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ABSTRACT 

 

 The design of linear phase FIR digital filters having symmetric or antisymmetric 

impulse response is formulated as a constrained minimization problem. The constraints express 

the maximal flatness of the frequency response at the origin in the case of a lowpass filter or at 

an arbitrary frequency in the passband in the case of a bandpass filter. The objective function , 

which is a quadratic form in the filter coefficients , is formed as a convex combination of two 

objective functions representing the energy of the error between the frequency response of the 

designed filter and a scaled version of the frequency response of the ideal filter in both the stop 

and pass bands.  

 

I. INTRODUCTION 

 

 Standard approximation routines for the design of Finite Impulse Response (FIR) filters 

meet the design specifications with minimum degree but in an equiripple sense [1]. From a time 

domain point of view, minimax filters have the disadvantage of having sidelobes or echoes in 

the impulse response and ringing in the step response due to their sharp cutoff frequency 

response. The amplitude of these echoes is proportional to the amplitude of the passband 

ripples [2]. In those cases where the time domain properties are of prime importance, filters 

with smooth frequency response are significantly preferred to minimax filters. Smooth 

frequency response can be achieved by filters with maximally flat (MF) passbands. 

 Rajagopal and Dutta Roy used Bernstein polynomials for designing maximally flat 

lowpass (MFLP) filters of even order and symmetric impulse response [3]. Aikawa et. al. 

designed MFLP filters of odd order [4]. Cooklev and Nishihara used Bernstein approximants 

which are a generalization of the Bernstein polynomials in designing MF FIR filters [5]. Since 

attempting to design MF FIR filters by only imposing many derivative constraints at a reference 

frequency (typically the center of the passband) leads to severe numerical problems, Kaiser and 

Steiglitz employed a linear programming technique by imposing one derivative constraint at the 

origin of a lowpass filter and a concavity constraint at many frequency grid points in the 

passband [6]. Schuessler and Steffen designed MFLP filters by minimizing the energy of the 

impulse response (which is the same as the integral of the square of the magnitude of the 

frequency response over all frequencies) subject to several flatness constraints at the origin [7]. 

Medlin, Adams and Leondes [8] and Stubberud and Leondes [9] designed MFLP filters by 
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minimizing the energy of the error between the desired and designed frequency responses only 

over the stopbands subject to flatness constraints at the center of the passband (zero frequency).  

 In this paper linear phase FIR filters with symmetric or antisymmetric impulse response 

are designed to have a maximally flat passband. The filters are derived by minimizing a 

quadratic criterion subject to linear constraints. The objective function , which is a quadratic 

form in the filter coefficients , is formulated as a convex combination of two criteria 

representing the energy of the error between the frequency response of the actual filter and a 

scaled version of the desired frequency response in both the pass and stop bands. The 

constraints express the maximal flatness of the frequency response at zero frequency in the case 

of a lowpass filter and at an arbitrary frequency in the passband (typically the center frequency) 

in the case of a bandpass filter. This extends the results reported in [8,9] where the mean 

squared error is minimized only over the stopband. The simulation results will demonstrate the 

importance of incorporating the passband in the minimization criterion. Medlin and Kaiser did 

related work in designing bandpass digital differentiators employing an objective function 

which is a sum of a quadratic term, a linear term and a constant [10]. Moreover they defined the 

objective function as a sum - rather than a convex combination - of two criteria corresponding 

to the pass and stop frequency bands so that the user of the filter does not have the freedom of 

the tradeoff between more flatness in the passband and better attenuation in the stop band. It is 

true that recently Stubberud, Awad, Adams and Leondes [11] designed FIR filters by 

minimizing a criterion which is a convex combination of both criteria, but they did not employ 

any flatness constraints; instead they constrained the frequency response to be zero at several 

frequencies in the stop band. 

 

II. THE MAXIMAL FLATNESS CONSTRAINTS 

 

(A) FIR FILTERS WITH SYMMETRIC IMPULSE RESPONSE 

 

The frequency response of a linear phase FIR filter ,i.e., one with a symmetric impulse response 

is [12] : 

H e
j

e
j N

Ha( )
( )

( )
ω ω

ω=
− −1

2                                                                                (1) 

where the amplitude function )(ωaH  can be expressed as 1 : 

                                                       )()( x
T

saH ωω =  (2) 

and where the vectors x and )(ωs  are given below for the cases of odd and even length N of the 

real finite impulse response h(n) : 





−−

−−−
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even N     ])0(2)1(2...)25.0(2)15.0(2[

odd N     ])0(2)1(2...)1)1(5.0(2))1(5.0([

hhNhNh

hhNhNhT
x  (3) 

and 

                                                           
1 The superscript T is used to denote the transpose of a matrix or vector. 
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)(



 −

=
ωωωω
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s  (4) 

Since FIR filters with symmetric impulse responses will be used for designing lowpass filters 

with maximally flat passband , the following flatness conditions will be applied at zero 

frequency : 

d
k

Ha
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( )ω

ω
ω= =0 0       ,   k integer         (5) 

From Eq(2) we have : 
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It can be shown that condition (5) is satisfied for all odd order derivatives. From Eq(4) the even 

order derivatives are given by : 
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 (7) 

The following normalization condition will always be imposed : 

H
a

( ) .ω
ω =

=
0

1 0                           (8) 

From Eqs(2) and (4), the above condition can be expressed as : 

( )                         11...111 =x  (9) 

Constraint (9) and (r-1) constraints of the form of Eq(5) for k = 2, 4, ... , 2(r-1) can be 

compactly expressed as : 

Cx K=                                             (10) 

where matrix C and vector K are given by : 
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( )               0...001
T

K =  (12) 

Matrix C is r x m and vector K is r-dimensional where : 

 
even  N                                       0.5N

odd N                                 )1(5.0



 +

=
N

m  (13) 

and r ≤ m . 
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(B) FIR FILTERS WITH ANTISYMMETRIC IMPULSE RESPONSE 

 

The frequency response of an FIR filter having an antisymmetric impulse response is [12] : 

H e
j

je
j N

Ha( )
( )

( )
ω ω

ω=
− −1

2                                      (14) 

where the amplitude function Ha(ω) is given by Eq(2) and where the vectors x and s(ω) are 

given below for the cases of odd and even length N of h(n) : 

[ ]
[ ]

 −−

=
even N ,            2h(0)...2)-2h(0.5N1)-2h(0.5N

odd N ,   )0(2...))5(5.0(2))3(5.0(2 hNhNhT
x  (15) 

and 

[ ]
[ ]

 −

=
even N ,   )1)-sin(0.5(N...)sin(1.5)sin(0.5

odd N ,      ))1(5.0sin(...)2sin()sin(

ωωω

ωωω NT
s  (16) 

Since FIR filters with antisymmetric impulse response will be used for designing bandpass 

filters with a maximally flat passband, the following flatness conditions will be applied at an 

arbitrary frequency ωm in the passband (typically the center frequency) : 

d
k

H
a

d
k

m

( )ω

ω
ω ω=

= 0                  , k = 1 , 2 , ... (17) 

In addition to the above flatness conditions the normalization condition , 

H
a

m

( )ω
ω ω=

= 1 , (18) 

will be imposed . 

This normalization condition and (r - 1) flatness conditions of the form of (17) can be 

compactly expressed as Eq (10) where vector K is given by (12) and matrix C is given by :  
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The above matrix C is r x q and vector K of (12) is r-dimensional where : 



 −

=
even Nfor                 5.0

odd Nfor          )1(5.0

N

N
q  (20) 

and r ≤ q . 
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III. THE MEAN SQUARED ERROR CRITERION 

 

The error criterion will be derived as a quadratic form expressing the energy between the 

frequency response of the designed filter and a scaled version of the desired frequency response. 

Both pass and stop bands will be taken into account. The treatment in this section will be 

divided into two subsections, one for a lowpass filter having a symmetric impulse response and 

one for a bandpass filter having antisymmetric impulse response. 

 

(A) LOWPASS FILTER (WITH SYMMETRIC IMPULSE RESPONSE) 

 

The amplitude of the ideal low-pass frequency response is : 







≤≤

≤≤

=  
                                0

p
0                                 1

)(
πωω

ωω
ω

s
d

H  (21) 

where ωp and ωs are the cutoff frequencies of the pass and stop bands respectively. 

The weighted squared error measure in the stop band is : 

         )(
2

)(∫=
π

ω

ωωω

s

d
s

eW
s

E  (22) 

where W(ω) is a positive weighting function and es(ω) , the stop band error , is : 

   )()()()( ωωωω
a

H
d

H
a

H
s

e =−=  (23) 

Substituting Eqs(23) and (2) into (22) we get : 

E
s

x
T

P
s
x=                (24) 

where 

   )()()(∫=
π

ω

ωωωω

s

d
T

ssW
s

P  (25) 

The weighted squared error measure in the pass band is : 

     

0

)(
2

)(∫=

p

d
p

eW
p

E

ω

ωωω  (26) 

where e
p

( )ω , the pass band error , is defined as : 

       . )()()( ωγωω
d

H
a

H
p

e −=  (27) 

In the above equation γ is a scale factor defined as : 

γ
ω

ω
=

H
a

H
d

( )

( )

0

0

                   (28) 

where ω0 is a reference frequency usually taken as the frequency corresponding to the 

maximum of Hd(ω) . Substituting Eqs(27),(28) and (2) into Eq(26), we get : 
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x=                         (29) 

where 

∫ −−=
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Actually the idea of introducing the scale factor γ was used in [13] so that the pass band mean 

squared error can be expressed as the quadratic form of Eq(29) . 

Taking the reference frequency ω0 = 0 and the weighting function W(ω)=1 (for mathematical 

tractability) and using Eqs(4) and (21), it can be shown that the elements of the symmetric 

matrices Ps and Pp of Eqs(25) and (30) are as given below : 

(i) For N odd : 
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(ii) For N even 
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In the above equations the indices are given by r,c = 1 , ... , m where m is defined by Eq(13). 

From Eqs(25) and (30), it is evident that the matrices Ps and Pp are at least positive 

semidefinite. Actually they are positive definite except for the case of odd N where matrix Pp 

becomes positive semidefinite since its first row and column are identically zero as can be seen 

from Eq(32).  

The total mean squared error , E , will be taken as a convex combination of the mean squared 

errors over the stop and pass bands. More specifically, we define : 
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E E
s

E
p

= + −α α( )1                      (35) 

where the parameter α lies in the interval 0 ≤ α ≤ 1 . Substituting Eqs(24) and (29) into (35), we 

get : 

E x
T

Px=                                      (36) 

where 

P P
s

P
p

= + −α α( )1                      (37) 

The symmetric matrix P is positive definite except in the extreme case of α = 0 and N is an odd 

number where P becomes a positive semidefinite matrix . Therefore we restrict α to the interval 

0 < α ≤ 1 . 

 

(B) BANDPASS FILTER (WITH ANTISYMMETRIC IMPULSE RESPONSE) 

 

The amplitude of the ideal bandpass frequency response is : 
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where 
1pω  and 

2pω  are the cutoff frequencies of the passband, and 
1s

ω  and 
2sω  are the cutoff 

frequencies of the stopband. 

The weighted squared error measure in the stopband is given by Eq (24) where matrix Ps is 

defined by : 
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The weighted squared error measure in the passband is given by Eq (29) where matrix Pp is 

defined by : 
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Taking the weighting function W(ω) = 1 , leaving ω0 as an arbitrary reference frequency in the 

passband (typically the center frequency), and using Eqs (16) and (38), it can be shown that the 

elements of the symmetric matrices Ps and Pp of Eqs (39) and (40) are as given below where r,c 

= 1 , ... , q with q being given by Eq (20). 
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(ii) For N even 
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The total mean squared error is given by (36) where matrix P is given by (37). 

 

IV. THE CONSTRAINED OPTIMIZATION PROBLEM 

 

The linear system of Eq (10) is typically underdetermined since the number of constraints r is 

less than the length of vector x (m in case of a symmetric h(n) and q in case of an antisymmetric 

h(n)). Matrix C of Eq (11) has a full row rank since it is a submatrix of the first r rows of an m 

x m Vandermonde matrix [14]. Heuristically, matrix C of Eq(19) has a full row rank for 0 < ω 

< π . Consequently the linear system (10) is always consistent and has a family of solutions 

whenever r < m in the first case or r < q in the second case. To select the member of this family 

which minimizes the mean squared error of Eq (36) we apply the Lagrange multipliers 

technique for minimizing (36) subject to (10) to get the following unique solution [8] :  

K
T

CCP
T

CPx

1
11

−
−−

= 




  (45) 

The uniqueness of the solution follows from the assumption that matrix C has a full row rank 

and matrix P-1 is nonsingular and consequently 




 − T

CCP
1  is nonsingular [15]. 

 

V. EXAMPLE 

 

A lowpass FIR filter having a symmetric impulse response of length N = 33 and cutoff 

frequency ωp = ωs = 0.3π radians/sample is designed . The number of constraints used in 

Eq(10) is r = 3 , i.e., the first 5 derivatives of the amplitude of the frequency response at ω = 0 

are zero. Fig 1 shows the amplitude of the frequency response for 3 values of the parameter α of 

Eq(35), namely α = 1.0, 0.8, 0.01 . As expected, as the parameter α decreases the pass band 

frequency response improves with a corresponding deterioration in the stop band. In the 

extreme case of α =1 the mean squared error is minimized only in the stop band as in the work 

reported in [8,9]. Instead of considering the other extreme case of α = 0 where matrix P of 

Eq(37) becomes singular we considered α = 0.01 where the mean squared error is minimized 

mainly in the pass band.  
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To examine the effect of changing the bandwidth of the filter , the same lowpass filter was 

redesigned using ωp = ωs = 0.4π rad/sample and the corresponding frequency response is 

plotted in Fig 2. The relatively poor passband behavior for α = 1 demonstrates to the 

importance of incorporating both pass and stop bands in the minimization criterion of Eq (35). 

The maximal flatness constraint of Eq (5) is not sufficient for providing a smooth passband. 

To examine the effect of the number of maximal flatness constraints on the frequency response, 

the filter of Fig (1) for the case of α = 1 is redesigned for r = 2 in addition to r = 3. Fig (3) 

shows the frequency response for the 2 values of r. For a smaller number of constraints the 

solution space of Eq(10) has a higher dimension and consequently there is more freedom to 

minimize the objective function , E , of Eq(36) resulting in an improved stopband frequency 

response ( since α = 1 ) .   

 

VI. CONCLUSION 

 

A class of maximally flat linear phase FIR filters is derived by minimizing an objective 

function expressing the energy of the error between the frequency responses of the desired and 

designed filters in both the pass and stopbands subject to maximal flatness constraints on the 

passband. The method is applied for designing lowpass filters having symmetric impulse 

response and bandpass filters having antisymmetric impulse response. This technique offers the 

filter designer the freedom of the tradeoff between the flatness of the frequency response in the 

passband and the high attenuation in the stopband. 
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Figure Captions 

 

Fig 1 : The frequency response of the lowpass filter with cutoff frequency = 0.3π and r = 3 .

 (solid line : α = 1 , dotted line : α = 0.8 , dashed line : α = 0.01) 

 

Fig 2 : The frequency response of the lowpass filter with cutoff frequency = 0.4π and r = 3 . 

 (solid line : α = 1 , dotted line : α = 0.8 , dashed line : α = 0.01) 

 

Fig 3 : The frequency response of the lowpass filter with cutoff frequency = 0.3π and alpha = 

1.0 . 

 (solid line : r = 3 , dotted line : r = 2) 


