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Design of linear phase FIR notch filters 
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Abstract. This paper investigates some approaches for designing one- 
dimensional linear phase finite-duration impulse-responses (FIR) notch 
filters, which are based on the modification of several established design 
techniques of linear phase FIR band-selective filters. Based on extensive 
design examples and theoretical analysis, formulae have been developed 
for estimating the length of a linear phase FIR notch filter meeting the 
given specifications. In addition, the design of two-dimensional linear phase 
FIR notch filters is briefly considered. Illustrative examples are included. 
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1. Introduction 

The notch filter, which highly attenuates a particular frequency component in the 
input signal while leaving nearby frequency components relatively unchanged, is used 
in many applications. For example, the elimination of a sinusoidal interference 
corrupting a signal, such as the 60 Hz power-line interference in the design of a digital 
instrumentation system, is typically accomplished with a notch filter tuned to the 
frequency of the interference. Usually very narrow notch characteristic (width) is 
desired to filter out the single trequency or sinusoidal interference without distorting 
the signal. The design of infinite-duration impulse response (nR) notch filters has been 
considered by Carney (1963) and later by Hirano et al (1974). However, the design 
of FIR notch filters has not received any attention, even though it has been mentioned 
by Hamming (1989). The purpose of this paper is to extend a number of well-known 
techniques for designing linear phase band-selective finite-duration impulse response 
(FIR) filters to the case of notch filters. First, we exploit the three commonly used 
design techniques for the linear phase FIR notch (LPFN) filter design: (i) windowed 
Fourier series approach; (ii) frequency sampling approach, and (iii) optimal FIR 
filter design approach, based on the Remez exchange algorithm (Rabiner & Gold 
1975, pp. 75-183). To investigate the relationships between filter parameters so as to 
be able to predict the required length of the filter to meet the given specifications, 
some formulae have been developed based on extensive design examples and some 
theoretical analyses. Also, we consider the use of some special techniques of the linear 
phase FIR filter design, such as the frequency response sharpening approach (Kaiser 
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& Hamming 1977) and interpolated FIR filter technique (Neuvo et al 1984) for the 
design of efficient notch filters. In addition, we include here the design of two- 
dimensional (2-D) linear phase FIR notch filters. The design of windowed Fourier 
series and frequency sampling approaches are easily extended to 2-D cases. Besides, 
a simple approach, based on the use of the concept of the 2-D complementary filter 
(Mitra & Yu 1986) to convert I-D LPFN filters to 2-D LPFN filters, is introduced. 

2. The linear phase FIR notch filter 

2.1 Basic properties and definitions 

The problem of digital filter design is to make a reasonable choice of the coefficients 
of the transfer function, so that the response of the resulting filter is a satisfactory 
approximation to the desired response. Now, the function of the notch filter is to 
attenuate a particular frequency component highly while leaving other frequency 
components unaffected. The notch filter is thus essentially a band-stop filter with a 
very narrow stopband and two passbands. For an ideal notch filter, the notch width 
Am should be zero, the passband magnitudes should be equal to one and the 
attenuation at the notch frequency o~, should be infinite as shown in figure 1. In 
practice, there must be a nonzero transition band and nonzero passband ripples in 
the frequency response of a notch filter as shown in figure 2. To provide the linear 
phase, the digital notch filter must be a finite-duration impulse-response filter with 
a symmetric impulse response. Based on the amplitude response characteristics of 
linear phase FIR filters (Rabiner & Gold 1975, pp. 75-183) and the amplitude response 
requirement of digital notch filters, the length N of a digital notch filter must be odd, 
i.e. N = 2M + 1. Now, the frequency response of a linear phase FIR filter can be written 
a s  

H(o)  = A(o)es°('% (I) 

where A(co) is a real, even function called the amplitude function to distinguish it 
from the magnitude function IH(to)l and O(co) is the phase function which is a linear 
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Figure l. The magnitude response of an ideal notch filter (the amplitude response of an 
ideal Type 2 LPFN filter). 
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function of co(0 = coM). In this case, an LPFN filter is completely characterized by A(co) 
and its impulse response is a noncausal sequence a(n) symmetric around the orion. 
The causal sequence h(n) for 0 = coM is simply Oven by 

h(n)=a(n-M). (2) 

Two types of LPFN filters can be defined. The ideal Type 1 LPFN filter has a 180 ° 
phase shift at the notch frequency co., i.e. A(co) has opposite signs in the two passbands 
as shown in figure 3, but the magnitude function [H(co)l is the same as illustrated in 
figure I. The ideal Type 2 LPFN filter is an exact linear phase filter, as in this case, 
there is no difference between its magnitude function I H(co)[ and amplitude function 
A(co) shown in figure 1 for the ideal case. 

In practice, we can only obtain an approximation to the ideal LPFN response as 
shown in figure 2. Here the passband ripple J is defined as the maximum deviation 
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The amplitude response of an ideal Type 1 LPFN filter. 
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of the amplitude function in passband from the normalized level of unity. The passband 
edges col and to 2 are defined as the angular frequencies where the amplitude function 
decreases from 1 - &  The quanity Aco = co2-  col is called the notch width. For the 
real Type 1 and Type 2 LPFN filters, the amplitude responses in the neighbourhood 
of the notch frequency to, vary approximately as A(co)~ c.(co- co,) and A(co)~ c. 
(co -- (,On) 2 respectively. 

In some applications, more than one notch frequency may be required. Since there 
are no substantial differences between the designs LPFN filters with a single notch 
frequency and multiple notch frequencies, in this paper we consider only the design 
of LPFN filters with a single notch frequency. However, the proposed approaches can 
be easily extended to the design of LPFN filters with more than one notch frequency. 

There is only type of 2-D LPFN filter, which is the counterpart of the Type 2 1-D 
LPFN filters, as the amplitude function A(col, co2) of a 2-D LPFN filter must have the 

same sign in all passbands. 

2.2 General techniques for the design of LPFN filters 

The well-known approaches to linear-phase band selective FIR filter design are the 
windowed Fourier series approach, the frequency sampling approach, and the 
equiripple optimization technique. For the extension of these methods to the design 
of LPFN filters, it is necessary to develop (i) the relationship between the linear phase 
band selective FIR filter and Type 1 LPFN filter, and (ii) the relationship between the 
very narrow band bandpass filter, the so-called tone filter and the Type 2 LPFN filter 
with a very narrow stopband. 

A very simple relationship between FaR lowpass filters and Type 1 LPFN filters is 
considered first. Since the ideal Type 1 LPFN filter is the amplitude shifted version of 
an ideal lowpass filter, if A,(co) is the amplitude function of a Type 1 LPFN filter and 
At(co) is the amplitude function of the associated lowpass filter, the two amplitude 
functions are related as 

A.(co) = + [2Az(co ) -- 1-1. (3) 

Note that the notch frequency co. is in the transition band of the lowpass filter and 
ideally, At(co,) = 0 -5 .  Based on this relation, some design approaches of FIR lowpass 
filters are easily extended to that of Type 1 LPFN filters. From (3) the noncausal 
impulse responses of the two filters are thus related as 

a,,(n) = + [ 2 a , ( n )  - 6(n)-1 .  ( 4 )  

The second relationship is based on the concept of the complementary filter. The 
complementary filter transfer function G(z) of a linear phase FIR filter transfer function 

H(z) is defined by (Golden 1973) 

n(z) = z -~N- 1)/2 _ G(z), (5) 

where N -  1, the order of H(z), is assumed to be even. Note that the zero phase 
response B(co) of G(z) is complementary with respect to unity with the amplitude 

function A(co) of H(z), i.e. 

A(co) = 1 - B(co). (6) 
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Thus, if A(to) is a lowpass FIR filter, B(to) is a highpass filter with the same transition 
band and with passband and stopband ripples interchanged. However, if H(z) is a 
Type 2 LPFN filter with a notch frequency at to,, G(z) is an extremely narrow-band 
bandpass filter called a tone filter and vice-versa. Therefore the design of a notch 
filter can be executed as the design of a tone filter and then converted using the above 

equation. 

3. Windowed Fourier series design approach 

As the frequency response of a linear phase FIR filter, H(to), is a periodic function of 
to with a period 2n, the corresponding impulse response is given by the Fourier series 
coefficients of H(to), which is of infinite length. The basic idea here is to arrive at an 
approximate version of H(to) by truncating and modifying the infinite impulse response 
to a finite one with a window function. The most frequently used window function 
for the FIR filter design is the Kaiser window (Hamming 1989) which is also used 
here for the LPFN filter design. 

3.1 Type 1 LPFN filter design 

It is quite straightforward to design Type 1 LPFN filters using the Fourier series 
approach. Basically there are two steps to implement this approach. In the first step, 
the Fourier series coefficients a~(n), from the given ideal amplitude function A~(to) 
with the cutoff frequency toc = to,, are derived and then the coefficients are weighted 
by a selected window function w(n), 

a(n) = a~(n), w(n). (7) 

The amplitude response function is given by 

A(~o) = ( 1 / 2 n ) f ~  A,(O) W(os - 0)dO, (8) 

where the W(to) is the spectrum of the window sequence. In the second step, the 
impulse response of a Type 1 LPFN filter are obtained from the above lowpass 
counterpart using (4). 

As the desired notch frequency o9, determines the cutoff frequency toc of the ideal 
lowpass model, the passband ripples are obtained by the selection of the window 
parameters. These determine the transition band width Ato and consequently the 
required filter length The filter attenuation is obtained by a choice of the parameter 

of the Kaiser window given by the formula (Hamming 1989) 

0-1102(A - 8"7), 

~t = 0.5842(A - 21) 0.* + 0.07886(A - 21), 

0, 

50~<A, 

21 < A < 50, 

A~<21, 

(9) 

where A is the required ripple 6 of the lowpass filter in decibels: 

A = - 20 logao(6 ). (10) 
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Kaiser also developed the relation between attenuation A and lowpass filter length N: 

N ~ (A - 7.95)-2~/14.36Aco. (11) 

Using the relationship between the iowpass filters and Type 1 LPFN filters given by 
(3), the formula in (11) is modified for Type 1 LPFN filter design as: 

N ~ (A - 1"93)'2~/14"36Aco. (12) 

The 6 dB difference comes from the fact that the passband level of the Type 1 LPFN 
filter is two times smaller than that of its Iowpass model while the ripple is the same. 

The magnitude response of a Type 1 notch filter designed using the Kaiser window 
(= = 4) with a notch frequency of 0-4~ is shown in figure 4. 

It should be noted that with the windowed Fourier series approach, the attenuation 
at the notch frequency may not be infinite, since the actual notch frequency may not 
be strictly located at the required position. 

3"2 Type 2 LPFN filter design 

In the window method of design of the Type 2 LPFN filter, we can consider it as a 
complement of an FIR tone filter. As an ideal tone filter, we can take a very narrow 
rectangular frequency response B~(o~) centred at + co, and having a width A~co 
which approaches zero. The convolution integral of (8) becomes 

1 [-="+(&'=/2) 
B(co) = - -  Bt(O) W(co - 0)d0 + 

2/~ j _  ~ . _  (Al~/2) 

1 /" + ~  +(A'=/2) 
+ - -  | B,(0) W(co - 0)d0. (13) 

2~ J +~.-tAtm/2) 

In case the term A,~ is small enough, the integrands can be taken as constants and 

we may write 

B(co) .~ (A=co/2=)[ Bl(co,) W (co - co,) + B i t -  co,) W (co + co,)]. (14) 
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Figure 4. The magnitude response of the Type 1 
LPFN filter designed using the windowed Fourier 
series approach. 
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Using Bi(to.) = Bi( - ~.) and the value B(to.), we normalize the tone filter response as 

B(oJ)/B(o~.)=[W(to-o~.)+ W(to+to.)]/[W(O)+ W(2to.)], (15) 

from which it can be seen that the tone filter response is equal to the shifted window 
spectra. The notch filter response A (to) follows from (6): 

A(t~) = 1 - [ W(to - to,) + W(to + to,)]/[ W(0) + W(2to.)]. (16) 

The impulse response of the notch filter is then 

a.(n) = t~(n) - 2bw(n) cos (to. n), (17) 

where b = 1/[ W(O) + W(2to.)]. 
As the filter frequency response is a shifted window spectrum, the passband ripple 

6 and notch width Ato should be equal to the window ripple and window width. 
Thus, the design of a Type 2 L P ~  filter can be reduced to the determination of the 
window with the main lobe width equal to Ato and the window ripple equal to t~: 
The overlapping of the ripples of W(to - con) and W(to + to.) can be neglected with 
windows having roll-offs larger than 6 dB/octave as for example in the Kaiser window. 

To develop a formula suitable for the design of Type 2 LPFN filters using the Kaiser 
window, we have designed a large number of filters with = ranging from 0-0 to 9.9 
and with filter lengths varying from 21 to 99. The numerically calculated relationship 
between = and the attenuation ,4 is presented graphically in figure 5a and has been 
approximated by a formula similar to (9)rUSing the curve fitting technique and is as 
given below 

( 0.1284(A + 0"4551), 

| 0.1517(A - 4"7071), 

~-=J0.7798(A - 12"9164) o.4 + 

| 4- (~0842(A - 12.9164), 

[ 0, 

50.1943 < A, 

2{>5278 < A ~< 50.1943, 

12.9164 < A ~< 20.5278, 

A ~< 12.9164. 

(18) 
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Fig~e 5. (a) The relationship between the parameter = and the passband attenuation A of 
the Type 2 LPFN filter designed using the Kaiser window. (b) The relationship between N&w 
and A - using the Kaiser window. 
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Figure 6. The magnitude response of the Type 2 
LPFN filter designed using the windowed Fourier 
series approach. 

The relation between the notch width Ace and attenuation A is given in figure 5b. 
Because of the linearity of the above relation, a practical formula for the required 
length can be derived from the plot and is given by 

N -~ (A + 6.35)/11.87 Ace. (19) 

A design example using the above method with con = 0.4n is shown in figure 6. 

4. Frequency sampling design approach 

The most straightforward approach to the linear phase FIR filter design is the frequency 
sampling method. After a design is completed, the amplitude response A (co) is specified 
at N typically equidistant points or frequency samples. These samples Ak give 
coefficients in the recursive FIR filter realization (Rabiner & Schafer 1971), which 
becomes computationally efficient if coefficients A~ are zeros or ones. Therefore, a 
typical design of a lowpass filter consists of choosing samples A k = 1 in the passband 
(0, cop), A~ = 0 in the stopband (co~, n) and the optimization of samples 0 < A~ < 1 in 
the transition band (cop, cos)- A small number of transition samples ensures efficient 
realization and a low order optimization problem, but introduces some design 
inflexibility and does not yield as good results as that obtained when all N samples 
are optimized. 

The optimization based on adjustment of all samples results in an optimal filter. 
In such and any other design approaches giving satisfactory frequency responses, the 
sampling of the resulting frequency response will give coefficients A~ for a recursive 
realization. However, with all A~ ~: 0 and A~ # 1, in most cases there are no sufficient 
justifications in favour of the recursive realization. On the other hand, if the 
nonrecursive realization is preferred, on the basis of the N = 2M + 1 known coefficients 
A~, the coefficients a(n) of the filter impulse response can be obtained by solving 
M + 1 equations, or by computing the inverse discrete Fourier transform. In the 
computation, the realness and symmetry of both responses a(n) and Ak can be 
exploited. 
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4.1 Type 1 LPFN filter design 

The design of Type 1 LPFN filter is again based on the design of a lowpass (LP) filter 
model. The conventional approach assumes equally spaced samples A k satisfying 

= ~ 1, 0 <~ k <~ P, tot, = 21tP/N, 

Ak (0, S <~ k <~ M, tog = 2nS/N, (20) 

with a transition band given by 

Ato = 2rcQ/N = 2n(S - P)/N, (21) 

where P, S, Q, N = 2M + 1 are integers. This shows that parameters top, tog and At. 
are discrete values determined by the number N, or by the size of the bin (2n/N). 

In the transition band of width Q bins, we then have Q -  1 transition samples 

(0 < Ak < 1). The amplitude response A~(to) of the filter is given by samples Ak (Rabiner 
& Schafer 1971) 

M 

A(to) = Ao*(to,0 ) + ~ Ak*(to, k), (22) 
k = l  

where *(to, k) is a set of interpolation functions 

*(to, 0) = sin (Nto/2)/N sin (/o/2) 
and 

sin [N(to - 2nk/N)/2] sin [N(to + 2nk/N)/2] 
, ( t o ,  k) = + 

N sin [(to - 2nk/N)/2] N sin [(to + 2nk/N)/2]" 

(23) 

(24) 

For the above LPFN filter model the response becomes 

S - 1  

AI(W) = Ap(to) + ~ Ak*(to, k), (25) 
k = P + l  

where Ap(to) represents the known contribution of unity samples ke[0 ,P]  and of 
unknown transition samples ke(P, S) while zero samples do not contribute. 

The optimum transition sample values can be obtained by a procedure which for 
notch filter minimizes the error or ripple 6 in both passbands or for the LP model 
minimizes 

6 = m a x  I E(to)  l. (26)  
oEIO,~op]U[~s,n] 

The error function is 

E(to) = ~ "Al(to) - 1, 0 ~< to ~< top, 
[ Az(to), ca, ~< to ~ n. (27) 

However, an additional condition 

Al(to.) = 0"5 (28) 

should be included to ensure the zero transmission at the notch frequency. 
As the amplitude response is expressed as a linear function in (25), the linear 
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Table 1. Relationship between the sample number 
Q and the passband attenuation A. 

Q 2 3 4 5 6 7 8 

AI 24 42 56 70 85 100 114 dB 
A2 13 27 43 54 71 83 98 dB 

programming approach is a suitable optimization method. There are well established 
procedures for digital filter design based on linear programming (Land & Powel11973). 

To run the optimization procedures for the notch fdter design, it is very useful to 
estimate a priori, the filter length N and number (Q - 1) of transition samples, from 
the designed filter specifications, such as the bandwidth Aca and the attenuation A. 
To estimate Q from the desired attenuation, table 1 can be used. This table is based 
on optimal transition samples for a half-band filter (Babic & Dobrenic 1987). After 
Q is selected, the required length N can be estimated from the specified bandwidth 
Aca using 

N >1 Aca/27tQ. (29) 

The passband ripple 6 and its decibel equivalent A = -201og(6) obtained by the 
sample optimization depend on the position of the notch frequency within a bin of 
the sample grid. The best results are obtained in the symmetrical cases: 

(i) co, is close to the middle point between samples 

ca, = (2L + 1) n/N, L = O, 1,... M, (30) 

when Q is odd; 
(ii) co, is close to the sample position 

co,=(2L)n/N, L=O, 1 .... M, (31) 

when Q is even. 

For symmetric case ca,=ca,, the passhand ripple will be At, as given in table 1. 
Generally, for ca,~ca,, the passband ripple will be lower, i.e. A ffi A t - A , .  The 

difference A, depends on the offset [ to , -  to,[ of the notch frequency from ca, given by 
the above equations and is approximately 

A, ~ 5-75NJca, - %[. (32) 

Equation (32) is valid for ]co,- cacl < ~/2N. Thus, the design should start with the 
first estimate of Q and N using table I and (29) to satisfy required A and Aca, and 
then, corrrected if necessary from the following consideration. The parameter Q is an 
integer and table 1 offers few available values for the attenuation. Therefore, we 
usually have an attenuation margin from specified attenuation. This margin can be 
taken as a difference A,, which determines the tolerable notch offset, i.e. 

Ica, - c%1 < AJS.75N. (33) 

If the notch offset is not within the above tolerance, a slight increase of N will change 
ca, and L, so that the offset can be made small enough to ensure a moderate reduction 
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Figure 7. The magnitude response of the Type 1 
LPFN filter designed using the frequency sampling 
approach. 

of the attenuation from AI, and at least fult'dl the requirement in (33). When the 
attenuation margin is too small, one can increase the number of the transition samples 
by one, i.e. replace Q with Q + 1 and start from a higher A 1. 

Now having estimated the proper Q,N and L, the locations co= and cop of the 
frequency samples at band edges in (20) follow from: 

S = (2L + Q)/2, P = ( 2 L -  Q)/2, (34) 

s = (2L + 1 + Q)/2, P = (2L + 1 - Q)/2, (35)  

for Q even and odd respectively. By this approach, all parameters co,, P, S required 
for optimization procedure arc known. 

The response of a design example with two transition samples (Q = 3) is given in 
figure 7. 

4-2 Type 2 LPFN filter design 

The Type 2 LPFN filter design is based on the tone filter design. Here the frequency 
samples are zero in both stopbands 

0, O<~k~P,  
Ak = O, S <<. k <<. M, (36) 

and Q - 1 samples in the passband 0 < At  < 1 are to be optimized. 
The amplitude response given by the specified frequency samples is 

S - I  
A,(co)- ~ A~O(co, k). (37) 

k = P + l  

The additional constraint for a normalized tone filter is 

A,(co,) = l, (38) 

to ensure that there is a zero transmission at co,, for the corresponding notch filter. 
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Figure 8. The magnitude response of the Type 2 
LPFN filter designed using the frequency sampling 
approach. 

The optimum passband samples are obtained by minimizing the ripple in (26) in 
both stopbands. The error function is 

E(co) = A(co); 0 ~< co ~< c%,cos ~< c0 ~< 7r. (39) 

The passband samples show symmetry when co. = L(2~/N) or (L + 1/2)2~/N, but 
generally they form an asymmetric sequence. 

For the start of the optimization procedure, it is good to estimate values for Q and 
N. The attenuation A2 in table 1 can be used for the estimation of Q. Table 1 is based 
on the properties of the low order minimax windows which can be viewed as tone 
filters with co. = 0. These windows are obtained earlier by the linear programming 
(Babic & Dobrenic 1983). After Q is selected, the value of N follows from (29). 

There is no significant influence of the notch offset (co. -coc) on the ripple, thus 
table 1 is sufficient for the estimation of Q. 

The offset can cause the appearance of one additional zero in the immediate vicinity 
of the notch. This zero is not of practical importance for Ice. - o~cl < ~/2N. However, 
it can be eliminated with an additional condition in the optimization procedure, 

namely 

dA( ) ,. (40) A'(m.) = ~ - - I  . . . .  = u, 

which together with (31) ensures the exact maximum (tone filter) or a double zero at 

~o. (notch filter). 
The design example with two samples (Q = 3) is shown in figure 8. 
The recursive realization for Type 2 LPFN filter is very efficient because of only few 

required lIR sections. For the notch filter realization based on (5), the tap in the 
middle of the delay cascade will give the required delayed signal. 

5. Optimal LPFN filter design 

As in all optimization problems, the criterion for optimality must be stated first in 
designing an optimal LPFN filter. It could be easily assumed that the optimal LPFN 
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filter should have an infinite attenuation at the notch frequency and the smallest 
passband ripple with a prescribed notch width. The criterion minimizing the maximum 
error over a set of frequency bands is called a Chebyshev approximation (Rabiner 
& Gold 1975, pp. 75-183). Filters that have the minimum value of the maximum 
error exhibit equiripple behaviour over the set of frequency bands in their frequency 
response. McClellan et al (1973) have developed a useful program based on a direct 
application of the Chebyshev approximation theory to the linear phase FIR filter 
design problem, and using the Remez exchange algorithm. In the section, we use this 
program (to be called the MPR program after the authors McClellan, Parks & Rabiner) 
to design the optimal LPFN filters. 

5"1 Type 1 optimal LPFN filter design 

The main function of the MPR program is to achieve equiripple behaviour over the 
set of frequency bands, such as stopbands and passbands for band selective linear 
phase FIR filters. It can also be extended to design Type 1 LPFN filters with equal 
passband ripple behaviour in two ways: one is based on an equiripple lowpass model 
and (3), and the other on the design of a filter with the notch frequency at the centre 
of the transition band and the passbands bracketing the transition band having 
opposite signs. There is no substantial difference between these two approaches, and 
the designed filters have an equiripple characteristic, but in most cases with a finite 
attenuation at the notch frequency. 

We use the prefilter-equalizer concept (Adams & Willson 1983) to develop optimal 
LPFN filters. An optimal LPFN filter design can be achieved in two parts: the realization 
of the infinite attenuation at the notch frequency with a prefilter and the design of 
the corresponding equalizer which is cascaded with the prefilter to achieve the 
passband equiripple characteristic. 

The simplest transfer function suitable for a prefilter which sets a zero amplitude 
response at the notch frequency is 

np(z) = (1 - 2 cos ~onz- 1 + z- 2),, (41) 

where ogn is the notch frequency and r is an integer. Once the prefilter has been 
established, the MPR program is then used to design the equalizer, so that the cascade 
of the prefilter and the equalizer provides equiripple passbands with opposite signs 
and an infinite attenuation at the notch frequency. Note that in the strict sense, the 
linear phase does not hold in Type 1 LPFN filters in which r is odd, due to a constant 
phase difference of r.n between the two passbands. Even though any odd r can be 
used to design the Type 1 LPFN filter, the notch width increases with increasing r. 
Therefore, r --- 1 is preferable for the design of the narrow notch width Type 1 LPFN 

filter. 

A number of formulae are available for estimating the filter length N to meet given 
specifications in designing an optimal linear phase band-selective FIR filter (Rabiner 
1973; Bellanger 1984). These formulae can be easily extended to the design of Type 
1 LPFN filters with equiripple passbands. However, they do not work well on the 
design of Type I LPFN filters, since they are derived by data fitting for large ranges 
of transition bandwidth and ripple ratio, but LPFN filters usually have quite narrow 
notch widths and equal passband ripples. 

In order to obtain a better approximate relationship between the Type 1 LPFN 
filter parameters, we have designed a large number of Type 1 optimal LPFN filters 



146 Tian-Hu Yu, Sanjit K Mitra and Hrvoje Babic 

1 . 5  

1.0 

0.5 - 

0 . 0  j,,,l,,, 
0.0 0.1 

_ ' " ' l  . . . .  I . . . .  I . . . .  I . . . .  t 

_ _ _ 

, , , I  . . . .  I . . . .  

0.2 0.3 0.4 0.5 

normalized frequency 
Figure 9. The magnitude response of the designed 
optimal Type 1 LPFN filter. 

with notch width Aco ranging from 0-01 to 0.1, and with passband attenuation A 
varying from 30 to 75 dB. The formula was assumed to be of the form 

N ~ [ k l A  3 -F k2 A2 q- k3A -b k, t ] / (A~)  + k s. (42) 

The derivation of five coefficients kl . . . . .  ks were based on the least mean squares 
(LMS) approximation method and are given by 

kl = -4 .17739 .10  -6, k2=6.60403.10 -4, k3=3-42442.10 -2, 

k 4 = 0-326081, k 5 = - 0.8721. 

A design example is stiown in figure 9. 

5.2 Type 2 optimal LPFN filter design 

For an optimal Type 2 LPFN filter, r in (41) is even. We restrict our atteption to 
r = 2 as here also the notch width increases with increasing r. There are two ways to 

establish the prefilter. One is to use the prefilter as shown in (41) with r = 1 and the 
designed equalizer contributing another first-order zero at the notch frequency. The 

other is to establish a prefilter transfer function with r = 2. The equalizer is then 

designed using the MPR program. 
The minimax optimization procedure for tone filters and notch filters centred at 

co, are based on the following criterion, which is also the basis for the design of the 
Dolph-Chebyshev window. To design the optimal tone and notch filters according 

to (15) and (16), we consider the design of a Dolph-Chebyshev window centred at 
+ o~,. The relationship among the passband ripple 6, transition band Ato and the 
filter length N of a Type 2 LPFN filter is expected to be the same as that of a 
Dolph-Chebyshev window. The exact relationship between the parameters of the 
Dolph-Chebyshev window has been introduced as follows (Ballanger 1984), 

6 = [ch{ (N-  l).ch-l(Xo)}] -1, (43) 

where l/xo = cos {(Ao~)n/2}. This equation is strictly valid for the optimal Type 2 
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Figure 10. The magnitude response of the designed 
optimal Type 2 LPFN filter. 

LPFN filter with the notch frequency co, = 0. Based on extensive investigation, we 
have found that the relationship between the parameters.6, Aco and N of a Type 2 
optimal LPFN filter is relatively insensitive to the positions of notch frequencies, and 
following (25), we get 

N ,~ ch- 1 (1/6)/ch- 1 (Xo) + 1, (44) 

which can be used to estimate the length of Type 2 optimal LPFN filters. 
A design example is shown in figure 10. 

6. Special techniques for the design of LPFN filters 

In addition to techniques mentioned above, there are some special linear phase FIR 
filter design techniques, such as the response sharpening of linear phase FIR filters, 
and the interpolated FIR filters, which can be used in the LPFN filter design directly 
or indirectly to yield LPFN filters with more desirable characteristics. 

6.1 Sharpening the response of  the LPFN filter 

The performance of a linear-phase FIR filter can be improved using a filter sharpening 
approach (Kaiser & Hamming 1977) which suitably combines the results of several 
passes through the same filter. In this approach, the amplitude response H.,w(Co) of 
the new filter is related to the amplitude response Hold(Co) of the old filter through 
the following relation, called the amplitude change function 

H,.w(Co) = Ho",~'(Co) "~ (n + k)_____~, w [1 - Ho,d (Co)]k, 
k=o n!k! 

(45) 

which has an nth order tangency at zero, an ruth order tangency at unity and passes 
through (0,0), (1, 1). For example, for n = 0  and m = 1, the function is 

H..w(co) = Hold(C0)" [2 -- Ho,d(CO)], (46) 
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more commonly known as the twicing function (Kaiser & Hamming 1977) and for 
n = 1, m = 1, the function is 

Hncw(tO) = H21d((.O)" [3 -- 2Hold(C0)]. (47) 

This technique can also be extended to improve the performance of L P F N  filters, by 
reducing the passband ripple of LPFN filters with modified amplitude change functions. 
In the case of Type 1 LPFN filters, the amplitude change function should have 
tangencies at + 1 and pass through points ( -  1, - 1), (1, 1) and (0,0), which can be 
readily derived from that for the band-selective filters. For example, an amplitude 
change function for Type I LPFN filters can be obtained from (48) as 

Hnc.(co) = [3Hojd(C0)  -- Ho31d(C0)]/2. (48) 

As the stopband ripple is almost doubled, the function of (46) is not attractive for 
sharpening the response of band-selective filters. However, for Type 2 L P F N  filters, 
the amplitude change function is required to have a tangency only at unity and to 
pass through points (0,0) and (1, I). Thus, the twicing function is appropriate to 
sharpening the response of Type 2 L P F N  filters. 

For the Type 1 LPFN filters, in the case of n = m = 1, and if the passband ripple 6 
of the old filter is relatively small, the.passband ripple of the new filter is approximately 
0.75 62 , and the new filter length is almost three times that of the old one. If we use 
the windowed Fourier series approach With the Kaiser window design, the length of 
the new filter can be expressed as 

N.ew ~ 3 [27t( - 20 loglo 6 - 1"93)/14"36Ato]. (49) 

However, based on the established empirical formula, to meet the new passband 
ripple, the suitable length should be 

N~ ~ Dr(-  201Oglo0"7562 - 1"93)/14"36Aco. (50) 

The efficiency of the sharpening design can be measured by the ratio NffN,,,,, as 

NffN.cw ~ (2/3)[1 + {4"428/(- 601og~o6 - 5"79)}]. (51) 

When 6 is small, this expression approaches ~ from above. For the Type 2 L P F N  

filters, there are no stopband ripples to be taken into account, and we can use the 
twicing function as the amplitude change function. We found that by normalizing, 
the passband ripple of the new L P F N  filter is slightly more than half of the square of 
the old one and the order of the new filter is twice that of the old one. We can 
calculate the sharpening efficiency based on the above information as follows: suppose 
that the passband ripple of the old Type 2 optimal LPFN filter is 6 which satisfies (44) 
and the filter length is N, then the passband ripple 6' of the new filter with the 

twicing function would be: 

6 '  ---- ( 6 2 / 2 ) / ( 1  - -  ~ 2 / 2 )  ---- I / ( 2 / 6 2  - -  1). (52) 

Using (44) and some algebraic manipulation, the above equation can be expressed as 

6'= 1/ch{2(N- 1)ch-X(Xo)}, (53) 

where 1/Xo = cos {(Ao~)~/2}. 
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Note that the transition band width of the new LPFN filter is the same as that of 
the old one and the length of the new LPFN filter is (2N - 1). Thus, we can conclude 
that the passband ripple 5' of the new filter with the twicing function is exactly equal 
to that of the directly designed one with the same length ( 2 N -  1) and the same 
transition band, i.e. in this case, we achieve 100~ efficiency with the sharpening 
technique. With sharpening technique, a high-order Type 2 optimal LPFN filter can 
be designed and implemented based on the low-order one very efficiently. 

6.2 Interpolated LPFN filtering 

In the interpolated FIR (IFIR) filter design approach, a cascade of two FIR sections is 
used to meet the given specifications, one generating a sparse set of impulse values 
with every Lth sample being non-zero and the other performing the interpolation 
(Neuvo et a! 1984). The latter can often be implemented with only a few simpler 
arithmetic operations. The implementation of IFIR filters results in a reduction of 
multipliers along with reduction of the coefficient sensitivities and output roundoff 
noise levels. Since the IFIR filtering approach is based on the smoothness of the impulse 
response, it works very well on narrow band FIR filters. As an extremely narrow 
bandpass filter, the FIR tone filter can be very efficiently designed and implemented 
with the IHR filtering approach. The proposed steps for the Type 2 LPFN WIR filtering 
are the following: 

(1) Design a Type 2 LPFN filter with a transition band L times the given one and a 
notch frequency co d which has such a relation to the given notch frequency con, that 
con must be one of the following L frequencies: 

(1/L).[rt(k - l) + cod], k = 1 . . . . .  L. (54) 

(2) Develop the complementary tone filter of the designed LPFN filter. 
(3) Use the interpolation filter to eliminate L -  1 frequency peaks except the one at 
the desired notch frequency. 
(4) The complementary filter of the interpolation tone filter is the final result. 

A design example is shown in figure 11. 
An efficient realization of tone and notch filters can be implemented with the 

running sum structures (Babic et al 1985). 

7. Techniques for the design of 2-D LPFN filters 

The design of the 2-D LPFN filter is philosophically identical to that of its 1-D 
counterpart with windowed Fourier series and frequency sampling approaches. The 

definition of 1-D Type 2 optimal LPFN filters can be extended to the 2-D case. Because 
the alternation theorem can not be readily applied in the the two-dimensional case, 
the MPR approach can not be used for the design of 2-D optimal LPFN filters. Linear 
programming techniques may be used to solve for the coefficients of an optimal 2-D 
LPFN filter, but it is very time-consuming. In this section, we restrict our discussion 
to some simple and efficient approaches for the design of 2-D LPFN filters. 

7.1 2-D LPFN filter design by windowing 

As in the case of the design of I-D Type 2 LPFN filters (§ 3"2), a frequency shifted 
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Figure 11. (u) The amplitude response of the designed Type 2 prototype LPFN filter. (b) The 
amplitude response of the tone filter-complementary filter of the prototype filter. (c) The 
amplitude response of the interpolator section. (d) The amplitude response of the IFIR tone 
filter. 

window is a linear phase FIR tone filter and its complementary filter is an LPFN filter. 

We can get the 2-D LPFN filter as the complementary filter of the resulting 2-D tone 

filter. Suppose that 2-D window coefficients are w(nt,n2) with a filter support  of 

size Nx x n2, where Nx = 2M1 + 1, N2 = 2M2 + 1, the amplitude response of this 

window is 

MI M2 

W((oS,(.Op)= ~.~ ~ W(?ll,Yl2)COS(fOstll)COS(O)pn2). (55) 
nl =0 n2=O 

The normalized coefficients t(nl, n2) of the tone filter are 

t(nl,n2) = w(nl,n2).b.cos(nlco~l)cos(n2co~2), (56) 

where b is the normalized coefficient 1/b= W(0,0)+ W(2o~.1,0)+ W(0,2o~.2)+ 

W(2co~1,2co~2). The coefficients a(nt, nz) of the resulting 2-D LPFN filter are 

a(nl, n2) = iS(n1, n2) -- t(nl, n2). (57) 

The effect of the window in the frequency domain is to smooth the frequency 
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response of the ideal filter function, and the choice of the 2-D window function is 
governed by the following requirements. The window should satisfy the linear phase 
relation, i.e. the coefficients of the window should possess the symmetric property. 
The mainlobe width of the window frequency response should be small so that the 
transition bandwidth of the designed filter frequency response could be small. A small 
sidelobe amplitude of the window frequency response would be preferable resulting 
in small ripples in the passbands. Since these requirements are the same as the 
requirements for a 1-D window function, 1-D windows are often used as a basis for 
generating 2-D windows. Generally, there are three methods which can be used to 
produce 2-D windows from their 1-D counterparts. The first one forms a 2-D window 
with a square region of support by taking the outer product of two 1-D windows. 
The second forms a 2-D window by sampling circularly rotated 1-D continuous 
window function, the resulting 2-D windows have nearly circular regions of support. 
In the third one (Yu & Mitra 1985), a 2-D window is obtained from a 1-D window 
by the frequency transformation approach, in which case the frequency response of 
the resulting 2-D window is more circularly symmetric than that obtained using the 
second approach. 

7.2 2-D LPFN filter design from its I-D counterparts 

It is very hard to find a straightforward way to design a 2-D LPFN filter from its 1-D 
counterparts. However, we develop an indirect approach by using a 2-D linear phase 
FIR tone filter as a bridge. The simplest way to obtain a 2-D linear phase FIR tone 
filter is to cascade two 1-D linear phase FIR tone filters. Thus the complementary 
filter of a 2-D linear phase FIR tone filter would be a 2-D LPFN filter. Generally, there 
are four steps in designing a 2-D LPFN filter with the notch at (o91,o92), from its 1-D 
counterparts, which can be described as follows: 

(1) Design two 1-D Type 2 LPFN filters which notches as 091 and 092, respectively, 
using the techniques mentioned in the previous sections. The lengths of these 1-D 
filters are 2N1 + 1, and 2N2 + 1 respectively. 
(2) Using (18), we obtain two complementary filters of the filters designed in step 1. 
(3) By cascading the two designed 1-D tone filters, we get a 2-D linear phase FIR 

tone filter with the tone frequency at (~ol, to2), the transfer function of which can be 
expressed as Ht(zl,z2). 

(4) The 2-D LPFN filter can then be obtained as the complementary filter of Hi(z,, z2). 
using the following equation: 

H(Z1 , Z2) = "~I~N1 "~l'~N2 - -  H i ( Z 1 ,  Z2). (58) 

An example of such a design technique is shown in figures 12 and 13. 

8. Concluding remarks 

We have discussed a variety of LPFN filter design approaches. All of these approaches 
are either extensions and/or modifications of well-known linear phase band-selective 
FIR filter design techniques. As can be seen from the design examples shown in table 
2, the optimal linear phase design approach yields better results. In particular, notch 
filters with an exact notch frequency, equiripple passbands and full band linear phase 
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Table 2. Comparison of LPFN filters designed using different approaches. 

Approach 

Frequency sampling 
Fourier series (using linear programming) Optimal design 

Specifications Type I Type 2 Type I Type 2 Type I Type 2 

Passband 49-77365 34 -79025  41-97141 26 -22172  5 3 . 6 9 4 8 2  39-66895 

ripple in dB 
Band-width 6"68 x l0 -2 6"70x l0 -2 5-25 x 10 -2 5-50x 10 -2 6"66 x l0 -2 6"67 x 10 -2 

of the notch 
Magnitude 1"2 x 10 -4 0.0 O0 04) 0-0 0-0 

at the notch 

can be obtained with the Type 2 LPFN optimal filter design. On the other hand, the 
windowed Fourier series approach is simpler and straightforward to apply and leads 
to quite acceptable design results. Based on extensive design examples and some 
theoretical analyses, several design formulae have been developed for estimating the 
filter length to meet given frequency specifications. Sharpening and interpolated FIR 
filtering approaches work well on the design of the Type 2 LPFN filter. In fact, 
sharpening provides us with an alternative way to design and implement the Type 2 
optimal LFPN filters from their lower-order counterparts quite efficiently. In addition, 
we have briefly discussed the design of 2-D LPFN filters. 
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