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4) In [9, Sec. 3.4.3], the authors have tried to extract all the
sentences into an equivalent sentence over GF (2), which
is a very cumbersome step. Instead we apply a hierarchical
generation of the ROFDD, which reduces the overall time that
is required. This point on time complexity is reflected in the
discussion presented in Section IV of our paper.

VI. CONCLUSION

This paper shows a hierarchical technique of generation of ROFDDs
for Galois field circuits using the isomorphism between GF (2m) and
GF (2n)p, where m = np. Theoretically, it has been explained how
the algorithms lead to savings in terms of time and space according
to the resources of the environment. Experimental results have been
provided to support the claim. The approach for the hierarchical
construction of the DDs may be applied recursively in order to magnify
the gains of a single iteration.
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Design of Low-Complexity FIR Filters Based on
Signed-Powers-of-Two Coefficients With

Reusable Common Subexpressions

Fei Xu, Chip Hong Chang, and Ching Chuen Jong

Abstract—In this paper, a new efficient algorithm is proposed for the
synthesis of low-complexity finite-impulse response (FIR) filters with re-
source sharing. The original problem statement based on the minimization
of signed-power-of-two (SPT) terms has been reformulated to account for
the sharable adders. The minimization of common SPT (CSPT) terms that
were considered in our proposed algorithm addresses the optimization of
the reusability of adders for two major types of common subexpressions,
together with the minimization of adders that are needed for the spare
SPT terms. The coefficient set is synthesized in two stages. In the first stage,
CSPT terms in the vicinity of the scaled and rounded canonical signed digit
(CSD) coefficients are allocated to obtain a CSD coefficient set, with the
total number of CSPT terms not exceeding the initial coefficient set. The
balanced normalized peak ripple magnitude due to the quantization error
is fulfilled in the second stage by a local search method. The algorithm
uses a common-subexpression-based hamming weight pyramid to seek for
low-cost candidate coefficients with preferential consideration of shared
common subexpressions. Experimental results demonstrate that our
algorithm is capable of synthesizing FIR filters with the least CSPT terms
compared with existing filter synthesis algorithms.

Index Terms—Canonical signed digit (CSD), common subexpression,
filter synthesis.

I. INTRODUCTION

Finite-impulse response (FIR) filters play a vital role in modern
communication system because of its versatility, stability, and simplic-
ity [1]–[9]. As multipliers are generally agreed to be a power-hungry
device and occupy a large silicon area, the trend toward the design
of fixed-point FIR filters is to replace the expensive multiplication
operations by simpler additions and hardwired shifters [7]–[13]. The
basic principle behind the design of FIR filter for multiplierless im-
plementation is to approximate each filter coefficient with a minimal
number of signed-power-of-two (SPT) terms. The process of finding
the SPT terms to represent the real coefficient set is called the filter
coefficient synthesis. In this way, the filter complexity is determined
by the number of additions/subtractions required to implement the
multiplications, which, in turn, is directly related to the number of SPT
terms used to synthesize the filter coefficients. Thus, the constrained
optimization problem becomes one of finding a set of filter coefficients
with a minimal number of SPT terms that satisfy a given magnitude
response specification [1]–[5], [14]–[24]. A minimum representation
refers to a representation of a numeral that has the minimum number
of SPT terms. The canonical signed digit (CSD) representation is one
of the most commonly used minimum representations in digital filter
coefficient synthesis [25], [26]. There exist a number of algorithms for
synthesizing CSD coefficients to minimize the number of SPT terms
that are required for the implementation of a low-complexity FIR filter
[1]–[5], [14]–[24].

The filter transfer function that is to be met by digital implementa-
tion is always constrained by the finite wordlength used to represent
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the real-valued filter coefficients. In this respect, quantization errors
have to be addressed to ensure that the quantized coefficient set still
meets the magnitude response specification. Filter coefficient synthesis
methodologies can generally be categorized into two types, namely,
the optimal approaches and the suboptimal approaches. The mixed
integer linear programming (MILP) is frequently employed in the op-
timal approach [7], [14], [18], [24]. The main drawback of the optimal
approach is its formidable computation time, especially for filters with
a large number of taps. On the other hand, the suboptimal approaches
do not guarantee optimal results, but quasi-optimal results are obtained
in reasonable time. The most popular suboptimal approach is the local
search approach. It is based on the observation that the desired solution
usually lies in the vicinity of the real-valued coefficient set. Hence, the
heuristic search starts with the real-valued coefficient set and search in
its neighborhood to obtain the minimal solution. The computation time
for the local search method depends very much on the neighborhood
size. Kodek and Steiglitz [14] mentioned in their paper that the
bivariate search, where the rounded coefficients are varied by ±1
quantization step size, yields better results than a univariate local
search. Thereafter, the bivariate method has become a common method
for constructing the neighborhood around the scaled and rounded
coefficients in a local search, although the amount of quantizations
enumerated varies in different methods. Samueli [21] proposed a
bivariate local search method whereby the filter response is simulated
for every change in a coefficient. Chen and Willson [5] developed a
two-stage local search scheme by applying the trellis search algorithm.
Instead of rigidly limiting the number of SPT terms per coefficient, this
algorithm allocates the SPT terms dynamically to locations that best
improve the filter’s frequency response. The computation time of the
local search algorithm does not grow exponentially as the filter length
increases. However, there is a risk of stuck at the local minimum.
This problem is very difficult to tackle, and there is no solution to
it, according to the authors, other than adjusting the initial set of
coefficients. Other suboptimal approaches are the tree search with least
squares optimization [15], [17], stochastic optimization [2], [4], and
quantization by coefficient sensitivity [1], [22] among many others.

After the filter synthesis step, the coefficient set can be implemented
in different filter structures. The transposed direct form structure has
been the preferred architecture over direct form structure for high-
speed high-order fixed filter implementation since its critical path
delay is independent of the number of taps. The transposition the-
orem recasts the inner-product-based transfer function into a single-
input–multiple-output combinational circuit and an accumulator-delay
line. The system of constant mutliplier circuits can be modeled as
a multiple constant multiplications (MCM) block [10] in high-level
synthesis where redundancy is sought for hardware reduction [6],
[9]–[11]. The common subexpression elimination (CSE) algorithms
[9]–[11] search for common subexpressions to maximize the reuse of
the products of the input and common subexpressions. The SPT terms
in the coefficients are merged to form the common subexpressions,
and the hardware cost is no longer proportional to the number of SPT
terms. The hardware cost, which is simplified to the number of adders,
is determined by the number of occurrences of common subexpres-
sions and the number of spare SPT terms. This poses the skepticism
to earlier postulation that a coefficient set with less SPT terms will
also yield a solution with a less adder cost. The excess SPT terms
may compose more common subexpressions that can be shared across
coefficients and, hence, reduce the adder cost for the implementation
of the FIR filter. A few researchers have tried the integration of the
CSE step with the synthesis step. Chen and Willson [5] mentioned
additionally that they had merged the common subexpressions 101 and
101 before trellis search, and the results showed that the merge–trellis
search realized a saving of 18%–23% of the carry–save adders

(CSAs) for the CSA-tree-based transposed direct form architecture.
Yli-Kaakinen and Saramaki’s algorithm [24] involved the sharing of a
higher weight common subexpression. Yli-Kaakinen and Saramaki’s
algorithm first generates a lookup table containing all possible power-
of-two numbers for a given wordlength and a given maximum number
of SPT terms per coefficient, and then a branch-and-bound procedure
is applied to evaluate the coefficient sets. Existing CSE algorithms are
applied in Yli-Kaakinen and Saramaki’s algorithm. A MILP problem
for designing FIR filters that incorporate subexpression sharing was
formulated by Gustafsson and Wanhammar [7]. In [19], Rosa et al.
also proposed an algorithm that performs CSE on selected coefficient
sets of weight n based on the filter specifications. In [3], the number
of adders from CSE is used as a criterion in their design of peak-
constrained least squares FIR filters. However, these algorithms either
restrict the occurrences of common subexpressions by merging SPT
terms before the minimization process based on an initial coefficient
set or relying on an exhaustive search for the identification of common
subexpressions, which become inefficient for large coefficient sets.

This paper presents a new algorithm for the design of a low-
complexity FIR filter that blends common subexpression elimination
with the filter coefficient synthesis algorithm right from the magnitude
response specification [12]. We treat the synthesis problem with the
consideration of common subexpressions and solve it heuristically in
two stages. Two most frequently used common subexpressions 101
and 101 and spare SPT terms in each coefficient are treated as common
SPT (CSPT) terms to be optimized simultaneously. By limiting the
number of CSPT terms to no more than that of the rounded CSD
coefficient set, the first stage of our algorithm has the freedom to
allocate any CSD coefficient in the vicinity of the rounded coefficient
set to increase the occurrences of the two chosen common subex-
pressions while reducing the total number of spare SPT terms in the
minimal CSD coefficient set. The unfulfilled normalized peak ripple
magnitude (NPRM) in the first stage due to the quantization error is
compensated in the second stage by an efficient wordlength-dependent
adaptive neighborhood search method. The solutions generated by our
algorithm can also be further optimized to lower the adder cost by
applying higher weight common subexpressions sharing as in the work
of Yli-Kaakinen and Saramaki’s [19].

This paper is organized as follows. Section II states the problem
formulation of our filter synthesis algorithm. The notion of hamming
weight pyramid (HWP) and its modified version is introduced in
Section III, where our proposed two-stage integrated algorithm is also
presented. We compare our algorithm with other algorithms using two
well-known design examples in Section IV. The paper is concluded
in Section V.

II. COEFFICIENT SYNTHESIS PROBLEM FORMULATION

For fixed-point FIR filter implementation, the frequency response
error due to truncation or rounding of real-valued filter coefficients is to
be minimized. In most practical applications, the magnitude response
of an FIR filter needs not be zero at stopband nor be constant over the
entire passband. To synthesize a set of finite wordlength coefficients,
the absolute value of the passband gain is immaterial. What matters
most is the relative attenuation between the passband and stopband.
Therefore, the NPRM, which is defined as the peak ripple magnitude
divided by passband gain [18], is often used as a parameter to guide
the synthesis of filter coefficients. That is,

NPRM = max

{
δpωp

g
,
δsωs

g

}
(1)

where g is the average passband gain, δp and δs are the passband
and stopband ripples, respectively, and ωp and ωs are the bandedge
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frequencies at the end of passband and the beginning of stopband,
respectively.

The coefficient multiplications involved in the convolution deter-
mine the complexity of digital filters. The hardware cost can be
reduced by representing the coefficients as sums of SPT terms to
replace the multiplications by shift-and-add circuits. A filter coefficient
hspt(i) can be expressed as a sum of SPT terms [5], i.e.,

hspt(i) =

Li∑
k=1

si,k2−pi,k (2)

where si,k ∈ {−1, 1} is the kth SPT term at bit position pi,k ∈
{1, 2, . . . , B}. It is assumed without loss of generality that 0 ≤
|hspt(i)| < 1, and hspt(i) has a wordlength of B bits and comprises
Li SPT terms.

Thus, the fundamental optimization problem becomes one of syn-
thesizing a set of coefficients for an N -tap filter that minimizes the
total number of SPT terms J , i.e.,

J =

N∑
i=1

Li∑
k=1

|si,k| (3)

subject to the objective function of the minimal NPRM constraint
depicted in (1).

The minimization criterion J of (3), which is adopted by most
filter coefficient synthesis algorithms, does not consider the possibility
of sharing common subexpressions to reduce the adder cost. The
detection of good common subexpressions to eliminate redundant
computations can further reduce the implementation complexity.

CSD representation has the least SPT terms. Asymptotically, an
n-bit CSD number can be broken down into n/18 + O(1) pairs of
101 subexpression, n/18 + O(1) pairs of 101 subexpression, and
n/9 + O(1) isolated 1 or 1. Referring to a 101 pair, a 101 pair, or
an otherwise isolated nonzero digit as a term, it can be proved that
the asymptotic expected number of terms in an n-bit CSD number
is 2(n + 1)/9. This represents a 33% saving compared with the total
number of nonzero digits, which is (3n + 1)/9 [9]. By considering the
shortest two nonzero digit common subexpressions 101 and 101 in this
paper, the operand width and, hence, the area and time complexity of
the adder used for their generation, is reduced. In addition, neglecting
other common subexpressions also reduces the search space of the
algorithm and simplifies layout. Common subexpressions with a low
frequency of reuse increase the difficulty to maintain a well-structured
filter layout style. Hartley [9] showed that substantial hardware reduc-
tion (about 30%) can be achieved by finding the occurrences of only
the two common subexpressions 101 and 101, with little adverse effect
on routability.

By extracting the common subexpressions x101 = x � 2 + x and
x101̄ = x � 2 − x from (2), the general expression for hspt(i) can
be rewritten as

hcspt(i) =

L101,i∑
k=1

cs101
i,k

(
2−p101

i,k
+2 + 2−p101

i,k

)

+

L101̄,i∑
k=1

cs101̄
i,k

(
2
−p101̄

i,k
+2− 2

−p101̄
i,k

)
+

L′
i∑

k=0

s′i,k2−p′
i,k (4)

where cs101
i,k , cs101̄

i,k ∈ {1, 1} are the signs of the common subexpres-
sions 101 and 101 that are present in the ith coefficient with its
least significant digit located at positions p101

i,k and p101̄
i,k , respectively.

s′i,k ∈ {1, 1} are isolated SPT terms (not belonging to any common

subexpression) in the ith coefficient located at digit position p′
i,k.

pi,k, p′
i,k ∈ {1, 2, . . . , B} for a B-bit coefficient. L101,i and L101̄,i are

the number of common subexpressions of types 101 and 101, respec-
tively. L′

i = Li − 2(L101,i + L101̄,i) is the number of SPT terms of
the ith coefficient that are not present in any common subexpression,
whereas Li is the total number of SPT terms.

An adder is required to generate each of the common subexpressions
101 and 101 once before these common subexpressions can be shared
among the coefficients that embrace them. Each isolated SPT term that
is not part of a common subexpression requires one adder. Therefore,
the total number of adders required to implement the multiplication
block of a transposed direct form filter is bounded by

Cost ≤ 2 +

N∑
i=1

(L′
i + L101,i + L101̄) . (5)

The equality of (5) happens when each of 101 and 101 occurs at
least twice. The adder cost is minimized by maximizing the values
of L101,i and L101̄,i bounded by the allowable number of SPT

terms
∑N

i=1
Li of the coefficient set. Therefore, the objective of

our proposed SPT coefficient synthesis algorithm for low-complexity
FIR filters will be recast to that of reducing the combined number
of common subexpressions and nonsharable SPT terms L′ in each
coefficient, i.e.,

J ′ =

N∑
i=1

L′
i + L101,i + L101̄,i (6)

subject to the minimal NPRM constraint of the desired amplitude
response specification. Therefore, the number of CSPT terms L′

i +
L101,i + L101̄,i instead of Li becomes the new minimization criterion.

The advantage of having filter coefficients with many shared com-
mon subexpressions is that under the same limit of adders allowed for
each tap, effectively more SPT terms can be assigned to a coefficient
to improve the coefficient’s precision, thereby leading to a better
approximation to the desired frequency response characteristics.

III. THE PROPOSED ALGORITHM

As the desired objective function of minimizing the NPRM is
nonlinear [18], heuristic optimization of multiple constraints in a
single run is susceptible to the local minimum problem due to poor
initial condition. If a reasonable upper bound on the CSPT terms based
on the rounded CSD coefficients is imposed, a quality initial CSD
coefficient set can be obtained. This preliminary coefficient set may
not meet the desired amplitude response specification. Its NPRM can
be further optimized until the specification is met by slightly relaxing
the allowable number of CSPT terms. These two processes require the
location of CSD numbers with a specific number of CSPT terms or the
determination of the number of CSPT terms of a specific CSD number.
Therefore, we devise a search tool for the CSD numbers that specially
treats subexpressions 101 and 101.

In [26], we proposed an HWP to succinctly compress the informa-
tion about the distribution of the hamming weights of CSD numbers,
and it can serve as a useful search tool for the nearest neighbors to a
CSD number with a similar or lower hamming weight. Fig. 1 shows
the pyramid of the hamming weights of CSD numbers 2r + c, where
r and c correspond to the row number and the offset from the center
column of the pyramid, respectively. By reading the weights in a top-
down and left-right order, the integers in the pyramid correspond to the
CSD representations of natural number sequence 1, 2, 3, 4,. . ..
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Fig. 1. HWP.

Fig. 2. CS-HWP.

In order to account for the saving of one adder by considering 101
and 101 as common subexpressions, the HWP of Fig. 1 needs to be re-
vamped so that it can be useful for seeking nearest CSD numbers with
an equal or lower adder cost. Based on the adder cost of (5), it would be
logical to reduce the hamming weight by one for each nonoverlapping
string of either 101 or 101 encountered in a CSD number. The resultant
HWP is shown in Fig. 2, and it is called the common-subexpression-
based HWP (CS-HWP). For example, the CSD number of decimal 19
is 10101. It corresponds to the entries in row 4 column 3 of HWP
and CS-HWP. Its hamming weight is 3 in Fig. 1 but is reduced to
2 in Fig. 2 due to the presence of subexpression 101. In short, each
nonoverlapping string of 101 and 101 is treated as a single CSPT term,
and the number of CSPT terms can be obtained from the CS-HWP.

In what follows, a two-stage algorithm for the design of a low-
complexity FIR filter is presented. In the first stage, a set of CSD
coefficients in the continuum of the rounded CSD coefficients with
a minimal filter response error and yet contains no more CSPT terms
than the rounded CSD coefficient set is generated. The balanced
NPRM budget to the desired response due to the quantization error of
the obtained CSD coefficient set is compensated in the second stage.
The first stage is called the CSPT coefficient allocation stage, and the
second stage is called the quantization compensation stage.

A. CSPT Coefficient Allocation

In [17], Lim and Parker mentioned that, for a minimax design,
the optimal coefficient set is usually not the one that is obtained by
rounding but the optimal CSD coefficients do lie near the rounded
ones. During our experiments, we found that the rounding process has
a strong influence on the filter frequency response. Rounding a real-
valued coefficient set fulfilling an amplitude response specification to
its finite wordlength CSD coefficients are quite likely to fail under the
same specification. The aim of this allocation stage is to search for a
good initial CSD coefficient set with a reduced number of CSPT terms
by considering common subexpressions.

First, the real-valued coefficient set {h} fulfilling the frequency
response specification is quantized to the desired wordlength in CSD
representation. From the rounded CSD coefficient set {hcsd}, new
CSD coefficients are added to expand the candidate pool (CP) by find-
ing the nearest CSD coefficients to each hcsd(i) for i = 1, 2, . . . , N ,
with the number of CSPT terms equal to or smaller than those of
hcsd(i). With the help of CS-HWP, the required nearest CSD coef-

ficients can easily be found by searching from two sides of the original
coefficient location in the CS-HWT for entries with an equal or lower
number of CSPT terms. Let the coefficients in the CP be designated
as hcspt(i)(j) for i = 1, 2, . . . , N , j = 1, 2, . . . , M . M = 2ncspt(i),
where ncspt(i) is the number of CSPT terms of hcsd(i). In other words,
one nearest CSD number with an equal number of CSPT terms and
two nearest CSD numbers with a smaller number of CSPT terms are
sought for each coefficient hcsd(i). We found from experimentation
that this number of nearest CSD coefficients is adequate for most
amplitude response specifications. By having a larger value of M ,
more coefficients with larger quantization errors will be included, but
these additional CSD coefficients are rarely selected eventually as the
achievable NPRM error has already reached its margin of diminishing
return. Even if some of them have been included in the final solution
of this stage, the improvement that they made to the NPRM of the
solution is insignificant to warrant the extra computation.

Next, a preliminary minimal filter coefficient set {hp} is established
by setting all its coefficient values to zero. The initial coefficients
of {hp} either remain as zero or are gradually substituted by the
coefficients of the CP {hcspt} in an iterative process to reduce the
NPRM of {hp}. Each iteration increments the total number of CSPT
terms of {hp} by one. At any iteration r, a number of coefficient sets
can be formed by replacing an entry in the current {hp} by one from
the CP such that the total number of CSPT terms of the coefficient set
so formed is equal to r. The best coefficient set with the lowest NPRM
error from among the eligible sets is selected to replace {hp}. At the
end of each iteration, all candidate coefficients with the same number
of CSPT terms from the same tap as the substituting coefficient,
including the substituting coefficient itself, are deleted from the CP.
The process continues until the CP is exhausted.

This search for better quality CSPT terms for each coefficient is
in congruence with the practice of many popular search methods
in filter synthesis [1], [5], [22], except that common subexpressions
have been considered. We keep a record of the minimum NPRM,
which is denoted by NPRMmin, and its corresponding coefficient set
{hp min}. Upon the termination of CSPT coefficient allocation stage,
the coefficient set {hp min} with the minimum NPRM throughout the
stage will be used for the second stage. This stage is highly efficient
because {hp} is small, and the coefficients in the CP have been
prudently chosen with the aid of CS-HWT. The computation time
is O(MN/2), which is well bounded by the cardinality of |hcspt|.
Although the search is, by no means, exhaustive, the conditional
backtracking helps to avoid a poor local minimum.

The size of the CP marks the frequency characteristics of initial
coefficient set for the second stage. Hence, it should be defined to
leave an error margin that is small enough to ensure that the second
stage could converge to the desired NPRM, but sufficiently large that
the first stage does not incur excessive adder cost. Usually, there is no
deterministic answer to what constitutes the best starting coefficient
set for the local search. Chen and Willson [5] allocated up to about
75% of the SPT terms in the first pass of local search without having an
adverse effect on the final result. In contrast to his heuristic local search
methods, our criterion for the initial coefficient set is defined based
on the mediation of amplitude response specification and the number
of CSPT terms. It is normal that the {hp min} obtained in the first
stage based on the rounded CSD coefficients will not meet the NPRM
requirement. Therefore, adaptive quantization compensation is
applied in the second stage based on the balanced NPRM budget
while suppressing the growth of the number of CSPT terms. The
amount of compensation needed and, hence, the effort required by
the optimization method, depends on the quality of its preliminary
coefficient set. A sensible NPRM budget can be empirically
determined in the first stage. Given the tradeoff between the number
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TABLE I
NEIGHBORHOOD FOR QUANTIZATION ERROR COMPENSATION

of CSPT terms and the acceptable quantization error, we avoid a high
adder cost at this stage by setting an upper bound on the maximum
number of CSPT terms to that of the rounded coefficient set, and
we further limit the size of the CP to MN to reduce inefficient
computation for an insignificant improvement in NPRM.

B. Quantization Compensation

In the second stage, the frequency response characteristic of the
optimal coefficient set {hp min} with NPRMmin is further improved
by modifying the least significant digits of the coefficients until the
desired NPRM has been reached. The optimization of frequency
response shall be accomplished with little or no penalty to the adder
cost. In fact, with the consideration of CSPT terms, the number of
adders may even be reduced from the primitive set {hp min} upon
achieving the desired amplitude response specification. There are two
main concerns in this stage: the definition of neighborhood and the
search strategy.

The neighborhood defines a boundary within which small discrete
SPT terms are introduced to adjust the coefficient values to compensate
for the frequency response error. It determines the degree of freedom
of the search procedure. A larger neighborhood provides a better
chance of finding the optimal coefficient set, but it also leads to a
longer computation time. For short wordlength coefficients, allowing
a large number of LSDs may defeat the purpose of having local
search, as opposed to exhaustive search. However, there is no reason
to constrain the search space to merely the last two LSDs for long
wordlength coefficients as in the work of Chen and Willson [5].
For example, for wordlength of 10 bits, the neighborhood defined
by [5] is a circumference of radius of 2−9 around the preliminary
coefficient set. This is sufficient for many coefficient sets but deficient
for some other situations. If the desired wordlength is 14 bits, the
neighborhood will be a circumference of radius of 2−13. This search
space is trivial to improve the quality of the solution. In our proposed
method, the number of LSDs for the neighborhood is wordlength
dependent. More LSDs are chosen for a longer wordlength to ensure
that the search space is sufficiently large for optimization, but small
enough to maintain efficiency of the algorithm. The number of LSDs
is determined empirically. To find the suitable neighborhood size, we
tested filters of different coefficient wordlengths, each optimized with
different neighborhood sizes, from two to five LSDs. We found that,
for some filters with longer coefficient wordlength, the search process
converges faster when the neighborhood size reaches a critical number
of LSDs than when a smaller search space is used. There are also cases
where no solution can be found or the algorithm fails to converge
when the size of the neighborhood is very small. Table I lists all
LSDs from ±2−m to ±2−B in the circumference of critical radius
m, which is determined empirically for coefficients of wordlength B
for B = 8–14. The neighborhoods in Table I are presented in discrete
SPT terms ∆q and the maximum absolute quantization step ∆qmax.

The frequency response of the compensated coefficient set {hqc}
is iteratively improved as discrete SPT terms in Table I are added

Fig. 3. One iteration of quantization compensation stage.

to compensate for the quantization error. As the coefficient values
dynamically change in this process, unrestrictive compensation can
lead to the overflow or underflow of the coefficient values beyond
the maximum compensation that is defined by the neighborhood of
the initial coefficient set {hp min}. Therefore, the range of the ith
compensated coefficient is limited to the following upper and lower
bounds at all time:

hp min(i) − 2∆qmax ≤ hqc(i) ≤ hp min(i) + 2∆qmax. (7)

The upper and lower bounds in (7) are calculated once from
{hp min} of the first stage, and out-of-range coefficients are pruned in
each iteration. The restrictive search narrows down the search space
substantially. Therefore, the computational time for each iteration
reduces until convergence.

The procedure for quantization compensation is detailed as follows.
To each coefficient hp min(i), a number of compensated coefficients
are created by adding the discrete SPT terms that are defined by the
adaptive neighborhood of Table I. Compensated coefficient values
falling outside the range of (7) are discarded. The NPRM of every
combination of coefficient set that can be generated from the pool
of compensated coefficients is evaluated, and the five best NPRM
coefficient sets are stored as {hqc1}, {hqc2}, . . . , {hqc5}. The numbers
of CSPT terms for these coefficient sets can be extracted from the
CS-HWT and stored in a list {ncspt1, ncspt2, . . . , ncspt5}. The in-
crement (or decrement) in the number of CSPT terms of these five
best compensated coefficient sets from that of {hp min} is recorded
as {∆ncspt1, ∆ncspt2, . . . , ∆ncspt5}. ∆ncspt is positive for an in-
crement and negative for a decrement in the number of CSPT terms.
The five compensated coefficient sets are sorted in ascending order of
∆ncspt. If there is a tie, the sets are further sorted in ascending order
of NPRM. The coefficient set with the minimum ∆ncspt is selected
to replace {hp min} as the starting coefficient set for the next iteration
until the desired NPRM is fulfilled by the selected {hp min}. Fig. 3
shows the trace of an iteration.

C. Pseudocode and Example

The pseudocode of the two-stage algorithm is given in Fig. 4. In
Fig. 4, CSD({h}) rounds the coefficients of {h} from real values
to the nearest CSD numbers. CSHWP({hcsd}) searches in the
CS-HWT for the nearest CSD numbers with CSPT terms that are less
than or equal to those of {hcsd}. The NPRM specification is given by
the constant desired_NPRM . NPRM({h}) returns the NPRM of
the coefficient set {h}, and NCSPT({h}) returns the total number of
CSPT terms of {h}. The statement {hp} + hcspt(i)(j) − hp(i) means
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Fig. 4. Pseudocode of the proposed algorithm.

replacing the coefficient hp(i) in {hp} with hcspt(i)(j). Compared
with the exhaustive search or optimal methods, our algorithm avoids
the search space from growing exponentially. The shortcoming of
any heuristic algorithm is that, for a coefficient set with a large
quantization error in the conversion from real-valued coefficients to
finite wordlength coefficients, particularly for small wordlength, the
algorithm may converge to an NPRM that misses the desired amplitude
response specification by a small margin. Our algorithm relays on the
optimality of each choice greedily and is not absolutely free from
local minimum problem. One possible way to break away from the
occasional local minimum problem is to expand the search scope
in each iteration, but this will inevitably introduce more computa-
tions. Many of these additional computations are fruitless for most
coefficient sets that can be easily managed by the present approach.
Conditional backtracking with expansion of search scope based on the
assessment of the NPRM margin of first stage and the descending rate
of NPRM in the second stage may be feasible.

A simple three-tap filter with coefficients h(1) = 0.0051, h(2) =
0.0341, and h(3) = −0.1419 is used to illustrate the proposed
design procedure. For a wordlength of 10 bits, its rounded CSD
coefficients are hcsd(1) = 2−8 + 2−10, hcsd(2) = 2−5 + 2−8 −
2−10, and hcsd(3) = −2−3 − 2−6 − 2−10. The normalized CSD
coefficient array is given by

hcsd =

{
0 0 0 0 0 0 0 1 0 1

0 0 0 0 1 0 0 1 0 1

0 0 1 0 0 1 0 0 0 1

}
. (8)

Since ncspt = {1, 2, 3}, new CSD coefficients are sought from
the CS-HWP to form the following CP in the CSPT coefficient
allocation stage:

hcspt(1) =

{
0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 1

}

hcspt(2) =




0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0

0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 1 0 1




hcspt(3) =




0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0

0 0 1 0 0 1 0 1 0 0

0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 0 1




. (9)

The cardinality of hcspt(i) for the ith coefficient in the CP is twice
that of ncspt(i). The preliminary coefficient set {hp} is initialized
to {0, 0, 0}. For the first iteration, six candidate coefficient sets with
one CSPT term are formed by substituting a coefficient in {hp} by a
coefficient from the CP with one CSPT term. The qualified coefficients
from the CP include two candidates in {hcspt(1)} to substitute for
hp(1), the first two candidates in {hcspt(2)} for hp(3), and {hcspt(3)}
for hp(3). As {hcspt(i)} is sorted in ascending order of the number of
CSPT terms, the first two terms of {hcspt(i)} are evaluated for the
prospective {hp}i,j in each iteration. The coefficient set containing
hcspt(3)(2) has the least NPRM, and it is selected to replace {hp} for
the next iteration. {hp} = {0, 0,−2−3 − 2−5} = {0, 0,−0.1536}.
The coefficient hp(3) = −2−3 − 2−5 is a common subexpression
101 ≡ 101, and it is deemed to have only one CSPT term. The two
coefficients hcspt(3)(1) and hcspt(3)(2) of one CSPT term are then
deleted from {hcspt(3)}. In the second iteration, the number of CSPT
terms of {hp} is incremented to two. Two possibilities exist: either
hp(1) or hp(2) is replaced with a candidate coefficient of one CSPT
term from {hcspt(1)} or {hcspt(2)}, or hp(3) is replaced with a
candidate coefficient of two CSPT terms from {hcspt(3)}. Altogether,
six candidate coefficient sets can be generated from the first two
candidates of {hcspt(1)}, {hcspt(2)}, and {hcspt(3)}. The candidate
coefficient set containing the second candidate of {hcspt(3)} is found
to have the minimum NPRM. Consequently, {hp} = {0, 0,−2−3 −
2−6 − 2−8} = {0, 0,−0.1445}. Two more coefficients in {hcspt(3)}
of two CSPT terms are deleted, and the updated CP is given by

hcspt(1) =

{
0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 1

}

hcspt(2) =




0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0

0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 1 0 1




hcspt(3) =

{
0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 0 1

}
. (10)

The process continues until {hcspt} is exhausted. The CSPT
coefficient allocation stage terminates with {hp min} = {2−8, 2−5 +
2−8 − 2−10,−2−3 − 2−6 − 2−8} = {0.0039, 0.0341,−0.1445}.
The value of the ith coefficient in the quantization compensation
stage is restricted to the range (hp min(i) − 2−7, hp min(i) + 2−7), as
given in (7). The lower and upper limits for each coefficient are given
by l_limit = {−0.0039, 0.0263,−0.1523} and u_limit = {0.0117,
0.0419,−0.1367}, respectively. The {ncspt} for {hp min} is {1, 2, 2}.
Each coefficient is allowed to be compensated by six different discrete
SPT terms {±2−8, ±2−9, ±2−10} from Table I. The NPRMs of
18 compensated coefficient sets are evaluated from which the five
least NPRM coefficient sets are extracted.These coefficient sets,
which are sorted in ascending order of NPRM, are: {hp min(1),
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hp min(2), hp min(3)−2−10}, {hp min(1), hp min(2)−2−10, hp min(3)},
{hp min(1), hp min(2) − 2−9, hp min(3)}, {hp min(1), hp min(2),
hp min(3) + 2−10}, and {hp min(1) + 2−10, hp min(2), hp min(3)}.
Their numbers of CSPT terms are, respectively, {1, 2, 2},
{1, 2, 2}, {1, 2, 2}, {1, 2, 3}, and {1, 2, 3}. Therefore, {∆ncspt} =
{1, 0, 0, 1, 0}. The second, third, and fifth sets have maintained
the same number of CSPT terms because the compensations have
either generated new common subexpressions or relocated some
existing common subexpressions. Among these three least ∆ncspt
sets, the second set with the smallest NPRM is selected. {hp min}
is updated to {2−8, 2−5 + 2−9,−2−3 − 2−6 − 2−8} = {0.0039,
0.0332,−0.1445} and {ncspt} = {1, 2, 2}. The process iterates until
the required NPRM is met.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the capability of our proposed
algorithm through the implementation of two practical design exam-
ples. The specifications of these two filters are frequently used as
benchmarks for evaluating the optimality of different digital filter
coefficient synthesis algorithms. The comparisons are based on the
results taken from [5] and [8]. The metric used for benchmarking the
performances of different solutions are the number of CSPT terms,
which provides an indication of the adder cost, and the NPRM, which
provides an indication of the quality of fitness to the actual frequency
responses. For fair comparison, we explicitly account for the sharing
of common subexpressions 101 and 101 for the number of CSPT terms
of the coefficient sets generated by those algorithms that have not
considered common subexpressions.
Example 1: The halfband filter is part of a programmable

digital decimation filter using the sharpened cascade integrator
comb architecture with the frequency response specification that is
designed for wideband satellite communication systems [27]. The
normalized passband and stopband edge frequencies are 0.2π and
0.8π, respectively. The coefficient wordlength is 14 bits, and the filter
length is 15. The stopband attenuation is −80 dB. We first design an
equiripple low-pass filter using Matlab Simulink based on the Parks–
McClellan algorithm [28] and use the obtained real-valued filter coef-
ficient set as the input {h} to our algorithm. Our final coefficient set is
given as follows: h(0) = h(14) = −2−9 − 2−11; h(1) = h(13) = 0;
h(2) = h(12) = 2−6 + 2−10 + 2−12; h(3) = h(11) = 0; h(4) =
h(10) = −2−4 − 2−8 − 2−10 − 2−13; h(5) = h(9) = 0; h(6) =
h(8) = 2−2 + 2−4 − 2−7 − 2−9 + 2−11 − 2−13; h(7) = 2−1.

The NPRM and the number of CSPT terms are −72.28 dB and
28 for the rounded CSD coefficient set {hcsd}. The NPRM and the
number of CSPT terms reduce to −78.45 dB and 21 after the CSPT
coefficient allocation stage. The NPRM reaches −83.63 dB after the
quantization compensation stage, and the number of CSPT terms of
the final solution is 19. The NPRM per CSPT term from the initial
rounded coefficient set to the final solution is progressively reduced
from −2.58 dB to −3.74 dB, to −4.40 dB. In fact, the quantization
compensation stage takes only two iterations to meet the amplitude
response specification.

Table II gives the filter characteristics designed by different algo-
rithms to attain −80 dB stopband attenuation with a minimal possible
number of CSPT or SPT terms.

The original coefficient set provided by Kwentus et al. [27] aims
at only −75 dB NPRM, and its results are used as a reference in
the first row of Table II. In Table II, NSPT, NCSPT, N101, and N101̄

denote the number of SPT terms, the number of CSPT terms, and the
numbers of common subexpressions 101 and 101, respectively. We
have searched for the common subexpressions 101 and 101 in the
solution sets listed in Kwentus et al.’s [27] and Chen and Willson’s

TABLE II
SUMMARY OF DIFFERENT FILTER DESIGNS FOR EXAMPLE 1

TABLE III
COMPARISON OF ADDER COSTS FOR EXAMPLE 1

[5] papers to account for the numbers NCSPT, N101, and N101̄. For
Samueli’s [20] and Li et al.’s [16] algorithms, we are unable to obtain
the implementation from their papers, and only the published results
of NSPT and NPRM are listed. Based on the NPRM measurement, our
algorithm converges to a solution that has a better amplitude response
than Kwentus et al.’s, Samueli’s and Li et al.’s solutions. Chen and
Willson’s trellis search algorithm produces the least number of SPT
terms, but the actual implementation cost is reflected in the number of
CSPT terms as adders saved by operator sharing have to be accounted.
The high NSPT of our algorithm is expected as we encourage operator
sharing and eliminate redundant computations by maximizing the
number of common subexpressions, which is evincible in the highest
aggregate of N101 and N101̄. Our solution has the least NCSPT among
the algorithms that have the NCSPT listed. We save three CSPT
terms over the trellis search algorithm due to the extraction of five
more common subexpressions than Chen and Willson’s algorithm.
In Chen and Willson’s solution, the maximum number of SPT terms
per coefficient was three; the solution obtained by our algorithm also
employs no more than three CSPT terms in any coefficient. The saving
in adder cost is achieved at no performance penalty to the logic
depth. Table III lists the actual total number of carry-propagate adders
(CPAs) that are needed to implement the published coefficient sets
that are generated by the three algorithms in the transposed direct
form structure. Since this is an even symmetric filter, the first half
of the filter taps is duplicated in the second half. The adders that
were used to generate the common subexpressions are treated as being
equally complex as other adders, although the wordlength of the adders
is generally much shorter (a 3-bit adder is sufficient to implement
the 101 or 101 subexpression). As only one subexpression of 101
appears in the solution of the trellis search algorithm, the actual adder
cost is the same for its solution with or without the consideration of
common subexpressions. With the sharing of common subexpression
101, Kwentus et al.’s solution can be realized with one less adder than
that of the trellis search algorithm. As there is only one occurrence of
the subexpression 101, our implementation cost is the same as that of
Kwentus et al.’s but our amplitude response error is much smaller. The
amplitude response of Chen and Willson’s, Kwentus et al.’s, and our
solutions are shown in Fig. 5.
Example 2: This popular filter specification is taken from

[5], [8], [23], and [24]. The normalized passband and stopband edge
frequencies are 0.3π and 0.5π, respectively, with equal weighting
on the passband and stopband ripples. The coefficient wordlength is
12 bits, and the filter length is 28. The minimum number of
SPT terms required by the MILP algorithm [17], Samueli’s local
search algorithm [20], and Li et al.’s [16], Chen and Willson’s [5],
Yao’s [23], Yli-Kaakinen and Saramaki’s [24], and Gustafsson and
Wanhammar’s [7] algorithms to achieve −50 dB normalized peak
ripple values is summarized in Table IV. As no original coefficient set
of this filter is published in any paper, we use the infinite precision
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Fig. 5. Comparison of magnitude responses for Example 1.

TABLE IV
SUMMARY OF DIFFERENT FILTER DESIGNS FOR EXAMPLE 2

coefficient set that was generated using Matlab Simulink based on the
Parks–McClellan algorithm [28] as a reference. The final coefficient
set generated by our proposed algorithm is given as follows: h(0) =
h(27) = −2−8 + 2−10 + 2−12; h(1) = h(26) = 0; h(2) = h(25) =
2−7 − 2−9 + 2−12; h(3) = h(24) = 2−7 − 2−9 − 2−12; h(4) =
h(23) = −2−7; h(5) = h(22) = −2−6 − 2−9 + 2−11; h(6) =
h(21) = 0; h(7) = h(20) = 2−5; h(8) = h(19) = 2−5 − 2−7 +
2−9 + 2−11; h(9)=h(18)= −2−5 − 2−8 + 2−10; h(10)=h(17)=
−2−4 − 2−6 + 2−10; h(11) = h(16) = 0; h(12) = h(15) = 2−2 −
2−4 + 2−6 − 2−8 − 2−11; h(13) = h(14) = 2−1 − 2−3.

The desired NPRM has been achieved directly with 56 CSPT
terms for the rounded CSD coefficient set {hcsd}. The number of
CSPT terms has been brought down to 44 after the CSPT coefficient
allocation stage with a slight increase in NPRM, and the quantization
compensation stage further reduces the number of CSPT terms to 40
in 93 iterations before it converges to an NPRM of −50.05 dB. The
NPRMs per CSPT term from the initial rounded coefficient set to the
final solution are progressively reduced from −0.89 dB to −1.10 dB,
to −1.25 dB. The frequency responses of the coefficient sets that were
generated by different algorithms, including ours, are shown in Fig. 6.

Table IV gives the comparisons of the NPRM, NSPT, NCSPT,
N101, and N101̄ achieved by the solutions of various algorithms. Lmax

is the maximum allowable number of SPT terms per coefficient. It
should be noted that we have also included two published solutions in
Table IV that use different numbers of taps N and wordlengths B for
the same amplitude response. The results used for the comparison are
taken from [5] and [8]. For those algorithms whose final coefficient
sets were not given in the papers, the unavailable information is

Fig. 6. Comparison of magnitude responses for Example 2.

TABLE V
AREA COMPARISON OF SYNTHESIZED CIRCUITS

marked with “–” in Table IV. The results show that our proposed
algorithm produces a solution with the least CSPT terms. Altogether,
11 common subexpressions of 101 and 101 have been generated by our
algorithm, which is the second highest number. The original decimal
coefficient set that was generated using Matlab has the most common
subexpressions, but it has also a high number of nonsharable SPT
terms. Our algorithm achieves the least number of CSPT terms at the
expense of a comparatively higher number of SPT terms due to our
physical adder cost oriented objective of optimization.

To have an insight into the magnitude of gate area improvement
translated from the saving in CSPT terms, we have written structural
VHDL codes to implement filter numbers 1 and 8–13 of Table IV using
12-bit input data. These filters are selected to compare the solutions
with different numbers of CSPT terms and coefficient wordlengths.
The RTL designs were functionally verified with Mentor Graphic
ModelSim before they are synthesized into gate level netlist using
Synopsys Design Compiler version 2004.06. The synthesis was per-
formed with a standard application-specified integrated circuit design
flow using the TSMC 0.18-µm standard cell library. The circuits were
synthesized with a consistent timing constraint of 10 ns. The prelayout
combinational circuit areas were given in Table V.

The synthesis results showed that our proposed algorithm for max-
imizing the sharing of common subexpressions 101 and 101 led to
a 2%–44% reduction in the combinational area. The savings in the
combinational area is attributable to the reduction in the number
of adders used, as well as the lengths of the adders. For the same
number of nonzero digits in a coefficient, extraction of the two shortest
common subexpressions tends to produce shorter length adders.

If the coefficient multipliers in each tap are implemented with CSAs,
the number of CPAs can be reduced to only one. The performance
of the filter is improved, particularly when the partial sums in the
critical tap is high at the expense of using two sets of registers,
as shown in Fig. 7. Doubling the number of registers increases the
noncombinational circuit areas and complicates the clock distribution
network. Common subexpression sharing can also be integrated into
the CSA trees. The sum and carry outputs of the products of input and
101, and input and 101, can be precomputed.

In [5], Chen and Willson proposed a merge–search method to reduce
the number of CSAs for a CSA-tree-based transposed direct form
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Fig. 7. CSA implementation of a transposed direct form filter.

TABLE VI
COMPARISON WITH MERGE–SEARCH ALGORITHMS FOR

CSA-BASED FILTER

Fig. 8. Symmetric filter with common subexpressions 101 and 101.

FIR filter architecture. An additional precomputation cycle involving
two fast 3-bit CPAs for the common subexpressions 101 and 101
is incurred in this architecture. A constraint on Lmax is imposed
to limit the maximum number of CSAs for a high-throughput rate.
The solutions of merging 101 and 101 within the CSD coefficients
before the optimization by MILP, which is called the MILP–merge,
are also provided in [5]. We have implemented our solution based on
the transposed direct form architecture with CSAs, and the results are
tabulated in Table VI, along with the trellis–merge and MILP–merge
algorithms from [5] for comparison.

Although we do not restrict the number of CSPT terms per coef-
ficient, the solution generated by our algorithm has no more than five
SPT terms and three CSPT terms in any coefficient. Therefore, no more
than two CSAs are needed for every coefficient. Without degrading
the throughput rate, our solution requires a slightly smaller number
of CSAs.

It should be noted, however, that the CSA-based transposed direct
form architecture cannot benefit from any duplicated coefficient as
there are at least two CSAs needed per tap to accumulate the stored
sum and carry from the previous tap to those of the current tap, in
addition to doubling the number of registers needed to store the sum
and carry signals. If the conventional CPAs are used for the transposed
direct form filter, the saving in the adder cost is prominent for a
symmetric filter, as half of the coefficients are duplicated and incur
no additional adder cost. The implementation of our solution in the
symmetrical transposed direct form filter structure is shown in Fig. 8.
Two 3-bit adders are used for the generation of subexpressions 101 and
101, 11 adders are used to generate the coefficients, and 21 adders are
used in the accumulation line.

The solution of our proposed algorithm is further compared with
the solution of Yli-Kaakinen and Saramaki’s algorithm [24], which is
one that involves sharing of higher weight common subexpressions.
Yli-Kaakinen and Saramaki have provided two circuits with higher
weight common subexpressions for this filter specification using dif-

Fig. 9. Symmetric filter with higher weight common subexpressions.

TABLE VII
EXPERIMENTAL RESULTS FOR OTHER FILTER SPECIFICATIONS

ferent numbers of taps and wordlengths. The best implementation
is obtained with L = 30 and B = 10. We also extracted the higher
weight common subexpressions from our solution, and the final circuit
implementation of our design is shown in Fig. 9. Two weight-3
common subexpressions have been identified, which are 101001 and
100101. Since both weight-3 common subexpressions appear twice,
two more adders are saved. This solution needs only 30 adders, which
is the same as Yli-Kaakinen and Saramaki’s most optimal solution.

To show that our algorithm is also capable of synthesizing desirable
solutions to a wide variety of FIR filter response specifications, we also
evaluated our proposed algorithm using a number of other frequently
used specifications for coefficient synthesis algorithms. The results are
shown in Table VII.

In Table VII, ωp and ωs are the normalized passband and stopband
edge frequencies, respectively, δp and δs are the passband and stop-
band ripple magnitudes, respectively, N is the filter length, and B
is the wordlength of the coefficients. The last column of Table VI
provides the ratios of NCSPT to the product of filter length and
coefficient wordlength. This normalized number of CSPT terms serves
as a useful figure-of-merit to evaluate the overall performance of
the algorithm in terms of the average adder cost per tap per bit. As
mentioned before, the maximum number of nonzero digits for an
n-bit binary number that is expressed in CSD format is bounded by
(n + 1)/2 and the expected number of nonzero digits approaches
n/3 + 1/9 asymptotically [9]. The expected number of nonzero digits
varies from one filter to another, and the nonzero digits of the FIR
filter are not uniformly distributed among different CSD coefficients.
The figure-of-merit shows that, on the average, for every n-bit binary
coefficient, our algorithm can reduce the number of CSPT terms to
less than n/8. This is a noteworthy reduction. The NCSPT is highly
correlated to the actual adder cost incurred than the number of SPT
terms, with an overhead of only two (and sometimes one) adders to
generate the two common subexpressions 101 and 101.

V. CONCLUSION

We have proposed an efficient algorithm for the design of low-
complexity FIR filter by maximizing the sharing of adders in the
synthesis of filter coefficients to meet the desired magnitude response
specification. The proposed algorithm considers the reuse of the two
most frequently used subexpressions 101 and 101. By dividing the
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multiple-constraint problem of minimizing the CSPT terms into two
stages, the problem is tackled heuristically in an efficient and elegant
approach. With the help of CS-HWP, a minimal CSD coefficient
set with the minimal NPRM in the continuum of the rounded CSD
coefficient set is found in the first stage. Depending on the wordlength
of the coefficients, and the mismatch between the desired response
and that obtained in the first stage, bivariate quantization steps are
iteratively added in the second stage to compensate for the quanti-
zation errors until the desired NPRM is met. We have shown, by
means of benchmark design examples, that our proposed algorithm
is capable of synthesizing transposed direct form FIR filters with the
least CSPT terms in both the CSA-tree-based and conventional adder-
based architectures among the existing filter synthesis algorithms. As
it is a local search algorithm and the search range is well defined, the
proposed algorithm finds a set of filter coefficients that meets the filter
specification in a reasonable time.

REFERENCES

[1] D. Ait-Boudaoud and R. Cemes, “Modified sensitivity criterion for the
design of powers-of-two FIR filters,” Electron. Lett., vol. 29, no. 16,
pp. 1467–1469, Aug. 1993.

[2] N. Benvenuto, M. Marchesi, and A. Uncini, “Applications of simulated
annealing for the design of special digital filters,” IEEE Trans. Signal
Process., vol. 40, no. 2, pp. 323–332, Feb. 1992.

[3] T. W. Fox and L. E. Turner, “The design of peak-constrained least square
FIR filters with low-complexity finite-precision coefficient,” IEEE Trans.
Circuits Syst. II, Analog Digit. Signal Process., vol. 49, no. 2, pp. 151–
154, Feb. 2002.

[4] R. Cemes and D. Ait-Boudaoud, “Genetic approach to design of mul-
tiplierless FIR filters,” Electron. Lett., vol. 29, no. 24, pp. 2090–2091,
Nov. 1993.

[5] C. L. Chen and A. N. Willson, Jr., “A trellis search algorithm for the
design of FIR filters with signed-powers-of-two coefficients,” IEEE Trans.
Circuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 1, pp. 29–39,
Jan. 1999.

[6] H. Choo, K. Muhammad, and K. Roy, “Complexity reduction of digital
filters using shift inclusive differential coefficients,” IEEE Trans. Signal
Process., vol. 52, no. 6, pp. 1760–1772, Jun. 2004.

[7] O. Gustafsson and L. Wanhammar, “Design of linear-phase FIR filters
combining subexpression sharing with MILP,” in Proc. IEEE Midwest
Symp. Circuits and Syst., Tulsa, OK, Aug. 2002, vol. 3, pp. 9–12.

[8] O. Gustafsson, “Contributions to low-complexity digital filters,” Ph.D.
dissertation, Linköping Univ., Linköping, Sweden, 2003.

[9] R. I. Hartley, “Subexpression sharing in filters using canonic signed digit
multipliers,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,
vol. 43, no. 10, pp. 677–688, Oct. 1996.

[10] M. Potkonjak, M. B. Srivastava, and A. P. Chandrakasan, “Multiple con-
stant multiplications: Efficient and versatile framework and algorithms
for exploring common subexpression elimination,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 15, no. 2, pp. 151–165, Feb. 1996.

[11] F. Xu, C. H. Chang, and C. C. Jong, “Contention resolution algo-
rithms for common subexpression elimination in digital filter design,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 10, pp. 695–700,
Oct. 2005.

[12] F. Xu, C. H. Chang, and C. C. Jong, “A new integrated approach to the
design of low-complexity FIR filters,” in Proc. IEEE Int. Symp. Circuits
Syst., Kos, Greece, May 2006, pp. 601–604.

[13] C. Y. Yao, H. H. Chen, T. F. Lin, C. J. Chien, and C. T. Hsu, “A novel
common-subexpression-elimination method for synthesizing fixed-point
FIR filters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 11,
pp. 2215–2221, Nov. 2004.

[14] D. Kodek and K. Steiglitz, “Comparison of optimal and local search
methods for designing finite wordlength FIR digital filters,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. CAS2-28, no. 1, pp. 28–32,
Jan. 1981.

[15] J. H. Lee, C. K. Chen, and Y. C. Lim, “Design of discrete coefficient FIR
digital filters with arbitrary amplitude and phase responses,” IEEE Trans.
Circuits Syst. II, Analog Digit. Signal Process., vol. 40, no. 7, pp. 444–
448, Jul. 1993.

[16] D. Li, J. Song, and Y. C. Lim, “A polynomial-time algorithm for designing
digital filters with power-of-two coefficients,” in Proc. IEEE Int. Symp.
Circuits Syst., Chicago, IL, May 1993, vol. 1, pp. 84–87.

[17] Y. C. Lim and S. R. Parker, “FIR filter design over a discrete power-
of-two coefficient space,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-31, no. 3, pp. 583–591, Jun. 1983.

[18] Y. C. Lim, “Design of discrete-coefficient-value linear phase FIR
filters with optimum normalized peak ripple magnitude,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 37, no. 12, pp. 1480–1486, Dec. 1990.

[19] V. S. Rosa, E. Costa, J. C. Monteiro, and S. Bampi, “An improved synthe-
sis method for low power hardwired FIR filters,” in Proc. 17th Int. Symp.
Integr. Circuits and Syst. Des., 2004, pp. 237–241.

[20] H. Samueli, “An improved search algorithm for the design of multipli-
erless FIR filters with powers-of-two coefficients,” IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 36, no. 7, pp. 1044–1047, Jul. 1989.

[21] H. Samueli, “The design of multiplierless digital data transmission filters
with powers-of-two coefficients,” in Proc. IEEE Int. Telecommun. Symp.,
Rio de Janeiro, Brazil, Sep. 1990, pp. 425–429.

[22] H. Shaffeu, M. M. Jones, H. D. Griffiths, and J. T. Taylor, “Improved
design procedure for multiplierless FIR digital filters,” Electron. Lett.,
vol. 27, no. 13, pp. 1142–1144, Jun. 1991.

[23] C. Y. Yao, “A study of SPT-term distribution of CSD numbers and its
application for designing fixed-point linear phase FIR,” in Proc. IEEE Int.
Symp. Circuits Syst., 2001, vol. 2, pp. 301–304.

[24] J. Yli-Kaakinen and T. Saramaki, “A systematic algorithm for the design
of multiplierless FIR filters,” in Proc. IEEE Int. Symp. Circuits Syst.,
Geneva, Switzerland, 2001, vol. 2, pp. 185–188.

[25] K. Hwang, Computer Arithmetic. New York: Wiley, 1979.
[26] F. Xu, C. H. Chang, and C. C. Jong, “Hamming weight pyramid—

A new insight into canonical signed digit representation and its applica-
tions,” J. Comput. Elect. Eng., vol. 33, no. 3, pp. 195–207, May 2007.

[27] A. Y. Kwentus, Z. Jiang, and A. N. Willson, Jr., “Application of filter
sharpening to cascaded integrator-comb decimation filters,” IEEE Trans.
Signal Process., vol. 45, no. 2, pp. 457–467, Feb. 1997.

[28] Programs for Digital Signal Processing. New York: IEEE Press, 1979.
Algorithm 5.1.


