and Ziegler [25] derived 
optimal design parameters for TLCDs. 

The water mass ratio of modal building mass should be chosen around the same 
magnitude as in a TMD, i.e. from 0,01 to 0,05 [25]. 

The design procedure is illustrated for a TLCD with vertical columns (β = π/2) and 
constant cross-section (Ah = Ab): 

1. Calculate the TMD-equivalent liquid mass ratio: 

  122 


κμκ
μμ*        Eq. 6-8 
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 where μ is the previously chosen TMD mass ratio and κ is the geometry 
 coefficient, defined by 

 
effL

βHBκ cos2
        Eq. 6-9 

with 

 B
A

A
HL

B

H
eff  2        Eq. 6-10 

 The value of κ must be fixed. It is recommended to set it as high as 
 possible, but below 0,8 [26] in order to prevent nonlinear effects in liquid 
motion. 

2. Calculate the optimum TLCD frequency ratio: 

  211 κμ

δ
δ

*

opt*

opt


        Eq. 6-11 

where opt is the previously calculated TMD frequency ratio. 

3. The values of H and B are calculated from the following set of equations: 
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22
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cos2
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2


     Eq. 6-12 

 Note that since β = π / 2, B is obtained directly from the first equation. Also, 
 since Ah / Ab = 1 and cos(β) = 0, H can be extracted from the second 
 equation. 

4. Calculate the cross section areas Ah and Ab from the mass constraint: 

   *

structliquidhb μMγHABA  2       Eq. 6-13 

 Ah = Ab =   liquid

*

struct

γHB

μM

2
       Eq. 6-14 

The optimum damping of the TLCD should be the same as the analogue TMD. 
The TLCD has intrinsic damping due to fluid turbulence. In addition, by inserting 
a control valve or an orifice plate in the horizontal tube, the TLCD damping can 
be further enhanced. However, there is no specific literature with information 
concerning the quantification of TLCD damping, so it must always be obtained 
from tests on the TLCD prototypes. 

 

6.4.3.5 Tuned liquid dampers 

Tuned Liquid Dampers (TLDs) are passive control devices that consist of rigid 
tanks filled with liquid (cf. Figure 6-7) to suppress horizontal vibration of 
structures. Advantages like low cost, almost zero trigger level, easy adjustment 
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of natural frequency and easy installation on existing structures have promoted 
an increasing interest in these devices. However, motion of the fluid can be 
highly nonlinear, since breaking of waves can occur for high vibration 
amplitudes. 

 

x

L

s

h
0



a a

 
Figure 6 - 7 : TLD schem e 

 

Background information: 

Advantages like low cost, almost zero trigger level, easy adjustment of natural 
frequency and easy installation on existing structures [27] have promoted an 
increasing interest in these devices. 

The frequency of a TLD can be given by Lamb’s linear theory, according to the 
formula [26] 









L

πh
L

πgωd,lin
0tanh         Eq. 6-15 

Sun et al. [28] have proposed the design of a TLD based on an analogy with a 
conventional TMD by experimental results from tests on prototype-scaled tanks. 
Also, experiments by Yu et al. [29] resulted in a non-linear formulation of an 
equivalent TMD taking into account the behaviour of the TLD under a variety of 
loading conditions. In this formulation, the stiffness hardening property of TLDs 
under large excitation was included. 

In the non-linear stiffness and damping (NSD) model it is assumed that 100% of 
the liquid mass is effective in the damper, independently of the excitation 
amplitude. 

TLD tuning may be accomplished by using the following procedure, developed 
from empirical curve-fits of experimental results, contemplating the non-linearity 
of the device: 

1. Take the mean or frequent value of the amplitude of the deck 
 displacement response Xs (estimated, after inclusion of TLD). 

2. Calculate the non-dimensional excitation parameter Λ=Xs/L, where L is the 
 length of the tank in the direction of motion. 

3. Calculate the damping coefficient 35050 ,Λ,ξ   

4. Calculate de frequency ratio χ between the non-linear and the linear TLD 
 frequency defined by Lamb’s formula: 
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 003400381 ,Λ,χ   for Λ < 0,03 (weak wave breaking) 

 1250591 ,Λ,χ   for Λ > 0,03 (strong wave breaking) 

5. Calculate the water depth, which includes the stiffness hardening 
 parameter χ, assuming that best tuning is accomplished by setting the 
 TLD frequency equal to the structure’s (fs): 

 







 

2

2
1

0

4
tanh

gχ
πLf

π
L

h s        Eq. 6-16 

 g – acceleration of gravity (9,81 m/s2) 

6. Choose tank width or number of tanks according to the necessary mass 
 ratio for structural damping. The water mass ratio should be chosen 
 around the same magnitude as in a TMD, i.e. from 0,01 to 0,05. 

For numerical analysis, an equivalent TMD can be used. For very small deck 
displacement amplitudes (below 1cm) the active mass, md, may be as low as 
around 80% of the total liquid mass [28]. The stiffness kd is obtained from 
kd = (χωd,lin)

2
md. The damping coefficient is d , the same as the TLD. 

In sum, TLD tuning may be accomplished by taking a mean or frequent value of 
the amplitude of ground displacement expected for the structure when in use, 
and the remaining parameters (tank length and/or water depth) can be derived 
from there. 
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7 W orked exam ples 

7 .1  Sim ply supported beam  

The verification for reversible serviceability is shown for a pedestrian bridge 
having a span length of 50 m. 

The bridge has the following properties: 

Width of the deck B = 3 m 
Length of the span L = 50 m 
Mass m = 2,5×103 kg/m 
Stiffness EIvert = 2,05×107 kNm2 
 EIlat = 2,53×105 kNm2 
Damping ratio ξ = 1,5 % 

 

Figure 7 - 1 : St ructural system  

The owner demands that medium comfort should be guaranteed for weak 
pedestrian traffic (d = 0,2 P/m2) and that for very dense traffic (d = 1,0 P/m2), 
which is expected for the inauguration of the bridge, minimal comfort in vertical 
direction should be guaranteed and a pedestrian-bridge interaction with lateral 
vibration should be avoided. 

 

Loading scenarios Required comfort 

d = 0,2 P/m2 

n = 50×3×0,2 = 30 

alimit,vert ≤ 1,0 m/s2 

alimit,hor ≤ 0,1 m/s2 

d = 1,0 P/m2 

n = 50×3×1,0 = 150 

alimit,vert ≤ 2,5 m/s2 

alimit,hor ≤ 0,1 m/s2 

1. Determination of natural frequencies and modal masses 

81
8699

2

1
21 ,

m

EI

L

,

π
f vert

,vert   Hz 27
47839

2

1
22 ,

m

EI

L

,

π
f vert

,vert   Hz 

20
8699

2

1
21 ,

m

EI

L

,

π
f lat

,lat   Hz 80
47839

2

1
22 ,

m

EI

L

,

π
f lat

,lat   Hz 

M = ½ m L = 62,5×103 kg 

2. Determination of the characteristic maximum acceleration 

a. for d = 0,2 P/m2 

2

12

2

95max

k

i

F
%a,,vert ξk

M

σC
ka  = 0,58 m/s2, 

23058040max1 ,,,aψa ,vertd,vert   < 1,0 m/s2  

with C = 2,95 F
2 = 1,2×10-2×30 = 0,36 kN2 ka,95% = 3,92 

L = 50 m 
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k1 = -0,07×1,82 + 0,6×1,8 + 0,075 = 0,9282 

k2 = 0,003×1,82 – 0,04×1,8 – 1 = -1,06228 

2

12

2

95max

k

i

F
%a,,lat ξk

M

σC
ka  = 0,087 m/s2 < 0,1 m/s2  

with C = 6,8 F
2 = 2,85×10-4×30 = 8,55×10-3 kN2 ka,95% = 3,77 

k1 = -0,08×0,82 + 0,5×0,8 + 0,085 = 0,5362 

k2 = 0,005×0,82 – 0,06×0,8 – 1,005 = -1,0498 

b. for d = 1,0 P/m2 
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42005140max1 ,,,aψa ,vertd,vert   < 2,5 m/s2  

with C = 3,7 F
2 = 7,0×10-3×150 = 1,05 kN2 ka,95% = 3,80 

k1 = - 0,07×1,82 + 0,56×1,8 + 0,084 = 0,8652 

k2 = 0,004×1,82 – 0,045×1,8 – 1 = -1,06804 

2

12

2

95max

k

i

F
%a,,lat ξk

M

σC
ka  = 0,20 m/s2 > 0,1 m/s2 

Risk for pedestrian-structure interaction! 

with C = 7,9 F
2 = 2,85×10-4×150 = 4,275×10-2 kN2 ka,95% = 3,73 

k1 = -0,08×0,82 + 0,44×0,8 + 0,096 = 0,4992 

k2 = 0,007×0,82 – 0,071×0,8 – 1 = -1,05232 

 

7 .2  W eser River Footbridge in Minden 

The Pedestrian Bridge over the Weser River in Minden, Germany connects the 
Minden town center with a park. The structure is a suspension bridge, curved in 
plan, with a total length of 180 m, hung from two slanted tubular pylons. The 
bridge deck is 3,5 m wide (walkway 3,0 m) reinforced concrete slab and has a 
main span of 103 m. 

 
Figure 7 - 2 : Elevat ion 
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Figure 7 - 3 : Cross- sect ion 

The following table shows the natural frequencies with the accompanying number 
of half waves up to a frequency of 3,00 Hz and their description. 

 

Table 7 -1 : Descript ion of natural frequencies 

Mode 
No. 

Natural 
frequency [Hz] 

Number of 
half waves 

Description of mode shape 

1 0,24  Horizontal oscillation length 

2 0,25 1 Horizontal oscillation 

3 0,40 2 Vertical oscillation 

4 0,41 3 Vertical oscillation 

5 0,61 5 Vertical oscillation 

6 0,61 6 Vertical oscillation 

7 0,75 2 Horizontal / torsional effects 

8 0,90 4 Vertical oscillation 

9 0,95 7 Vertical oscillation 

10 1,21 5 Vertical oscillation 

11 1,42 8 Vertical oscillation 

12 1,47 9 Vertical oscillation 

13 1,60 3 / 1 Cable / horizontal 
oscillation + torsional effects 

14 1,63 10 Vertical oscillation 

15 1,73 - Cable 
oscillation / horizontal + torsional 
effects 
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Mode 
No. 

Natural 
frequency [Hz] 

Number of 
half waves 

Description of mode shape 

16 1,77 - Cable oscillation / vertical + torsional 
effects 

17 1,82 - Cable oscillation / vertical + torsional 
effects 

18 1,96 11 Cable / vertical oscillation  

19 2,07 11 Cable / vertical oscillation + torsional 
effects 

20 2,13 - Cable oscillation 

21 2,27 - Cable oscillation 

22 2,36 12 Cable / vertical oscillation 

23 2,57 - Cable oscillation + vertical effects 

24 2,59 - Cable oscillation 

25 2,64 13 Cable / vertical oscillation 

26 2,73 - Cable oscillation 

Mode 
No. 

Natural 
frequency [Hz] 

Number of 
half waves 

Description of mode shape 

27 2,79 - Cable oscillation 

28 2,89 14 Vertical oscillation 

29 2,91 4 Horizontal oscillation + torsional 
effects 

30 2,96 - Cable oscillation 

31 3,15 - Cable oscillation 

 

As shown in the table above there are various frequencies with their 
accompanying mode shapes in the critical bandwidth, which means that they are 
prone for vertical and horizontal excitation by walking pedestrians. For a dynamic 
analysis all critical frequencies have to be investigated, but for this example only 
the 11th mode shape with 8 vertical half waves will be analysed. 

The Table 7-2 summarizes the given dynamic properties of the bridge and gives 
details about the loaded surfaces and their load directions. 
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Table 7 -2 : Sum m arized propert ies of the footbridge in Minden 

 

 

 

(inflated shown mode shape) 
 

Total length L = 180 m 

Deck width B = 3,0 m 

Considered mode shape 11th mode shape 

Description of mode shape vertical oscillation – 8 half waves 

Frequency f = 1,42 Hz 

Loaded surface S = L×B = 540 m² 

Modal mass m*(f) = 80,5 t 

Damping property (log. decrement)  = 0,085 

 

According to this recommendation as well as to the recently released 
SETRA/AFGC Footbridge Design Guidelines [9], the loaded surface S of the whole 
bridge deck should be considered with load acting up and down according to the 
investigated mode shape directions. 

The different load directions are simulating a phase shift of 180° or π for the 
pedestrians walking over the bridge. This can be interpreted as full 
synchronization between every single pedestrian and the belly of the mode shape 
(direction), which he is reaching or just walking over. 

The design situation is defined by the combination of a traffic class and a comfort 
class. Generally, different design situations should be considered although this 
example is limited only to one design situation. As the footbridge connects the 
Minden town centre with a recreation area in a park traffic class TC2, weak traffic 
with 0,2 P/m² is chosen in combination with the comfort class CL1, maximum 
comfort, with amplitudes lower than a = 0,5 m/s². 

Table 7 -3 : Descript ion of the design scenario 

Design Situation Chosen Traffic Class Chosen Comfort Class 

1st combination TC 2: Weak traffic CL 1: Maximum comfort 

p(t) 
[N/mm²] 
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For a dynamic analysis there have to be considered more design situations, for 
example one with higher traffic densities and a more seldom occurrence for 
which lower comfort requirements in such a particular case may be acceptable. 

The load model for a pedestrian stream according to these guidelines and the 
SETRA/AFGC Footbridge Guidelines are applied to the Minden footbridge and the 
dynamic response is calculated. The load model for a pedestrian stream 
according to the guidelines gives a distributed surface load p(t), which has to be 
applied on the bridge structure depending on the mode shape, as shown before. 
The harmonic oscillating surface load p(t) for the excitation is given by the 
following equation: 

      [N]4212cos2802cos t,πftπPtF   Eq. 7-1 

m²
P20with108 ,ddSn   Eq. 7-2 

π
δξ

m²
 ,

S

nξ,
n'

2
with10240

810



  Eq. 7-3 

    70with ,ψn'ψtFtp   Eq. 7-4 

    7002404212cos280 ,,t,πtp   

    [N/m²]928cos744 t,,tp   

This leads to the maximum acceleration amax by using the FE-Method. 

[m/s²]500380 1max  ,a,a CL   Eq. 7-5 

According to the chosen limit acceleration value defined by Comfort Class 1 – 
Maximum Comfort with a ≤ 0,50 m/s², the result of the dynamic analysis shows 
that the defined Comfort requirements are fulfilled and the serviceability for 
oscillation is confirmed for this example. 

 

Verificat ion according to Spectral Load Model for  st ream s 

Now, the maximum acceleration amax is calculated according to the Spectral Load 
Model for pedestrian streams for the chosen design situation. It must be noted 
that the calculated acceleration, by applying the spectral load method, is a 
characteristic value according to Eurocode design practice. 

70with2

12

2

95max ,ψξk
m*

σC
kψa

k

i

F
%a,   Eq. 7-6 

[m/s²]500540 1max  ,a,a CC   Eq. 7-7 

with 

C = 2,95 

F
2 = 1,2×10-2×108 = 1,30 kN2 

ka,95% = 3,92 
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k1 = -0,07×1,422 + 0,6×1,42 + 0,075 = 0,7859 

k2 = 0,003×1,422 – 0,04×1,42 – 1 = -1,0508 

 = 0,085 / (2×π) 

M = m* = 80 500 kg 

The calculated maximum acceleration is slightly higher than the result from the 
FE-analysis. Both calculated accelerations meet the comfort class requirements 
for maximum comfort. 

 

7 .3  Guarda Footbridge in Portugal 

The Guarda Footbridge (Figure 7-4) establishes a pedestrian crossing over a road 
that provides one of the entrances in the city of Guarda, in Portugal, connecting 
an urban area that includes a school to the railway station. The footbridge is 
formed by two central arches, hinged at the supports, with a span of 90 m and 
18 m rise, suspending the steel deck by inclined cables. The deck has a total 
length of 123 m and is also supported by three piers near each extremity, which 
preclude vertical and lateral movements. It is formed by a steel grid with two 
longitudinal beams 2,70 m distant, connected by transverse beams every 4 m. 
This structure is linked to a concrete slab assembled by precast panels with 3 m 
width (walkway 2,0 m) (Figure 7-5). 

 

 
Figure 7 - 4 : Lateral view  of Guarda Footbridge 

 

 
Figure 7 - 5 : Cross sect ion of Guarda Footbridge  
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Table 7-4 summarises the first five natural frequencies of the structure which 
were calculated after updating the numerical model based on dynamic tests 
conducted at the end of the bridge construction. The characteristics of the 
vibration modes and the values of the measured damping ratios are also 
indicated in this table. 

 

Table 7 -4 : Natura l frequencies and characterist ics of vibrat ion m odes 

Mode 
Nr. 

Natural 
frequency [Hz] 

Measured 
ξ [%] 

Characteristics of vibration 
mode 

1 0,63 2,2 1st lateral 

2 1,24 1,7 2nd lateral 

3 1,41 1,4 3rd lateral 

4 2,33 0,8 1st vertical 

5 3,60 0,4 2nd vertical 

 

Based on the critical ranges of frequencies defined in the current guidelines for 
the lateral and vertical directions of vibration, it is concluded that the first two 
lateral modes of vibration are critical for horizontal excitation by pedestrians, 
while for the vertical direction only mode 4 is critical. Mode 5 would be of interest 
to investigate for possible effects associated with the 2nd harmonic of vertical 
pedestrian loads. For the current example, only the first lateral and first vertical 
modes are investigated and the corresponding characteristics used in design are 
summarised in Table 7-5. 

 

Table 7 -5 : Character ist ics of invest igated vibrat ion m odes 

Quantity Mode 1 Mode 4 

Natural frequency, f [Hz] 0,63 2,33 

Loaded surface [m2] S = L×B = 123×2 = 246 

Modal mass, m*[t] 82,5  130,7  

Total mass [t] 232,2  

Damping ratio, ξ [%] 0,6 0,6 

 

Considering the location of the footbridge close to a school, although not linking 
very relevant areas in town, several scenarios should be investigated. In the 
current example only two design situations are analysed, corresponding to: 1- 
the inauguration of the footbridge, with a traffic class TC4 (d = 1,0 P/m2) and a 
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minimum comfort class (maximum vertical accelerations of 1-2,5 m/s2 and 
lateral accelerations of 0,3-0,8 m/s2); 2- commuter traffic (TC2, d = 0,2 P/m2) 
and medium comfort class (maximum vertical accelerations of 0,5-1 m/s2 and 
lateral accelerations of 0,1-0,3 m/s2). Although the measured damping ratios 
after construction of the footbridge (presented in Table 7-4) are higher, a value 
of 0,6 % was considered at design stage. 

The harmonic load models for pedestrian streams are then defined in accordance 
with the guidelines and are systematised in Table 7-6, for the two design 
situations. It should be noted that for the design situation 1 the added mass 
associated with pedestrians represents 7,6 % of the total bridge mass. 
Therefore, the footbridge natural frequencies should be re-calculated with the 
footbridge loaded, that has not been done within the current example for 
simplification. 

 

Table 7 .6 : Harm onic load m odels for pedest r ian st ream s 

 
n 

(S×d) 
n’ 

Ψ 

(M 1) 

Ψ 

(M 4) 

ph(t) [N/m2] 

(M 1) 

pv(t) [N/m2] 

(M 4) 

Design 
situation 1 

246 0,118 1 0,54 4,13cos(2π×0,63t) 17,84cos(2π×2,33t) 

Design 
situation 2 

49,2 0,0239 1 0,54 0,835cos(2π×0,63t) 3,61cos(2π×2,33t) 

 

The signals of the loads are defined in accordance with the modal components, 
according to the representation of Figure 7-6. 

 

 

 

Mode 1: f = 0,63 Hz 

 

 

 

 

 

Mode 4: f = 2,33 Hz 

Figure 7 - 6 : Schem at ic representat ion of harm onic loads and vibrat ion m ode  

 

Table 7-6 summarises the maximum values of the response, expressed in 
accelerations, obtained on with the developed FE model, which are compared 
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with the range of accelerations accepted for the specified level of comfort. It is 
observed that comfort is ensured at all circumstances. However, the lateral 
acceleration of 0,67 m/s2 largely exceeds the limit of 0,15 m/s2, that triggers 
lock-in according to the current guidelines. Furthermore, the application of the 
Millenium Bridge formula (cf. section 4.6) to determine the number of 
pedestrians NL to trigger lock-in provides a value of 

 P,
,,,π

k

πξm*f
N L 126

300

6303105822106088



  Eq. 7-8 

These 26,1 pedestrians are distributed in an equivalent length of 84 m, meaning 
that lock-in occurs for a density of pedestrians of 0,16 P/m2, significantly lower 
than the assumed 1 P/m2 on the inauguration day. 

This fact has led to the consideration, at design stage, of a TMD for control of 
vibrations, adding a minimum damping of 4 %, which implied the strengthening 
of the deck to incorporate this device at the mid-span. In practice, a damping 
ratio of 2,2 % was measured after construction of the footbridge, which would 
increase the lock-in trigger to a pedestrian density of 0,6 P/m2 and it was an 
option of the designer not to introduce a TMD to control this vibration mode. 

 

Table 7 -6 : St ructure response to harm onic load m odels 

Maximum acceleration  

[m/s2] 

Mode 1 

(lateral) 

Mode 4 

(vertical) 

Acceptable range 

(lateral) [m/s2] 

Acceptable range 

(vertical) [m/s2] 

Design situation 1 0,67 1,11 0,30-0,80 1,0-2,5 

Design situation 2 0,13 0,22 0,10-0,30 0,5-1,0 
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9 Appendix: Addit ional load m odels 

9 .1  Load m odel for  a single pedestr ian 

The three-dimensional dynamic forces induced by one pedestrian are generated 
by the movement of the body mass and the put-down, rolling and push-off of the 
feet. The forces are called human ground reaction forces. When they are induced 
by walking, then they form an almost periodic excitation. 

People walk with similar step frequencies due to similar physiological human 
constitutions. But the step frequencies are influenced by the purpose of the 
movement and the traffic intensity. Step frequencies between 1,25 to 2,3 Hz 
show the highest probability of occurrence. 

As during walking one foot is always in contact with the ground, the loading does 
not disappear completely at any time like in the case of running. The human 
ground reaction forces of both feet overlap and form a periodic loading that is 
moving in time and space. 

The magnitudes of the vertical and longitudinal forces mainly depend on the 
person’s step frequency and body weight. Their periodicity is related to the step 
frequency. The lateral component is caused by the movement of the centre of 
gravity from one foot to the other. The oscillating motion of the centre of gravity 
introduces a dynamic force with half the walking frequency. 

Walking induces a vertical force with a butterfly shape having two dominant force 
maxima. The first one is caused by the impact of the heel on the ground, while 
the second one is produced by the push off. The maxima rise with increasing 
step frequency (cf. Figure 9-1 a)). The horizontal force components in 
longitudinal and lateral direction are much smaller than the vertical component. 
The longitudinal force (x-direction) characterises the retarding and the pushing 
walking period (cf. Figure 9-1 c)). The lateral force (y-direction) is caused by the 
lateral oscillation of the body. It shows a large scatter as it is influenced by e.g. 
type of shoes, the toe out angle, the posture of the upper part of the body, 
swinging of the arms, position of the legs (i.e. knock-knees, bowlegs), way of 
hitting the ground. Unlike the vertical and the longitudinal force the lateral one is 
periodic with half the walking frequency (cf. Figure 9-1 b)). 

Time domain models are the most common models for walking and running. 
They are based on the assumption that both human feet produce exactly the 
same force. Hence, the resulting force is periodic and can be represented by 
Fourier series (cf. Figure 9-1). 
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Figure 9 - 1 : Typical shapes of w alk ing force 

where Fp,vert vertical periodic force due to walking or running 

 Fp,lat lateral periodic force due to walking or running 

 Fp,long longitudinal periodic force due to walking or running 

 P [N] pedestrian’s weight 

αi,vert, αi,lat, αi,long Fourier coefficient of the ith harmonic for vertical, lateral 
and longitudinal forces, i.e. dynamic load factor (DLF) 

 fs [Hz] step frequency 

 φi phase shift of the ith harmonic 

 n total number of contributing harmonics 

The periodic force is not stationary. It moves with a constant speed along the 
bridge. Within the SYNPEX project, the relationship between step frequency and 
walking speed is found by measurements for a step frequency range of 1,3 to 
1,8 Hz: 

12711  ss f,v  Eq. 9-4 

In many Codes (e.g. EN 1995 [12]) the body weight P is given as 700 N or 
800 N. The mean body mass given in the German 2004census is 74,4 kg [30]. 

Fourier coefficients resp. dynamic load factors have been measured by various 
authors [31]. As human ground reaction forces are influenced by a variety of 
factors (e.g. walking speed, individual physiological body properties, type of 
shoes), the measured load factors scatter. Table 9-1 lists Fourier coefficients and 
phase angles from selected authors. 
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Table 9 -1 : Fourier  coefficients by different  authors for  w alking and running 

Author(s) Fourier coefficients / Phase 
angles 

Comment Type of activity 
and load direction 

Blanchard 
et al. 

1 = 0,257  Walking – vertical 

Bachmann 
& Ammann 

 1 = 0,4 – 0,5; 2 = 3 = 0,1 for fp = 2,0 - 2,4 Hz Walking – vertical 

 

Schulze 



1 = 0,37; 2 = 0,10; 
3 = 0,12; 4 = 0,04; 
5 = 0,015

 

for fp = 2,0 Hz 

 

Walking – vertical 

Bachmann 
et al. 

1 = 0,4/0,5; 2 = 3 = 0,1 

1 = 2 = 3 = 0,1 

1/2 = 0,1; 1 = 0,2; 2 = 0,1 

1 = 1,6; 2 = 0,7; 3 = 0,3 

φ2 = φ3 = /2

fp = 2,0/2,4 Hz 

fp = 2,0 Hz 

fp = 2,0 Hz 

fp = 2,0 – 3,0 Hz 

 

Walking – vertical 

Walking – lateral 

Walking – longitudinal 

Running – vertical 

Walking – vertical & lateral 

Kerr 1, 2 = 0,07; 3 = 0,2 1 is frequency 
dependant Walking – vertical 

Young 

1 = 0,37 (fp – 0,95) ≤ 0,5 
2 = 0,054 + 0,0088 fp 
3 = 0,026 + 0,015 fp 
4 = 0,01 + 0,0204 fp

Mean values for 
Fourier coefficients Walking – vertical 

Charles & 
Hoorpah 

1 = 0,4 

1 = 0,05 

1 = 0,2

 

Walking – vertical 

Walking – lateral 

Walking - longitudinal 

EC5, 
DIN1074 

1 = 0,4; 2 = 0,2 

1 = 2 = 0,1 

1 = 1,2

 

Walking – vertical 

Walking – lateral 

Jogging – vertical 
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Author(s) Fourier coefficients / Phase 
angles 

Comment Type of activity 
and load direction 

Synpex 
findings 

1 = 0,0115fs
2 + 0,2803 fs –

 0,2902 

φ1 = 0 

2 = 0,0669fs
2 + 0,1067 fs –

 0,0417 

φ2 = -99,76fs
2 + 478,92 fs –

 387,8 [°] 

3 = 0,0247 fs
2 + 0,1149 fs –

 0,1518 

If fs < 2,0 Hz 

φ3 = -
150,88 fs

3 + 819,65 fs
2 –

 1431,35 fs + 811,93 [°]

If fs >= 2,0 Hz 

φ3 = 813,12 fs
3 –

 5357,6 fs
2 + 11726 fs –

 8505,9 [°]

4 = -0,0039 fs
2 + 0,0285 fs –

 0,0082 

φ4 = 34,19 fs – 65,14 [°]

Fourier coefficients 
and phase angles of 
step-by-step load 
model which 
represents mean 
human ground 
reaction forces 

Walking – vertical 

 

9 .2   Load m odel for  joggers 

The human ground reaction forces due to running are characterised by a lift-off 
phase, during which no foot is in contact with the ground. The ground contact is 
interrupted and hence the force is zero. In comparison to walking the running-
induced forces depend more on the individual way of running and the type of 
shoes. The vertical load curve has a single peak and is characterised by a steep 
increase and decrease (cf. Figure 9-2). 

 

 

Figure 9 - 2 : Typical vert ica l force pat terns for slow  jogging and running [ 1 ]  

 

The proposed load model is a single load P(t,v) which is moving across the bridge 
with a certain velocity v of the joggers. That is the reason why this load model is 
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very difficult to apply with currently used commercial structural analysis 
programs and may only be modelled by specialised software (e.g. ANSYS, 
DYNACS). 

 

The single load P(t,v) calculates to: 

  ψn'ft)π(Pt,vP  2cos  Eq. 9-5 

where  tπfP  2cos  is the harmonic load due to a single pedestrian, 

P is the force component due to a single pedestrian walking with step 
frequency f, 

f is the natural frequency under consideration, 

n’ is the equivalent number of pedestrians on the loaded surface S, 

S is area of the loaded surface, 

ψ is the reduction coefficient to take into account the probability that 
the footfall frequency approaches the natural frequency under 
consideration. This coefficient is different for each of the load 
models given below. 

The maximum force P of a single pedestrian, the equivalent number of 
pedestrians n’ and the reduction coefficient ψ are given in Table 4-10. 

 

Table 9 -2 : Param eters for  joggers [ 3 2 ]  

P [ N ]  

n’ =  n [  ]  Vert ical Longitudinal Lateral 

1250 — — 

Vert ical reduct ion coefficient  ψ 

 

0 1,9 2,2 2,7 

1 

3,5 Freq 

structure 

 

According to [32], it can be considered that the group of n joggers is perfectly 
synchronized in frequency and phase with the footbridge natural frequency. The 
joggers move with a velocity of 3 m/s across the bridge. But in many cases it 
seems to be sufficient to place the load P(t,v=0) at the maximum displacement 
amplitude of the shape modes. 

It seems that there have been no measurements of the horizontal component 
during running, either for its longitudinal, or for its lateral component. 
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Nevertheless, it is reasonable to suppose that the lateral component presents 
relatively small amplitude comparing to the vertical one, while the longitudinal 
component is more important. 

Note: In SETRA/AFGC guidelines [8] this load case has disappeared as non-
relevant. 

 

9 .3  I ntent ional excitat ion by sm all groups 

It might happen that people try to excite the bridge in resonance by synchronous 
jumping, bouncing, horizontal body swaying combined with shaking handrails 
and by shaking cables with their hands. A low damped lightweight footbridge can 
be excited to large amplitudes that might affect the structural safety. 

While the impact force of a single person due to jumping is larger than the force 
created by bouncing, the synchronisation during jumping with the bridge 
vibration is much lower. During bouncing the person stays always in contact with 
the bridge and can synchronise its body motion with the vibration. Even if 
several persons try to intentionally excite the bridge by jumping, it is very hard 
for them to jump in phase with each other. Here bouncing is much more 
effective. Linking arms or introducing a beat can magnify the synchronisation 
and hence the excitation force considerably. Nevertheless, the result is not 
related linearly to the number of involved persons because there was a 
decreasing synchronisation with increasing number of persons observed during 
several tests. 

It is important to note that intentional excitation is more an ‘accidental ultimate 
limit state’ than a ‘fatigue problem’ or than a ‘comfort problem’. Structures 
develop an increase in damping with increase in vibration amplitude and people 
loose concentration and power to excite the bridge over a longer time period 
necessary for affecting the fatigue strength of the construction material. 
Intentional excitation is stopped when the amplitude does not increase for some 
time or when the persons have no more power for exciting the bridge. 
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