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Design of Logical Topologies: A Linear Formulation
for Wavelength-Routed Optical Networks with No
Wavelength Changers

Rajesh M. Krishnaswamy and Kumar N. Sivargjktember, IEEE

Abstract—We consider the problem of constructing logical 1 2 3
topologies over a wavelength-routed optical network with no
wavelength changers. We present a general linear formulation
which considers routing traffic demands, and routing and as-
sighing wavelengths to lightpaths, as a combined optimization 0 5
problem. The formulation also takes into account the maximum
number of hops a lightpath is permitted to take, multiple logical
links in the logical topology, multiple physical links in the physical
topology, and symmetry/asymmetry restrictions in designing
logical topologies. The objective is to minimizecongestion We  pone high-speed wide area networks [9]. Wavelength-routing
show by examples how equality and inequality logical degree ,iica| networks realize the high bandwidth capability of the

constraints have a bearing on congestion. We prove that, under fib ide t to bit rat llow f fial
certain conditions, having equality degree constraints with mul- IDer, provide transparency to bit rates, allow for spatial wave-

tiple edges allowed in the design of logical topologies does notl€ngth reuse (the number of wavelengths available may be lim-
affect congestion. This helps in reducing the dimensionality of ited), provide reliable service (the network can be reconfigured

the search space and hence speeds up the search for an optimaln the event of failures) and are adaptable for building logical
solution of the linear formulation. We solve the linear formulation topologies on top of physical topologies to reflect the traffic

for small examples and show the tradeoff between congestion, . et . . .
number of wavelengths available and the maximum number of intensities between the various nodes. A physical topology is

hops a lightpath is allowed to take. For large networks, we solve @ graph representing the physical interconnection of the wave-
the linear formulation by relaxing the integer constraints. We length routing nodes by means of fiber-optic cables [9]. In Fig. 1

develop topology design algorithms for large networks based on js shown a physical topology of a six-node wide-area network.
rounding the solutions obtained by solving the relaxed problem. The wavelength routing nodes are numbered from 0 to 5. Node

Since the whole problem is linearizable, the solution obtained 0 and node 1 ted by a fib d daeis sh .
by relaxation of the integer constraints yields a lower bound andnode 1 are connected by afiber and so an edge IS shown in

on congestion. This is useful in comparing the efficiency of our the physical topology between them. We consider an edge in the
heuristic algorithms. Following Bienstock and Gunluk, 1995, we physical topology to represent a pair of fibers, one in each di-
introduce a cutting plane which helps in obtaining better lower rection. A logical topology is a directed graph that results when
gg;‘aﬂgz doﬂgsgrggiﬂﬁgsagﬁ ?Lﬁ?ggggg'fs us to reduce the previousiye |ightpaths are setup by suitably configuring the wavelength
' routing nodes. For example, in Fig. 2 is shown a possible logical
Index Terms—All-optical networks, linear program, network  interconnection by suitably configuring the wavelength routing
planning, topology design. nodes of Fig. 1. There is an edge in the logical topology be-
tween node 0 and node 2 when the data or packets from node
|. INTRODUCTION 0 to node 2 traverse the optical network in the optical domain
_ only, i.e., undergo no electronic conversion in the intermediate
A. Opiical Networks wavelength routing nodes. Edges in alogical topology are called
O PTICAL networks implemented using wavelength-divitogical links
sion multiplexing techniques, calleglavelength-routed  For example, in Fig. 2 the data from node 3 to node 1 are
optical networksare the most promising candidates for backsent on wavelengtlfi, through the wavelength routing node at
Manuscript received March 16, 1998; revised February 22, 199%' Simultaneously, we can send a packet from node 3 to node
and September 14, 2000; approved by IEEE/ACMANSAcTions oN 5 on f; through the wavelength routing node at 4. We see that
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Fig. 3. Degree one logical topology.
Fig. 2. Logical topology with routing and wavelength assignment.

a logical topology which minimizes congestiddongestions
routing nodes. The problem in using wavelength changers is piefined as the maximum offered load on any logical link in the
marily that the effective translation of wavelengths in the opticédgical topology. The number of wavelengths the fiber can sup-
domain is not cost effective. In this paper, we consider logicpbrt is also an important parameter which has to be taken into
topology design with no wavelength changers. A linear formaccount in any logical topology design problem. Wavelengths
lation for the case with wavelength changers has been address®dscarce and have to be used optimally. The hop length of a
in [4]. logical link is a measure of the number of wavelength routing

nodes encountered while setting up a logical link. If the hop
B. Logical Topology Design with No Wavelength Changers length of a logical link is large then there would be degradation
wf the optical signal by attenuation and crosstalk at the inter-

A physical topology is a bidirected graph representing t ) . !
physical interconnection of the wavelength routing nodes. mnéedlate wavelength routing nodes. Therefore it is important to

bidirected graph, whenever there is an edgewherez and ke_ep_ the hop Ieng_ths of the logical _Iinks _small. Symmetry_ re-
y are wavelength routing nodes, there is another %—dﬁgdzor strictions are also important factors in logical topology design.

ease of representation on paper, we represent it by a single eW eSha" see from the numerical examples_hqw the congesthn IS
with arrows at either end, as shown in Fig. 1. affected when we impose symmetry restrictions on the logical
A logical topology is a directed graph that is determined %pology. Multiple edges play an important role in the design

the lightpaths set up in the physical topology. The lightpatt} logical topologies. We shall illustrate by examples (see Sec-

are setup by configuring the wavelength routing nodes in ¢Hgn IV_) how CO“QGS“‘?” yaries when wg allow multiple ed@!es-
physical topology. An informal description of the logical topology design

A logical topology is said to beymmetridf, whenever there problem is as follows (a precise definition as a mixed integer

is a logical link from nodeA to nodeB, there is another logical (0—1) linear program is given later in the paper).

link from node B to node A passing through the same set of Let TM = (\*?) be the traffic matrix, i.e.\*® is the ar-
intermediate wavelength routing nodes. A logical topology f&val rate of packets at nodethat are destined for node Let
asymmetridf the above restriction is removed. A" denote the number of transmitters at nadmdA{” de-

In a directed graph, the in-degree of a node is equal to tAete the number of receivers at nadéVe seek to create a log-
number of edges terminating on it and the out-degree of a ndgal topology, with a routing and wavelength assignment (wave-
is equa| to the number of edges Originating from iTANegL"ar Iength Changers are not aIIowed) for the Iogical Iinks, that mini-
logical topology is one where all the nodes have the same in-diZE€SAmax = max;, ; A;, ; where); ; denotes the offered load
gree (A) and out-degreeX). We say that a logical topology hason logical link (i, j) of the logical topologyAy,. is the max-
multiplicity @ if the maximum number of edges between anium offered load to any logical link, and is called ttenges-
node pair isQ. tion.

A logical topology is said to be hop-bound limited if there The various parameters included in the mixed-integer linear
is a restriction on the maximum number of hops a lightpath ggogram are the number of wavelengths the fiber supports, sym-
allowed to take. A logical topology is said to be wavelength limmetry and asymmetry restrictions, multiplicity restrictions, and
ited if there is a restriction on the maximum number of wavedop bound constraints.
lengths that can be used while setting up the lightpaths in theThe following notation will be used to denote all the
corresponding (see Section IV) physical topology. We shall sebove information in compact formi7T(A, = / <,
later that these are important parameters in logical topology desn /asym, Q, H, ). If the first two arguments are
sign. “A, <" then it denotes a logical topology that has maximum

We assume that the physical topology, the traffic matrix replegree {maximum (in-degree, out-degreej}. If the first two
resenting long-term average flows between the end nodes, anguments areA, =" then it denotes a logical topology that
the number of transmitters and receivers at each of the no@ea-regular. The third argumentym/asym denotes that the
are given. We find a logical topology , and also a routing aridgical topology is symmetric/asymmetric. The fourth argu-
wavelength assignment for the logical links, such that the meent@ denotes that the logical topology has at m@sedges
sources of the network subject to the given constraints are usedween any node pair. The fifth arguméts the hop-bound
optimally. In Fig. 3 is shown a possible logical topology ovelimit for any logical link in the logical topology. The last
the physical topology shown in Fig. 1, when each of the nodasggument#' denotes that the logical topology requires at most
is equipped with one transmitter and one receiver, the numbémwavelengths for wavelength assignment. Using the notation
of wavelengths the fiber supports is one, and the maximum hstated above Fig. 3 is an exampleldf (1, =, asym, 1, 1, 2)
length of the logical links is one. It is reasonable to construltigical topology on the physical topology of figure Fig. 1.
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We show by small examples in Section IV the relationshipsgptimal solution to the logical topology design problem. This

between the various parameters. formulation generalizes the formulations of [2], [3], and [1], in
) the sense that it includes a set of linear constraints which takes
C. Previous Work care that a lightpath is assigned the same wavelength on every

In this section, we position our work in relation to three recefop (wavelength continuity constraints). Many parameters (ex-
papers, [2], [3], and [1], on the problem of designing optimailained in Section II-A) could be passed to the ILP to yield the
logical topologies. A more detailed reference on this topic haesired logical topology which minimizes congestion. Since the
been listed in [2]. objective of our linear formulation is minimizing the congestion

In [2] the authors formulate the logical topology desigimaximum offered load on any logical link), the resulting log-
problem as a nonlinear optimization problem. The objectiveal topology reflects the traffic intensities between the nodes.
considered was either delay minimization or minimizing thBue to linearization, the topology design becomes considerably
maximum offered load. The authors subdivide the problem ingasier. We also see that the relaxation of the ILP yields lower
four subproblems. They are: 1) determining a logical topolodyounds on the congestion and provides a performance reference
(logical links); 2) routing the logical links over physical links;for any topology design heuristic algorithm. The number of con-
3) assigning wavelengths to the routes; and 4) routing packétaints in our formulation grows a8 (number ofs—d pairs
traffic on the logical topology. The authors only consider sulb< number of edgesc number of wavelengths). Though large,
problems 1) and 4). Simulated annealing (which is NP-harthis problem formulation could be useful for moderate-sized
has been used to solve subproblem 1) and flow deviation networks. For larger networks, we develop heuristic algorithms
solve subproblem 4). The drawbacks of the above approach wiich use as inputs the solutions obtained by relaxing the in-
as follows. 1) If the network is large then using the simulatégger constraints in the integer linear program.
annealing approach will be computationally very expensive
It is not an integrated approach to solve the four subproble
rather, it considers subproblems one and four independently. Congestion as defined earlier is the maximum offered load

In [3] the authors formulated the logical topology desigon any logical link. Congestion may be viewed as a function
problem as a linear program when the nodes were equippgdhe various parameters of the network such as the traffic
with wavelength changers. The objective of the formulatiomatrix, number of wavelengths the fiber can support, resources
was to minimize the average hop length of a logical link, witat each node (number of transmitters and receivers), the hop
the hope that the number of wavelength changers used coulddyegths of the logical links, the multiplicity restrictions on the
reduced and therefore this formulation could be approximatégjical topology, the multiplicity restrictions on the physical
to the formulation with no wavelength changers. The shoitbpology, symmetry/asymmetry restrictions, and the propa-
comings of this approach are 1) that it works reasonably oryation delay [1]. Our linear formulation helps us investigate
if the traffic matrix is balanced (this is because the objectitbe lower bounds on congestion for different values of the
function does not include any traffic variables), 2) that it workabove parameters. In [1] congestion as a function of the traffic
well only if the physical topology is dense in the number afatrix, resources at each node, and propagation delay has been
edges, and 3) that it only works when the network size (numb&iudied. Here we consider other parameters: the number of
of nodes) is small because for large networks solving tlveavelengths available and the hop lengths of the logical links,
linear formulation (integer linear program) is computationallgymmetry/asymmetry conditions, and multiplicity restriction.
expensive. Note that if the physical topology is sparse (it hig¢e do not consider the propagation delay [1] as it makes
few edges) then the number of wavelength changers ugkd formulation nonlinear. We compare the bounds obtained
could increase (fewer alternate routes) and the resulting logipaéviously with the bounds obtained by inclusion of the above
topology would not reflect the traffic intensities between thmentioned parameters.
nodes. This in turn would increase the amount of packet traffic
carried on a per-wavelength basis. The wavelength continufty Outline of the Paper
constraint of [2] could not be introduced in [3] as this would In Section 1l we give a precise formulation of the logical
make the problem nonlinear. topology design problem with no wavelength changers as a

In [1] the problem of logical topology design is considereghixed-integer (0-1) linear programming problem (MILP). In
but the number of wavelengths the fiber supports is notSection Ill we introduce different constraints for the various
constraint. The drawback in this approach is that the physiealses. We introduce the aggregate formulation in Section 11I-C
topology becomes irrelevant for designing a logical topology.and a cutting plane in Section I1l-C-1 for the aggregate formu-

o ) lation to improve the lower bounds on congestion. In Section IV
D. Contribution of This Work we give examples to show the interrelationship between the

In this paper, we take care of all the drawbacks and shovarious parameters. In Section IV-C we prove that under
comings listed above. We present exact linear formulation certain conditions we can use equality logical link constraints
[integer (0-1) linear program, or ILP] for designing a logicainstead of inequality logical link constraints without affecting
topology with no wavelength changers. This formulation whesongestion. In Section V we explain the rounding heuristics
solved provides an optimal solution for the logical topology dexnd the wavelength assignment heuristics that are to be used
sign problem. To the best of our knowledge, this is the firgin the solutions obtained by solving the MILP with the integer
time a linear formulation has been stated which provides annstraints being relaxed (relaxed problem). In Section VI we

.2
nlfs). Lower Bounds on Congestion
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consider a moderately large network (NSFNET), which has 3) Traffic intensity variables:

also been studied by previous researchers, and solve the relaxed  g) )\Esd)) denotes the traffic intensity on theth
7.4

problem for this case and apply our logical topology design muiltiple logical link (i, 5) for the traffic between
algorithms. This yields upper bounds on congestion and on source—destination pagg, d).

the number of wavelengths. Numerical values are listed in the b) A ;). , denotes the total offered traffic on logical
tables for two different traffic matrices. Nk (4, ), @ Amax = MAX( ) g A ), g0 1€

Amax 1S the maximum flow on any logical link and

Il PROBLEM EORMULATION is termed thecongestiorof the network.

We now formulate the logical topology design problem as@. Objective
mixed integer linear program (MILP). This formulation yields
aLT(A, < asym, Q, H, I) logical topology. We shall see in
Section 1l how we can modify the constraints to account for min(Apax)
any desired logical topology. We use the following notation.

s,d  source and destination of a packet, when used as suRemark: The objective here is minimizing congestion. The
perscripts; motivation for choosing this objective is that the electronic pro-
4, originating and terminating node of a logical ”nkcessing_(switching §pe(_ed) requirement is proportiqngl to the
(lightpath); congestion. If the switching speeds at the nodes are limited, then
minimizing congestion would be appropriate as it would enable
q gth multiple logical link between nodes terminating ane traffic carried per wavelength to increase. In the examples
logical link; we have solved, we have noticed that if there is heavy traffic
[, m endpoints of a physical link; between some source—destination pair, then there is a logical
k  wavelength number, when used as a superscript. ik between them; this is a desirable property. This happens
because of the objective function, i.e., if there is heavy traffic
between node and nodej then because of the objective there

A. Parameters would tend to be an edgg, j) in the logical topology. If this
N number of nodes in the network: is not the case, then the traffic from nod® node; may have
M — () is the traffic matrix, i.e.\*¢ is the arrival to span many logical links before being delivered to its destina-

rate of packets at that are destined fof: tion, which tends to increase the congestion.

B, existence of a physical link in the physical topologyp. Constraints
If P, = 1then there is afiber link between nodes
[ andm, otherwisel,, is 0;

HM  maximum hop matrix.HM; ; denotes the max- o ) )
imum number of hops that a logical link between Z > bg(i ) <A, foralld
node: andj is permitted to take. I¥” intermediate J
wavelength routing nodes have to be configured for

1) Logical link degree constraints:

- 2 ( ) .
establishing a logical link between noéland node Z Z b4, ©) < A, forall z
4 then the hop length of that logical link ¥ + 1. =1 J
Let H = max; ; HM; j; b,(i,7)€{0,1} and i€ {0,1,2, — 1}
F number of wavelengths the fiber can support; Remark: The above constraint ensures that the number of

Al number of transmitters and receivers, respectivelpgical links originating (out-degree) and terminating (in-de-
Ag”) at node. gree) at nodeé is less than or equal to the number of transmit-
ters and receivers at that node. For the six-node network and
B. Variables thg NSFNET, we considered the number of transmitters and re-
' ceivers at each node are equal and are the same for every node.
1) Logical link variablesb, (i, j) = 1, if there exists ath We denote the number k. We also set? = 1, that is, no
multiple logical link or directed edgg, j), ¢, inthe log- multiple logical links allowed.

ical topology; elsé, (i, j) = 0. 2) Wavelength continuity constraints:
2) Wavelength assignment variables: a) Unique wavelength constraints
a) %9 (i j) = 1, if the qth logical link be- -
tween node and nodej uses wavelength; else
S CHDG, ) = b0, 7), forall(, )., and g
k=0

b) C*:9(;, j) = 1, if the gth the logical link between

ILm

nodei and nodej uses wavelength and is routed  Remark: This ensures that if logical link, (2, j) exists, then
through physical link(l, m); elsec™ (I)( i, j) = only one wavelength is assigned to it, among fheossible

IL,m

0. choices.
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Notethatt € {0, 1, 2, 3, ..., FF—1} whereF isthenumber  b) Flow Conservation

of wavelengths the fiber supports. (s,d) (s,d)
) )IDIRIHPED DD IR
c® Dy <o® D@, §),  forall (4, j), a @

IL,m

(57(1) f —
I,m),q and k. ARG, s =i
G, m). ¢ =< - A&D it d=4q, forall(s, d)
Remark: The above equation ensures that only those 0, if s # ¢ andd # 1.

(ko@)es s i i . . .
Cyom’ (i, ) could be nonzero for which the corresponding Remark: The above is a flow conservation equation at each
C(’“*I)(i, j) variables are nonzero. Let colérbe chosen for pode for the traffic between nodesandd.

a logical link (4, §), q. This implies thatC* (4, ) = 1.
Then for all the other colorsy # k, C(“)(4, j) = 0. Then the
above constraint would forc€; ) (i, j) = 0, for all (I, m) STk 06, j) < He,py,,  forall(d, ), ¢ and k.
andm # k. l,m
b) Wavelength clash constraints Remark: Since we are summing over all the physical links
Fa)e - (I, m) this ensures that the number of hops in a logical link is
o> gl <1, foral(l,m) and k. bounded byH, .
¢ (D Observation: The MILP is NP-hard. If in the MILP the
integer constraints are replaced by their continuous coun-
Yerparts, ie.0 < b(i,5) < 1,0 < CR9D( j) < 1,
0< Cl(’j;f) (¢, j) < 1, the resulting LP is called thieP-relax-
eation of the MILP. Since our formulation is a minimization
problem the (objective) value of the LP-relaxation is a lower
bound on the MILP.

4) Hop Bound Constraints

Remark: We are summing over all possible logical link
(4, 7), g, at a physical link(l, m) and for a wavelengttk. By
this we are assured that there iswavelength clasht physical
link (I, m), i.e., no two logical links traversing through th
physical link(l, m) will be assigned the same wavelength.

¢) Conservation of wavelength constraints

F—1 oo F—1 oo I1l. FORMULATION FOR VARIOUS CASES
k,q . k,q .
Z Z Coym (G 5P m = Z Z O (s ) P A. Multiplicity in Physical Topology
k=0 1 k=0 1

by(i, §), if m = To accoun_t for the multip_le fibers in Fhe physical topology,
=< b, §), fm=4d, forall(i j),q andm we can modify the constraints of Section Il as shown below.
0 ¢ ifm£i andm #j. Let there beP multiple fibers on link(l, m). We have to
’ modify the variable C*? (i, 5) to C((lk:l)) (4, 7). where
VariablesC® 2 (i, j) andCz(,k;’,f)(% §) € {0, 1}. p € {1,2,3,... P} The conservation of wavelength con-

Remark: The above equation ensures that a wavelengthsigai”t_s would have to suitably modified to take this additional
conserved at every node for a logical liak(, 5). We call this factor into account.
the conservation of wavelength equatias it is analogous to B. Symmetry Constraints
flow conservation equations in multicommodity flow problems.” _ _ _
Letlogical linkb, (¢, ) use wavelength. Then by conservation ~ We have the following set of constraints to impose the sym-
of wavelength constraints there is a path in the physical topologgtry restrictions.
from node: to node; with wavelengtht assigned to it. Cl(kr;l(I)(i’ ) - 07(7’:71(1) (j, 1) =0,
3) Traffic constraints ’ R
: : . forall k, (i, j), ¢, and (I, m).
a) Traffic Routing Constraints
Remark: The above ensures that if there aréogical links
)\E::;{)),q < by(i, HAND, forall (4, ), (s,d) and ¢.  from nodei to nodej then we will haven logical links from
nodej to node:. And also that the routing and wavelength as-
Remark: This ensures that the variab®? can have a Signment for the lightpaths associated with the logical links be-
nonzero value if there exists a logical ligk ZJ})’)’Q (b (i, j) # tween node and nodej traverse the same set of physical links
0). The traffic on logical link(4, 5), ¢ between the source—des-2nd are assigned corresponding wavelengthsiiiifogical link
tination pair(s, d) is upper-bounded by the total flow of traffic Tom node: to nodey is assigned wavelengththennth logical

A& 4D between(s, d). link from node; to node: is also assigned wavelengfi.
Mivi) g = Z /\Efjj)),qa forall (i, ) and q. C. Aggregate Formulation
V (s, d) In the MILP’s stated above, we have considered the traffic
A i) q < Amaxs forall (i, j) and q. AG:4) petween each source—destinatian d) pair as a com-

modity. This is usually referred to as a disaggregate formulation

Remark: The above two equations ensure that the load ¢8]. We can get a more tractable aggregate MILP formulation

any logical link is no greater than the maximum loag.,, by identifying a commodity with each source, rather than each
which is being minimized. (s, d) pair as follows. Let® = 3", A% pe the total traffic
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be the arrival rate of packets from source TABLE |

from sources, )\(f),
TRAFFIC MATRIX, T'1

s on thegth logical link (4, j), A\, , the arrival rate of packets
on the gth multiple logical link (¢, §) from all sources, and Nodes
Amax the maximum load on any logical linkjz., the conges- 0
tion, which we seek to minimize. Then, in the aggregate MILP 1
formulation, the logical link degree constraints and the wave- 2
length continuity constraints remain the same; only the traffic 3
constraints have to be modified. The modified traffic constraints

are as follows. v

1) Traffic routing constraints:

-0 = OlC
_—— D O ==
OO O =

O = = QlWw

Xei iy, q < ba(is A, forall (4, j), g ands
EYEDD Agf,)j),q, forall (¢, j), ¢
A6 a < Amaxs forall (¢, ), q.

2
2) Flow conservation:

Z Z )\E::)j):’l - Z Z )‘8,)71)7'1
q a

RS if s=1
Tl A& if s #£ 4, for all s and.

3o —— 1

Cutting Plane: Following [6] we add the following cutting j

Fig. 4. A(LT(2, <, asym, 1), T1) = 1.00.

plane to the MILP:

Amax 2 DA AL (= by, ), forall (7, 5). ;

L Fig. 5. A(LT(2, =, asym, 1), T1) = 1.33.
Here)\fna)x is anya priori lower bound om\,,,., like the min-

imum flow tree bound [1]. ) ) TM. But there is no restriction on the number of wavelengths
We note that the above is superfluous in the MILP but (usghd on the number of hops taken by a lightpath

ally) becomes active in the relaxation of)the MILP (an LP). We In [1], various logical topologies are given which are of the
solve the LP and get a lower bound, s&%x(l). Iteratively, we type LT(A, =, asym, 1). We note that the logical link con-

can then sekiizx = Aaa(4), i > 1Land solve the LP-relaxation siraints are equality constraints. This forces the restriction that
to get an improved lower bounki2x (i + 1). We will refer to every node should use all its transmitters and receivers even
these bounds as tlterative LP-relaxation lower bound# is to though it may not be required_ We shall give examp|es to show
be noted that the LP-relaxation lower bounds in [1] are obtainqq)e surprising result thaty using inequality degree constraints,
when there is no restriction on the number of Wavelengths, am,@ get lower Congestion than that obtained by using equa"ty
the hop length. We could then use the lower bound of [1] as @Bgree constraintsBy using equality logical link constraints,

a priori lower bound oM., in our LP-relaxed problem. we enforce that a regular directed graph is the logical topology
on which we route packet traffic. Due to the regular nature of
IV. EXAMPLES FORVARIOUS CASES the logical topology the packet traffic for a given source—desti-

We give examples to demonstrate how symmetric/asyrﬂationipairmay trfiverse more Iogigal links than necessary. Thi;
metric restriction, multiplicity, wavelength and hop_boun@ehawortends_tomcrease congestlpn.We shalldenvg thg condi-
constraints affect congestion. In the notation for the logicHPns underwhich we can use equality degree constraints instead
topology, if some of the arguments are dropped, then thokinequality degree constraints, without affecting congestion.
arguments are free parameters in the MILP. It is interesting ) ) ]
to note that if we drop the last two arguments, thatdsand A Equality/Inequality Constraints
F, the logical topology design is no longer dependent on theWe have to find a logical topology which minimizes con-
physical topology. We use the notatidi., 7M ) to denote the gestion. The traffic matrixZ'1) between the nodes is given in
optimal congestion value obtained by solving the MILP. Th&able I. On solving the MILP we obtained the logical topology
first argument inside the parenthesis is the logical topologhown in Fig. 4. Thus\(LT(2, <, asym, 1), T1) = 1. But
desired and the second argument is the traffic matrix to Bewe had solved the MILP with equality degree constraints
routed on the logical topology. These are the parameters pasthesh the congestion value obtained is 1.33. Th{(iET(2, =
to the MILP. For exampl&(LT(A, = sym, 1, 0o, o0), TM) , asym, 1), T1) = 1.33 (refer to Fig. 5). The above example
is the congestion obtained by solving the MILP, with thehows that equality constraints may at times increase con-
restriction that the logical topology &-regular symmetric, has gestion. The MILP solution forA(LT(2, <, sym, 1), T'1)

1 =2

no multiple edges allowed and the traffic matrix to be routed is A\(LT'(2, =, sym, 1), T1) = 1.5 (refer to Fig. 6).
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TABLE I TABLE Il
TRAFFIC MATRIX, T2 TRAFFIC MATRIX, T'3
nodes | 0 1 2 3 Nodes{ O 1 2 3 4 5
0. 0 1 1 0 0 0 1 0 0 0 1
1. 1 0 0 1 1 1 01 1 0 O
2. 1 0 0 173 2 01 0 1 1 0
3. 0O 1 113 0 3 0O 1 1 0 1 O
4 0 0 1 1 0 1
Ry 5 1 0 0 01 O
\ 0
3e 1 /\
3 1
2
Fig. 6. A(LT(2, <, sym, 1), T1) = 1.5.
0 1 Z 2
s il)p——————Po)— .
4; Fig. 9. A(LT(3, =, sym, 1), T3) = 1.00.
J
M
5 iy '
3 1
Fig. 7. A(LT(3, <, sym, 1), T2) = 1.00.
0 1 < xl
——— e l)— A
2
Fig. 10. A(LT(3, =, sym, 2), T3) = 2/3.
5 "5 and hence speed up the MILP. Hence it is important to know

when we can use equality constraints without affecting conges-
tion. The two theorems given below give us a criterion for im-
. ] posing equality constraints.

Given below are examples when we consider symmetricTheorem 1: Consider a undirected graph with maximum de-
logical topologies. Consider the traffic matrif’2) given in greeA and let its underlying simple graph have minimum de-
Table II. In this case\(LT(3, <, sym, 1), T2) = 1.0. The grees. Let A\ be the minimum congestion achieved for a given
logical topology corresponding to this is shown in Fig. 7yaffic matrix by routing traffic on the undirected graph. Then we
A(LT(3, =, sym, 1), T2) = 1.25 and the logical topology is can always construct a regular graph which achieves the same
shown in Fig. 8. congestion if the maximum allowed multiplicity = A—§+1,
andN x A is evenV denotes the number of nodes in the graph.

Proof: Inthe undirected graph, we add edges between de-

We can also construct examples where multiplicity cofficient degree nodes. We can always do this whenéyes
straints affect the congestion value. Assume the traffis —§+1.We stop adding edges to deficient degree nodes when
matrix shown in Table Ill is to be routed. We note thajve are left with at most one deficient degree node. We note that
A(LT(3, =, sym, 1), T3) = 1.0, in Fig. 9. AndA(LT(3, = because\ and/N are not simultaneously odd, the deficiency de-

, sym, 2), 1'3) = 0.667, in Fig. 10. By permitting multiple gree of this node must be even. Let the deficiency in degree of
edges the congestion reduces by a third. For particular instanggsnode be. We removep/2 edges in the graph which do not
we have the following relations\(LT'(A, <, sym, 1), TM)  have the deficient degree node as one of their end points. For
< A(LT(A, =, sym, 1), TM) and A(LT(A, <, asym, 1), each edge removed, we add the following two edgeszidte
TM) < A (LT(A, =, asym, 2), TM). But in the general the removed edge and letbe the deficient degree vertex. We
case the inequalities are not strict. add the edges~ andzy. By repeating the aforementioned step
for all the removed edges the deficiency of degree is satisfied.
The new graph isA-regular and has a maximum multiplicity

@ = A — 6§+ 1. The congestion is the same because the traffic

The equality logical link constraints help in reducing the dien the removed edges (say;) now flows through the new paths
mensionality of the search space in finding an optimal solutigedgestz and ).

Fig. 8. A(LT(3, =, sym, 1), T2) = 1.33.

B. Multiplicity Constraints

C. Two Theorems on Multiplicity and Equality/Inequality
Constraints
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Corollary: A(LT(A, <, sym, A — § + 1)) = ALT(A, TABLE IV
=, sym, A — § + 1)) whenN x A is even, whereV is the RESULTS FORSIX-NODE NETWORK
number of nodes in the network. Hop | LB MILP
Proof: Since the logical topology is symmetric we con- A | F | Bnd | Amax Amax
struct a new graph wherein each bidirectional edge represent a L1 1 {592 | 736(Exact
undirected edge. That is the edgeg and yx are replaced by 1 l 3 5.92 | 7.077 (Exact)
undirected edgey, wherex andy are the nodes in the logical L 392 | 7.077 (Exacy
topology. We now apply Theorem 1 to this undirected graph. % : ; %% 33‘1‘ ng:cg
Theorem 2: Consid_er a (_jirected_graph with maximum _de_:gree ) 3 2:042 2.‘042 (fo:ct)
A and let its underlying simple directed graph have minimum 21 * * 2.042 | 2.042 (Exact)
degreé’. Let A be the minimum congestion achieved for a given 3] 2 ¥ 1.183 | 1.183 (Exact)
traffic matrix on that directed graph. Then we can always con- 3] * * 1.183 | 1.183 (Exact)
struct a directed regular graph which achieves the same conges- 4173 * 10887 [ 0.887 (Exact)
tion if the maximum allowed multiplicityy = A — 6 + 1. 4 | * * 0.887 | 0.887 (Exact)
Proof: To make up for the deficiency in degree of the ver- 5|4 * 1 0.710 | 0.710 (Exact)
tices, we can add edges to degree-deficient vertices. From the S| *] * [0.710 ] 0.710 (Exact)

above step we may assume that we would be left with at most

one vertex which has both in-degree deficiency and out-degi@@p bound), the number of wavelengths, and the degree of the
deficiency or there may be more than one vertex which all haxgjical topology to be designed. The degree column in Table IV
in-degree or out-degree deficiency. The latter cannot happen Benotes the number of transmitters or receivers present at each
cause in that situation the condition for a directed graph “sugt the nodes. The wavelength column denotes the number
of in-degrees= sum of out-degrees” would be violated. It alsaf wavelengths available. The hop bound column denotes
cannot be the case that the deficient degree vertex has out-deg¢iigemaximum number of hops any logical link is allowed
deficiency of the vertex the in-degree deficiency of the vertexio take. The lower bound (LB) column denotes the iterative
for the same reason. It follows that the deficiency of in-degree-relaxation bound (25 iterations) and is called the LP-bound
should be equal to the deficiency of out-degree. Let the in-den congestion. In Table IV* indicates no restriction for
gree deficiency= out-degree deficiency: ¢. We adopt the fol- that particular column parameter. In the wavelength column
lowing procedure to satisfy the deficiency of the vertex to makge first entry for a given degree is the first time the MILP
the graphA-regular. Picky edges in the deficient graph suchhecomes feasible. For example for the degree four case the
thatthe picked edges are not originating or terminating in the dep-relaxation is infeasible faF' < 3 and hence the entry in the
ficient vertex. For every one of theedges we add the following wavelength column for the degree 4 case starts with the number
two edges. One edge is from the origin node of the picked edgewavelengths being three. We note that since we considered
to the deficient degree node. Another edge is from the deficigftee parameters, the degree, the number of wavelengths and
degree node to the destination node of the picked edge. This pf@mber of hops permissible, many combinations were possible.
cedure constructs A-regular directed graph with multiplicity We present results for some of the combinations. If a row entry

@ = A — ¢ + 1 which has the same congestion. has a *” in the wavelength and in the hop bound column then
Corollary: A(LT(A, <, asym, A = § + 1)) = ALT(A,  the LP-bound obtained for congestion in that row will be called
=, asymA — § + 1)) theunconditional congestiorSimilarly the MILP solution will

Proof: By Theorem 2 we can construct an instancge termed theinconditional MILP congestiorFor example in

of LT(A =, asym, A — § + 1) with the same congestionthe degree 4 case the unconditional congestion is 0.887 and the
obtained on(LT(A <, asym, A —§ + 1)). unconditional MILP congestion is 0.887. The MILP solution

The import of the two theorems is that if multiple edges ig said to beexactwhen either the LP-relaxation solution for
not a constraint in the logical topology design, then it does ngngestion and a feasible solution obtained by solving the
matter if we have equality logical link constraints instead Q{iILP are equal, or a solution is obtained for the MILP through
inequality logical link constraints. exhaustive search of the feasible set of integer solutions. For
example for the degree one case the unconditional congestion
is 5.92 but by exhaustive search the MILP solution obtained

Here we solve the MILP exactly and show the effeds 7.077 for the congestion. In the degree 5 case the uncondi-
of the number of wavelengths and hop bound constraitibnal congestion is 0.710 and the branch and bound routine
on congestion. The parameters passed on to the MILP #&ve solving the MILP was terminated after a solution with
LT(A, =, asym, 1, H, F') and the traffic matrix. This con- congestion 0.710 was found (hence this solution is exact).
figuration was chosen to compare the results presented in [1]n Fig. 11 is shown a possible logical interconnection between
with the results presented here. The six-node network and the wavelength routing nodes of the six-node network. In this
traffic matrix considered here are the same as that considefigdre if node 0 wants to send data to node 1 then the data un-
in [1, Fig. 4, Table 1]. We solve the MILP formulation of dergo an optical to electronic and electronic to optical conver-
Section Il for this network by varying the various parametersion, at nodes five, four, three and two. This topology was ob-
(refer to Section II-A) and the solutions obtained are givetained by solving the MILP by fixing the number of wavelengths
in Table IV. We considered three parameters, the hop lendttat can be used to one, the in-degree and out-degree of each of

D. Wavelengths and Hop Bound Constraints
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{’o 5 4

Fig. 11. A =1, F =1, hop-bounc1, A ax = 7.36.

mg,
0, ®5 4

Fig. 12. A =1, F =1, hop-boundK2, Aax = 7.077.

I

Fig. 15. A =2, F = 2, hop-bound= 2, Apax = 2.042.
?\—/'203 The resulting logical topology with routes is shown in Fig. 15.
Since the number of wavelengths permitted was increased to
two many more routes were possible thereby reducing the con-
o 5 . gestion to 2.042 which is the unconditional congestion. Thus
o e ey the congestion cannot be decreased further by increasing the
number of wavelengths and the number of hops permitted.
Fig. 13. A =2, F =1, hop-bouncK1, Amax = 2.340.
V. TOPOLOGY DESIGN ALGORITHMS
the nodes in the logical topology to one (note that this wou!g
imply that each node is equipped with one transmitter and oné
receiver) and the maximum hop-length to one. In this situation!n order to obtain a feasible logical topology with routing
there can only be two possible solutions for the logical topologfy"d wavelength assignment we consider the solutions of the re-
design, the clockwise ring — 1 — 2 — 3 — 4 — 5 — 0or laxed MILP [LP obtained by relaxing the integer constraints on
the anti-clockwise ring — 5 — 4 — 3 — 2 — 1 — 0. Forthe b(i. j), C™¥(i, j) andC{* (4, 5)].
clockwise ring the congestion is 9.36 and for the anti-clockwise In this solution we first round(s, j)s to 1 or 0.
ring the congestion is 7.36. Thus the congestion value obtained/arious schemes are proposed in [1] for rounding the logical
by solving the MILP was 7.36 and the logical topology obtaineléhk variables,b(é, j)s. We employ the following algorithm to
was the anti-clockwise ring. round the logical links variables. The most natural way to con-
By changing the maximum hop length from one to two angfruct a 0O-1 MILP feasible solution from the LP solution ob-
by fixing all other parameters as in Fig. 11 the logical topologigined by relaxing the integer constraints is to sequentially set
and the congestion obtained by solving the MILP are shown e variables whose value is closer to one to one, and variables
Fig. 12. We see that by increasing the hop length the congestighose value is closer to zero to zero, while maintaining feasi-
is reduced from 7.36 to 7.077. The unconditional MILP congeBllity. The rounding algorithms given here essentially do this.
tion for this case is 7.077. Therefore when the number of waveist theb(i, j)s obtained by iterative LP-relaxation (number of
lengths available is one and the maximum hop length permitté@rations were 25) in decreasing order. Round each successive
is less than or equal to two aptimal solutionis obtained, i.e., value oft(z, j) to one if the degree constraints are not violated,
the congestion cannot be decreased further by increasing @ to zero otherwise. Note that this is called LPLDA in [1].
number of wavelengths and the number of hops permitted. After roundingb(i, j)s we now have a logical topology without
In Fig. 13 is shown the logical topology and routes of ththe routes and wavelength assignment for logical links. We solve
logical links obtained by solving the MILP when the degree e LP with the traffic constraints only (Section II-D) with the
fixed at two, the number of wavelengths permitted is one af#pjective being to minimize congestion. Thus we get an upper
the hop bound (the maximum hop length permitted) is one. ound on congestion for the logical topology.
congestion of 2.340 was obtained by exhaustive search of thd0 obtain the lightpaths for the logical links we now round
search space by a branch and bound routine. the %) (4, j) and Cl(ykgl(i, 4) variables. We use the following
Next we increased the hop bound of the logical link to twanax-round algorithnfor roundingC®™) (i, 5).
keeping all other parameters fixed. The result obtained is showrMax-Round Algorithm:If b(i, ) = 0 then{C/)(i, 5) = 0;
in Fig. 14. The congestion is reduced to 2.210. This is becadseall f}. If b(i, j) = 1 thenmax; C)(i, 5) is set to one and
of the two-hop logical links the first between node 3 and nodbe rest to zeros. A tie is broken by choosing the largest irfdex
1, and the second between node 4 and node 2, which reduceldet us assume that by the rounding heuristic mentioned above
the congestion on logical links (3,2) and (4,5) of Fig. 13. we have seli(i, j) = 1andC)(i, j) = 1. By the conservation
In the next case the hop length permissible was the same (twbjvavelength equations we are guaranteed that betweeninode
but the number of wavelengths available was increased to tvamd nodg there is atleastone path withwavelength assignrfient

Rounding Heuristic
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Among the possible set of paths from node node; with
wavelength assignmejfitwe use the following algorithm to pick
a path.

« Step 1: Letnax,,, C ) (i, j) be C (i, j)

e Step 2: Ifli = j then stop. Else letnax, Cl(jfrz(i, j) be
Gyl (i, 7)

 Step 3: Ifp = j then stop. Else assignto [ and continue
with step 2.

After this we setC((lf)m)(i, J) = 1ifitis in the picked path, Fig. 16. National Science Foundation network.

C((zjj)m) (¢, j) = 0, otherwise.

one in each direction. The results reported here are for the case
B. Wavelength Assignment Heuristic where the logical link constraints are satisfied with equality,

We now have the logical topology, the sequence of ho'ggere is no symmetry requirement, rT_]uItipIicity is not allowed,
(physical edges the logical links takes), and also a tentati@8d there are no hop bound constraints. The number of wave-
wavelength assignment. But the assignment is still not free I§ngths, the degree of the logical topology to be designed, the
wavelength clashi.e., two logical links may have the samdraffic matrix, and the physical topology are the parameters con-
wavelength assigned to it and have a common hop (physiééiered for the above case. The above configuration was mainly
edge in common). There are two approaches for wavelen§tfPSen so as to compare our topology design algorithm with
clash-free assignment: We develop heuristic algorithms tothat given in [1], [7]. Tables V and VI give the results for two
assign wavelengths to the logical links which have a wavelengifferent traffic matrices”1 and P2. They are the same traffic
clash, and come up with a clash-free wavelength assignmehgirices as used in [1, Tables lll and IV, respectively].

2: Since we know the paths taken by the logical links, we 1) I_:ea5|bll|ty of LP-R(_aIaxatlon:Ifwe had an MILP with in-

can construct a path-graph as done in [4], and [5]. We ndiguality degree constraints, then we would always have a fea-
that the chromatic number of the path-graph is the numbgple solution if the physical topology has a directed Hamil-
of wavelengths required. Both approaches were tried and #fian circuit. (In this case, the edges occurring in the Hamil-
much difference was found between them. In this paper W@nian circuit constitute a logical topology with degree 1.) But
have used the second approach. Many heuristics are giver$ifft@ We are insisting on equality degree constraints so as to
[5] and in [4] for vertex coloring a graph. We note that in [11Ppeed up the MILP by reducing the dimensionality of the search
a greedy algorithm is described for wavelength assignmefPace, itis important to keep track of the feasibility of the MILP.
In this paper we present results for one of the four heuristi§dnce the decision problem (feasibility problem) for the MILP
described in [4] to obtain a valid coloring of the path graph. TH& NP-hard and the network sizes are not small, at best we can
results obtained with the other three heuristics were similar. Fgteck for feasibility of the LP-relaxation. An MILP or an LP
the sake of completeness we now describe the heuristic fréfrféasible if there is an assignment of variables which satis-
[4] for which we will present the results. We first sort the nodelies the constraints. Lef,in(A) denote the minimum number

as follows. LetV denote the number of nodes in a path grapW wavelengths that are required to make the LP-relaxation fea-
G. step 0 (Initialization) Let & = IV, and let the current graph s@ble. Note that\ is the degree of the logical topology to be de-
be the path-grapt(.). step 1 Pick the node with the smallestSigned. We observe that fof nodes the number of source—des-
degree, say node in the current graph. Letosition[i] = k. tination pairs iISV(N —1). Iq the worst case if we allocate one
step 2 Replace the current graph with the graph obtained Byavelength foreacts, d) pair then we requird/ (N —1) wave-
removing node. If the remaining graph is a trivial graph (one€ngths. The range df, the number of wavelengths available,
vertex remains), stop. Else, set— k — 1 and go tostep 2 for the problem to pecome feaS|bIe,.|s betwe_en ;NnjaN —

Once the nodes of the path-graph are sorted, they are coloteégWe could do a binary search, taking logarithmic number of

by sequentially descending the list of nodes and assigning 8PS, in the rangél, 2, 3, ... N(N — 1)}, to find fuin(A)
first available color to each node in the list. for which the LP-relaxation becomes feasible. For example, in

Table V we see thaf,,in(3) = 2 and f,,,in(13) = 13.

2) Discussion of Results Obtainedin Tables V and VI
under thelLP-Relaxationheading there are three columns,

Here we consider a moderately large network, the 14-noglg = degree, wavelength , and lower bound on congestion.
National Science Foundation network [1, Fig. 6], shown iftpe degree ) specifies the degree of the logical topology to
Fig. 16. To solve the MILP and the LPs we used IBM'$)e designed. Wavelength denotes the number of wavelengths
Optimization Subroutine Library (OSL) routines on an 1BMyyajlable which is the parametdt (Section 11-A). The lower
43P/RS6000. bound (LB) on congestion denotes the solution (the objective

value) of the LP-Relaxation. For example, in the degree 2 case

A. NSENET with 4 wavelengths, the lower bound on congestion is 126.74.

The NSFNET, shown in Fig. 16 [1, Fig. 6], is a 14-node netdnder theHeuristicheading there are two columnaz., upper
work with 21 edges. Each edge represents a pair of directiobalund (UB) on congestion and the number of wavelengths.
edges. The pair of directional edges represents a pair of fibeks, explained in Section V we employ the rounding heuristic

VI. PRACTICAL EXAMPLE
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TABLE V TABLE VI
REsuULTS FORNSFNET: TRAFFIC MATRIX P1 REsuLTS FORNSFNET: TRAFFIC MATRIX P2
LP-Relax Heur. Previous work LP-Relax Heur. Previous work
LB UB F LB UB LB UB F LB UB
AF Amax Amax : /\m;xi[ll : /\max;[7]/[1] AF Amax Amax : Ama,x;[” . Amax;[7]/ [1]

141.28 | 519.251 1
126.74 | 273.896 2
126.74 | 210.593 3
126.74 | 145738 4

ot |

284.26 | 700.47 2
284.26 | 389.93 2

282.50 345.42/345.42

189.76 | 269.43 2
189.7€ | 269.43 2
189.76 | 217.80 4

126.18 147.6797243.43

84.58 | 139.478 3
84.58 | 93.838 3
84.58 | 84.582 4

189.62 195.71/195.71

142.33 [ 175.18 3
142.33 | 152.99 3

84.53  88.650/ 102.82

71.71 92.658 3 142.32 142.33/142.33

63.43 | 92.658 3 113.87 | 113.87 4

63.43 | 70.025 4 113.87 113.87/113.87
63.43  65.908/82.03 9480 | 9480 5

50.74 [ 57.835 4 94.89 | 94.89 5

50.74 | 50936 5 94.89  94.89/94.89
50.74  51.85/53.49 8133 | 8133 6

42.29 | 52.565 5 81.33 | 81.33 6

4229 | 49.220 6 81.33  81.33/81.33

4229 | 44391 6

71.17 | 71.17 6

4229  42.660/44.45

7117 71.17/71.17

36.25 | 43.194 6
36.25 | 36.432 6

62.15 | 63.26 9
62.15 | 62.15 8

108 | 5693 | 56.93'10

O \B|| 00} Col| 1] < ~3I| N | | WA A &) F| &]| W W] W W 1 D] I,
oo Q] *# O\J| #]| N ] *]| af Baf] #] K] ¥ WA Il *] B WA NI ¥ B

36.25  36.45/36.55

\O| \O| \O|| 0] 00] 0o|] ~3f ~J| ~J| O\ O\ O\ A WA W Ll Snb ] ol S]] L] LI LI W BI] DI B DI )
\O| 00| || #| < || #| N A %] O\ Bl R Al Bl | B G BO]] %] B L NI ] S| W DI =

gi;g g?-l,?lg g 109 56.93 56.93 10
31.72 3175732327 i ; ﬁ) j;:i i;ﬁ ig
ggg; %gg;g g 12| 4744 | 4744 13
5T TS 1213 | 47.44 47.44 13
e 3131 4379 | 43.79 I3 ||
109 25.19 25645 9
1110 ] 23.0 23.509 10 example, in Table V, we see that for the degree two case the un-

1111 23.0 23.068 11

1211 | 21.27 | 21.387 12
1212 | 2127 | 21.387 12

1313 | 2024 | 20.246 13 ||

conditional lower bound is 126.18 and the unconditional upper
bound of [7] is 147.679 and of [1] is 243.43. By our heuristic
for the degree 2 case we obtain a congestion of 145.738 with
four wavelengths which is an improvement over the previous
upper bounds on congestion, even though they did not consider
(Section V-A) on the solutions obtained by solving the LP-Réhe number of wavelengths as a constraint. However, we do not
laxation to get a feasible set of integer solutions, i.e., we namderstand intuitively why this is the case.
have aA-regular logical topology and the routes for the logical In Table V for the degree 3 case and with two wavelengths the
links of the logical topology. We then obtain an upper bound dower bound on congestion is 84.58. The upper bound for the
congestion by solving an LP (Section V). Since we now hawame is 139.478. The wavelength assignment heuristic required
the routes for the logical links we obtain a wavelength-claghree wavelengths for a wavelength-clash free assignment for
free assignment by using the wavelength assignment heuristie routes of the logical links in the logical topology obtained
algorithm (Section V-B). The number of wavelengths requirday the rounding heuristic. It is not always guaranteed that the
is tabulated in the wavelength column under tHeuristic LP-relaxation parametdr’ and the number of wavelengths re-
heading. quired by the heuristic are the same. Our heuristic gives an upper
Under theprevious workheading the results mentioned in thédoound on the number of wavelengths required for designing the
lower bound column are from [1]. In [1] and [7] some heuristicequired logical topology. In the above case we need at most
algorithms were developed to round #{g, j) variables to de- three wavelengths for designing a degree 3 logical topology for
sign the logical topology. A shortest path route for the logicavhich the congestion obtained is 139.478. In Table V for the
links in the logical topology was chosen because the numberdifgree 5 case with four wavelengths, the lower bound on con-
wavelengths available was not a constraint in [1] and [7]. Thgestion is 50.74 and the upper bound is 57.835 and the number
upper bound on congestion (obtained from the heuristic) showhwavelengths required by the heuristic is 4 which is equal to
in the last column is from [7] and [1]. We refer to themwas the parameteF'. We see that in Table VI for the degree 6 case
conditional lower boundand unconditional upper bound-or with four wavelengths, the lower bound on congestion is 94.89
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and the upper bound on congestion is also 94.89 but the numbare of symmetry constraints (Section 111-B), and multiplicity
of wavelengths required by the heuristic is five. In the same talwé optical fibers in the physical topology (Section IlI-A). In
for the degree 8 case, the paramdtas 6, which is the same as Section IV various examples were shown to illustrate how sym-
that required by the heuristic and the lower bound and the uppeetry/asymmetry affects the logical topology design problem.
bound on congestion both equal 71.17. In such a situation, WweSection IV-C two theorems were presented which provided
say that the heuristic solutions amptimal In the tables, the op- a criterion for determining when equality degree constraints
timal solutions are italicized. can be used without increasing congestion.

It was observed that in many cases the lower bound did notWe observe that since we are minimizing congestion in the
change with the number of wavelengths for a fixed degree. Bugtwork the electronic processing of traffic per wavelength de-
the heuristic reduced the congestion. This is due to the fact teatases. If we have some set of nodes in the network which
the LP-relaxation tends to use all the wavelengths availableas a heavy traffic flow among its members then having mul-
This helps the rounding heuristic in choosing among many aiple edges between some pairs of nodes in that set may reduce
ternate paths and so the congestion drops. For example forttie overall congestion. This would reduce the electronic pro-
degree 2 case (traffic matrikl) the LP-bound is the same whencessing per wavelength in the network. Reduction in electronic
Fis equal to 2, 3, and 4, but the congestion achieved by theocessing of traffic would be beneficial in a high-speed net-
heuristic dropped from 273.89 to 145.73. work environment.

In many cases the heuristic bounds on congestion obtainedror the six-node network, we investigated the tradeoffs
by us are an improvement over the previous results but in a venynong the number of wavelengths the fiber can support, the
few cases they are worse. The heuristic wavelength assignmenp lengths of the logical links and the congestion. We note
algorithm in many cases achieves optimal assignment for ttiat the LP-bounds for the six-node network did not vary with
higher degree cases. For example, for the degree 13 case for ltmthhop bound parameter or with the wavelength parameter.
the traffic matrices the minimurh' for which the LP-relaxation For small networks we could solve the MILP exactly but for
become feasible is feasible 13 and 13 wavelengths are usedbtworks of larger size like the NSFNET we had to use the
the wavelength assignment heuristic. It can be observed thattimpology design algorithms developed in Section V. The perfor-
higher degree the congestion obtained by the heuristic and thance of the topology design algorithms obtained by rounding
lower bound are almost equal. From degree 5 onwards, for the solutions of the LP-relaxation problem was very close to
P2 traffic matrix the lower bound and the congestion obtainetie lower bounds when the logical topology to be designed had
by the heuristic are equal. a high degree. The rounding heuristic of Section V-A tries to

3) Complexity: In the MILP the number of constraints andfind a route for a logical link which has a large utilization of a
the number of variables grow approximately@&N? x F'x  wavelength on it. This helps in finding a logical topology which
number of edges multiplicity factor). On the average the LPwill reduce congestion. The wavelength assignment heuristic
solver took around five minutes on an IBM 43P/RS6000 to solggven in [4] has been used to assign wavelengths for the logical
one iteration of the relaxed MILP problem. The running timelinks. We see that the number of wavelengths needed by the
of the rounding heuristics were less than a minute. wavelength assignment heuristic (refer Section V-B) and the

4) Equality Degree Constraintstt was shown by examples number wavelengths considered for the LP-relaxation (second
in Section IV that the congestion obtained by using inequaligolumn of Tables V and VI) are quite close in many cases.
degree constraints would be less than the congestion obtailedome of the lower degree cases there is a large difference
by using equality degree constraints with all other parametdsstween the upper and lower bounds on congestion. This
being the same for both cases. The feasibility of the LP wittalls for for some more cutting planes to be added to the
equality degree constraints would force the requirement ofL®-relaxation so as to improve the lower bound. It may also be
larger /' than necessary. This is certainly a disadvantage butthé case that the heuristic has to be improved. This is still under
the same time equality constraints would speed up the brarnobestigation. In general the iterative LP-relaxation bound for
and bound routine method used for solving the mixed integeongestion with wavelength continuity constraints did not
linear program. It is our computational experience that in all theégnificantly vary with the parametdr but the rounding of the
cases for the NSFNET example the congestion obtained by the-solution gave good results.
solving the LP with inequality degree constraints was the sameMost importantly, the upper bounds obtained for congestion
as that got by solving the LP with equality degree constraintausing our heuristic topology design algorithm were very close to

the lower bounds, especially for the higher degree cases, which

VIl CONCLUSION indicates that this a good heuristic for logical topology design.

An exact linear formulation was presented for the logical
topology design problem with no wavelength changers. The
wavelength continuity constraints presented here linearizedThe authors would like to thank Prof. V. Chandru, Depart-
the problem which hitherto was formulated with a set of nomment of CSA, Indian Institute of Science, Bangalore, India, for
linear constraints. The cutting plane of Section IlI-C-1 whehis suggestions on the formulations. They would also like to
incorporated into the aggregate formulation helped in gettitigank Prof. A. Selvarajan, Department of ECE, Indian Institute
good lower bounds on congestion for the six-node network antiScience, Bangalore, for his encouragement and support, and
NSFNET. In Section lll, formulations were presented to takile reviewers for their comments on improving this paper.
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