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Design of Logical Topologies: A Linear Formulation
for Wavelength-Routed Optical Networks with No

Wavelength Changers
Rajesh M. Krishnaswamy and Kumar N. Sivarajan, Member, IEEE

Abstract—We consider the problem of constructing logical
topologies over a wavelength-routed optical network with no
wavelength changers. We present a general linear formulation
which considers routing traffic demands, and routing and as-
signing wavelengths to lightpaths, as a combined optimization
problem. The formulation also takes into account the maximum
number of hops a lightpath is permitted to take, multiple logical
links in the logical topology, multiple physical links in the physical
topology, and symmetry/asymmetry restrictions in designing
logical topologies. The objective is to minimizecongestion. We
show by examples how equality and inequality logical degree
constraints have a bearing on congestion. We prove that, under
certain conditions, having equality degree constraints with mul-
tiple edges allowed in the design of logical topologies does not
affect congestion. This helps in reducing the dimensionality of
the search space and hence speeds up the search for an optimal
solution of the linear formulation. We solve the linear formulation
for small examples and show the tradeoff between congestion,
number of wavelengths available and the maximum number of
hops a lightpath is allowed to take. For large networks, we solve
the linear formulation by relaxing the integer constraints. We
develop topology design algorithms for large networks based on
rounding the solutions obtained by solving the relaxed problem.
Since the whole problem is linearizable, the solution obtained
by relaxation of the integer constraints yields a lower bound
on congestion. This is useful in comparing the efficiency of our
heuristic algorithms. Following Bienstock and Gunluk, 1995, we
introduce a cutting plane which helps in obtaining better lower
bounds on congestion and also enables us to reduce the previously
obtained upper bounds on congestion.

Index Terms—All-optical networks, linear program, network
planning, topology design.

I. INTRODUCTION

A. Optical Networks

OPTICAL networks implemented using wavelength-divi-
sion multiplexing techniques, calledwavelength-routed

optical networks, are the most promising candidates for back-
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Fig. 1. Six-node network, physical topology.

bone high-speed wide area networks [9]. Wavelength-routing
optical networks realize the high bandwidth capability of the
fiber, provide transparency to bit rates, allow for spatial wave-
length reuse (the number of wavelengths available may be lim-
ited), provide reliable service (the network can be reconfigured
in the event of failures) and are adaptable for building logical
topologies on top of physical topologies to reflect the traffic
intensities between the various nodes. A physical topology is
a graph representing the physical interconnection of the wave-
length routing nodes by means of fiber-optic cables [9]. In Fig. 1
is shown a physical topology of a six-node wide-area network.
The wavelength routing nodes are numbered from 0 to 5. Node
0 and node 1 are connected by a fiber and so an edge is shown in
the physical topology between them. We consider an edge in the
physical topology to represent a pair of fibers, one in each di-
rection. A logical topology is a directed graph that results when
the lightpaths are setup by suitably configuring the wavelength
routing nodes. For example, in Fig. 2 is shown a possible logical
interconnection by suitably configuring the wavelength routing
nodes of Fig. 1. There is an edge in the logical topology be-
tween node 0 and node 2 when the data or packets from node
0 to node 2 traverse the optical network in the optical domain
only, i.e., undergo no electronic conversion in the intermediate
wavelength routing nodes. Edges in a logical topology are called
logical links.

For example, in Fig. 2 the data from node 3 to node 1 are
sent on wavelength through the wavelength routing node at
2. Simultaneously, we can send a packet from node 3 to node
5 on through the wavelength routing node at 4. We see that
even though in the physical topology there is a fiber connec-
tion between node 3 and node 2, to send a packet from node 3
to node 2 we would have to use three logical links (3,1), (1,0)
and (0,2). We say that thehop lengthof the logical link (3,1)
is two as it traverses two physical edges, (3,2) and (2,1). A log-
ical topology is what is seen by the higher layers of the network,
and it is convenient to think of a logical topology as constituting
an optical layer [9]. Wavelength changers translate wavelength

to . They may be used as components of the wavelength
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Fig. 2. Logical topology with routing and wavelength assignment.

routing nodes. The problem in using wavelength changers is pri-
marily that the effective translation of wavelengths in the optical
domain is not cost effective. In this paper, we consider logical
topology design with no wavelength changers. A linear formu-
lation for the case with wavelength changers has been addressed
in [4].

B. Logical Topology Design with No Wavelength Changers

A physical topology is a bidirected graph representing the
physical interconnection of the wavelength routing nodes. In a
bidirected graph, whenever there is an edgewhere and

are wavelength routing nodes, there is another edge. For
ease of representation on paper, we represent it by a single edge
with arrows at either end, as shown in Fig. 1.

A logical topology is a directed graph that is determined by
the lightpaths set up in the physical topology. The lightpaths
are setup by configuring the wavelength routing nodes in the
physical topology.

A logical topology is said to besymmetricif, whenever there
is a logical link from node to node , there is another logical
link from node to node passing through the same set of
intermediate wavelength routing nodes. A logical topology is
asymmetricif the above restriction is removed.

In a directed graph, the in-degree of a node is equal to the
number of edges terminating on it and the out-degree of a node
is equal to the number of edges originating from it. A-regular
logical topology is one where all the nodes have the same in-de-
gree ( ) and out-degree (). We say that a logical topology has
multiplicity if the maximum number of edges between any
node pair is .

A logical topology is said to be hop-bound limited if there
is a restriction on the maximum number of hops a lightpath is
allowed to take. A logical topology is said to be wavelength lim-
ited if there is a restriction on the maximum number of wave-
lengths that can be used while setting up the lightpaths in the
corresponding (see Section IV) physical topology. We shall see
later that these are important parameters in logical topology de-
sign.

We assume that the physical topology, the traffic matrix rep-
resenting long-term average flows between the end nodes, and
the number of transmitters and receivers at each of the nodes
are given. We find a logical topology , and also a routing and
wavelength assignment for the logical links, such that the re-
sources of the network subject to the given constraints are used
optimally. In Fig. 3 is shown a possible logical topology over
the physical topology shown in Fig. 1, when each of the nodes
is equipped with one transmitter and one receiver, the number
of wavelengths the fiber supports is one, and the maximum hop
length of the logical links is one. It is reasonable to construct

Fig. 3. Degree one logical topology.

a logical topology which minimizes congestion.Congestionis
defined as the maximum offered load on any logical link in the
logical topology. The number of wavelengths the fiber can sup-
port is also an important parameter which has to be taken into
account in any logical topology design problem. Wavelengths
are scarce and have to be used optimally. The hop length of a
logical link is a measure of the number of wavelength routing
nodes encountered while setting up a logical link. If the hop
length of a logical link is large then there would be degradation
of the optical signal by attenuation and crosstalk at the inter-
mediate wavelength routing nodes. Therefore it is important to
keep the hop lengths of the logical links small. Symmetry re-
strictions are also important factors in logical topology design.
We shall see from the numerical examples how the congestion is
affected when we impose symmetry restrictions on the logical
topology. Multiple edges play an important role in the design
of logical topologies. We shall illustrate by examples (see Sec-
tion IV) how congestion varies when we allow multiple edges.

An informal description of the logical topology design
problem is as follows (a precise definition as a mixed integer
(0–1) linear program is given later in the paper).

Let be the traffic matrix, i.e., is the ar-
rival rate of packets at nodethat are destined for node. Let

denote the number of transmitters at nodeand de-
note the number of receivers at node. We seek to create a log-
ical topology, with a routing and wavelength assignment (wave-
length changers are not allowed) for the logical links, that mini-
mizes where denotes the offered load
on logical link of the logical topology. is the max-
imum offered load to any logical link, and is called theconges-
tion.

The various parameters included in the mixed-integer linear
program are the number of wavelengths the fiber supports, sym-
metry and asymmetry restrictions, multiplicity restrictions, and
hop bound constraints.

The following notation will be used to denote all the
above information in compact form: ,

. If the first two arguments are
“ ” then it denotes a logical topology that has maximum
degree [ (in-degree, out-degree)] . If the first two
arguments are “ ” then it denotes a logical topology that
is -regular. The third argument denotes that the
logical topology is symmetric/asymmetric. The fourth argu-
ment denotes that the logical topology has at mostedges
between any node pair. The fifth argumentis the hop-bound
limit for any logical link in the logical topology. The last
argument denotes that the logical topology requires at most

wavelengths for wavelength assignment. Using the notation
stated above Fig. 3 is an example of
logical topology on the physical topology of figure Fig. 1.
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We show by small examples in Section IV the relationships
between the various parameters.

C. Previous Work

In this section, we position our work in relation to three recent
papers, [2], [3], and [1], on the problem of designing optimal
logical topologies. A more detailed reference on this topic has
been listed in [2].

In [2] the authors formulate the logical topology design
problem as a nonlinear optimization problem. The objective
considered was either delay minimization or minimizing the
maximum offered load. The authors subdivide the problem into
four subproblems. They are: 1) determining a logical topology
(logical links); 2) routing the logical links over physical links;
3) assigning wavelengths to the routes; and 4) routing packet
traffic on the logical topology. The authors only consider sub-
problems 1) and 4). Simulated annealing (which is NP-hard)
has been used to solve subproblem 1) and flow deviation to
solve subproblem 4). The drawbacks of the above approach are
as follows. 1) If the network is large then using the simulated
annealing approach will be computationally very expensive. 2)
It is not an integrated approach to solve the four subproblems;
rather, it considers subproblems one and four independently.

In [3] the authors formulated the logical topology design
problem as a linear program when the nodes were equipped
with wavelength changers. The objective of the formulation
was to minimize the average hop length of a logical link, with
the hope that the number of wavelength changers used could be
reduced and therefore this formulation could be approximated
to the formulation with no wavelength changers. The short-
comings of this approach are 1) that it works reasonably only
if the traffic matrix is balanced (this is because the objective
function does not include any traffic variables), 2) that it works
well only if the physical topology is dense in the number of
edges, and 3) that it only works when the network size (number
of nodes) is small because for large networks solving the
linear formulation (integer linear program) is computationally
expensive. Note that if the physical topology is sparse (it has
few edges) then the number of wavelength changers used
could increase (fewer alternate routes) and the resulting logical
topology would not reflect the traffic intensities between the
nodes. This in turn would increase the amount of packet traffic
carried on a per-wavelength basis. The wavelength continuity
constraint of [2] could not be introduced in [3] as this would
make the problem nonlinear.

In [1] the problem of logical topology design is considered
but the number of wavelengths the fiber supports is not a
constraint. The drawback in this approach is that the physical
topology becomes irrelevant for designing a logical topology.

D. Contribution of This Work

In this paper, we take care of all the drawbacks and short-
comings listed above. We present anexact linear formulation
[integer (0–1) linear program, or ILP] for designing a logical
topology with no wavelength changers. This formulation when
solved provides an optimal solution for the logical topology de-
sign problem. To the best of our knowledge, this is the first
time a linear formulation has been stated which provides an

optimal solution to the logical topology design problem. This
formulation generalizes the formulations of [2], [3], and [1], in
the sense that it includes a set of linear constraints which takes
care that a lightpath is assigned the same wavelength on every
hop (wavelength continuity constraints). Many parameters (ex-
plained in Section II-A) could be passed to the ILP to yield the
desired logical topology which minimizes congestion. Since the
objective of our linear formulation is minimizing the congestion
(maximum offered load on any logical link), the resulting log-
ical topology reflects the traffic intensities between the nodes.
Due to linearization, the topology design becomes considerably
easier. We also see that the relaxation of the ILP yields lower
bounds on the congestion and provides a performance reference
for any topology design heuristic algorithm. The number of con-
straints in our formulation grows as (number of – pairs

number of edges number of wavelengths). Though large,
this problem formulation could be useful for moderate-sized
networks. For larger networks, we develop heuristic algorithms
which use as inputs the solutions obtained by relaxing the in-
teger constraints in the integer linear program.

E. Lower Bounds on Congestion

Congestion as defined earlier is the maximum offered load
on any logical link. Congestion may be viewed as a function
of the various parameters of the network such as the traffic
matrix, number of wavelengths the fiber can support, resources
at each node (number of transmitters and receivers), the hop
lengths of the logical links, the multiplicity restrictions on the
logical topology, the multiplicity restrictions on the physical
topology, symmetry/asymmetry restrictions, and the propa-
gation delay [1]. Our linear formulation helps us investigate
the lower bounds on congestion for different values of the
above parameters. In [1] congestion as a function of the traffic
matrix, resources at each node, and propagation delay has been
studied. Here we consider other parameters: the number of
wavelengths available and the hop lengths of the logical links,
symmetry/asymmetry conditions, and multiplicity restriction.
We do not consider the propagation delay [1] as it makes
the formulation nonlinear. We compare the bounds obtained
previously with the bounds obtained by inclusion of the above
mentioned parameters.

F. Outline of the Paper

In Section II we give a precise formulation of the logical
topology design problem with no wavelength changers as a
mixed-integer (0–1) linear programming problem (MILP). In
Section III we introduce different constraints for the various
cases. We introduce the aggregate formulation in Section III-C
and a cutting plane in Section III-C-1 for the aggregate formu-
lation to improve the lower bounds on congestion. In Section IV
we give examples to show the interrelationship between the
various parameters. In Section IV-C we prove that under
certain conditions we can use equality logical link constraints
instead of inequality logical link constraints without affecting
congestion. In Section V we explain the rounding heuristics
and the wavelength assignment heuristics that are to be used
on the solutions obtained by solving the MILP with the integer
constraints being relaxed (relaxed problem). In Section VI we
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consider a moderately large network (NSFNET), which has
also been studied by previous researchers, and solve the relaxed
problem for this case and apply our logical topology design
algorithms. This yields upper bounds on congestion and on
the number of wavelengths. Numerical values are listed in the
tables for two different traffic matrices.

II. PROBLEM FORMULATION

We now formulate the logical topology design problem as a
mixed integer linear program (MILP). This formulation yields
a logical topology. We shall see in
Section III how we can modify the constraints to account for
any desired logical topology. We use the following notation.

, source and destination of a packet, when used as su-
perscripts;

, originating and terminating node of a logical link
(lightpath);

th multiple logical link between nodes terminating a
logical link;

, endpoints of a physical link;

wavelength number, when used as a superscript.

A. Parameters

number of nodes in the network;

is the traffic matrix, i.e., is the arrival
rate of packets at that are destined for;

existence of a physical link in the physical topology.
If then there is a fiber link between nodes

and , otherwise is 0;

maximum hop matrix. denotes the max-
imum number of hops that a logical link between
node and is permitted to take. If intermediate
wavelength routing nodes have to be configured for
establishing a logical link between nodeand node

then the hop length of that logical link is .
Let ;

number of wavelengths the fiber can support;

, number of transmitters and receivers, respectively,
at node .

B. Variables

1) Logical link variables: , if there exists a th
multiple logical link or directed edge , in the log-
ical topology; else .

2) Wavelength assignment variables:

a) , if the th logical link be-
tween node and node uses wavelength; else

.
b) , if the th the logical link between

node and node uses wavelength and is routed
through physical link ; else
.

3) Traffic intensity variables:

a) denotes the traffic intensity on theth
multiple logical link for the traffic between
source–destination pair .

b) denotes the total offered traffic on logical
link . , i.e.,

is the maximum flow on any logical link and
is termed thecongestionof the network.

C. Objective

Remark: The objective here is minimizing congestion. The
motivation for choosing this objective is that the electronic pro-
cessing (switching speed) requirement is proportional to the
congestion. If the switching speeds at the nodes are limited, then
minimizing congestion would be appropriate as it would enable
the traffic carried per wavelength to increase. In the examples
we have solved, we have noticed that if there is heavy traffic
between some source–destination pair, then there is a logical
link between them; this is a desirable property. This happens
because of the objective function, i.e., if there is heavy traffic
between node and node then because of the objective there
would tend to be an edge in the logical topology. If this
is not the case, then the traffic from nodeto node may have
to span many logical links before being delivered to its destina-
tion, which tends to increase the congestion.

D. Constraints

1) Logical link degree constraints:

for all

for all

and

Remark: The above constraint ensures that the number of
logical links originating (out-degree) and terminating (in-de-
gree) at node is less than or equal to the number of transmit-
ters and receivers at that node. For the six-node network and
the NSFNET, we considered the number of transmitters and re-
ceivers at each node are equal and are the same for every node.
We denote the number by. We also set , that is, no
multiple logical links allowed.

2) Wavelength continuity constraints:

a) Unique wavelength constraints

for all and

Remark: This ensures that if logical link exists, then
only one wavelength is assigned to it, among thepossible
choices.
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Note that where is the number
of wavelengths the fiber supports.

for all

and

Remark: The above equation ensures that only those
could be nonzero for which the corresponding
variables are nonzero. Let colorbe chosen for

a logical link . This implies that .
Then for all the other colors, , . Then the
above constraint would force for all
and .

b) Wavelength clash constraints

for all and

Remark: We are summing over all possible logical links
, at a physical link and for a wavelength. By

this we are assured that there is nowavelength clashat physical
link , i.e., no two logical links traversing through the
physical link will be assigned the same wavelength.

c) Conservation of wavelength constraints

if
if , for all and
if and

Variables and .
Remark: The above equation ensures that a wavelength is

conserved at every node for a logical link . We call this
the conservation of wavelength equationas it is analogous to
flow conservation equations in multicommodity flow problems.
Let logical link use wavelength. Then by conservation
of wavelength constraints there is a path in the physical topology
from node to node with wavelength assigned to it.

3) Traffic constraints

a) Traffic Routing Constraints

for all and

Remark: This ensures that the variable can have a
nonzero value if there exists a logical link (
). The traffic on logical link between the source–des-

tination pair is upper-bounded by the total flow of traffic
between .

for all and

for all and

Remark: The above two equations ensure that the load on
any logical link is no greater than the maximum load ,
which is being minimized.

b) Flow Conservation

if
if , for all
if and

Remark: The above is a flow conservation equation at each
node for the traffic between nodesand .

4) Hop Bound Constraints

for all and

Remark: Since we are summing over all the physical links
this ensures that the number of hops in a logical link is

bounded by .
Observation: The MILP is NP-hard. If in the MILP the

integer constraints are replaced by their continuous coun-
terparts, i.e., , ,

, the resulting LP is called theLP-relax-
ation of the MILP. Since our formulation is a minimization
problem the (objective) value of the LP-relaxation is a lower
bound on the MILP.

III. FORMULATION FOR VARIOUS CASES

A. Multiplicity in Physical Topology

To account for the multiple fibers in the physical topology,
we can modify the constraints of Section II as shown below.
Let there be multiple fibers on link . We have to
modify the variable to , where

. The conservation of wavelength con-
straints would have to suitably modified to take this additional
factor into account.

B. Symmetry Constraints

We have the following set of constraints to impose the sym-
metry restrictions.

for all and

Remark: The above ensures that if there arelogical links
from node to node then we will have logical links from
node to node . And also that the routing and wavelength as-
signment for the lightpaths associated with the logical links be-
tween node and node traverse the same set of physical links
and are assigned corresponding wavelengths (ifth logical link
from node to node is assigned wavelengththen th logical
link from node to node is also assigned wavelength).

C. Aggregate Formulation

In the MILP’s stated above, we have considered the traffic
between each source–destination pair as a com-

modity. This is usually referred to as a disaggregate formulation
[6]. We can get a more tractable aggregate MILP formulation
by identifying a commodity with each source, rather than each

pair as follows. Let be the total traffic
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from source , be the arrival rate of packets from source
on the th logical link , the arrival rate of packets

on the th multiple logical link from all sources, and
the maximum load on any logical link,viz., the conges-

tion, which we seek to minimize. Then, in the aggregate MILP
formulation, the logical link degree constraints and the wave-
length continuity constraints remain the same; only the traffic
constraints have to be modified. The modified traffic constraints
are as follows.

1) Traffic routing constraints:

for all and

for all

for all

2) Flow conservation:

if
if , for all and .

Cutting Plane: Following [6] we add the following cutting
plane to the MILP:

for all

Here is anya priori lower bound on , like the min-
imum flow tree bound [1].

We note that the above is superfluous in the MILP but (usu-
ally) becomes active in the relaxation of the MILP (an LP). We
solve the LP and get a lower bound, say, . Iteratively, we
can then set and solve the LP-relaxation
to get an improved lower bound . We will refer to
these bounds as theiterative LP-relaxation lower bounds. It is to
be noted that the LP-relaxation lower bounds in [1] are obtained
when there is no restriction on the number of wavelengths, and
the hop length. We could then use the lower bound of [1] as an
a priori lower bound on in our LP-relaxed problem.

IV. EXAMPLES FORVARIOUS CASES

We give examples to demonstrate how symmetric/asym-
metric restriction, multiplicity, wavelength and hop-bound
constraints affect congestion. In the notation for the logical
topology, if some of the arguments are dropped, then those
arguments are free parameters in the MILP. It is interesting
to note that if we drop the last two arguments, that is,and

, the logical topology design is no longer dependent on the
physical topology. We use the notation to denote the
optimal congestion value obtained by solving the MILP. The
first argument inside the parenthesis is the logical topology
desired and the second argument is the traffic matrix to be
routed on the logical topology. These are the parameters passed
to the MILP. For example
is the congestion obtained by solving the MILP, with the
restriction that the logical topology is-regular symmetric, has
no multiple edges allowed and the traffic matrix to be routed is

TABLE I
TRAFFIC MATRIX, T1

Fig. 4. �(LT (2; �; asym; 1); T1) = 1:00.

Fig. 5. �(LT (2; =; asym; 1); T1) = 1:33.

. But there is no restriction on the number of wavelengths
and on the number of hops taken by a lightpath.

In [1], various logical topologies are given which are of the
type . We note that the logical link con-
straints are equality constraints. This forces the restriction that
every node should use all its transmitters and receivers even
though it may not be required. We shall give examples to show
the surprising result thatby using inequality degree constraints,
we get lower congestion than that obtained by using equality
degree constraints. By using equality logical link constraints,
we enforce that a regular directed graph is the logical topology
on which we route packet traffic. Due to the regular nature of
the logical topology the packet traffic for a given source–desti-
nation pair may traverse more logical links than necessary. This
behavior tends to increase congestion. We shall derive the condi-
tions under which we can use equality degree constraints instead
of inequality degree constraints, without affecting congestion.

A. Equality/Inequality Constraints

We have to find a logical topology which minimizes con-
gestion. The traffic matrix between the nodes is given in
Table I. On solving the MILP we obtained the logical topology
shown in Fig. 4. Thus . But
if we had solved the MILP with equality degree constraints
then the congestion value obtained is 1.33. That is

(refer to Fig. 5). The above example
shows that equality constraints may at times increase con-
gestion. The MILP solution for

(refer to Fig. 6).
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TABLE II
TRAFFIC MATRIX, T2

Fig. 6. �(LT (2; �; sym; 1); T1) = 1:5.

Fig. 7. �(LT (3; �; sym; 1); T2) = 1:00.

Fig. 8. �(LT (3; =; sym; 1); T2) = 1:33.

Given below are examples when we consider symmetric
logical topologies. Consider the traffic matrix given in
Table II. In this case . The
logical topology corresponding to this is shown in Fig. 7.

and the logical topology is
shown in Fig. 8.

B. Multiplicity Constraints

We can also construct examples where multiplicity con-
straints affect the congestion value. Assume the traffic
matrix shown in Table III is to be routed. We note that

, in Fig. 9. And
, in Fig. 10. By permitting multiple

edges the congestion reduces by a third. For particular instances
we have the following relations:

and ,
. But in the general

case the inequalities are not strict.

C. Two Theorems on Multiplicity and Equality/Inequality
Constraints

The equality logical link constraints help in reducing the di-
mensionality of the search space in finding an optimal solution

TABLE III
TRAFFIC MATRIX, T3

Fig. 9. �(LT (3; =; sym; 1); T3) = 1:00.

Fig. 10. �(LT (3; =; sym; 2); T3) = 2=3.

and hence speed up the MILP. Hence it is important to know
when we can use equality constraints without affecting conges-
tion. The two theorems given below give us a criterion for im-
posing equality constraints.

Theorem 1: Consider a undirected graph with maximum de-
gree and let its underlying simple graph have minimum de-
gree . Let be the minimum congestion achieved for a given
traffic matrix by routing traffic on the undirected graph. Then we
can always construct a regular graph which achieves the same
congestion if the maximum allowed multiplicity ,
and is even. denotes the number of nodes in the graph.

Proof: In the undirected graph, we add edges between de-
ficient degree nodes. We can always do this whenever

. We stop adding edges to deficient degree nodes when
we are left with at most one deficient degree node. We note that
because and are not simultaneously odd, the deficiency de-
gree of this node must be even. Let the deficiency in degree of
the node be . We remove edges in the graph which do not
have the deficient degree node as one of their end points. For
each edge removed, we add the following two edges. Letbe
the removed edge and letbe the deficient degree vertex. We
add the edges and . By repeating the aforementioned step
for all the removed edges the deficiency of degree is satisfied.
The new graph is -regular and has a maximum multiplicity

. The congestion is the same because the traffic
on the removed edges (say,) now flows through the new paths
(edges and ).
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Corollary: , ,
when is even, where is the

number of nodes in the network.
Proof: Since the logical topology is symmetric we con-

struct a new graph wherein each bidirectional edge represent a
undirected edge. That is the edges and are replaced by
undirected edge , where and are the nodes in the logical
topology. We now apply Theorem 1 to this undirected graph.

Theorem 2: Consider a directed graph with maximum degree
and let its underlying simple directed graph have minimum

degree . Let be the minimum congestion achieved for a given
traffic matrix on that directed graph. Then we can always con-
struct a directed regular graph which achieves the same conges-
tion if the maximum allowed multiplicity .

Proof: To make up for the deficiency in degree of the ver-
tices, we can add edges to degree-deficient vertices. From the
above step we may assume that we would be left with at most
one vertex which has both in-degree deficiency and out-degree
deficiency or there may be more than one vertex which all have
in-degree or out-degree deficiency. The latter cannot happen be-
cause in that situation the condition for a directed graph “sum
of in-degrees sum of out-degrees” would be violated. It also
cannot be the case that the deficient degree vertex has out-degree
deficiency of the vertex the in-degree deficiency of the vertex
for the same reason. It follows that the deficiency of in-degree
should be equal to the deficiency of out-degree. Let the in-de-
gree deficiency out-degree deficiency . We adopt the fol-
lowing procedure to satisfy the deficiency of the vertex to make
the graph -regular. Pick edges in the deficient graph such
that the picked edges are not originating or terminating in the de-
ficient vertex. For every one of theedges we add the following
two edges. One edge is from the origin node of the picked edge
to the deficient degree node. Another edge is from the deficient
degree node to the destination node of the picked edge. This pro-
cedure constructs a -regular directed graph with multiplicity

which has the same congestion.
Corollary: , ,

Proof: By Theorem 2 we can construct an instance
of with the same congestion
obtained on .

The import of the two theorems is that if multiple edges is
not a constraint in the logical topology design, then it does not
matter if we have equality logical link constraints instead of
inequality logical link constraints.

D. Wavelengths and Hop Bound Constraints

Here we solve the MILP exactly and show the effect
of the number of wavelengths and hop bound constraint
on congestion. The parameters passed on to the MILP are

and the traffic matrix. This con-
figuration was chosen to compare the results presented in [1]
with the results presented here. The six-node network and the
traffic matrix considered here are the same as that considered
in [1, Fig. 4, Table I]. We solve the MILP formulation of
Section II for this network by varying the various parameters
(refer to Section II-A) and the solutions obtained are given
in Table IV. We considered three parameters, the hop length

TABLE IV
RESULTS FORSIX-NODE NETWORK

(hop bound), the number of wavelengths, and the degree of the
logical topology to be designed. The degree column in Table IV
denotes the number of transmitters or receivers present at each
of the nodes. The wavelength column denotes the number
of wavelengths available. The hop bound column denotes
the maximum number of hops any logical link is allowed
to take. The lower bound (LB) column denotes the iterative
LP-relaxation bound (25 iterations) and is called the LP-bound
on congestion. In Table IV “” indicates no restriction for
that particular column parameter. In the wavelength column
the first entry for a given degree is the first time the MILP
becomes feasible. For example for the degree four case the
LP-relaxation is infeasible for and hence the entry in the
wavelength column for the degree 4 case starts with the number
of wavelengths being three. We note that since we considered
three parameters, the degree, the number of wavelengths and
number of hops permissible, many combinations were possible.
We present results for some of the combinations. If a row entry
has a “ ” in the wavelength and in the hop bound column then
the LP-bound obtained for congestion in that row will be called
theunconditional congestion. Similarly the MILP solution will
be termed theunconditional MILP congestion. For example in
the degree 4 case the unconditional congestion is 0.887 and the
unconditional MILP congestion is 0.887. The MILP solution
is said to beexactwhen either the LP-relaxation solution for
congestion and a feasible solution obtained by solving the
MILP are equal, or a solution is obtained for the MILP through
exhaustive search of the feasible set of integer solutions. For
example for the degree one case the unconditional congestion
is 5.92 but by exhaustive search the MILP solution obtained
is 7.077 for the congestion. In the degree 5 case the uncondi-
tional congestion is 0.710 and the branch and bound routine
for solving the MILP was terminated after a solution with
congestion 0.710 was found (hence this solution is exact).

In Fig. 11 is shown a possible logical interconnection between
the wavelength routing nodes of the six-node network. In this
figure if node 0 wants to send data to node 1 then the data un-
dergo an optical to electronic and electronic to optical conver-
sion, at nodes five, four, three and two. This topology was ob-
tained by solving the MILP by fixing the number of wavelengths
that can be used to one, the in-degree and out-degree of each of
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Fig. 11. � = 1; F = 1, hop-bound�1, � = 7:36.

Fig. 12. � = 1; F = 1, hop-bound�2, � = 7:077.

Fig. 13. � = 2; F = 1, hop-bound�1, � = 2:340.

the nodes in the logical topology to one (note that this would
imply that each node is equipped with one transmitter and one
receiver) and the maximum hop-length to one. In this situation
there can only be two possible solutions for the logical topology
design, the clockwise ring or
the anti-clockwise ring . For the
clockwise ring the congestion is 9.36 and for the anti-clockwise
ring the congestion is 7.36. Thus the congestion value obtained
by solving the MILP was 7.36 and the logical topology obtained
was the anti-clockwise ring.

By changing the maximum hop length from one to two and
by fixing all other parameters as in Fig. 11 the logical topology
and the congestion obtained by solving the MILP are shown in
Fig. 12. We see that by increasing the hop length the congestion
is reduced from 7.36 to 7.077. The unconditional MILP conges-
tion for this case is 7.077. Therefore when the number of wave-
lengths available is one and the maximum hop length permitted
is less than or equal to two anoptimal solutionis obtained, i.e.,
the congestion cannot be decreased further by increasing the
number of wavelengths and the number of hops permitted.

In Fig. 13 is shown the logical topology and routes of the
logical links obtained by solving the MILP when the degree is
fixed at two, the number of wavelengths permitted is one and
the hop bound (the maximum hop length permitted) is one. A
congestion of 2.340 was obtained by exhaustive search of the
search space by a branch and bound routine.

Next we increased the hop bound of the logical link to two,
keeping all other parameters fixed. The result obtained is shown
in Fig. 14. The congestion is reduced to 2.210. This is because
of the two-hop logical links the first between node 3 and node
1, and the second between node 4 and node 2, which reduced
the congestion on logical links (3,2) and (4,5) of Fig. 13.

In the next case the hop length permissible was the same (two)
but the number of wavelengths available was increased to two.

Fig. 14. � = 2; F = 1, hop-bound<= 2, � = 2:210.

Fig. 15. � = 2; F = 2, hop-bound<= 2, � = 2:042.

The resulting logical topology with routes is shown in Fig. 15.
Since the number of wavelengths permitted was increased to
two many more routes were possible thereby reducing the con-
gestion to 2.042 which is the unconditional congestion. Thus
the congestion cannot be decreased further by increasing the
number of wavelengths and the number of hops permitted.

V. TOPOLOGYDESIGN ALGORITHMS

A. Rounding Heuristic

In order to obtain a feasible logical topology with routing
and wavelength assignment we consider the solutions of the re-
laxed MILP [LP obtained by relaxing the integer constraints on

and ].
In this solution we first round s to 1 or 0.
Various schemes are proposed in [1] for rounding the logical

link variables, s. We employ the following algorithm to
round the logical links variables. The most natural way to con-
struct a 0–1 MILP feasible solution from the LP solution ob-
tained by relaxing the integer constraints is to sequentially set
the variables whose value is closer to one to one, and variables
whose value is closer to zero to zero, while maintaining feasi-
bility. The rounding algorithms given here essentially do this.
List the s obtained by iterative LP-relaxation (number of
iterations were 25) in decreasing order. Round each successive
value of to one if the degree constraints are not violated,
and to zero otherwise. Note that this is called LPLDA in [1].
After rounding s we now have a logical topology without
the routes and wavelength assignment for logical links. We solve
the LP with the traffic constraints only (Section II-D) with the
objective being to minimize congestion. Thus we get an upper
bound on congestion for the logical topology.

To obtain the lightpaths for the logical links we now round
the and variables. We use the following
max-round algorithmfor rounding .

Max-Round Algorithm:If then ;
for all . If then is set to one and
the rest to zeros. A tie is broken by choosing the largest index.

Let us assume that by the rounding heuristic mentioned above
we have set and . By the conservation
of wavelength equations we are guaranteed that between node
andnode thereisat leastonepathwithwavelengthassignment.
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Among the possible set of paths from nodeto node with
wavelength assignmentwe use the following algorithm to pick
a path.

• Step 1: Let be

• Step 2: If then stop. Else let be

• Step 3: If then stop. Else assignto and continue
with step 2.

After this we set if it is in the picked path,

, otherwise.

B. Wavelength Assignment Heuristic

We now have the logical topology, the sequence of hops
(physical edges the logical links takes), and also a tentative
wavelength assignment. But the assignment is still not free of
wavelength clash, i.e., two logical links may have the same
wavelength assigned to it and have a common hop (physical
edge in common). There are two approaches for wavelength
clash-free assignment.1: We develop heuristic algorithms to
assign wavelengths to the logical links which have a wavelength
clash, and come up with a clash-free wavelength assignment.
2: Since we know the paths taken by the logical links, we
can construct a path-graph as done in [4], and [5]. We note
that the chromatic number of the path-graph is the number
of wavelengths required. Both approaches were tried and not
much difference was found between them. In this paper we
have used the second approach. Many heuristics are given in
[5] and in [4] for vertex coloring a graph. We note that in [11]
a greedy algorithm is described for wavelength assignment.
In this paper we present results for one of the four heuristics
described in [4] to obtain a valid coloring of the path graph. The
results obtained with the other three heuristics were similar. For
the sake of completeness we now describe the heuristic from
[4] for which we will present the results. We first sort the nodes
as follows. Let denote the number of nodes in a path graph

. step 0 (Initialization): Let , and let the current graph
be the path-graph . step 1: Pick the node with the smallest
degree, say node, in the current graph. Let .
step 2: Replace the current graph with the graph obtained by
removing node. If the remaining graph is a trivial graph (one
vertex remains), stop. Else, set and go tostep 2.

Once the nodes of the path-graph are sorted, they are colored
by sequentially descending the list of nodes and assigning the
first available color to each node in the list.

VI. PRACTICAL EXAMPLE

Here we consider a moderately large network, the 14-node
National Science Foundation network [1, Fig. 6], shown in
Fig. 16. To solve the MILP and the LPs we used IBM’s
Optimization Subroutine Library (OSL) routines on an IBM
43P/RS6000.

A. NSFNET

The NSFNET, shown in Fig. 16 [1, Fig. 6], is a 14-node net-
work with 21 edges. Each edge represents a pair of directional
edges. The pair of directional edges represents a pair of fibers,

Fig. 16. National Science Foundation network.

one in each direction. The results reported here are for the case
where the logical link constraints are satisfied with equality,
there is no symmetry requirement, multiplicity is not allowed,
and there are no hop bound constraints. The number of wave-
lengths, the degree of the logical topology to be designed, the
traffic matrix, and the physical topology are the parameters con-
sidered for the above case. The above configuration was mainly
chosen so as to compare our topology design algorithm with
that given in [1], [7]. Tables V and VI give the results for two
different traffic matrices and . They are the same traffic
matrices as used in [1, Tables III and IV, respectively].

1) Feasibility of LP-Relaxation:If we had an MILP with in-
equality degree constraints, then we would always have a fea-
sible solution if the physical topology has a directed Hamil-
tonian circuit. (In this case, the edges occurring in the Hamil-
tonian circuit constitute a logical topology with degree 1.) But
since we are insisting on equality degree constraints so as to
speed up the MILP by reducing the dimensionality of the search
space, it is important to keep track of the feasibility of the MILP.
Since the decision problem (feasibility problem) for the MILP
is NP-hard and the network sizes are not small, at best we can
check for feasibility of the LP-relaxation. An MILP or an LP
is feasible if there is an assignment of variables which satis-
fies the constraints. Let denote the minimum number
of wavelengths that are required to make the LP-relaxation fea-
sible. Note that is the degree of the logical topology to be de-
signed. We observe that for nodes the number of source–des-
tination pairs is . In the worst case if we allocate one
wavelength for each pair then we require wave-
lengths. The range of , the number of wavelengths available,
for the problem to become feasible, is between 1 and

. We could do a binary search, taking logarithmic number of
steps, in the range , to find
for which the LP-relaxation becomes feasible. For example, in
Table V we see that and .

2) Discussion of Results Obtained:In Tables V and VI
under theLP-Relaxationheading there are three columns,
viz., degree, wavelength , and lower bound on congestion.
The degree ( ) specifies the degree of the logical topology to
be designed. Wavelength denotes the number of wavelengths
available which is the parameter (Section II-A). The lower
bound (LB) on congestion denotes the solution (the objective
value) of the LP-Relaxation. For example, in the degree 2 case
with 4 wavelengths, the lower bound on congestion is 126.74.
Under theHeuristicheading there are two columns,viz., upper
bound (UB) on congestion and the number of wavelengths.
As explained in Section V we employ the rounding heuristic
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TABLE V
RESULTS FORNSFNET: TRAFFIC MATRIX P1

(Section V-A) on the solutions obtained by solving the LP-Re-
laxation to get a feasible set of integer solutions, i.e., we now
have a -regular logical topology and the routes for the logical
links of the logical topology. We then obtain an upper bound on
congestion by solving an LP (Section V). Since we now have
the routes for the logical links we obtain a wavelength-clash
free assignment by using the wavelength assignment heuristic
algorithm (Section V-B). The number of wavelengths required
is tabulated in the wavelength column under theHeuristic
heading.

Under theprevious workheading the results mentioned in the
lower bound column are from [1]. In [1] and [7] some heuristic
algorithms were developed to round the variables to de-
sign the logical topology. A shortest path route for the logical
links in the logical topology was chosen because the number of
wavelengths available was not a constraint in [1] and [7]. The
upper bound on congestion (obtained from the heuristic) shown
in the last column is from [7] and [1]. We refer to them asun-
conditional lower boundandunconditional upper bound. For

TABLE VI
RESULTS FORNSFNET: TRAFFIC MATRIX P2

example, in Table V, we see that for the degree two case the un-
conditional lower bound is 126.18 and the unconditional upper
bound of [7] is 147.679 and of [1] is 243.43. By our heuristic
for the degree 2 case we obtain a congestion of 145.738 with
four wavelengths which is an improvement over the previous
upper bounds on congestion, even though they did not consider
the number of wavelengths as a constraint. However, we do not
understand intuitively why this is the case.

In Table V for the degree 3 case and with two wavelengths the
lower bound on congestion is 84.58. The upper bound for the
same is 139.478. The wavelength assignment heuristic required
three wavelengths for a wavelength-clash free assignment for
the routes of the logical links in the logical topology obtained
by the rounding heuristic. It is not always guaranteed that the
LP-relaxation parameter and the number of wavelengths re-
quired by the heuristic are the same. Our heuristic gives an upper
bound on the number of wavelengths required for designing the
required logical topology. In the above case we need at most
three wavelengths for designing a degree 3 logical topology for
which the congestion obtained is 139.478. In Table V for the
degree 5 case with four wavelengths, the lower bound on con-
gestion is 50.74 and the upper bound is 57.835 and the number
of wavelengths required by the heuristic is 4 which is equal to
the parameter . We see that in Table VI for the degree 6 case
with four wavelengths, the lower bound on congestion is 94.89
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and the upper bound on congestion is also 94.89 but the number
of wavelengths required by the heuristic is five. In the same table
for the degree 8 case, the parameteris 6, which is the same as
that required by the heuristic and the lower bound and the upper
bound on congestion both equal 71.17. In such a situation, we
say that the heuristic solutions areoptimal. In the tables, the op-
timal solutions are italicized.

It was observed that in many cases the lower bound did not
change with the number of wavelengths for a fixed degree. But
the heuristic reduced the congestion. This is due to the fact that
the LP-relaxation tends to use all the wavelengths available.
This helps the rounding heuristic in choosing among many al-
ternate paths and so the congestion drops. For example for the
degree 2 case (traffic matrix ) the LP-bound is the same when

is equal to 2, 3, and 4, but the congestion achieved by the
heuristic dropped from 273.89 to 145.73.

In many cases the heuristic bounds on congestion obtained
by us are an improvement over the previous results but in a very
few cases they are worse. The heuristic wavelength assignment
algorithm in many cases achieves optimal assignment for the
higher degree cases. For example, for the degree 13 case for both
the traffic matrices the minimum for which the LP-relaxation
become feasible is feasible 13 and 13 wavelengths are used by
the wavelength assignment heuristic. It can be observed that for
higher degree the congestion obtained by the heuristic and the
lower bound are almost equal. From degree 5 onwards, for the

traffic matrix the lower bound and the congestion obtained
by the heuristic are equal.

3) Complexity: In the MILP the number of constraints and
the number of variables grow approximately as
number of edges multiplicity factor). On the average the LP
solver took around five minutes on an IBM 43P/RS6000 to solve
one iteration of the relaxed MILP problem. The running times
of the rounding heuristics were less than a minute.

4) Equality Degree Constraints:It was shown by examples
in Section IV that the congestion obtained by using inequality
degree constraints would be less than the congestion obtained
by using equality degree constraints with all other parameters
being the same for both cases. The feasibility of the LP with
equality degree constraints would force the requirement of a
larger than necessary. This is certainly a disadvantage but at
the same time equality constraints would speed up the branch
and bound routine method used for solving the mixed integer
linear program. It is our computational experience that in all the
cases for the NSFNET example the congestion obtained by the
solving the LP with inequality degree constraints was the same
as that got by solving the LP with equality degree constraints.

VII. CONCLUSION

An exact linear formulation was presented for the logical
topology design problem with no wavelength changers. The
wavelength continuity constraints presented here linearized
the problem which hitherto was formulated with a set of non-
linear constraints. The cutting plane of Section III-C-1 when
incorporated into the aggregate formulation helped in getting
good lower bounds on congestion for the six-node network and
NSFNET. In Section III, formulations were presented to take

care of symmetry constraints (Section III-B), and multiplicity
of optical fibers in the physical topology (Section III-A). In
Section IV various examples were shown to illustrate how sym-
metry/asymmetry affects the logical topology design problem.
In Section IV-C two theorems were presented which provided
a criterion for determining when equality degree constraints
can be used without increasing congestion.

We observe that since we are minimizing congestion in the
network the electronic processing of traffic per wavelength de-
creases. If we have some set of nodes in the network which
has a heavy traffic flow among its members then having mul-
tiple edges between some pairs of nodes in that set may reduce
the overall congestion. This would reduce the electronic pro-
cessing per wavelength in the network. Reduction in electronic
processing of traffic would be beneficial in a high-speed net-
work environment.

For the six-node network, we investigated the tradeoffs
among the number of wavelengths the fiber can support, the
hop lengths of the logical links and the congestion. We note
that the LP-bounds for the six-node network did not vary with
the hop bound parameter or with the wavelength parameter.
For small networks we could solve the MILP exactly but for
networks of larger size like the NSFNET we had to use the
topology design algorithms developed in Section V. The perfor-
mance of the topology design algorithms obtained by rounding
the solutions of the LP-relaxation problem was very close to
the lower bounds when the logical topology to be designed had
a high degree. The rounding heuristic of Section V-A tries to
find a route for a logical link which has a large utilization of a
wavelength on it. This helps in finding a logical topology which
will reduce congestion. The wavelength assignment heuristic
given in [4] has been used to assign wavelengths for the logical
links. We see that the number of wavelengths needed by the
wavelength assignment heuristic (refer Section V-B) and the
number wavelengths considered for the LP-relaxation (second
column of Tables V and VI) are quite close in many cases.
In some of the lower degree cases there is a large difference
between the upper and lower bounds on congestion. This
calls for for some more cutting planes to be added to the
LP-relaxation so as to improve the lower bound. It may also be
the case that the heuristic has to be improved. This is still under
investigation. In general the iterative LP-relaxation bound for
congestion with wavelength continuity constraints did not
significantly vary with the parameter but the rounding of the
LP-solution gave good results.

Most importantly, the upper bounds obtained for congestion
using our heuristic topology design algorithm were very close to
the lower bounds, especially for the higher degree cases, which
indicates that this a good heuristic for logical topology design.
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