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Abstract: Wireless local area network (WLAN) is a technology that combines computer network

with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial

Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development

of wireless communication technology and the use of the frequency bands without the need

for authorization, the application of WLAN is becoming more and more extensive. As the key

part of the WLAN system, the antenna must also be adapted to the development of WLAN

communication technology. This paper designs two new dual-frequency microstrip antennas

with the use of electromagnetic simulation software—High Frequency Structure Simulator (HFSS).

The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages

of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna

radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size,

and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch.

The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna

is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside

the patch. Simulation experiments prove that the two designed antennas have a higher gain and a

favourable transmission characteristic in the working frequency range, which is in accordance with

the requirements of WLAN communication.

Keywords: WLAN; microstrip antenna; dual-frequency; HFSS

1. Introduction

In recent years, with the rapid development of wireless communication technology, the WLAN

communication system has also flourished, and the applied range in the market is increasingly

wide [1,2]. WLAN communication systems generally require two-way sending and receiving data

in a fast, high-efficiency and reliable way, which is reflected in the antenna subsystem. The antenna

is an important part of the wireless communication system [3,4]. Modern society has entered into the

information age, and people present higher requirements for the antenna, that is, the antenna not only

has a wider frequency band, smaller size and is easier to install, but also has a high radiation efficiency

and anti-interference performance, and other characteristics [5]. Therefore, the study of multiband

and miniaturized antennas becomes an important issue in the field of antennas [6]. Compared with

the traditional microwave antenna, the microstrip antennas are low profile, small size, low cost

and light weight, which can meet the demands of miniaturization. However, microstrip antennas

inherently have narrow bandwidth; hence, the study of dual-band microstrip antennas is necessary.
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At present, extensive studies of dual-band microstrip antennas applied in WLAN have been

carried out, and a lot antenna types which work in a dual-band have been put forward, such as

Dipole antennas [7], Planar Inverted-F antennas [8], Planar Monopole antennas [9] and Quasi-Yagi

antennas [10,11]. These antennas are simple in structure and low in production cost, which are

suitable for the use of WLAN devices. The research of microstrip antennas is mainly focused on

small scale, broadband, multi polarization, multi band and high gain [12–14], etc. For example,

Heng-Tung Hsu et al. [15] have designed a microstrip antenna for dual band operation, as shown

in Figure 1.
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Figure 1. Structure of a microstrip antenna.

This paper mainly studies the dual frequency characteristics of microstrip antennas. Two dual

frequency microstrip antennas designed with HFSS, that is manufactured by Ansoft of the

United States, can be applied to WLAN. The simulation results indicate that the antenna has a

satisfactory performance.

The rest of the paper is organized as follows. In Section 2, the paper introduces the related

principle and method of microstrip antenna design. A broadband dual band printed antenna for

WLAN is designed in Section 3. In Section 4, a dual frequency dual band microstrip antenna is

designed, which is used to realize the dual band operation on the radiation side. Section 5 is the

summary of the paper.

2. Design Theory

2.1. Introduction to Microstrip Antennas

A microstrip antenna is a resonant radiator, whose radiation field is produced by the

electromagnetic field of mutual-motivation between the upper radiation patch edges of microstrip

antenna and the grounding plate, and constantly radiates out electromagnetic waves through the

gap between them [16,17]. The parameters of the antenna are the measure of the quality of the

antenna. The microstrip antenna designed in this paper will mainly study the bandwidth and the

gain. The bandwidth is the frequency range of the antenna when the antenna is off the center of the

operating frequency; meanwhile, the antenna’s performance parameter is reduced to the allowable

value [18,19]. Generally, the bandwidth of the microstrip antenna is in 0.7%–7%. The gain of the

antenna is the ratio of the radiation power intensity generated by the actual designed antenna to the

ideal radiation unit at the same point in space as the same input power is equal.

2.2. The Feeding of the Antenna, Miniaturization and Dual-Band Technology

The typical structure of printed monopole antenna is shown in Figure 2. It has advantages of

small size, light weight, easy to integrate and mass production [20–22]. The feed means of the antenna
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is microstrip line feeding. The manufacturing process of microstrip line is simple, easy to integrate

with other active and passive circuit components, which is conducive to realizing the miniaturization

of the circuit system and improving the degree of integration.

radiation patch

ground planes

dielectric substrates

Figure 2. Structure chart of a printed monopole antenna.

When using coaxial feed, the probe used for feeding is stretched into the resonant cavity to

motivate the patch antenna. The advantages of the coaxial feed is that the feeding points can be

selected at any desired position of the patch, and the coaxial feeder located in below the ground

plane and the patch antenna located in the ground floor avoid the effect of the feeder on the

antenna radiation.

The bandwidth and gain of the antenna are closely related to the structure and size of

the antenna. Reducing the size of the antenna will reduce the efficiency of the antenna and

narrow the bandwidth. In many cases, especially in aerospace satellite communication and mobile

communication, due to the limitation of physical space, small antennas are urgently needed [23,24].

Therefore, it is necessary to reduce the size of the antenna while improving the performance of

the antenna.

With the development of WLAN technology and other communication technologies, the

demand for dual-frequency and multi-frequency antennas is increasing. In light of this situation, the

multi-frequency operation method of the microstrip antenna has been studied extensively. There are

two kinds of basic methods: monolithic chip method and multi chip method. Monolithic chip

method can be divided into monolithic multi mode method and monolithic loading method.

Monolithic multi mode method works in different modes of patch simultaneously, while monolithic

loading method adopts loading to form different resonance frequencies. For monolithic microstrip

patch antenna, in addition to the use of multi mode method, the load method can also be employed

to achieve multi-frequency work. In addition, low-frequency ratio of the two working frequencies

can be obtained by using the loading method [25]. Commonly used forms of loading slots include

rectangular slots, U-shaped grooves and L-shaped grooves. Through the adjustment of the length

and width of the gap, the antenna can achieve excellent matching characteristics and multi-frequency

characteristics [26,27].

3. Design of Miniaturized Dual-Band Broadband Printed Antennas

This part designs a broadband dual-frequency printed monopole antenna for WLAN, which

works in two frequency bands of 2.4 GHz–2.52 GHz and 4.5 GHz–7.5 GHz, covering 2.4 GHz, 5.2 GHz
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and 5.8 GHz, three working frequencies of WLAN. The gain of 4.4 dB, 4.1 dB and 5 dB are obtained

in the maximum radiation direction of the three frequency bands, respectively.

3.1. Antenna Structure Design

In Figure 3, the structure chart of printed monopole antenna is presented. The antenna is printed

on the FR4 antenna substrate with a relative dielectric constant of 4.4. The size of the substrate is

Ws × Ls, the thickness is 1.6 mm. The ground plane of the antenna is printed on the back ground of

substrate, whose length and width are represented by Lg and Ws, respectively. In addition, the main

part of the antenna is printed on the front of the substrate. The antenna is fed by a microstrip line with

a characteristic impedance of 50 Ω, and the size of microstrip line is Wf × Lf. The radiating element

of the antenna is composed of two rectangular patches and a T-shaped folded patch. The length of

the rectangular patch is L2, and the width is L3. The length of the vertical portion of the T-shaped is

L4, the length of horizontal section is L5, and the folding part is L6.

Ws

Ls

Lf

L1

L2

L3L4

L5

L6

Lg

Wf

Figure 3. Antenna structure chart.

3.2. The Structural Analysis of the Antenna

According to the working principle of the monopole antenna, using the principle of mirror

image, the ground plane can be introduced to reduce the length of the half-wave dipole antenna by

half, which is equivalent to 1/4 wavelength of the monopole antenna. Then, the resonant frequency

of printed monopole antenna is expressed as:

f =
c

4L
√

εr
(1)

where c is the speed of light, L is the resonant path length of the radiator, and εr is the relative

dielectric constant of the dielectric-slab. The antenna adopts a 50 Ω microstrip to feed, and the width

of the microstrip feeder can be obtained by the following equation:
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When w/h > 1,

Z0 = Z f 2π

√

εe f f ln(8
h

w
+

w

4h
) (2)

εe f f =
εr + 1

2
+

εr − 1

2
[(1 + 12

h

w
)
−1
2 + 0.04(1 −

w

h
)2] (3)

When w/h < 1,

Z0 =
Z f

√
εe f f (1.393 + w

h + 2
3 ln(w

h + 1.444))
(4)

εe f f =
εr + 1

2
+

εr − 1

2
(1 + 12

h

w
)
−1
2 (5)

In the formula, Z f = 376.8 Ω represents free space wave impedance, h represents the height of

medium plate, w represents the width of microstrip line, and εe f f represents the effective dielectric

constant of the dielectric plate.

We run the commercial software Ansoft HFSS to simulate the structure of the antenna. The effects

of various parameters on the performance of the antenna are studied in the following.

Changing the range of L2, which denotes the unit length of rectangular radiation, and keeping

other parameters unchanged, the changes of return loss S11 with L2 are shown in Figure 4. It can be

seen from the figure that L2 mainly affects the bandwidth and the resonant point at a high band. As L2

becomes larger, the resonant frequency of 2.4 GHz band moves to the left, the resonant frequency at

high frequency significantly decreases, and the matching situation becomes worse.
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Figure 4. Parameter S11 varies with L2.

The width of the rectangular radiating element is L3. Figure 5 illustrates the results of S11

parameter varies with L3. L3 will not affect the resonant frequency of two frequency bands but will

affect the matching of the antenna. As L3 becomes larger, the matching situation becomes worse, and

the bandwidth is also reduced.

The vertical part of the T-sharped element is L4, and the S11 varies with L4 as shown in Figure 6.

The resonant frequency of 2.4 GHz band decreases with the increase of L4, and the resonant frequency

of the high frequency band does not change with the L4. While the L4 becomes larger, the bandwidth

of the high frequency band is obviously reduced.
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Figure 5. Parameter S11 varies with L3.
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Figure 6. Parameter S11 varies with L4.

The length of the horizontal part of the T-sharped element is L5. The value of L5 is changed, and

the other parameters are constant, while the changes of S11 with L5 are shown in Figure 7. As shown

in the chart, the resonance frequency of the low frequency band decreases with the increasing of L5,

and the resonant frequency of the high frequency band does not vary with L5.
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Figure 7. Parameter S11 varies with L5.
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The folding part of the T-sharped unit is L6, and the changes of S11 with L6 are shown in Figure 8.

As shown in the chart, the resonant frequency of the low frequency band decreases with the increasing

of L6, and the resonance frequency of the high frequency band does not vary with L6.
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Figure 8. Parameter S11 varies with L6.

3.3. The Results of Antenna Simulation

After optimization, the final parameters of the antenna are shown in Table 1. The overall size of

the antenna is 16 mm × 29 mm, the structure is compact, and the horizontal direction of the T-shaped

element is folded down to reduce the antenna size. The miniaturization of the antenna can be applied

to the wireless network card and other small devices.

Table 1. The parameters of the optimized antenna (unit: mm). (the bold words in the first and

the third row represent the parameters, the second and the fourth row represent the value of the

corresponding parameters).

Ws Ls L f W f Lg L1

16 29 14 3 13 14

L2 L3 L4 L5 L6 H

7 3 12 12 3 1.6

According to the optimized parameters of the antenna, the S11 parameter curve of the antenna

is shown in Figure 9. The antenna works in the two frequency bands of 4.5 GHz–7.5 GHz and

2.4 GHz–2.52 GHz, the impedance bandwidth reaches 3 GHz and 120 MHz, respectively, covering

the 2.4 GHz, 5.2 GHz and 5.8 GHz three operating frequency bands of WLAN. In addition, the

working broadband is realized. Figure 10 shows the Voltage Standing Wave Ratio (VSER) of

antenna, and it can be inferred that the values of the standing wave ratio are less than two and the

antenna has good transmission characteristics. Figure 11 depicts the input impedance of the antenna.

The input impedance in the passband is about 50 Ω, and the antenna can be well matched with the

microstrip feeder.
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Figure 9. Parameter S11 of the antenna.
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Figure 10. VSWR curve of the antenna.
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Figure 11. Input impedance curve of the antenna.

Figure 12 shows the gain of the antenna. As shown in the chart, the gain of the antenna in the

2.4–2.5 GHz band can reach 4–5 dB, and the gain in the 5 GHz band can reach more than 4 dB.

The antenna realizes the miniaturization and achieves a higher gain. Figure 13 illustrates the E

plane and H plane antenna patterns in the 2.45 GHz, 5.2 GHz and 5.8 GHz. The E plane graph is

“∞” shaped, and the H plane graph is circular, which indicates that the antenna has outstanding

omnidirectional characteristics.
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Figure 12. The gain curve of the antenna.

-20

-15

-10

-5

0

5

0

30

60

90

120

150

180

210

240

270

300

330

-20

-15

-10

-5

0

5

 H

 E

(a)

-30

-25

-20

-15

-10

-5

0

5

0

30

60

90

120

150

180

210

240

270

300

330

-30

-25

-20

-15

-10

-5

0

5

 H

 E

(b)

-20

-15

-10

-5

0

5

0

30

60

90

120

150

180

210

240

270

300

330

-20

-15

-10

-5

0

5

 H

 E

(c)

Figure 13. Antenna pattern (a) 2.45 GHz; (b) 5.2 GHz; (c) 5.8 GHz.

4. Design of Dual-Band Microstrip Antenna

In this section, the design of the rectangular dual-band microstrip antenna for WLAN is studied.

The influence of different slot styles on the antenna performance is discussed. A microstrip antenna

with a stepped groove is designed and improved, and the dual-band operation is realized by

opening a pair of symmetrically folded grooves. The antenna works in two frequency bands of

2.4 GHz–2.46 GHz and 5.16 GHz–5.4 GHz, and the antenna gain can achieve 4 dB in most of the

working frequencies. The antenna patch is a square patch whose length of a side is 25 mm, which

ensures the appropriate gain of the antenna while reducing the volume of the antenna.

4.1. Antenna Structure Design

The antenna structure is shown in Figure 14. The antenna is printed on a square FR4 substrate,

the thickness and length of which are 1.6 mm and Ls, respectively. The radiating element of the

antenna is a square patch, whose size length is L0. The mode of feeding adopts the coaxial feeding of

characteristic impedance 50 Ω, and the distance from the feed point to the center of the patch is xp.

In addition, the trap cut slot is opened on the opposite sides of the antenna, the length and width of

each step are all 1 mm, the total length of the ladder shaped groove is L1, and the total width is W1.

We simulate the design of the antenna with the simulation software HFSS.
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L0
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y

W1
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Figure 14. Antenna structure.

4.2. The Choice of Antenna Slotting Form

The microstrip antenna can be slotted to achieve multi band, and the slot form is varied. The key

of the design is to adopt the appropriate slotting form. The effects of different slot forms on the

performance of the antenna are discussed in the following.

The initial parameters of the antenna are unchanged, and the antenna is not slotted, the return

loss of the antenna is shown in Figure 15. The antenna has three resonant frequencies—2.74 GHz,

5.46 GHz, and 6.25 GHz, which are all not in the desired frequency band. Therefore, the structure of

the antenna must be improved.

1 2 3 4 5 6 7
-35
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-10

-5

0

S
1
1(
d
B
)

Freq(GHz)

Figure 15. Parameter S11 of the antenna without a slot.

When the antenna is not slotted, the resonant frequency of the antenna is too high. However, the

resonant frequency can be moved to the left with the method of slotting, so that the size of the antenna

can be reduced. Accordingly, the two edges of the antenna are opened a narrow rectangular groove

with a width of 1 mm, a length of W1, as shown in Figure 16a. Figure 16b illustrates the parameter

S11 of the antenna under this circumstance. The antenna resonates in the three frequency bands of

2.6 GHz, 5.45 GHz and 6.08 GHz. It can be seen that the frequency of the antenna, to some extent,

moves left, but still does not resonate in the required frequency band. Increasing W1 can further

reduce the operating frequency of the antenna, but the antenna gain will also be reduced, and the

directional diagram will become worse to some extent. Hence, we can consider increasing the width

of the gap.



Sensors 2016, 16, 983 11 of 15

L0
x

y

W1

(a)

1 2 3 4 5 6 7
-25

-20

-15

-10

-5

0

S
1
1(
d
B
)

Freq(GHz)

(b)

Figure 16. (a) Antenna structure with a rectangular slot; (b) The parameter S11 of the antenna with a

rectangular slot.

By adjusting the width W1 and length L1 of the slot, it can be seen from the parameter S11 of

the antenna that the resonance frequency of the antenna will be reduced as the size of the antenna

is increased, as shown in Figure 17. Figure 18 describes the S11 parameter curve of the optimized

antenna. At this point, L1 = 9 mm, W1 = 3.7 mm, the resonance frequency of the antenna is 2.43 GHz,

5.25 GHz and 6.05 GHz, covering 2.4 GHz and 5.2 GHz operating frequency bands of WLAN.

However, there is a useless resonance frequency (6.05 GHz), which will affect the normal operation.

Thus, the following consideration is employing other forms to try to eliminate this effect.
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Figure 17. (a) The parameter S11 varies with L1 when opening the rectangular slot; (b) The parameter

S11 varies with W1 when opening the rectangular slot.
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Figure 18. S11 parameter curve of the optimized antenna.
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The rectangular slot can obtain two frequency points that are required, but meanwhile, there

will be unwanted frequency points that cannot be removed, so we switch to the ladder type slot as

shown in Figure 14. By properly adjusting the size of the slot, the performance of the antenna can be

obtained, as shown in Figure 19. The antenna has three resonant frequencies—2.44 GHz, 5.24 GHz

and 6.2 GHz. The third frequency of the ladder type is larger than that of the rectangular slot, but it

is still possible to have a passive effect on the performance of the antenna.
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Figure 19. S11 parameter curve of the antenna with a stepped groove.

4.3. Improved Dual-Band Microstrip Antenna

In order to eliminate the third frequency point, we now improve the antenna structure shown

in Figure 14. We open two symmetrical folding shape slots on the basis of the above antenna, the

improved antenna structure as shown in Figure 20. The length of slotted horizontal section is L2,

the length of collapsible sections is L3, and the length of vertical component is W2. In Figure 20, the

length of dielectric slab is Ls = 55 mm, the length of square patch of antenna is L0 = 25 mm, and the

size of ladder shaped groove is L1 = 14 mm, W1 = 4 mm. The size of the folding groove is L2 = 8 mm,

W2 = 4.5 mm, L3 = 7 mm, and the distance from the patch center to the feed point is xp = 4.5 mm.

According to the parameters of the improved antenna, the simulation results are as follows.

xp
x

y

Ls

L1

L0

W1

L2

W2

L3

Figure 20. Improved antenna structure.

Figure 21 presents the S11 parameter curve of the improved antenna. The antenna consists

of two resonant frequencies—2.43 GHz (2.4 GHz–2.46 GHz) and 5.2 GHz (5.16 GHz–5.4 GHz).

The bandwidth, that when the return loss of the antenna is less than −10 dB, are 60 MHz

(2.4 GHz–2.46 GHz) and 240 MHz (5.16 GHz–5.4 GHz), which can basically meet the demand of

WLAN in the two frequency bands. Figure 22 is the curve of voltage standing wave ratio (VSWR)

of the improved antenna. In the two frequency bands above, the VSWR is less than two, which
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indicates there exists positive transmission characteristics. Figure 23 illustrates the directional pattern

of the antenna at the far field. It can be seen that the directional pattern of the antenna is better in the

2.43 GHz, but it becomes worse in the 5.2 GHz. Figure 24 is the gain of the antenna. The gain is greater

than zero in the working band of the antenna, and the gain can achieve 4 dB in most of the frequency

bands. In addition, the size of the antenna is 25 × 25 mm, which realizes the miniaturization of the

antenna, and ensures the antenna gain, so that it has excellent performance.
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Figure 21. S11 parameter curve of the improved antenna.
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Figure 22. VSWR curve of the improved antenna.
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Figure 23. The directional pattern of the improved antenna (a) 2.43 GHz; (b) 5.2 GHz.
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Figure 24. The gain of the improved antenna (a) 2.43 GHz; (b) 5.2 GHz.

5. Conclusions

In this paper, two dual-band antennas according to the demand of WLAN for multi frequency

communication are designed. One of them is a dual-band printed monopole antenna, which operates

in two frequency bands of 2.4 GHz–2.52 GHz and 4.5 GHz–7.5 GHz, and the impedance bandwidth

reaches 120 MHz and 3 GHz, respectively, covering 2.4 GHz, 5.2 GHz and 5.8 GHz—three working

frequency bands of WLAN. In addition, the gain of the antenna is greater than 4 dB, and the

volume of this antenna is only 16 × 29 × 1.6 mm3, implementing the miniaturization of the antenna.

The second antenna is a dual-band microstrip antenna, which works in two frequency bands of

2.4 GHz–2.46 GHz and 5.16 GHz–5.4 GHz, and realizes the miniaturization and dual-band operation

by adopting the slotting technology. The two designed antennas have a higher gain and a favourable

transmission characteristic in the operating band, which is in accordance with the requirements of

WLAN communication under more complicated conditions.
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