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Blind source separation (BSS) of independent sources from their convolutive mixtures is a problem in many real-world multi-
sensor applications. In this paper, we propose and implement an efficient FPGA hardware architecture for the realization of a
real-time BSS. The architecture can be implemented using a low-cost FPGA (field programmable gate array). The architecture
offers a good balance between hardware requirement (gate count and minimal clock speed) and separation performance. The
FPGA design implements the modified Torkkola’s BSS algorithm for audio signals based on ICA (independent component analy-
sis) technique. Here, the separation is performed by implementing noncausal filters, instead of the typical causal filters, within the
feedback network. This reduces the required length of the unmixing filters as well as provides better separation and faster conver-
gence. Description of the hardware as well as discussion of some issues regarding the practical hardware realization are presented.
Results of various FPGA simulations as well as real-time testing of the final hardware design in real environment are given.
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1. INTRODUCTION

Blind signal separation, or BSS, refers to performing inverse
channel estimation despite having no knowledge about the
true channel (or mixing filter) [1, 2, 3, 4, 5]. BSS technique
has been found to be very useful in many real-world mul-
tisensor applications such as blind equalization, fetal ECG
detection, and hearing aid. BSS method based on ICA tech-
nique has been found effective and thus commonly used
[6, 7]. A limitation using ICA technique is the need for long
unmixing filters in order to estimate inverse channels [1].
Here, we propose the use of noncausal filters [6] to shorten
the filter length. In addition to that, using noncausal filters
in the feedback network allows a good separation even in the
case where the direct channels filters do not have stable in-
verses. A variable step-size parameter for adaptation of the
learning process is introduced here to provide a fast and sta-
ble convergence.

FPGA architecture allows optimal parallelism needed to
handle the high computation load of BSS algorithm in real
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time. Being fully custom-programmable, FPGA offers rapid
hardware prototyping of DSP algorithms. The recent ad-
vances in IC processing technology and innovations in the
architecture have made FPGA a suitable alternative to using
powerful but expensive computing platform.

In spite of its potential for real-world applications, there
have been very few published papers on real-time hardware
implementation of the BSS algorithm. Many of the works
such as [8] focus on the VLSI implementation and do not
provide a detailed set of specifications of the BSS imple-
mentation that offer a good balance between hardware re-
quirement (gate count and minimal clock speed) and sepa-
ration performance. Here, we propose an efficient hardware
architecture that can be implemented using a low-cost FPGA
and yet offers a good blind source separation performance.
Extensive set of experimentations, discussion on separation
performance, and the proposal for future improvement are
presented.

The FPGA design process requires familiarity with the
associated signal processing. Furthermore, the developed
FPGA prototype needed to be verified, through both func-
tional simulation and real-time testing, in order to fully un-
derstand the advantages and pitfalls of the architecture under
investigation. Thus, an integrated system-level environment
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for software-hardware co-design and verification is need-
ed. Here, we carried out FPGA design of a real-time
implementation of the ICA-based BSS using a new system-
level design tool called System Generator from Xilinx.

The rest of the paper is organized as follows. Section 2
provides an introduction to BSS algorithm and the appli-
cation of noncausal filters within the feedback network.
Section 3 describes the hardware architecture of our FPGA
design for the ICA-based BSS algorithm. Some critical issues
regarding the implementation of the BSS algorithm using
the limited hardware resources in the FPGA are discussed.
Section 4 presents the system level design of the FPGA fol-
lowed by detailed FPGA simulation results, synthesis result,
and the real-time experimentation of the final hardware us-
ing real environment setup. The summary and the motiva-
tions for future improvement are given in Section 5.

2. BACKGROUND OF BSS ALGORITHM

2.1. Infomax or entropy maximization criterion

BSS is the main application of ICA, which aims at reducing
the redundancy between source signals. Bell and Sejnowski
[9] proposed an information-theoretic approach for BSS,
which is referred to as the Infomax algorithm.

2.2. Separation of convolutive mixture

The Infomax algorithm proposed by Bell and Sejnowski
works well only with instantaneous mixture and was further
extended by Torkkola for the convolutive mixture problem
[10]. As shown in Figure 1, minimizing the mutual informa-
tion between outputs u1 and u2 can be achieved by maximiz-
ing the total entropy at the output.

This architecture can be simplified by forcing W11 and
W22 to be mere scaling coefficients to achieve the relation-
ships shown below [6, 11]:

u1(t) = x1(t) +
L12
∑

k=0

w12(k)u2(t − k),

u2(t) = x2(t) +
L21
∑

k=0

w21(k)u1(t − k),

(1)

and the learning rules for the separation matrix:

∆wi j ∝
(

1− 2yi
)

u j(t − k). (2)

2.3. Modified ICA-based BSS method using modified
Torkkola’s feedback network

Torkkola’s algorithm works only when the stable inverse of
the direct channel filters exists. This is not always guaran-
teed in real-world systems. Considering the acoustical condi-
tion when the direct channel can be assumed a nonminimum
phase FIR filter, the impulse response of its stable inverse
will become noncausal infinite double-sided converging se-
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Figure 1: Torkkola’s feedback network for BSS.

quence, or a noncausal IIR filter. By truncating this non-
causal IIR filter, the stable noncausal FIR filter (W12 or W21)
can be realized [12]. It was also shown in [6] that the algo-
rithm can be easily modified to use the noncausal unmix-
ing FIR filters. The relationships between the signals are now
changed to

u1(t) = x1(t + M) +
M−1
∑

k=−M

w12(k)u2(t − k), (3)

u2(t) = x2(t + M) +
M−1
∑

k=−M

w21(k)u1(t − k), (4)

where M is half of the filter length, L, that is, L = 2M + 1 and
the learning rule

∆w
i j
(t1−p1+M) = ∆w

i j
(t0−p0+M) + K

(

ui
(

t0
)

u j

(

p0

))

, (5)

where

K
(

ui
(

t0
))

= λ
(

1− 2yi
(

t0
))

, (6)

yi
(

t0
)

=
1

1 + e−ui(t0)
,

t1 = t0 + 1,

p0 = t0 − k for k = −M,−M + 1, . . .,M,

p1 = t1 − k for k = −M,−M + 1, . . .,M.

(7)

The term λ in (6) represents the variable learning step
size which is explained in more detail in Section 3.5.

3. ARCHITECTURE OF HARDWARE
FOR BSS ALGORITHM

The top-level block diagram of our hardware architecture for
the BSS algorithm based on Torkkola’s network is shown in
Figure 2. The descriptions for the subsystems in the figure
will be discussed in the following subsections. Some criti-
cal issues regarding the practical realization of the algorithm
while minimizing the hardware resources are discussed.
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Figure 2: Top-level block diagram of hardware architecture for BSS
algorithm based on Torkkola’s network.

3.1. Practical implementation of the modified
Torkkola’s network for FPGA realization

In order to understand the effect of each filter parameter such
as filter length (L) and learning step size on the separation
performance, a number of simulation programs written in
MATLAB were tested. A set of compromised specification is
then proposed for practical hardware realization [11].

As a result of our MATLAB simulations, we propose that
in order to reduce the FPGA resource needed, as well as to
ensure real-time BSS separation given the limited maximum
FPGA clock speed, the specifications shown below are to be
used. Sections 3.2 and 3.6 explain the impact of some param-
eters on hardware requirement in more details.

(i) Filter length, L = 161 taps.

(ii) Buffer size for iterative convolution, N = 2500.

(iii) Maximum number of iterations, I = 50.

(iv) Approximation of the exponential learning step size
using linear piecewise approximation.

The linear piecewise approximation is used to avoid com-
plex circuitry needed to implement the exponential func-
tion (see Section 3.5 for more explanation of implementa-
tion, and Section 4.2.1 for comparison of simulation results
using exponential function and linear piecewise function).

There are many papers discussing the effect of filter
length on the separation performance [13]. We have cho-
sen a smaller filter length considering the maximum operat-
ing speed of the FPGA and considered only the case of echo
of a small room. (See Section 3.6 for calculation of required
FPGA clock speed and Section 4.2.3 for the FPGA simulation
result.)

3.2. Three-buffer technique

In real-time hardware implementation, to achieve an unin-
terrupted processing, the hardware must process the input
and output as streams of continuous sample. However, this
is in contrast with the need of batch processing of BSS algo-
rithm [14]. To perform the separation, a block of data buffer
has to be filtered iteratively. Here, we implement a buffering
mechanism using three 2500-sample (N = 2500) buffers per
one input source. While one buffer is being filled with the in-
put data, a second buffer is being filtered, and the third buffer
is being streamed out.

A side effect of this three-buffer technique is that the sys-
tem produces a processing delay equivalent to twice the time

Address for W
W12

Address for U
U2

Address for X
X2

Memory
blocks

MAC
(muliply

accumulate)

Register

Register

Enable

+
u1(t)

Figure 3: Implementation of (8) for the modified Tokkola’s feed-
back network.

needed to fill up a buffer. For example, if the signal sam-
pling frequency is 8000 Hz, the time to fill up one buffer is
2500/8000 = 0.31 second. The system will then need another
0.31 second to process before the result being ready for out-
put. The total delay is then 0.31 + 0.31 = 0.62 s. This process-
ing delay may be too long for many real-time applications. A
suggestion on applying overlapped processing windows, to-
gether with polyphase filter, in order to shorten this delay is
given in Section 5.

3.3. Implementation of feedback network mechanism

According to feedback network in (3), there is a need to ad-
dress negative addresses for the values of w12(i) when i < 0.
In practice, the equation is modified slightly to include only
positive addresses:

u1(t) = x1(t + M) +
M
∑

i=−M

w12(i + M)u2(t − i). (8)

Equation (8) performs the same noncausal filtering on
u2 as in (3) without the need for negative addressing of w12.
Equation (4) is also modified accordingly.

The block diagram shown in Figure 3 depicts the hard-
ware implementation of (8). Note that the implementa-
tion of the FIR filtering of w12 is done through multiply-
accumulate unit (MAC) which significantly reduces the
numbers of multipliers and adders needed when com-
pared to direct parallel implementation. The tradeoff is that
the FPGA has to operate at oversampling frequency (see
Section 3.6).

3.4. Mechanism for learning the filter coefficients

The mechanism for learning of the filter coefficients was im-
plemented according to (5). The implementation of the vari-
able learning step size, λ, is explained in the next subsection.

3.5. Implementation of variable learning step size

In order to speed up the learning of the filter coefficients
shown in (5), we implement a simplified variable step-size
technique.

In our application, the variable learning step size in (6),
that is, the learning step size λ, may be implemented using
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(9) below where n is the iteration level, λ0 is the initial step
size, and I is the maximum number of iterations, that is, 50:

λ = exp

(

− u0 −
n

I

)

, (9)

where

u0 = − log2

(

λ0

)

−
1

I
. (10)

The exponential term is difficult to implement in digi-
tal hardware. Lookup table could be used but will require a
large block of ROM (read only memory). Alternative to using
lookup ROM is the CORDIC algorithm (COrdinate Rotation
DIgital Computer) [15]. However, circuitry for CORDIC
algorithm will impose a very long latency (if not heavily
pipelined) which will result in the need for even higher FPGA
clock speed. Instead, we used a linearly decreasing variable
step size as shown:

λ = 0.0006− 0.000012n. (11)

We had carried out MATLAB simulations to compare the
separation performance using exponential equation and lin-
ear piecewise term equation. It was found out that, using
the specifications given in Section 3.1, there is no significant
degradation in separation performance (see also simulation
results in Section 4.2.1). A multipoint piecewise approxima-
tion will be implemented in future improvement.

3.6. Calculation of the required FPGA clock speed

As mentioned earlier that in order to save hardware resource,
multiply-accumulate (MAC) technique is used. This implies
that MAC operation has to be done at a much higher rate
than that of the input sampling frequency. This MAC operat-
ing frequency is also the frequency of the FPGA clock. Thus,
a detailed analysis of the FPGA system clock needed for real-
time blind source separation is required.

The FPGA clock frequency can be calculated as shown in
(12) (see also [11]) where Fs is the sampling frequency of the
input signals, L is the tap length of the FIR filter, and I is the
number of iterations:

FPGA clock frequency = L · I · Fs. (12)

In our FPGA design, filter tap L = 161, iterations I = 50,
and input sampling frequency Fs = 8000 Hz; the FPGA clock
frequency is thus

161 · 50 · 8000 = 64.4 MHz. (13)

This means that the final FPGA design must operate properly
at 64.4 MHz. In practice, the maximum operating speed of a
hardware circuit can be optimized by analyzing the “critical
path” in the design. A more detailed analysis of the critical
path in the FPGA design is given in Section 4.1.2.

Note that the frequency 64.4 MHz also represents the
number of multiplications per second needed to perform the
blind source separation (per channel). This represents a very
large computation load if a general processor, or DSP (digital
signal processor), is to be used for real-time applications. Us-
ing fully hardware implementation, the performance gain is
easily obtained by bypassing the fetch-decode-execute over-
head, as well as by exploiting the inherent parallelism. FP-
GAs allow the above-mentioned advantage plus the repro-
grammability and cost effectiveness.

Some discussion on applying polyphase filter to increase
the filter length while maintaining the FPGA clock speed is
given in section 5.

4. SYSTEM-LEVEL DESIGN AND TESTING OF THE
FPGA FOR BSS ALGORITHM

4.1. System-level design of FPGA for BSS algorithm

System generator provides a bit-true and cycle-true FPGA
blocksets for functional simulation under MATLAB
Simulink environment thus offering a very convenient and
realistic system-level FPGA co-design and cosimulation.
Some preliminary theoretical results from MATLAB m-file
can directly be used as reference for verifying the FPGA
results (refer to [16] and http://www.xilinx.com/system
generator for more detailed description).

Note that the FPGA design using system generator is dif-
ferent from the more typical approach using HDL (hardware
description language) or schematics. Using system generator,
the FPGA is designed by means of Simulink models. Thus,
the FPGA functional simulation can be carried out easily
right inside Simulink environment. After the successful sim-
ulation, the synthesizable VHDL (VHSIC HDL where VH-
SIC is very-high-speed integrated circuit) code is automati-
cally generated from the models. As a result, one can define
an abstract representation of a system-level design and easily
transform it into a gate-level representation in FPGA.

The top level design of the ICA-based BSS algorithm
based on the described architecture is shown in Figure 4. As
can be seen from the figure, the FPGA reads in the data from
each wave file, and outputs the separated signals, as streams
of 16-bit data sample. The whole design is made up of many
subsystems. Here, a more detailed circuit design of the sub-
system which implements the computation for updating the
filter coefficients is shown in Figure 5.

The process of FPGA design is simplified. The Simulink
design environment also enhances the system-level software-
hardware co-design and verification. The upper right-hand
side of Figure 3 shows how to use Simulink “scope” to dis-
play the waveform generated by the FPGA during simula-
tion. This technique can be used to display the waveform
at any point in the FPGA circuitry. This offers a very prac-
tical way to implement a software-hardware co-design and
verification. Note also the use of the blockset “to wave file”
to transfer the simulation outputs from the FPGA back to a
wave file for further analysis.

http://www.xilinx.com/system_generator
http://www.xilinx.com/system_generator
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Figure 4: Top-level design of BSS using system generator under MATLAB Simulink.
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Figure 5: Detailed circuit for updating the filter coefficients.

4.1.1. Using fixed-point arithmetic in FPGA
implementation

When simulating a DSP algorithm using programming lan-
guages such as C and MATLAB, double precision floating
point numeric system is commonly used. In hardware im-
plementation, fixed-point format numeric is more practical.
Although several groups have implemented floating-point
adders and multipliers using FPGA devices, very few practi-
cal systems have been reported [17]. The main disadvantages
of using floating point in FPGA hardware are higher resource
requirements, higher clock frequency, and longer design time
than an equivalent fixed-point system.

For fixed filters, the analysis of the effect of fixed-point
arithmetic on the filter performance has been well presented
in other publications [18, 19]. An analysis of word length ef-
fect on the adaptation of LMS algorithm is given in [18].

We use only fixed-point arithmetic in our design. As
mentioned earlier, we use 16-bit fixed-point at the inputs and
outputs of our FPGA design. In practice, depending on the
applications, the size of data width should be selected taking
into account the desired system performance and FPGA gate
count. In terms of separation performance, it can be shown
that word length of the accumulator unit in the MAC unit is
most critical. Using system generator, it is easy to study the
effect of round-off error on the overall system performance
and that helps in selecting the optimal bit size in the final
FPGA design.

4.1.2. Analysis of critical path in FPGA implementation
of BSS algorithm

It was shown in Section 3.6 that in order for the FPGA to per-
form the blind source separation in real time, the required
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Figure 6: Simplified block diagram of MAC operation.

clock frequency is 64.4 MHz. We will now analyze the criti-
cal paths in the ICA-based BSS design in order to verify that
the clock frequency can be met. Referring to Figures 1 and 2,
one can see that the maximum operating speed of the FPGA
is determined by the critical path in the multiply-accumulate
blocks. The propagation delay in this critical path is the sum-
mation of the combinational delay made up of one multiplier
and one adder as shown in the simplified block diagram in
Figure 6. Based on Xilinx data sheet of Virtex-E FPGA, de-
lays of the dedicated pipeline multiplier and adder units are

(i) delay of 16-bits adder: 4.3 nanoseconds,

(ii) delay of pipelined 16-bit multiplier: 6.3 nanoseconds.

Thus, we can approximate the total delays in the criti-
cal path to be 4.3 + 6.3 = 10.6 nanoseconds, which converts
to 94 MHz maximum FPGA clock frequency. This is much
higher than the required 64.4 MHz needed. Note that this is
only an approximation and we mention it here for the pur-
pose of discussion about our BSS architecture. The accurate
maximum clock speed can easily be extracted from the FPGA
synthesis result which is given in Section 4.3. Note also that
the available dedicated multipliers depend very much on the
FPGA family and the size of device used.

4.2. Simulation results of the FPGA design for
ICA-based BSS

We carried out experimentations using different wave files,
all sampled at 8000 Hz, and with various types of mixing
conditions. The output separation performance results were
measured.

4.2.1. FPGA simulation using two female voices

In this simulation, we use wave files of two female voices.
Each file is approximately one-second long, with sampling
frequency of 8000 samples per second, and 16 bits per sam-
ple. The files were preprocessed to remove dc component
and amplitude normalized. The two original input voices are
shown in Figures 7a and 7b, respectively.

To simulate the mixing process, the two inputs were pro-
cessed using the instantaneous mixing program called “in-
stamix.m” downloaded from the website http://www.ele.tue.
nl/ica99 given in [20]. The mixing matrix used is [0.6 1.0, 1.0
0.6]. The two mixed voices are shown in Figures 8a and 8b.

The separation results from the FPGA simulation are
shown in Figures 9 and 10. The separated outputs are shown
in Figures 9a and 9b. By comparing the separated out-
put voice in Figure 9a to the corresponding mixed voice in
Figure 8a, the separation is clearly visible. By listening to the
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Figure 7: Two original female voices used for FPGA simulations:
(a) first female voice and (b) second female voice.

output, the voice is much more intelligible. Similar conclu-
sion can be drawn for the other voice (the measurements to
show the separation performance are given in the next sub-
section).

The error of the separated first female voice, measured by
subtracting the output in Figure 9a from the original input in
Figure 7a, is shown in Figure 10a. Figure 10b shows error of
the second voice.

Figures 11a and 11b show the FPGA simulation results
using linear piecewise function, compared to exponential
function shown in (7). Figure 11a shows the plot of learning
step sizes, using exponential function and linear piecewise
function, against number of iterations. Figure 11b compares
the averaged changes of filter coefficients ∆w12 and ∆w21, for
all the 161 taps, plotted against number of iterations. It can
be seen that, for the maximum number of iterations used
(= 50), both the learning step size using exponential func-
tion and the learning step size using linear piecewise function
converge to zeros properly.

4.2.2. FPGA simulation using one female voice mixed
with Gaussian noise

A second experiment was carried out to measure the sepa-
ration performance of the FPGA under noisy environment
[21]. The first female voice used in the last experimentation

http://www.ele.tue.nl/ica99
http://www.ele.tue.nl/ica99
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Figure 8: Two mixed female voices used for FPGA simulation. The
program “instamix.m” downloaded from http://www.ele.tue.nl/
ica99 is used; (a) mixed first signal and (b) mixed second input.

was mixed with white Gaussian noise (see Figure 12) and the
signal-to-noise ratios (SNRs), before and after the BSS opera-
tion by the designed FPGA, were measured. The same mixing
matrix [0.6 1.0, 1.0 0.6] was used. By adjusting the variance
of the white Gaussian noise source, σ2, the input SNR varies
in the range −9 dB to 10 dB.

The input signal-to-noise ratio, SNRi, is defined in this
experimentation as

SNRi (dB) = 10 log

[

∑T
i=1 x

2
1(i)

∑T
i=1 x

2
2(i)

]

. (14)

Here, T is the total number of samples in the time period
of measurement and x1(i) and x2(i) are the original female
voice and the white Gaussian noise respectively.

Similarly, the output signal-to-noise ratio, SNRo, is de-
fined in (15). e1(i) represents the overall noise left in the first
separated output u1 and defined as e1(i) = u1(i) − x1(i) as
shown in Figure 12:

SNRo (dB) = 10 log

[

∑T
i=1 x

2
1(i)

∑T
i=1 e

2
1(i)

]

. (15)
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Figure 9: Two separated voices from FPGA simulation; (a) sepa-
rated first voice and (b) separated second voice.

The improvement of SNR after BSS processing, SNRimp
(dB), is defined as

SNRimp (dB) = 10 log

[

∑T
i=1 x

2
2(i)

∑T
i=1 e

2
1(i)

]

. (16)

The result in Figure 13 shows the averaged output SNRs
and the average improvement of SNRs plotted against input
SNRs. It can be seen that as the input SNRs varies, the out-
put SNRs is almost the constant at approximately 35 dB. The
maximum achievable out SNRs is limited by the width of the
datapath implemented inside the FPGA. Due to this reason,
the amount of improvement of SNRs decreases with the in-
creasing input SNRs.

4.2.3. FPGA simulation using two female voices mixed
using simulated room environment

Next experimentation was carried out to measure separation
performance of the designed FPGA under realistic room en-
vironment using the same two female voices. The room envi-
ronment was simulated using the program “simroommix.m”
downloaded from the same website mentioned earlier. The
coordinates (in meter) of the first and second signal sources

http://www.ele.tue.nl/ica99
http://www.ele.tue.nl/ica99
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Figure 10: Error of the two separated voices; (a) error of separated
first voice and (b) error of separated second voice.

are (2, 2, 2) and (3, 4, 2) respectively. The locations of the first
and second microphone are (3.5, 2, 2) and (4, 3, 2) respec-
tively. The room size is 5 × 5 × 5. The simulated room ar-
rangement is shown in Figure 14.

The measurement of separation performance is based on
using (17) (see [20]). Here, S j is the separation performance
of the jth separated output where u j,x j is the jth output of
the cascaded mixing/unmixing system when only input x j is
active; E[u] represents the expected value of u:

S j = 10 log







E
{

(

u j,x j

)2
}

E
{

(∑

i �= j u j,xi

)2
}





 . (17)

The program “bsep.m,” which performs the computation
as shown in (17), was downloaded from the website and used
to test our FPGA. It was found that before the BSS,

S1 = 17.29 dB, S2 = 10.63 dB, (18)

and after the BSS operation,

S1 = 20.29 dB, S2 = 16.53 dB. (19)

Thus, the BSS hardware improves the separation by 3 dB
and 5.9 dB for channels 1 and 2, respectively. The figures may
not appear very high. However, by listening to the separated
output signals, the improvement was obvious and further
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Figure 11: (a) Learning step sizes using exponential and linear
piecewise functions and (b) averaged changes of filter coefficients
∆w12 and ∆w21 using the two functions.
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Figure 12: FPGA simulation to test BSS using one female voice
mixed with white Gaussian noise with adjustable variance σ2.

improvement can be made by increasing the filter lengths.
Note also that the measurements of separation performance
and the improvement after the BSS depend very much on the
room arrangement.

4.2.4. FPGA simulation using convolutive
mixture of voices

In order to test the FPGA using convolutive mixtures
recorded in a real cocktail party effect, two samples voices
were downloaded from a website (T-W Lee’s website
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Figure 13: Results of SNR measurements using one female voice
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Figure 14: Arrangement of female voice sources and microphones
in simulated room environment using program “simroommix.m.”

at http://inc2.ucsd.edu/∼tewon/) and used in the FPGA
simulation. The two wave files used were from two speak-
ers recorded speaking simultaneously. Speaker 1 counts
the digits from one to ten in English and speaker 2
counts in Spanish. The recording was done in a nor-
mal office room. The distance between the speakers and
the microphones was about 60 cm in a square ordering.
A commercial program was used to resample the original
sampling rate of 16 kHz down to 8000 Hz. The separation re-
sults from the developed FPGA can be found at our website
(http://www.ntu.edu.sg/home/ecchara/—click project on the
left frame). Note that we present a real-time experimentation
using these convolutive mixtures in Section 4.4. We have also
posted the separation results of the same convolutive mix-
tures using MATLAB program at the same website for com-
parison.

Because the original wave files (before the convolutive
mixing) were not available, we could not perform the mea-

Table 1: Detailed gate requirement of the BSS FPGA design.

Number of slices for logic 550

Number of slices for flip flops 405

Number of 4 input LUTs 3002

used as LUTs 2030

used as a route-thru 450

used as shift registers 522

Total equivalent gate count for the design 100 213

Table 2: Maximum combinational path delay and operating fre-
quency of the FPGA design for BSS.

Maximum path delay from/to any node 15.8 ns

Maximum operating frequency 71.2 MHz

surement of the separation performance. However, by listen-
ing to the separated outputs, we notice approximately the
same level of separation as in our earlier experimentations.

4.3. FPGA synthesis result

After the successful simulation, the VHDL codes were auto-
matically generated from the design using system generator.
The VHDL codes were then synthesized using Xilinx ISE 5.2i
and targeted for Virtex-E, 600 000 gates. The optimization
setting for the ISE is for maximum clock speed. Table 1 de-
tails the gate requirement of the FPGA design. The total gate
requirement reported by the ISE is approximately 100 kgates.
The price of the FPGA device in this range of gate size is very
low. Note that all of the buffers are implemented using exter-
nal memory.

Table 2 shows the reported maximum path delay and the
highest FPGA clock frequency.

4.4. Real-time testing of FPGA design

The real-time testing of the FPGA was done using a proto-
type board equipped with a 600 000-gate Virtex-E FPGA de-
vice. The system setup is shown in Figure 15. The wave files of
the convolutive mixtures used in Section 4.2.4 were encoded
into the left and right channels of a stereo MP3 file which is
then played back repeatedly using a portable MP3 player. The
prototype board is equipped with 20-bit A/D and D/A con-
verters and the sampling frequency was set to 8000 samples
per second. Only the highest 16 bits of the sampled signals
were used by the FPGA.

The FPGA streamed out the separated outputs which
were then converted into analog signals, amplified, and
played back on the speaker. By listening to the playback
sound, it was concluded that we had achieved the same level
of separation as found in earlier simulations.

5. SUMMARY

In this paper, the hardware implementation of the modi-
fied BSS algorithm was realized using FPGA. A set of com-
promised specification for the BSS algorithm was proposed

http://inc2.ucsd.edu/~tewon/
http://www.ntu.edu.sg/home/ecchara/
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Figure 15: System setup for real-time testing of the blind source
separation in real time.

taking into consideration the separation performance and
hardware resource requirements. The design implements the
modified Torkkola’s BSS algorithm using noncausal unmix-
ing filters which reduce filter length and provides faster con-
vergence. There is no whitening process of the separated
sources involved except that there is a scaling applied in the
mixed inputs proportional to their variances.

The FPGA design was carried out using a system level
approach and the final hardware achieves the real-time oper-
ation using minimal FPGA resource. Many FPGA functional
simulations were carried out to verify and measure the sepa-
ration performance of the proposed simplified architecture.
The test input signals used include additive mixtures, convo-
lutive mixtures, and simulated room environment. The re-
sults show that the method is robust against noise; that is,
producing a small variation of the output SNR with respect
to a large variation in the input SNR. Note that here we have
considered the sensors to be almost perfect, or high quality
with negligible sensor error.

A relatively short filter length of 161 tap is first attempted
here due to the limitation of the maximum clock speed of
the FPGA. The FPGA can perform the separation successfully
when the delay is small, that is, less than 161/8000 = 20 ms.
In the environment where the delay is longer, a much longer
filter tap is needed and this can be realized. In this case, we
propose that, in order to keep the FPGA clock frequency the
same, multiple MAC engines should be used together with
the implementation of polyphase decomposition. For exam-
ple, if the tap length of 161∗ 16 = 2576 is needed, 16 MACs
engines are to be implemented with the 16-band polyphase
decomposition. Since one MAC engine is made up of only
one multiplier and one accumulator, the additional MAC en-
gines will not lead to much additional gates.

The application of block mode separation leads to the
side effect of a long processing delay. It was shown in
Section 3.2 that our current design poses a long delay of
0.62 s. A practical solution to this long delay is to apply over-
lapped processing windows. For example, if the processing
delay is to be reduced to 0.62/32 = 20 ms, the 2500-sample
windows will have to be overlapped by 31/32 = 97%, that is,
the BSS has to be performed for every 78 input samples.

In this paper, we consider the case of 2 sources (or 2
voices) and 2 sensors (or 2 microphones). In the future,
we will carry out further improvements in our FPGA archi-
tecture to tackle the situation when the number of sources
is higher, or lower, than the number of sensors. Using our
existing design, we have done some FPGA simulation us-
ing 3 voices with 2 microphones. The separation results are
good (please visit the website http://www.ntu.edu.sg/home/
ecchara/ for listening test). In this situation, two of the three
voices are successfully separated (from each other) while the
third suppressed voice is still present at both of the outputs.
We will improve on our current FPGA design to handle this
situation. Considering the fact that redesigning the FPGA
takes much time, we will carry out the above improvements
in our future works.
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