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Design of MSE Walls for Fully Saturated Conditions 

Introduction  

                  Over the past three decades, 

Mechanically Stabilized Earth (MSE) retaining walls 

have been increasingly used as design alternatives to 

traditional reinforced concrete retaining walls for 

supporting earth fills in civil infrastructure projects. 

MSE walls can retain earth fills of significant height 

and sustain surface applied loads at lower cost than 

reinforced concrete walls. Because they are flexible 

and mechanically redundant structures, MSE walls 

are particularly suitable for difficult foundation soil 

conditions where differential settlements are 

anticipated. In general, MSE retaining walls consist 

of structural fill reinforced with tensile-resistant 

inclusions that are connected to facing elements. The 

internal stability of the reinforced soil structure is 

provided by mechanical interactions of its three 

components, i.e. fill material, reinforcement, and 

facing. 

MSE walls are much more economical than 

traditional cast-in-place concrete walls.  Current 

design of MSE walls for drained conditions is 

based on limit state analyses in which the ultimate 

strength of the soil and the pullout capacity of the 

reinforcement are incorporated. This approach has 

been satisfactorily used for a large number of walls. 

However for fully saturated conditions there are no 

clear guidelines for the design of MSE walls. 

INDOT design guidelines contain the following 

statement: "For fully saturated conditions, site-

specific field or laboratory pullout tests shall be 

performed". Performance of such tests is very time-

consuming and expensive.  As a result, MSE walls 

are not specified for many projects. 

 

The stability of MSE walls may be compromised 

in undrained conditions such as during a heavy 

rain or during a rapid drawdown. Excess pore 

pressures in low permeability soils may not 

dissipate quickly enough, and thus may reduce the 

effective stresses inside the soil, which in turn 

may cause a reduction of the shear strength at the 

interface between the soil and the reinforcement. 

The study of MSE walls in undrained conditions 

is needed to determine the behavior of saturated 

MSE walls where rapid changes in pore pressures 

are anticipated.  For this purpose, a series of 

laboratory pullout tests are performed under 

drained and undrained conditions for different 

soil types ranging from clean sand to 35 % silty 

sand and for overburden pressures of 30, 100 and 

200 kPa. Numerical analyses are also conducted 

to determine scale and permeability effects for the 

dissipation of excess pore pressures. 

Findings  

Results from the experimental and 

numerical investigation of the drained and 

undrained pullout capacities of a steel 

reinforcement embedded into a silty sand soil 

matrix show that: 

(1) Effect of silt: Drained and undrained pullout 

capacities decrease from clean sand to 5 % 

silty sand, increase from 5 % to 10 %, and 

then decrease from 10 % to 15% and 35 % 

silty sand. The pullout capacity changes as 

the internal friction angle of the soil 

changes because the pullout capacity 

increases as the internal friction angle of the 

soil increases. 

(2) Effect of overburden pressure: The pullout 

capacity increases as the overburden 

pressure increases. Larger displacements are 

required to reach the maximum pullout 
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capacity for higher overburden pressures. 

Higher soil stiffness is observed for higher 

overburden pressure. 

(3) Effect of drainage: The undrained pullout 

capacity is always smaller than the drained 

pullout capacity except for clean sand, 

which is the same. The ratio of undrained to 

drained pullout capacity changes with silt 

content and with overburden pressure. For 

100 kPa and 200 kPa overburden pressure 

the ratio is 1.0 for clean sand, decreases to 

0.67~0.69 for 5 % silty sand, 0.77~0.78 for 

10 % silt, 0.72~0.73 for 15 % and 

0.57~0.59 for 35 % silt. For 30 kPa 

overburden, the ratio is 1.0 for clean sand, 

0.5 for 5 % silt, 0.67 for 10 % silt, 0.78 for 

15 % silt and 0.72 for 35 % silt. Drained 

pullout tests usually show strain hardening, 

or at least no reduction in pullout load, after 

maximum pullout; in contrast, undrained 

pullout tests are generally strain softening. 

This is a particularly important finding since 

it indicates that failure in drained conditions 

will be progressive while in undrained 

conditions will be sudden and catastrophic. 

(4) Effect of permeability: The dissipation of 

pore pressures inside the soil is very rapid 

for permeabilities larger than 10-2 cm/sec. 

For permeabilities smaller than 10-3 cm/sec, 

dissipation of pore pressures is very slow. 

(5) Effect of scale: For permeabilities smaller 

than 10-3 cm/sec, scale effects are extremely 

important in that the larger the 

reinforcement, the longer the time for pore 

pressures to dissipate. 

Implementation  

Based on the findings from experiments and 

numerical analyses, the following is 

recommended for implementation: 

 

(1) A small percentage of non-plastic fines in 

the backfill soil may have positive effects 

since the fines occupy the void space and 

decrease the void ratio, thus increasing the 

internal friction angle. Once the 

percentage of fines reaches a threshold 

value the addition of fines is detrimental 

and the internal friction angle and 

consequently the pullout capacity 

decrease. This may be caused by the fines 

preventing the particles to be in contact 

with each other, and thus reducing the 

shear stress required to mobilize the 

grains. For practical reasons, however, it is 

not recommended to use granular materials 

with fines content larger than 5 to 10 % 

since segregation may become an issue 

and the material may be sensitive to 

changes in water content. As a general 

recommendation the fines should be non-

plastic. For each project, the adequacy of a 

particular granular material as a backfill 

for a wall that will not experience 

undrained conditions can be evaluated by 

running triaxial tests on the material 

compacted to the required density. 

(2) Granular materials with even a small 

percentage of fines are not recommended 

as backfill in walls where undrained 

conditions may occur. This is because of 

the large reduction of pullout capacity 

observed, which can be as much as 50 %. 

An additional detrimental effect of fines is 

that they can be washed out of the backfill 

as the water level behind the wall changes; 

this may produce internal erosion and 

damage the wall. However, submerged or 

partially submerged MSE walls can be 

safely used if a clean granular backfill is 

used. Indiana DOT stone # 8 material is 

appropriate for this situation because of 

the low percentage of fines and large 

permeability. 

 

(3) The findings from this research also show 

that field tests under drained conditions 

are not appropriate to evaluate the 

undrained pullout capacity under 

undrained conditions. If for a particular 

project, the undrained pullout capacity of a 

reinforcement embedded in a soil matrix 

needs to be evaluated, laboratory tests 

similar to the ones performed in this 

research are recommended. As a lower 

bound, the undrained shear strength of the 

soil could be used for stability 

calculations. 
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IMPLEMENTATION REPORT 

 

 

In the last three decades, the use of Mechanically Stabilized Earth (MSE) retaining walls 

has increased dramatically in civil engineering projects. MSE walls are used as design 

alternatives to traditional reinforced concrete retaining walls because of their capability to 

retain earth fills of significant height and sustain surface applied loads at lower cost than 

reinforced concrete walls.  

 

The current design of MSE walls is based on limit state analyses where the ultimate 

strength of the soil and the pullout capacity of the reinforcement are incorporated. 

However, this applies only to drained conditions. For fully saturated conditions, there are 

no clear guidelines for the design of MSE walls. According to the Indiana DOT (INDOT) 

design guidelines, "For fully saturated conditions, site-specific field or laboratory pullout 

tests shall be performed". However, such tests are time-consuming and expensive. 

Because of that, MSE walls are avoided in many projects. 

 

The stability of MSE walls may be compromised in undrained conditions such as during 

a heavy rain or during a rapid drawdown. Excess pore pressures in low permeability soils 

may not dissipate quickly enough, and thus may reduce the effective stresses inside the 

soil, which in turn may cause a reduction of the shear strength at the interface between 

the soil and the reinforcement. The study of MSE walls in undrained conditions is needed 



 ix

to determine the behavior of saturated MSE walls where rapid changes in pore pressures 

are anticipated.  For this purpose, a series of laboratory pullout tests are performed under 

drained and undrained conditions for different soil types ranging from clean sand to 35 % 

silty sand and, overburden pressures of 30, 100 and 200 kPa. Numerical analyses are also 

conducted to determine scale and permeability effects in the dissipation of excess pore 

pressures. 

 

The following conclusions are obtained:  

(1) Effect of silt: Drained and undrained pullout capacities decrease from clean sand 

to 5 % silty sand, increase from 5 % to 10 %, and then decrease from 10 % to 15 

and 35 % silt. Pullout capacities change as the internal friction angle of the soil 

changes (i.e. pullout capacity increases as friction angle of the soil increases). 

(2) Effect of overburden pressure: Pullout capacity increases as the overburden 

pressure increases. Larger displacements are required to reach the maximum 

pullout capacity for higher overburden pressure. Higher soil stiffness is observed 

for higher overburden pressure. 

(3) Effect of drainage: The undrained pullout capacities are always smaller than the 

drained pullout capacities except for clean sand, that are equal. The ratio of 

undrained to drained pullout capacity changes with silt contents, but is the same 

for 100 and 200 kPa overburden pressure. This ratio is one for clean sand, 

decreases to 0.67~0.69 for 5 % silty sand, increases to 0.77~0.78 for 10 % silt, 

decreases to 0.72~0.73 for 15 % and decreases again to 0.57~0.59 for 35 % silt. 



 x

For 30 kPa overburden, the ratio is one for clean sand, 0.5 for 5 % silt, 0.67 for 

10 % silt, 0.78 for 15 % silt and 0.72 for 35 % silt. 

(4) The dissipation of pore pressures is very rapid for permeabilities larger than 10
-2 

cm/sec. For permeabilities smaller than 10
-3 

cm/sec, dissipation of pore pressures 

is very slow and scale effects are extremely important in that the larger the 

reinforcement, the longer the time for pore pressures to dissipate.  

 

The following recommendations are made:  

Granular materials with even a small percentage of fines are not recommended as backfill 

in walls where undrained conditions may occur. This is because of the large reduction of 

pullout capacity observed, which can be as much as 60 %. An additional detrimental 

effect of fines is that they can be washed out of the backfill as the water level behind the 

wall changes; this may produce internal erosion and damage the wall. However, 

submerged or partially submerged MSE walls can be safely used if a clean granular 

backfill is used. Indiana DOT stone # 8 material is appropriate for this situation because 

of the low percentage of fines, and large permeability.  

 

The findings from this research also show that field tests under drained conditions are not 

appropriate to evaluate the undrained pullout capacity under undrained conditions. If for 

a particular project, the undrained pullout capacity of a reinforcement embedded in a soil 

matrix needs to be evaluated, laboratory tests similar to the ones performed in this 

research are recommended. As a lower bound, and thus on the safe side, the undrained 

shear strength of the soil could be used for stability calculations with a reasonable 



 xi

estimate of the interface friction between the soil and the reinforcement; note that the 

undrained shear strength depends on the overburden effective stress. 
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CHAPTER 1.  INTRODUCTION 

 

 

 

In the last three decades, the use of Mechanically Stabilized Earth (MSE) retaining walls 

has increased dramatically in civil engineering projects since Vidal, a French engineer, 

developed the modern concept of MSE walls in the early 70's. MSE walls are used as 

design alternatives to traditional reinforced concrete retaining walls because of their 

capability to retain earth fills of significant height and sustain surface applied loads at 

lower cost than reinforced concrete walls. In general, MSE walls consist of a structural 

fill reinforced with tensile-resistant inclusions that are connected to facing elements. 

MSE walls are internally stabilized by mechanical interactions between the three 

components: backfill material, reinforcement, and facing.  

 

The current design of MSE walls is based on limit state analyses where the ultimate 

strength of the soil and the pullout capacity of the reinforcement are incorporated. 

However, this applies only to drained conditions. For fully saturated conditions, there are 

no clear design guidelines for the design of MSE walls. According to the Indiana DOT 

(INDOT) design guidelines, "For fully saturated conditions, site-specific field or 

laboratory pullout tests shall be performed". However, such tests are time-consuming and 

expensive. Because of that, MSE walls are avoided in many projects. 
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Although numerous investigations have been performed to improve the engineering 

properties of MSE walls, those investigations primarily focused on drained conditions. 

The working conditions of MSE walls in drained conditions and undrained conditions are 

quite different, especially when fine grain soils or granular soils with fines are used as 

backfill. The stability of MSE walls with such backfill may decrease in undrained 

conditions such as during heavy rain or during a rapid drawdown. Excess pore pressures 

in low permeability soils may not dissipate quickly enough, which may reduce the 

effective stresses inside the soil, which in turn may cause a reduction of the shear strength 

at the interface between the soil and the reinforcement. The study of MSE walls in 

undrained conditions is needed to determine the behavior of saturated MSE walls where 

rapid changes in pore pressures are anticipated. 

 

In this research, a number of laboratory pullout tests are performed to determine the 

relation between drained and undrained pullout capacities for different soil types, 

overburden pressures, and drainage conditions. Those factors are fully examined to 

investigate their effect on pullout capacity.  

 

The dissipation time of pore pressures varies depending on permeability and 

reinforcement length. These factors cannot be investigated in the laboratory pullout tests. 

Instead, numerical analyses, using a finite element (FE) program, are conducted.  

This report is divided in 5 chapters, in addition to this Introduction.  
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In Chapter 2, a literature review of reinforced soil relevant to this research is presented. 

The basic theories of reinforced soil suggested by several engineers are introduced, which 

include mechanisms and behavior of reinforced soil. A number of full-scale tests and 

laboratory pullout tests are also presented in Chapter 2. Specifically, a study of several 

factors that may affect pullout capacity is performed. Next, a review of numerical 

analyses and analytical solutions is presented. Lastly, two case studies related to failure 

of MSE walls for undrained conditions, which are most relevant to this research, are 

summarized. 

 

Chapter 3 describes the pullout test setup used in this research. It contains a detailed 

explanation of the pullout test machine and measuring devices. An introduction to the 

data acquisition system is also presented. 

 

In Chapter 4, preliminary laboratory tests (Proctor tests, compaction tests, and 

permeability tests) and pullout tests are described. The test procedures and their results 

are presented and discussed.  

 

In Chapter 5, scale effects are evaluated through a number of numerical tests where the 

effects of reinforcement length and permeability on excess pore pressure dissipation are 

investigated.  
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Finally, Chapter 6 presents a summary and conclusions of this research. Based on the 

conclusions, recommendations for the design of MSE walls in undrained conditions are 

proposed.  
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CHAPTER 2. LITERATURE REVIEW 
 

 

 

2.1 Introduction 

 

This chapter presents a review of the technical literature most relevant to this research. 

Section 2.2 describes the basic theory of MSE (Mechanically Stabilized Earth) walls first 

proposed by a French engineer, Vidal. It covers mechanisms of reinforced earth, behavior 

of reinforced soil, and introduction of pullout resistance; the emphasis is on MSE walls 

with inextensible reinforcement (i.e. steel), which is the focus of this investigation. Full-

scale tests performed by several researchers are described in Section 2.3; in particular, a 

full-scale test performed by Runser (1999), is described in detail since the test was 

conducted for Indiana DOT. In Section 2.4, a number of laboratory pullout tests are 

introduced, especially tests performed by Palmeira (1989) who investigated the factors 

affecting pullout capacity. Section 2.5 presents numerical and analytical analyses of 

pullout tests, with focus on several parameters that may affect pullout capacity. Finally, 

Section 2.6 introduces two case studies regarding failure of MSE walls in undrained 

conditions, which are closely related to this research. 
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2.2 Reinforced Soil  

 

2.2.1 Mechanisms of reinforced soil 

 

Reinforced soil has two components: soil and reinforcement. Each component has 

different properties, but the fundamental idea is that the reinforcement embedded in the 

soil provides tensile strength to the soil. In addition, a reinforced soil has higher shear 

strength and stiffness than an unreinforced soil. 

 

A soil element extends horizontally and compresses vertically when a vertical load is 

applied to it. This deformation of the soil element is restrained by the reinforcement 

because of its higher stiffness; due to friction between the soil and the reinforcement, the 

movements of a particle of soil in contact with the reinforcement must be compatible 

with the movements of the reinforcement. There is a limit to the soil movement which 

depends on how much friction can be developed at the interface before sliding occurs. 

The shear stress at the interface produces tension in the reinforcement, and provides 

confinement to the soil, which in turn decreases the soil lateral deformations and 

increases the shear strength of the soil. This is the most important aspect of reinforced 

soil, which through tension in the reinforcement a stable composite mass with additional 

strength beyond that of the soil is obtained. 
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2.2.2 Concepts of reinforced soil 

 

Long et al. (1972) at the Laboratoire Central des Ponts et Chaussees (LCPC) carried out 

an experimental investigation to verify the mechanism of reinforced soil. Triaxial tests 

were conducted where cylindrical samples of reinforced sand were tested under 

axisymmetric stress conditions. The reinforcement in the sample was placed horizontally 

at a constant vertical spacing. Long et al. (1972) observed that there was an increase of 

the vertical stress required for failure in samples with reinforcement, and found that for a 

given confinement that was higher than approximately 100 kPa, the difference between 

the vertical stress at failure for reinforced and unreinforced soil was constant. They 

concluded that the failure envelopes of both reinforced and unreinforced soils were 

parallel to each other and had the same angle of internal friction, as shown in Figure 2-1 

(a). The additional strength induced by the reinforcement was represented as 'anisotropic 

cohesion', c', which is the basis of the LCPC (Laboratoire Central des Ponts et Chaussees) 

cohesion theory; see Figure 2-1 (a). 

 

The LCPC cohesion theory introduced a fictitious cohesion to explain the increase in 

shear strength, since the material tested was sand. A different explanation was proposed 

by Chapuis (1972), who introduced the 'enhanced confining stress' concept.  The 

enhanced confining stress concept is based on the assumption that an additional confining 

stress is applied to the soil by the reinforcement. As shown in Figure 2-1 (b), the 

additional confinement shifts the Mohr circle of an element of the soil to the right. As a 
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consequence, the point of failure is displaced from the original state, and thus the shear 

strength is increased.  

 

 

2.2.3 Design of mechanically stabilized earth retaining structures 

 

A Mechanically Stabilized Earth (MSE) wall has three components as shown in Figure 2-

2: (1) the earth fill: usually granular material; (2) reinforcement: metal strips, strips or 

sheets of geotextiles or wire grids; and (3) facing: not necessary but generally used for 

aesthetic reasons or to prevent soil erosion at the face of the wall.  

 

The primary functions of the MSE wall are: (1) support of the backfill through frictional 

resistance between reinforcement and soil; and (2) support of the facing panels.  

 

The backfill on the one hand creates the lateral pressure that needs to be supported while 

on the other hand interacts with the reinforcements to resist such lateral pressure 

(Koerner, 1998). The grains of soil would behave as if they were tied by the 

reinforcement if the friction angle of the backfill soil was greater than the interface angle 

between soil and reinforcement (Vidal, 1969).  

 

According to Schlosser and Long (1974), the reinforced soil is divided in two zones: 

active and passive, as shown in Figure 2-3. The active zone is the area between the failure 

plane and the front of the wall; within the active zone the soil tends to slip. The passive 
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zone is the area where the shear stresses are mobilized to prevent sliding of the 

reinforcement and is located behind the failure plane. The shear stress on the 

reinforcement acts towards the face of the wall in the active zone and away from the wall 

face in the passive zone (See Figure 2-3). 

 

The failure mechanisms of MSE walls are classified as internal and external. The internal 

failure modes include: (1) pullout of the reinforcement (adhesion failure); and (2) failure 

of the reinforcement (tension failure for an inextensible reinforcement). The external 

failure modes include: (1) sliding of the wall; (2) overturning of the wall; and (3) bearing 

capacity failure. Figure 2-4 shows schematic diagrams of the failure modes (Jones, 1996). 

 

In terms of internal stability, MSE walls may fail by either pullout of the reinforcement 

out of the soil mass or by failure of the reinforcement itself. The pullout of the 

reinforcement occurs when the maximum frictional resistance developed along the 

surface of the reinforcement is attained. The factor of safety against pullout, FS(P), is 

obtained using Equation 2-1.  

 

 

where, le : effective length as shown in Figure 2-5 

w : width of the reinforcement 

σv
/ : effective vertical pressure at a depth z 
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Φu : interface friction angle between the soil and the reinforcement 

σa  : active earth pressure at a depth z, from Rankine theory 

Sv and Sh : vertical and horizontal spacing of reinforcement 

 

The numerator of Equation 2-1 is the maximum pullout force, which can be written also 

as:  

 

Tmax = 2 w le σv
/ f*  (Eq. 2-2) 

 

where,  f* (i.e. tan φu  in Equation 2-1) is an effective coefficient of friction at the 

interface between soil and reinforcement (Figure 2-6). 

 

The coefficient of friction between soil and reinforcement, f*, is about 1.5 for a ribbed 

strip at the top of the wall and decreases linearly to a depth of 6m, as shown in Figure 2-

6. Below this depth, the coefficient of friction is equal to tanφ,  where φ is the internal 

friction angle of the backfill. The effective vertical stress due to the weight of the soil at 

this depth is about 100 kPa, which is considered as the threshold stress to restrain dilation 

of the soil. For a smooth strip, the coefficient of friction is 0.4, constant. This is because 

the interface friction between the soil and the strip is smaller than the friction angle of the 

soil.   

 

Failure of the reinforcement occurs when the pullout stress is larger than the yield stress 

of the material. The factor of safety against failure is obtained using Equation 2-3; a 

factor of safety about 2.5~3 is generally recommended (Das, 1995).  
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    where, fy is the yield strength of the reinforcement 

     t is the thickness of the reinforcement 

 

The design of an MSE wall, in terms of internal stability, is done as follows:  

(1) determine geometry, soil and reinforcement properties: height of the wall, H, unit 

weight of the backfill soil, γ, friction angle, Φ, interface friction angle, Φu, horizontal and 

vertical spacing of reinforcement, Sh and Sv, width of reinforcement, w, and yield stress, 

fy  

 

(2) determine the thickness of the reinforcement, t, required to prevent failure of the 

reinforcement from Equation 2-4; that is:  

 

(3) determine the total length of reinforcement, L, at any depth Z (See Figure 2-5), 
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(4) determine the overall external stability against overturning, sliding, and bearing 

capacity. Koerner (1998) has suggested the following factors of safety: for sliding, FS 

≥ 1.5; for overturning, 1.5< FS <2.0; for bearing capacity FS > 3.0.  

 

 

2.2.4 Soil behavior of MSE wall 

 

When a dense sand is sheared there is an increase in volume. This phenomenon is called 

dilatancy. In a direct shear test, the macroscopic shear plane is horizontal, but sliding of 

individual particles takes place along numerous microscopic planes that are at an angle 

with the shear plane. This is because the particles move up and over neighboring particles 

(Craig, 1990), which causes an increase in volume.  

 

Dilatancy of a granular soil is a function of the normal stress. Because inside a wall the 

soil is already confined, dilatancy results in an additional increase of confinement. As a 

consequence the interface shear strength increases, and the pullout capacity also 

increases.  

 

Failure occurs either at the interface between the soil and reinforcement or inside the soil. 

Failure along the interface is usually associated with a smooth strip while failure through 

the soil occurs with a ribbed strip (i.e. higher frictional resistance). This is the reason why 

ribbed strips are usually used for MSE walls.  
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2.3 Full-Scale Tests 

 

Full-scale tests have been performed to evaluate and verify the reinforced soil theory. 

Since full-scale tests, however, are very expensive compared to laboratory tests, they are 

rarely performed. In spite of that, a number of full-scale tests have been performed after 

Vidal (1966) conducted the first test on an MSE wall.  

 

A full-scale test was performed in 1968 at Incarville, France (Schlosser and Long, 1974). 

The wall was a 10 m high MSE wall, where strain gages were attached to steel 

reinforcements as the wall was built. It was found that the tension distribution along the 

reinforcement was not linear, and the maximum tension occurred at some distance from 

the face of the wall, as shown in Figure 2-3. It was also found that the location of 

maximum tension in each layer could be described as a parabolic curve; this curve 

separates the soil mass into active and passive zones (the curve is simplified as two 

planar failure surfaces in Figure 2-3). 

  

The first American MSE wall was constructed in 1972, outside Los Angeles, California, 

on Cal-39 (Chang et al. 1972). Chang et al. reported the same tensile stress distribution as 

reported in the Incarville wall (i.e. the maximum tensile stress occurs at some distance 

away from the facing). They found that at the top of the wall the stresses in the soil close 

to the face of the wall followed Rankine’s earth pressure theory, while at the middle of 

the reinforcement followed Jaky’s at rest earth pressure theory. 
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Another full-scale test was performed on a MSE wall by the Waterways Experiment 

Station (WES) in Vicksburg, Mississippi (Al-Hussaina and Perry, 1978). This 3.7m high 

MSE wall was surcharged to failure, with strain gages attached to the steel reinforcement 

and earth pressure cells embedded in the backfill. The data from the strain gages 

indicated that the tensile stress distribution in the reinforcement was similar to what had 

been previously reported. During construction tensile forces on the reinforcement near 

the facing were generally smaller than the theoretical values based on Rankine theory. 

However, the tensile force approached Rankine theory after the backfill was completed. 

Al-Hussaina and Perry (1978) assumed that the increased tensile force after completion 

was induced by post-construction settlements of the backfill.  

 

Christopher (1993) and Christopher et al. (1994) investigated the behavior of MSE walls 

through full-scale tests. The tests were conducted varying reinforcement types (geogrid, 

steel bar mats and geotextiles), backfill types and surcharge loading. The results showed 

the importance of compaction; larger reinforcement stresses and smaller deformations 

were observed in MSE walls with a well-compacted dense backfill than in walls with a 

poorly compacted loose backfill. Very little deformation and no increase in reinforcement 

tension occurred in the MSE wall with a dense backfill when a surcharge was applied. 

This was so because the surcharge was not transferred to the reinforcement; instead it was 

supported by the residual stresses in the soil generated during compaction (Christopher, 

1993). On the contrary, larger deformations were observed in the MSE wall with a loose 

backfill when a surcharge was applied. These large deformations occurred because the 

backfill was not sufficiently compacted and residual stresses in the soil were generated, 
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and thus the surcharge load was transferred directly to the reinforcement (Christopher, 

1993).   

 

Bergado et al. (1993) performed full-scale tests on a 5.7 m high wall/embankment MSE 

system. The wall was constructed inside the campus of Asian Institute of Technology, 42 

km north of Bangkok. The wall was composed of three different sections corresponding 

to three different backfill materials: clayey sand, lateritic soil, and weathered clay. The 

backfill was compacted to 95% of standard Proctor. The reinforcements used for the wall 

were two types of steel grids: (1) grids with only longitudinal ribbed bars (grid 

reinforcement 10); and (2) grids with both longitudinal and transverse bars (grid 

reinforcement 7 and 9).  The purpose of these tests was to study the interaction between 

steel grid reinforcements and backfill soils through pullout tests on selected 

reinforcements. Figure 2-7 shows load-displacement curves for the field pullout test in 

clayey sand. The pullout resistance was mobilized at around 80 mm displacements for 

grid reinforcement 10. However, the pullout resistance for grid reinforcement 7 and 9 

continued to increase; it was not fully mobilized even at a pullout displacement of 125 

mm. The authors concluded from these results that most of the pullout resistance was 

obtained from the transverse members of the grid, and that larger pullout displacements 

were needed to be mobilized for grids with both longitudinal and transverse bars. 

Bergado et al. (1993) also observed that the pullout resistance for a backfill compacted on 

the dry side of optimum was higher than compacted on the wet side. 
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Runser (1999) instrumented a 17 m tall MSE wall with steel reinforcement in Minnow 

Creek near Logansport, Indiana. At the time, this was the tallest MSE wall built in 

Indiana. The wall was instrumented to observe reinforced soil behavior during and after 

construction, and to check the adequacy of the current design method for MSE walls. The 

instrumentation included strain gages, earth pressure cells, load cells and inclinometers. 

The strain gages, installed on the reinforcements, were used to identify the location of 

maximum tension and tension distribution. The earth pressure cells were installed on the 

foundation and reinforced zones to measure the coefficient of lateral earth pressure, 

lateral and vertical stress in the soil, the distribution of stresses in the facing elements, 

and compaction-induced stresses. Load cells, installed under the facing, were used to 

measure the vertical stress applied to the leveling pad panels: According to Runser 

(1999), this was one of the unique aspects of the test because only one other similar test 

had been reported (Christopher, 1993) before. The inclinometers were installed within the 

reinforced zone to measure lateral displacements of the wall.  

 

It was observed that the maximum tensile stress occurred at some distance from the 

facing, as previously observed by others. The earth pressures, measured at the back of the 

facing, followed Jaky’s at rest earth pressure theory in the upper one third of the wall, and 

Rankine theory in the rest of the wall (Runser, 1999). 
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2.4 Laboratory Tests 

 

Direct shear tests and pullout tests are the most common tests performed in the laboratory 

to observe interaction between soil and reinforcement. Figure 2-8 shows a typical setup 

for a shear test. In direct shear tests, the soil is sheared along the reinforcement while a 

vertical load is applied (Figure 2-8 (a)).  

 

Pullout tests are performed literally pulling the reinforcement out of the soil while a 

vertical load is applied (Figure 2-8 (b)). From the tests, the coefficient of friction between 

soil and reinforcement is obtained.  

 

The following factors affect the results of pullout tests: (1) boundary conditions; (2) 

dimensions of pullout box; and (3) embedded length of reinforcement. In this section, a 

number of tests are presented where the effects of some or all of the factors are 

investigated.  

 

McGown et al. (1978) performed a number of plane strain tests with soil reinforcement at 

different angles with the direction of loading. The tests were conducted using dense, 

medium dense, and loose sand samples. The orientation of the reinforcement (steel strip) 

was varied from 0 to 90 degrees with the horizontal. It was observed that the tensile 

stresses in the inclusion decreased as the orientation increased from zero degrees until the 

orientation of zero extension, which is where the tensile strain in the reinforcement is 

zero. 
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Palmeira and Milligan (1989) investigated the effects of boundary conditions: type of 

boundary at the top, frictional characteristics of the front wall, and the dimensions of the 

pullout box. Different tests were performed with two types of platens on the top boundary 

for the application of the vertical load: rigid platens, and flexible patens (a flexible bag 

filled with pressurized water). A steel grid reinforcement inclusion was used which was 

pulled out while the soil was loaded. Figure 2-9 is a plot of the interface friction with the 

two types of boundaries. As shown in the figure, a slightly higher coefficient of friction 

(i.e. higher pullout capacity) was obtained with a rigid than with a flexible top platen. The 

coefficient of friction was larger than the tangent of the internal friction angle of the soil 

(Palmeira et al., 1989), which was about 1.4. The difference was attributed to dilatancy of 

the soil since a 25 kPa vertical stress was applied, which was well below the confinement 

stress that suppresses dilatancy.  

 

During pullout, the lateral stress acting on the front wall of the pullout box increases and 

large shear stresses may develop at this location. Palmeira et al. (1989) investigated this 

phenomenon by performing pullout tests with different frictional characteristics of the 

front wall. The following conditions were investigated: rough wall, sand paper, plain 

metal, and lubricated wall. Figure 2-10 shows curves of interface friction between soil 

and inclusion with different front wall roughness. The highest interface friction was 

approximately 4.5 which was obtained with the rough wall; the lowest was about 2.0 

obtained with the lubricated wall. Palmeira et al. (1989) performed additional pullout 

tests with a lubricated front wall to investigate the influence of the size of the pullout box. 
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They found that the roughness of the front wall had a larger influence as the size of the 

box decreased. It was, therefore, concluded that the front wall of the pullout box should 

be lubricated to minimize the influence of wall friction. 

 

Palmeira et al. (1989) also investigated the effects of reinforcement length. They 

conducted a number of tests with a fixed height of the pullout box, and different 

reinforcement lengths. Figure 2-11 is a plot of interface friction between soil and 

reinforcement with different embedment lengths of the reinforcement in the soil. They 

found that the interface friction decreased as the embedment length of the reinforcement 

increased, and that the influence of the front wall and of the top and bottom boundaries 

increased with an increase of embedment length. Additional tests were performed to 

investigate the effects of the distance 'd' between the point of application of the pullout 

force and the front of the pullout box. Figure 2-12 shows a comparison of the interface 

friction measured from tests with tow values of 'd': d=0 (i.e. pullout load application on 

the front wall), and d=122.5 mm (pullout within the soil; a slot was used to separate the 

soil and the load connector). For the tests with d=0, lubricated metal wall and non-

lubricated metal wall were used; for d=122.5 mm a non-lubricated metal front wall was 

used. A lower pullout capacity was obtained for the reinforcement with d=122.5 mm. 

Figure 2-12 also shows that for d=0, the pullout capacity for the lubricated front wall was 

smaller than for the non-lubricated front wall.  

 

Abramento et al. (1995) performed pullout experiments on a clean sand with steel sheet 

reinforcement and nylon 6/6 reinforcement, using a device referred to as the Automated 
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Plane Strain Reinforcement (APSR) cell (Figure 2-13). The APSR cell, originally 

developed by Larson (1992), was designed to measure the tensile stress acting on the 

reinforcement during shearing of the soil. As recommended by previous researchers, a 

flexible top boundary was employed and the vertical stress was transmitted to the soil 

through waterbags. In addition, all contact surfaces of the cell were lubricated to 

minimize the influence of frictional resistance. A load cell was installed to measure the 

pullout capacity and four strain gages were attached to the inclusion to measure tensile 

stresses along the reinforcement. The data showed that the load-distribution along the 

inclusion was approximately linear for the steel inclusion and non-linear for the nylon 

inclusion. They also observed that the pullout capacity for the steel inclusion increased as 

the confining stress increased. 

 

Bergado et al. (1993) performed laboratory pullout tests to investigate the behavior of 

different reinforcements in a cohesive soil. The tests were performed varying the type of 

reinforcement (steel, bamboo and polymer grids) and normal pressure (10, 50 and 90 

kPa). For an inextensible reinforcement such as steel and bamboo grids, it was found that: 

(1) the pullout resistance became constant after reaching the maximum pullout capacity; 

and (2) the pullout resistance significantly increased early in the test, but the increasing 

rate became smaller with pullout displacement. On the contrary, for extensible polymer 

grids, the pullout resistance continuously increased with pullout displacement.  

 

Bergado et al. (1993) observed that the pullout capacity increased as the vertical stress 

increased, as shown in Figure 2-14. This is explained by Equation 2-2, since the pullout 
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capacity increases as the effective vertical stress increases. However, the rate of increase 

of pullout capacity with pullout displacement was different for different reinforcements, 

with steel grids having the highest rate.  

 

 

2.5 Numerical and Analytical Analysis 

 

2.5.1 Numerical analysis 

 

Bayoumi (2000) conducted a number of numerical analyses to investigate the pullout 

capacity of steel reinforcement in silty sands. The Finite Element (FE) code, ABAQUS, 

was used for the analyses. Figure 2-15 shows schematic diagrams of the FE model. The 

dimensions of the pullout box were 1.0 m in length and 0.2 m in height. The length and 

thickness of the reinforcement were 1.1 m and 0.003 m, respectively (Figure 2-15 (a)). As 

shown in the figure, the steel reinforcement was extended beyond the box. Bayoumi 

explained that the extension of the reinforcement was an unavoidable choice because 

unrealistic results were obtained at the end of the reinforcement when the length of the 

reinforcement was shorter than that of the pullout box. In the FE analysis, horizontal 

displacements were restrained on the left side of the model and vertical displacements 

were restrained on the bottom of the model (Figure 2-15 (b)).  

 

In the FE analysis, Bayoumi (2000) focused on the effects of several parameters: (1) silt 

percentage (0, 10, and 20%); (2) coefficient of interface friction (µ = 0.1, 0.3, and 0.5); 
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(3) vertical normal stress (30, 100, and 200 kPa); (4) drainage conditions (drained and 

undrained); (5) relative density of the soil (30 and 70 %); and (6) coefficient of lateral 

pressure (ko, 0.33, 0.5 and 1). 

 

Figures 2-16 to 2-20 show the conclusions of the analyses (Bayoumi, 2000). Figure 2-16 

shows the pullout capacities for drained and undrained conditions with different vertical 

stresses and different silt percentages. As shown in the figure, both drained and undrained 

pullout capacities remained constant regardless of silt percentage. Failure occurred along 

the interface between the inclusion and the soil and thus it was mostly dependent on 

friction at the interface, rather than on the material properties.  

 

Figure 2-17 shows the effects of the coefficient of interface friction for different vertical 

stresses. The drained pullout capacity increased linearly with the coefficient of interface 

friction. The undrained pullout capacity also increased, but it was no longer linear, due to 

the pore pressures generated. Figure 2-18 shows the effect of vertical normal stress on 

pullout capacity for different interface frictions. The pullout capacity increased linearly 

with the vertical stress for both drained and undrained conditions. This trend was 

expected because when the vertical stress increased the interface effective vertical stress, 

and consequently, the interface shear strength increased (Bayoumi, 2000). 

 

Figure 2-19 shows the ratio of undrained and drained pullout capacities for different 

vertical stresses and coefficients of interface friction. The figure shows a significant 

reduction in undrained pullout capacity, compared to the drained pullout capacity. The 
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following was observed: (1) the ratio ranged from 0.578 to 0.886; the smaller ratio 

occurred for higher interface friction while the larger ratio occurred for lower interface 

friction; and (2) the ratio was not influenced by the vertical stress. Figure 2-20 shows the 

effects of the coefficient of lateral earth pressure. As shown in the figure, Bayoumi 

(2000) observed that the effect of this coefficient was negligible for drained conditions. 

Although the undrained pullout capacity increased with an increase of the coefficient of 

lateral earth pressure, the magnitude of the increase was very small (approximately 5 %).  

 

Bayoumi (2000) summarized his observations as follows; (1) the parameters that 

influence the most the pullout capacity are drainage conditions, coefficient of friction at 

the soil/reinforcement interface, and normal stress; and (2) the parameters that had no or 

negligible influence on the pullout capacity are silt percentage, relative density, and 

coefficient of lateral pressure.  

 

Bergado et al. (1992) also performed numerical analyses of pullout tests. Results of the 

numerical analyses were compared with the results of laboratory pullout tests. Figure 2-

21 shows the FE mesh used for the analyses. The dimensions of the model were 50 ″ × 12″ 

(approximately 1.27 m × 0.3 m). Triangular and quadrilateral elements were used for the 

soil elements with a nonlinear elastic material model (Duncan and Chang, 1970). One-

dimensional joint elements were used for the interface between soil and reinforcement, 

and the reinforcement was modeled with one-dimensional bar elements. Unlike 

Bayoumi’s model (2000), both vertical and horizontal displacements were restrained at 

the bottom of the model and only vertical displacements were allowed at the lateral sides. 
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Weathered clay was used for the backfill material and three different vertical stresses (i.e. 

30, 50, and 90 kPa) were applied. Figure 2-22 shows plots of pullout capacities from 

laboratory tests and numerical analyses. The agreement was considered satisfactory with 

a maximum difference of about 15 % (Bergado et al., 1993).  

 

 

2.5.2 Analytical analysis: Shear-lag analysis 

 

The shear-lag analysis is an approximate analytical method to estimate the tensile stresses 

in a single planar reinforcement; the method is widely used for composite materials. 

Based on the shear-lag approximation, Abramento and Whittle (1993) and Abramento et 

al. (1995) proposed formulations that described the complete load-transfer behavior for 

pullout tests with extensible, planar reinforcements. The formulations were developed to 

predict the development and distribution of tensile stresses and interface tractions along 

the inclusion.  

 

Figure 2-23 shows geometry and boundary conditions used in the derivation. The 

reinforcement has thickness f, length L, and is embedded in a soil box of overall vertical 

dimension (m + f). The soil mass is initially subjected to a uniform vertical stress (σ1) 

and horizontal stress (σ3). The soil is sheared in plane strain as the pullout load (σp) is 

applied at the active end of the inclusion (x = 0). During shearing, tensile stresses 

(σf
xx(x)) are generated along the reinforcement. The distributions of normal (σi

yy) and 

shear tractions (σi
xy) along the interface are indicated in Figure 2-23. In addition, normal 
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stresses (σm
yy), horizontal stresses (σm

xx) and shear stresses (σm
xy) in the soil matrix can 

also be determined.  

 

For the shear-lag analysis, Abramento et al. (1995) assumed the following: (1) the soil 

(properties: Gm, νm) and reinforcement (properties: Ef, and νf) are linear, isotropic, and 

elastic materials; (2) slippage along the interface is governed by the Coulomb friction law 

with friction angle (δ) (i.e. |σi
xy| / σi

yy ≤ tan δ ); (3) the end of the inclusion (x=L) is stress 

free; and (4) the axial stresses in the soil and in the inclusion are functions of x only. 

 

The shear-lag equations for the interface tractions (σi
xy, σi

yy) were obtained as follows, 

(Abramento et al., 1995): 

 

 

 

 

 

 

The interface tractions are related to the tensile stresses through Equation 2-6. Equation 

2-7 describes the tensile stresses in the reinforcement, if there is no slippage at the 

interface.  
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C1, C2 are constants to be determined from appropriate boundary conditions and subject 

to the constraints imposed by the local frictional resistance at the inclusion-soil interface 

(Abramento et. al., 1995).  

 

In addition, K1, and K2 are constants defined in terms of the material properties and 

geometry (Equation 2-8).  

 

 

 

Abramento et. al (1995) found solutions for four phases during a pullout test: (1) no 

interface slippage; (2) active slipping front (one-way debonding); (3) active and passive 

slipping fronts (two-way debonding); and (4) full slippage. Equation 2-7 and 2-8 apply 

for phase (1); the solutions for other phases can be  found in Abramento et. al. (1995). 
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Figure 2-24 shows a comparison of the tensile stress distribution of the inclusion between 

the analytical solution and experiments (Abramento et. al., (1995)). The figure shows 

good agreement between predictions and measurements.  

 

 

2.6 Case Studies : Failure of MSE Walls 

 

Two case studies are analyzed: (1) a wall at the Barren River Plaza Shopping Center in 

Glasgow, Kentucky; and (2) a wall supporting an asphalt covered parking lot in Calgary, 

Alberta, Canada.  

 

2.6.1 Failure of a MSE wall in Glasgow, Kentucky  

(Barren River Plaza Shopping Center) 

 

A failure of a MSE wall with cohesive backfill material was investigated (Leonards et. 

al., 1994). A Keystone/Tensar geogrid MSE wall with a sloping backfill was built for a 

shopping center in Glasgow, Kentucky, in 1990. The average height of the wall was 

between 3 and 6m with a maximum height of 6.4 m. Figure 2-25 shows a typical cross 

section of the structure. It was determined that a slope was needed above the retaining 
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wall system to meet existing grades. The height of the slope was designed between 3 and 

8.2 m with the slope itself ranging between 1.7H : 1V to 2H : 1V (Figure 2-25). 

 

The bedrock was found at a depth of approximately 12 m below the ground surface, 

overlain by silty clay and clayey silt with medium to high plasticity (LL = 50~60, PL = 

25~35). The natural water content of the soil was at or slightly below the plastic limit.  

 

The ground was excavated to permit placement of the geogrids in May, 1990. The 

construction of the MSE wall was planned after the excavation. However, a major failure 

of the soil behind the excavation occurred in June 1990. The material from this failure 

was included into the backfill. It was not certain that the material was recompacted to the 

requested density (i.e. 95 % of Proctor density). Lateral drains were specified to be 

installed from the face of the wall, but they were not placed for unknown reasons. The 

reinforced section of the wall was constructed in August 1990 while the sloped portion of 

the backfill was not completed until October.  

 

The first indication of post-construction problems occurred one month after completion 

of the wall, in November 1990, through slumping of the backfill. The slumping 

continuously increased after a heavy rainfall. On December 23, 1990, the retaining wall 

collapsed at the section where the slumping occurred.  

  

Figure 2-26 shows the initial period of distress, especially (a) deformation rate of the 

wall, and (b) rainfall. At ground level, there was 27 cm (10.6 inches) of displacement 
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over a 4 month period. The majority of the displacement occurred over two periods 

following a heavy rainfall (Figure 2-26 (a) and (b)). Major distress was also recorded in 

the backfill slope during and after the heavy rainfall. 

 

Subsurface investigations were performed to determine the cause of the failure. They 

consisted of borings, soil tests, excavations, piezometers, and instrumentation of the wall. 

The groundwater table was located almost at the bottom of the reinforced zone. SPT 

results showed that for natural undisturbed soils the average N values above the 

groundwater table ranged between 15 and 30 while below the water table ranged between 

10 and 15. N values as low as 2 or 3 with an average of 10 were obtained for the 

compacted fill behind the reinforced area. The results of compaction tests indicated that 

the backfill was compacted on the dry side of the optimum. In addition, it was later 

concluded that the soil outside the reinforced area was compacted at 86 % of Proctor, 

lower than the specified 95 %. The excavation revealed that the top layer of 

reinforcement had been omitted, which explained why the top of the wall rotated. 

 

A granular soil was specified in the original design for the backfill, but silty clay and 

clayey silt were used instead. Even with these soils, the backfill slope would have been 

stable if drainage systems had been installed. Because the backfill was not properly 

compacted, the clay absorbed water easily with a consequent loss of strength. This caused 

the soil to slump. The scarp created allowed water to penetrate to greater depths and 

further reduce the shear strength of the soil. 
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In summary, the Barren River Plaza Shopping Center failure was caused by a series of 

errors throughout the design and construction process: (1) inappropriate backfill material 

and inadequate compaction control; and (2) omission of the top geogrid reinforcement. 

 

 

2.6.2 Failure of a geogrid reinforced wall in Calgary, Alberta (Parking lot) 

 

In Calgary in 1984, a 9 m tall geogrid reinforced retaining wall was constructed to 

support the parking lot. The retaining wall system was originally composed of separate 

soldier piles, timber lagging facings and anchors. The soldier piles (W250 × 49 steel 

section) were placed in 600 mm diameter augered holes, which were about 3 m deep; the 

holes were then filled with concrete. The soldier piles were positioned at 2.2 m from 

center to center. Timber lagging was placed inside of the pile flanges with dimensions 75 

mm thick and 150 mm wide.   

 

The owners decided to use a high strength grid for support instead of anchors, because of 

the smaller cost of the solution, but still using the solider pile and timber lagging facings. 

Tensar SR2 geogrid was used for the wall reinforcement. Figure 2-27 shows the typical 

vertical section and design details of the wall. As shown in the figure, the geogrids were 

placed in 10 layers and the "wrap around" method was used.  

A low plasticity clay till was used as the backfill material while a granular fill was placed 

close to the face of the wall and adjacent to the timber lagging to provide a drainage zone 

for the clay till. 
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The wall operated satisfactorily after it was constructed in the spring of 1984. In 

September 1985, settlement and distress were noticed after a heavy rain.  The wall was 

instrumented with a slope indicator on the wall face to monitor the movement of the wall. 

Conditions gradually deteriorated with time; the wall facing rotated continuously about 

its base. The top 3 m of the clay backfill softened, due to saturation of the fill.  

 

Samples of the clay backfill were taken for triaxial tests (UU). It was found from the 

laboratory tests that the clay sample, compacted at 93 % of Proctor at a water content of 

10.5 %, had a compressive strength of 375 kPa. For a similar sample, the water content 

increased to 18.7 % when saturated, and the compressive strength decreased down to 49 

kPa (Burwash and Frost, 1991). The reason for the increase in water content was the 

absorption of water by the clay compacted at the dry side of optimum. The failure of the 

wall was caused by the loss in strength due to the increase in water content.  The slope 

indicator showed that the wall facing was rotating about its base. It also showed that the 

outward movement of the wall greatly increased with time.  

 

The failure of the wall was primarily caused by poor construction. Due to inappropriate 

compaction (i.e. compaction at dry side of optimum), the distress occurred in the 

retaining wall as the clay backfill became saturated after a heavy rain, and the strength 

was reduced as the clay absorbed water. As a consequence, the geogrids were subjected 

to large lateral strains to compensate for the loss of strength in the soil. Once the strength 
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loss exceeded the capacity of the soldier piles, the deformations of the wall rapidly 

increased, eventually causing failure of the wall. 
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Figure 2-1 Mechanism of Reinforced Soil; (a) Anisotropic Cohesion Concept, 

and (b) Enhanced Confining Stress Concept (After Ingold, 1982) 
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Figure 2-2 MSE Wall (After Das, 1995)
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Figure 2-3 Location of the Failure Plane in MSE Wall with Steel Reinforcement 

(After Schlosser et. al., 1974) 



 36

 

 

 

 

 

 

 

 

Figure 2-4 Failure Mechanisms of MSE Wall with Steel Reinforcement  

(After Jones, 1996)
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Figure 2-5 Analysis of a MSE Wall with Steel Reinforcement (After Das, 1995)
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Figure 2-6 Coefficient of Friction for Steel Strip (After Bourdeau, 1999) 
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Figure 2-7 Load-Displacement Curves from Field Pullout Tests in Clayey Sand, Steel 

Grid (After Bergado et. al., 1993) 
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Figure 2-8 Determination of Friction Coefficient between Soil and Reinforcement; 

(a) Direct Shear Test, and (b) Pullout Test (After Palmeira et. al., 1989) 
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Figure 2-9 Effect of Top Boundary on Pullout Capacity, Steel Grid (After Palmeira et. al., 

1989) 

 

 

Figure 2-10 Effect of Roughness of Front Wall (After Palmeira et. al., 1989) 
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Figure 2-11 Effect of Embedment Length of Reinforcement (After Palmeira et. al., 1989) 

 

 

 

Figure 2-12 Comparison between Tests with Reinforcement Close to  

and Far from Front Wall (After Palmeira et. al., 1989) 
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Figure 2-13 A Schematic Diagram of APSR Cell (After Abramento et. al., 1995) 

 

 

Figure 2-14 Comparison of Total Pullout Capacity of Bamboo, Tensar, and Steel Grids at 

25 mm Pullout Displacement (After Bergado et. al., 1993) 
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Figure 2-15 Modeling of Pullout Box; (a) Dimensions and Geometry,  

and (b) Boundary Conditions (After Bayoumi, 2000) 
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Figure 2-16 Effect of Silt Percentages (µ = 0.1); (a) Drained, and (b) Undrained 

 (After Bayoumi, 2000) 
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Figure 2-17 Effect of Interface Friction; (a) Drained, and (b) Undrained  

(After Bayoumi, 2000) 
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Figure 2-18 Effect of Vertical Stress (mu = µ = Coefficient of Interface Friction);  

(a) Drained, and (b) Undrained (After Bayoumi, 2000) 
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Figure 2-19 Effect of Drainage Condition with Respect to Vertical Stress 

 (mu = µ =  Coefficient of Interface Friction), (After Bayoumi, 2000) 

 

 

 

Figure 2-20 Effect of Lateral Pressure Coefficient for Undrained Condition 

(After Bayoumi, 2000) 
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Figure 2-21 Modeling of Pullout Box for FE Analysis (After Bergado et. al., 1992) 
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Figure 2-22 Comparison of Experimental and FEM Load-Displacement Curves 

(After Bergado et. al., 1992) 
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Figure 2-23 Geometry and Boundary Conditions of Pullout Tests for Planar 

Reinforcements (After Abramento et. al., 1995) 
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Figure 2-24 Comparison of Predicted and Measured Tensile Stress Distribution for 

Pullout Tests on Steel Sheet Inclusion (After Abramento et. al., 1995) 
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Figure 2-25 Typical Section of As-Designed Retaining Structure, Geogrid Reinforcement 

(After Leonards et. al., 1994) 
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Figure 2-26 Initial Period of Distress; (a) Deformation Rate, and (b) Rainfall 

 (After Leonards et. al., 1994) 
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Figure 2-27 Typical Vertical Section and Design Details, Geogrid Reinforcement (After 

Burwash and Frost, 1991) 

 

 

 

 

 



 56

 

 

CHAPTER 3. TEST EQUIPMENT 
 

 

3.1 Introduction 

 

Pullout tests are performed to determine the pullout capacity of a steel inclusion in a 

granular soil, and the associated pullout displacement under various conditions, which 

include different overburden pressures, different materials, and different drainage 

conditions. The pullout tests are performed with combinations of these conditions. A 

pullout test machine is designed for this purpose, and measuring devices such as load 

cell, LVDT and pressure transducers are employed to complete the pullout test setup. A 

data acquisition system is also used to record the test results.  

 

This chapter presents the pullout test machine and the measuring devices. It covers the 

design of the pullout test machine and the function of the measuring devices. The setup of 

the pullout tests is also introduced in this chapter. Lastly, the data acquisition system is 

discussed.  
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3.2 Pullout Test Machine 

 

The pullout test system consists of four parts: (1) pullout test machine, (2) measuring 

devices, (3) two external water chambers and a pressure regulator system, and (4) data 

acquisition system.  

 

The laboratory pullout test machine consists of two parts: (1) pullout box, and (2) pullout 

system. The pullout box is made of steel plates and consists of two parts, as shown in 

Figures 3-1 (a) and (b): (1) the soil chamber; (2) the water chamber. The soil chamber is 

where the soil is placed; the water chamber is filled with water. The pullout tests are 

either drained or undrained tests. Drained tests are performed without water (i.e. the soil 

is dry) while undrained tests are performed with the pullout box completely filled with 

water. Figures 3-1(a) and (b) show the longitudinal section and an overall view of the 

pullout box.  The dimensions of the soil chamber are 1.0 m long, 0.4 m wide and 0.5 m 

high, and the dimensions of the water chamber are 0.5 m long, 0.4 m wide and 0.5 m 

high. Therefore, the total dimensions of the pullout box are 1.5 m long, 0.4 m wide and 

0.5 m high. 

 

The soil is compacted in the soil chamber and a steel reinforcement is inserted in the 

middle of the soil. A grip system holds the steel reinforcement, and it is connected to a 

load cell located in the water chamber. The load cell is attached to a steel bar connected 

inside the pullout box to the pullout system, which is part of the large direct shear 

machine built by P. J. Fox (1997), who used the pullout machine for strength testing of 
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geosynthetic clay liners (GCLs). The pullout system is powered by two stepper motors, 

which provide a large range of pullout displacement rates from virtually zero to 10 

mm/min. Each motor is connected to a double reduction gear box that drives a lead screw 

that has a diameter of 57.1 mm and a pitch of 12.7 mm. Since the gear boxes have a very 

high displacement ratio (i.e. 900:1) to increase the available torque to the screws, the test 

can be performed at very small displacements rates. Each lead screw is capable of 

applying a pullout force of up to 93 kN; the total capacity of the machine is then 186 kN. 

The pullout rate and the pullout displacement are controlled by a computerized system.  

 

The pullout system developed by Fox has been modified for this research. In Fox’s tests, 

a movable pullout plate located between GCLs was sheared. Since steel reinforcement is 

employed for this research instead of the pullout plate, a new grip system and connection 

to the cross beam of the pullout system has been added. The overall frame and pullout 

mechanism were not changed. The grip system, located in the water chamber, is 

composed of two grips bolted together with the steel strip placed between the grips. A 

submersible load cell is attached to the grips. The cylinder connected to the motor and 

gear is made of stainless steel to prevent corrosion, and passes the wall of the pullout box 

through a circular orifice, which is sealed with an O-ring to prevent water leakage. 

Because the O-ring introduces friction between the cylinder and the wall, the load cell is 

placed inside the water chamber to obtain accurate measurements.  

 

The water chamber is necessary to ensure that the soil behind the front wall will be 

saturated and that no water flow (and thus no change in volume during undrained tests) 
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occurs. Because during pullout the stainless steel shaft is pulled out of the box, there is a 

decrease in volume inside the water chamber (i.e. a volume equal to the cross section of 

the shaft times the pullout capacity). This decrease in volume, if not replaced by an equal 

volume of water, would decrease the pore pressure in the water chamber and thus cause 

flow of water from the soil chamber to the water chamber. The volume is replaced in the 

box by a supply of water at the desired pressure from two small external water chambers, 

as shown in Figure 3-2. Thus as the shaft is pullout, the volume is replaced by water and 

the level in the water chambers decreases. Care has been taken to ensure that at the 

beginning of the test there is enough volume in the external water chambers to replace the 

volume lost.  

 

There are three openings on the lid of the pullout box as shown in Figure 3-1 (a) and (b). 

These are openings for air pressure, water pressure and drainage. As mentioned before, 

the air pressure is used to apply overburden pressure to the soil, and the water pressure is 

applied to saturate the specimen. Two pressure regulators control the magnitude of these 

pressures. The drainage opening is necessary to check that saturation is complete. Once 

the water reaches the top of the box, it flows out through the drainage opening, which 

ensures that the soil is fully saturated. To ensure that the soil will remain saturated during 

testing, a backup pressure is applied to the water (Figure 3-2).  

 

The steel strip used has dimensions identical to commercial galvanized ribbed strips that 

are 5 cm wide and 3 mm thick. The total length of the reinforcement is 1.0 m, of which 
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0.75 m are embedded into the soil. Epoxy is placed at three places on the surface of the 

reinforcement to increase interface friction.  

 

A perforated steel plate and a filter are placed on the bottom of the soil chamber to allow 

water to flow free from the water chamber into the soil. By placing the perforated steel 

plate and the filter, the water flows to the end of the soil chamber easily facilitating a 

uniform upward movement of the water through the soil. Figure 3-3 shows a schematic 

diagram of the porous steel plate and the filter in the soil chamber.  

 

 

3.3 Measuring Devices 

 

Measurements of pullout load and pullout displacement are taken in each test by a load 

cell and a Linear Variable Differential Transducer (LVDT), respectively. The load cell is 

located inside the water chamber, and the LVDT is placed on top of the cross beam of the 

pullout system. In addition, the overburden pressure applied is monitored by a pressure 

transducer attached to the pressure. A backup water pressure is required to saturate the 

specimen for undrained tests. The pressure is applied from the central laboratory air 

pressure system through the pressure regulator and external water chambers. A pressure 

transducer is attached to the pressure regulator to measure the backup water pressure. The 

pore water pressure inside the soil is measured by a pressure transducer installed on one 

of the sidewalls of the pullout box; this measurement is needed to check if the internal 
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pore pressure is equal to the backup water pressure applied to ensure that full saturation is 

accomplished and thus the test can start.  

 

All measuring devices are properly calibrated except the load cell, since a calibration 

chart is provided by the manufacturer. 

 

 

3.3.1 Load cell 

 

The pullout load is measured by a submersible Load Cell located inside the water 

chamber, as shown in Fig. 3-1(a). The load cell is a Load Cell Model 3100 Universal-

Tension & Compression made by HSI - Houston Scientific International Inc. Its capacity 

is 133kN (30,000 lb) that covers all expected pullout loads. The load cell is submersible 

to prevent water from infiltrating inside the cell during undrained tests, once the pullout 

chamber is filled with water.  

 

 

3.3.2 LVDT 

 

The pullout displacement is monitored by a Linear Variable Differential Transducer 

(LVDT), Model LD600-100 made by Omega. The maximum stroke is ± 125 mm, which 

is enough to monitor the pullout displacements until residual friction is obtained. The 

LVDT is firmly mounted to the cross beam of the pullout box. The tip of the rod of the 
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LVDT always touches the front wall of the pullout box during the pullout tests. The 

pullout displacement is measured as the cross beam moves backward (as the 

reinforcement is pulled out).  

 

 

3.3.3 Pressure transducer 

 

Three pressure transducers are used to measure: (1) the air pressure applied to the air bag, 

(2) the outside backup water pressure, and (3) the inside pore water pressure. A pressure 

transducers model AB with capacity 1379 kPa (200 psi), made by Data Instruments Inc. 

is used for the air bag pressure; a model PX102 pressure transducer with capacity 138 

kPa (20 psi), made by Omega, for the outside water pressure, and a model AB pressure 

transducer with capacity 3447 kPa (500 psi), made by Omega, for the inside pore water 

pressure. The air pressure and the outside water pressure transducers are attached to the 

pressure regulator while the inside pore water pressure transducer is installed on the 

sidewall of the pullout box. A hollow pipe with the pressure transducer attached to one 

end is inserted to measure the water pressure inside the soil. The tip of the pipe is covered 

with a filter to prevent soil from entering into the pipe. Since the water enters the box 

from the water chamber, the water pressure should be checked at a point far from the 

water chamber. The pressure transducer is, therefore, located close to the other end of the 

soil. The pressure transducer for the inside pore water pressure is required for undrained 

tests to compare the inside pore water pressure with the outside water pressure, as 

previously explained.  
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3.4 Test Procedure 

 

The test procedure for drained and undrained tests is the same except that the soil is 

saturated and water pressure is applied in the undrained tests. Palmeira and Milligan 

(1989) have pointed out that the apparent bond resistance between the soil and the pullout 

box could be increased up to 100% by the wall roughness for pullout tests with steel grid 

reinforcements in dense sand. All contact surfaces (i.e. front wall, sidewalls and end wall) 

are lubricated with silicon grease before the soil is placed in the chamber to minimize 

boundary shear tractions (Abramento et. al., 1995).  

 

The drained tests are performed as follows: (1) the soil is placed in the soil chamber in 

four layers approximately 10 cm thick and each layer is suitably compacted; (2) the steel 

reinforcement is installed between layer two and layer three; (3) the air bag is placed on 

top of the soil after the compaction is complete; (4) the lid is then closed and bolted to the 

frame; (5) air pressure is applied to the air bag; the pressure transducer attached to the 

pressure regulator measures the applied air pressure; (6) the test starts: the steel 

reinforcement is pulled out after the air pressure reaches the target value. The load cell in 

the water chamber measures the pullout load and a LVDT on the reaction beam measures 

the pullout displacement. A data acquisition system records all signals from the 

measuring devices. 

 

For undrained tests, the test procedure is basically the same as for drained tests. The soil 

is saturated with water after step (2), which is supplied to the water chamber. The upward 
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movement of the water inside the soil prevents air bubbles from being trapped inside the 

soil. Steps (3), (4) and (5) follow after the entire soil is saturated. In step 6, backup water 

pressure is applied to the box. At the same time, the water pressure inside the soil is 

measured by the pressure transducer installed on the sidewall of the chamber; (7) the test 

starts when the inside water pressure is equal to the outside water pressure; and (8) 

measurements of pullout load, pullout displacement, air pressure to the air bag, outside 

water pressure, and inside water pressure are taken during the test. 

 

For undrained tests, the saturation process is as follows: water flows into the soil chamber 

through four channels carved on the bottom of the pullout box. Water also flows into the 

soil chamber through the reinforcement opening when the water level reaches the 

opening. The water continues to move upwards to saturate the soil and fills the water 

chamber. When the water is observed at the top of the soil, an air bag is placed on top of 

the soil and the lid of the pullout box is placed and bolted to the frame. However, the 

pullout box is not fully saturated yet because there is still an empty space between the air 

bag and the lid. Additional water from the external water chambers is supplied to the 

pullout box to fill the empty space.  

 

For both drained and undrained tests, additional reaction beams are placed on the lid and 

bolted to the frame to provide reaction and limit the deformation of the air bag as the air 

pressure is increased. An O-ring between the lid and the frame prevents water leaks. 

Various overburden pressures are achieved by applying different air pressures to the air 
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bag, which are applied from the central laboratory air pressure system, and are controlled 

by a pressure regulator. 

 

The pullout rates are 1mm/min and 10mm/min for drained tests and undrained tests, 

respectively. The pullout rate is important especially for undrained tests because of 

dissipation of excess pore water pressures. The pullout rate is not critical for drained tests 

because drained tests are performed without water (i.e. dry condition). The faster pullout 

rate is employed for undrained tests in order to prevent dissipation of excess pore water 

pressures during the tests.  

 

 

3.5 Data Acquisition System 

 

A PC-based data acquisition system and plug-in data acquisition board (DAQ board) are 

used to read and store the following data: (1) pullout load of the reinforcement; (2) 

pullout displacement; (3) outside water pressure; (4) inside pore water pressure; and (5) 

overburden pressure.  

 

Fig. 3-4 shows the layout of the data acquisition system. Signals from measuring devices 

are transferred to SCXI terminal blocks. The terminal blocks are connected to SCXI 

modules, which are located inside a SCXI chassis. The electric signals are conditioned in 

the SCXI modules and then transferred to the DAQ board, installed in the computer.  
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Four SCXI terminal blocks, model SCXI 1321, with four channels per block (i.e. total 16 

channels), provide connections between the signals and the data acquisition system. Each 

channel consists of four connectors for positive and negative excitations, and positive and 

negative signals. Strain-relief clamps inside the terminal blocks firmly and safely hold 

lead wires from the measuring devices. Four SCXI modules, model SCXI 1000, are used 

to condition the electric signals. The SCXI chassis, model SCXI 1000, is used to house, 

power and control the SCXI modules and the conditioned signals. The chassis is capable 

of housing four SCXI modules. A PCI-MIO-16XE-50 is the data acquisition board and is 

installed in a computer. It can receive up to 16 analog inputs.  

 

Signals generated by sensors and transducers are conditioned before the data acquisition 

system acquires the signal. This includes signal amplification, filtering, electrical 

isolation and multiplexing. Signals (i.e. output voltages) from sensors are too small to 

read, compared to input voltages. They are amplified for reading. This is called signal 

amplification, and is controlled by adjusting the gain. Setting of the gain is done in SCXI 

modules, by plugging small chips, called jumpers, into different positions. Different gains 

are used for each device to display the electric signals efficiently. Unwanted signals come 

with wanted signals due to noise, which originates from external sources (i.e. AC power 

line, motors, transformers, computers and electrical storms) and internal sources (i.e. 

digital clocks and microprocessors). The filtering is a digital algorithm that selectively 

removes noise from a signal, or emphasizes certain frequency ranges and de-emphasizes 

others. Proper filtering for the devices is also accomplished by controlling jumpers in 

SCXI modules. The electrical isolation is a technique that transfers data without electrical 
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continuity, accomplished in SCXI modules automatically. The multiplexing is a process 

that permits the selection of one of many channels at a time, and is performed in the DAQ 

board. Signal conditioning is suitably done for each measuring device manually or 

automatically.  

 

A commercial software, LabView 5.1 by National Instruments, periodically reads electric 

signals from the measuring devices and stores them in the hard drive. Twelve channels 

can be simultaneously read with the available data acquisition system. Three channels are 

used for the load cell, the LVDT, and the air bag pressure; two additional channels are 

needed in undrained tests for the outside water pressure and the inside pore water 

pressure.  A code has been written to perform the actual data acquisition and includes 

creation of channels, selection of data reading frequency, and pattern of output display. 

The code also has been written to plot data on the computer screen as the test is 

performed and the results can be checked as the test is conducted. The actual code for 

LabView has been written with help from Jorge Casana, a former Purdue University 

graduate student in civil engineering and Donald Peacock, a technician from National 

Instruments.  

The data reading rate can be controlled by the program. The rate is 1 reading per second 

per channel for drained tests and 4 readings per second per channel for undrained tests. 

More frequent readings are taken for undrained tests because the testing time is shorter 

than for drained tests.  
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Figure 3-1(a) A Schematic Diagram of the Longitudinal Section of the Pullout Box 
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Figure 3-1(b)   A Schematic Diagram of the Pullout Box 
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Figure 3-3 A Schematic Diagram of the Water Flow System  

at the Bottom of the Soil Chamber



 72

 

 

 

 

 
 

 

 

 

 

Figure 3-4 Layout of Data Acquisition System (from National Instruments Web Page) 
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CHAPTER 4. LABORATORY TESTS AND RESULTS 
 

 

 

4.1 Introduction 

 

A series of laboratory tests are conducted prior to the pullout test, and include soil 

property tests, proctor tests, compaction tests and permeability tests. These tests are 

necessary to determine material properties, to decide compaction degree and compaction 

method, and to support pullout test results. Sections 4.2 and 4.3 present the need, the 

procedure and the results for these tests. Section 4.4 covers the pullout tests with the 

procedure and the results. Finally, conclusions obtained from all tests are introduced in 

Section 4.5. 

 

Pullout tests are performed varying the following conditions: (1) different soils; (2) 

different overburden pressures; and (3) different drainage conditions. The analysis and 

comparison of the pullout test results are discussed based on these three different 

conditions.  
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4.2 Material 

 

The soils used are clean sand and silty sands. Silty sands are prepared by mixing clean 

sand with silt. The following percentages of silt, measured by weight of clean sand, are 

used: 5,10,15 and 35%. The sand and silt used are Ottawa sand and #106 Sil-Co-Sil 

ground silica from U.S. Silica Company, respectively. 

According to Salgado et al. (2000), Ottawa sand can be classified, after the Unified Soil 

Classification, as a SP soil. The diameter of the sand particles ranges from 0.1mm to 

0.6mm, with the grain size distribution shown in Figure 4-1. The maximum and 

minimum void ratios (emax and emin) of Ottawa sand are 0.78 and 0.48, respectively. The 

grain size distribution of the silt is also shown in Figure 4-1. The maximum and 

minimum void ratios for the clean sand and silty sands used in the experiments are shown 

in Table 4-1.  

 

Table 4-1 The Minimum and Maximum Void Ratios for Clean and Silty Sand        

(Salgado et al., 2000) 

Silt Percentage (%) emin emax 

0 0.48 0.78 

5 0.42 0.70 

10 0.36 0.65 

15 0.32 0.63 
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4.3 Preliminary Tests 

 

Some preliminary tests are conducted to determine the characteristics of the soil before 

the pullout tests are performed. They include proctor tests, compaction tests, and 

permeability tests. Proctor tests are performed to find out the relationship between the dry 

unit weight of the soil and the water content. Compaction tests are performed to 

determine how much energy is required to obtain the desired density of the material. The 

coefficients of permeability for each material are obtained from permeability tests.  

 

 

4.3.1 Proctor test 

 

The proctor tests performed follow the standard ASTM D-698. The soil in the mold is 

compacted in three equal layers by dropping a hammer of certain weight from a defined 

height. The hammer weighs 2.5 kg and it drops 25 times on each layer from a height of 

30.5cm. The applied compaction energy is about 600 kN-m/m
3
. The test is repeated 

several times for different water contents until sufficient data are obtained. Afterwards, 

the dry unit weight and water content are plotted and the maximum dry unit weight of the 

soil is obtained. In the pullout tests, the silty sands are compacted at 95% of the 

maximum dry unit weight obtained from the proctor tests except clean sand which is 

compacted at 100% of the maximum dry unit weight. The choice of compaction degree is 

supported by the fact that the backfill material for MSE walls is usually compacted at a  

certain degree of compaction that is usually higher than 90% of  Proctor. 
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The proctor test results for clean sand are shown in Figure 4-2. The figure shows that the 

maximum dry density is obtained for complete dry conditions (i.e. water content, ω = 

0%) and slightly lower densities are obtained as water is added.  It is also noted in the 

figure that there is an abrupt decrease of dry unit weight for a small increase in water 

content from the dry state. The lower density that is obtained at low water contents is due 

to capillary forces resisting rearrangement of the sand grains. This phenomenon is known 

as bulking (Lambe, 1969). For larger water contents, the dry density is almost constant 

which denotes that the compaction of clean sand is not influenced by the water content. 

However, Foster(1962) has observed that the dry density of a cohesionless soil increases 

again as the water content further increases so that the dry density at complete saturation 

is the same or slightly larger than the dry density obtained at zero water content. The 

maximum dry unit weight for clean sand is 17.1 kN/m
3 

and the desired value for pullout 

test is 100% of the maximum dry unit weight; that is 17.1 kN/m
3
.  

 

Figure 4-2 also shows proctor test results for 2% silty sand. Although the 2% silty sand is 

not used in pullout tests, the proctor and permeability tests are also performed. The 

proctor test shows that the results for clean sand and 2% silty sand are the same. 

 

Figures 4-3 to 4-6 show proctor test results for 5%, 10%, 15% and 35% silty sands, 

respectively. Unlike clean sand, the dry unit weight of silty sands increases as the water 

content increases up to the so-called optimum water content where the maximum dry unit 

weight is obtained. The dry unit weight decreases as the water content increases beyond 

the optimum water content. The optimum water contents for the silty sands tested in this 
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research lye between 9 and 12%. The maximum dry unit weights obtained from each test 

are; 16.7, 17.1, 17.9 and 19.3 kN/m
3 

for 5%, 10%, 15% and 35% silt content, 

respectively, as shown Figures 4-3 to 4-6. The maximum dry unit weight increases as the 

silt percentage increases because the silt particles fill the sand voids. The 95% values of 

the maximum dry unit weights are 15.9, 16.2, 17.0 and 18.3 kN/m
3 

for 5,10,15 and 35% 

silty sand, respectively. Table 4-2 summarizes the proctor test results. 

 

 

Table 4-2  Proctor Test Results 

Material 

Maximum 

Dry Unit Weight  

(kN/m
3
) 

95 % of Maximum 

Dry Unit Weight 

(kN/m
3
) 

Remarks 

Clean sand 

2% Silty Sand 
17.1 17.1 (100%) 

The max. dry unit 

weight is used for 

pullout test 

5% Silty sand 16.7 15.9  

10% Silty sand 17.1 16.2  

15% Silty sand 17.9 17.0  

35% Silty sand 19.3 18.3  
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4.3.2 Compaction tests 

 

As stated earlier, compaction tests are performed to determine how much compaction 

energy is required to obtain 95% of the proctor test for the soil placed in the soil chamber 

of the pullout box.  

 

Sand mixed with water is placed in four layers in the soil chamber of the pullout box. 

Three small containers in each of the four layers (i.e. 12 containers total) are placed 

inside each layer before compaction, as shown in Figure 4-7. The compaction energy is 

delivered by dropping a hammer that weighs 4 kg, from a given height from the top of the 

soil layer and for a number of times. The containers are taken out after the compaction is 

complete to measure the dry unit weight. The measured dry unit weights are used to find 

out if the delivered energy is sufficient to obtain the desired unit weight and to ensure that 

a uniform density is obtained in each layer and from layer to layer. The compaction 

energy is a function of the weight of the hammer, the drop height, the number of drops, 

the number of layers, and the volume of compacted material. The following equation 

gives the energy delivered per unit volume.  
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where = hammer weight 

h = drop height 

     n = number of blows per layer 

     N = number of layers 

     V = volume of material 

 

Using a rule of thumb, the first compaction is performed with a given height, a selected 

number of drops and with a selected water content. The 12 containers are taken out after 

the compaction is complete and put in an oven at 110 °C, and kept there overnight, 

following ASTM D2216. The dry unit weight of the compacted material is obtained from 

each container by dividing the dry weight of the soil by the volume of the container, 

which is measured prior to the test. Based on this result, a new attempt is made by 

varying the water content, the drop height, or the number of drops per layer until the 

desired dry unit weight is obtained. This compaction test is performed for clean sand and 

for each silty sand. 

 

The compaction test results are plotted with dry unit weight vs. compaction energy. The 

results show that different dry unit weights are obtained with different water content as 

well as with different compaction energy. Figure 4-8 shows the results of the compaction 

test for 5% silty sand. The target dry unit weight for the 5% silty sand is 15.9 kN/m
3 

(i.e. 

95% of the proctor). The first trial is done with 5% water content and relatively low value 

of the compaction energy; the obtained dry unit weight is much lower than required. Two 

V

NnhW
E

⋅⋅⋅
=
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more attempts still with 5% water content are then made by increasing the compaction 

energy but the results are still too low. The water content is then increased from 5% to 

10%. The results show that the obtained dry unit weights bracket the target value.  

 

Figure 4-9 shows the compaction test results for 10% silty sand. The target dry unit 

weight, 15.9 kN/m
3
, falls within the range of the compaction test results, and the 

compaction energy required can be obtained by interpolation. Figure 4-10 shows the 

results of the compaction tests for 15% silty sand. The obtained dry unit weight is about 

17.5 kN/m
3
, which is similar to the target dry unit weight, 17.0 kN/m

3
. The compaction 

tests for 35% silty sand are shown in Figure 4-11. With a 10 % water content, the target 

dry unit weight, 18.3 kN/m
3
, is obtained at relatively low compaction energy. 

 

To check if the target dry unit weight is achieved during actual pullout tests, some soil 

containers are placed within the soil and retrieved after completion of each test. The 

results show that the dry unit weight is indeed the target unit weight within a 2% error. 

 

 

4.3.3 Permeability tests 

 

Permeability tests are performed following ASTM D 2434. The constant head test is used 

for 0, 2, 5, 10 and 15% silty sand while the falling head test is used for 35% silty sand 

due to its relatively low permeability. As mentioned before, additional permeability tests 
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for 2% silty sand have been performed to evaluate the change of permeability between 

0% and 5% silty sand.   

 

The soil specimen is prepared at the same density used for the pullout tests. The 

permeability tests are performed after the specimen becomes saturated. The constant head 

tests are performed at three different heads and the amount of flow of water through the 

specimen for a given period of time is measured three times per each head. The 

coefficient of permeability is taken as the average of the results. An additional test is 

performed for each material to ensure repeatability. The falling head tests are also 

performed at three different head differences. The elapsed time for a certain drop of 

height is measured and the average permeability is obtained. A repeatability test is also 

performed. 

 

The permeability decreases as the silt content increases as shown in Table 4-3 and Figure 

4-12. The coefficient of permeability decreases from clean sand to 35% silt with 

increasing silt content. Figure 4-12 shows that there is a dramatic reduction of 

permeability from clean sand to 10% silty sand.  
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Table 4-3 Coefficient of Permeability 

Material Coefficient of Permeability, k  

Clean Sand 2.27 × 10
-2

cm/sec 

2% Silty Sand 1.74 × 10
-2

cm/sec 

5% Silty Sand 1.12 × 10
-2

cm/sec 

10% Silty Sand 3.89 × 10
-3

cm/sec 

15% Silty Sand 2.28 × 10
-3

cm/sec 

35% Silty Sand 1.75 × 10
-4

cm/sec 

 

 

 

4.4 Pullout Test 

 

Clean granular soils are expected to be the most appropriate backfill materials for MSE 

walls. Since the permeability of clean granular soils is high enough so that no excess pore 

pressures remain during loading, the pullout capacity for both drained and undrained 

conditions is expected to be similar. Unfortunately, such good backfill materials are not 

always available in practice, and a percentage of fines is usually present. As a result, the 

permeability of the material decreases as the percentage of fines increases. In low 

permeability soils, excess pore pressures may not dissipate quickly enough and, as a 

consequence, the effective stress may decrease and the pullout capacity may be reduced.  
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Drained pullout tests are performed to compare the pullout capacities for different 

percentage of fines and overburden pressures. Undrained pullout tests are performed to 

investigate the effect of excess pore pressures, and to compare the results with drained 

pullout test results. Clean sand and silty sand soils are used for the experiments. Silty 

sands are obtained by mixing Ottawa Sand with silt with the following fines content: 0, 5, 

10, 15 and 35%. The 35% of fines content is not practical as a backfill material. 

However, it is used as an extreme case to evaluate the decrease of pullout capacity with 

fines. Effective overburden pressures of 30, 100 and 200kPa are applied, which 

correspond to soil overburdens of 1.5, 5.0 and 10.0 m, respectively, which are 

representative of the typical range of wall heights. 

 

The pullout tests are performed varying the following conditions: (1) material: clean 

sand, 5%, 10%, 15% and 35% silty sand, (2) effective overburden pressure: 30, 100 and 

200 kPa, and (3) drainage condition: drained and undrained. The total number of tests is 

30 but some additional tests are performed for repeatability. Repeatability is checked by 

performing two identical tests and by comparing the results. One repeatability test is 

performed for each material, for each drainage condition, and for a selected overburden 

pressure. For clean sand, all tests for drained conditions are repeated. This is done 

because of the relevance of clean granular materials in MSE walls. For clean sand and 

undrained conditions, no repeatability tests are performed because the results, as 

expected, are equal to those for drained conditions. Consequently, a total of 11 

repeatability tests are performed. Table 4-4 shows the different testing conditions. 
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Table 4-4  Pullout Test Conditions 

Material :  

Ottawa sand 

(% of silt) 

Effective Overburden 

Pressure (kPa) 
Drainage Condition 

0  

5 

10 

15 

35 

30 

100 

200 

Drained 

Undrained 

 

Both drained and undrained pullout tests are performed following the procedure stated in 

section 3.4. The total pullout length is about 20 mm, which is large enough to obtain post 

peak behavior of the reinforced soil. 

 

In undrained tests, a backup water pressure of 40 to 70kPa is applied to the soil. The 

magnitude of the backup water pressure does not influence the pullout capacity, and it is 

applied to maintain saturated conditions during the test. Since the effective overburden 

pressure should be the same for drained and undrained tests, the air pressure to the air bag 

for undrained tests is 30, 100 or 200 kPa plus the backup water pressure. 

 

 The drained and undrained pullout test results are presented in section 4.4.1. The 

evaluation of the results, based on the effect of overburden pressure, material (i.e. 

different fines contents) and drainage conditions, is discussed in the following sections.  
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4.4.1 Pullout test results 

 

Figure 4-13 shows the drained pullout test results for clean sand. As previously 

mentioned, drained tests are performed twice for clean sand to ensure repeatability. The 

figure shows that the tests are repeatable. For clean sand, the pullout capacity increases as 

the overburden pressure increases. This is an expected result since the pullout capacity is 

governed by the effective normal stress, as mentioned in Chapter 2. The figure also 

shows that the pullout capacity rapidly increases with pullout displacement until a peak 

or a maximum value is obtained. However, the post peak behavior changes with 

overburden pressure. A peak is clearly observed for 200 kPa overburden pressure; after 

the peak the pullout capacity decreases. In contrast, the pullout capacity for 30 kPa 

becomes almost constant once it reaches the maximum pullout capacity. A somewhat less 

clear peak occurs for 100 kPa, with pullout capacity gradually decreasing afterwards. 

Figure 4-13 also shows that the initial stiffness of the material increases with overburden 

pressure. It is also observed that the peak occurs at a larger displacement as overburden 

pressure increases.  

 

Figure 4-14 shows the undrained test results for clean sand for all effective overburden 

pressures. The figure shows a quite similar behavior to the drained test, as expected. In 

fact, the drained and undrained behavior of clean sand is identical. More detailed 

comparisons of the drained and undrained test results are presented in section 4.4.4. 
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The drained pullout test results for 5% silty sand are shown in Figure 4-15. All test 

results for 5% silty sand, regardless of overburden pressure, show that the pullout 

capacity quickly increases with displacement up to a certain value. Afterwards, large 

displacements are observed for a small increase of pullout capacity. As with clean sands, 

the higher the overburden pressure, the higher the pullout capacity. Higher stiffness 

occurs for higher overburden pressure similar to what occurs for clean sand. In contrast to 

clean sands, no peak load is observed in the tests; the pullout capacity continues to 

increase slowly with displacements. Two repeatability tests are performed for 30 and 200 

kPa, respectively, which show very good agreement; the test with 200 kPa stops earlier 

because the air bag ruptured.  

 

Undrained pullout test results for 5% are shown in Figure 4-16. The higher pullout 

capacity occurs for higher overburden pressure. Similar to the drained pullout capacity, 

undrained pullout capacity quickly increases up to a certain value and shows little 

increase or becomes constant for large displacements. The point of the graph of 

maximum curvature (this is the point taken as the pullout capacity) occurs at larger 

displacements as overburden pressure increases; with increasing overburden pressure, the 

stiffness also increases. Repeatability tests are performed for 100 and 200 kPa and they 

show good agreement. 

  

Drained test results for 10% silty sand are shown in Figure 4-17. The pullout capacity is 

larger than for 5% silty sand. It is observed again that higher pullout capacity and higher 

stiffness occur as the overburden pressure increases. A peak and post-peak softening 
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behavior is observed, similar to clean sands but less pronounced. The peak for lower 

overburden pressures occurs at smaller displacements. A repeatability test is performed at 

100 kPa overburden pressure, which shows good agreement. Figure 4-18 shows the 

undrained pullout test results for 10% silty sand. For 200 kPa overburden pressure, the 

undrained pullout capacity rapidly increases with displacement and it reaches a peak; 

afterwards it decreases quickly with increasing displacements. A similar trend is shown 

for 100 kPa overburden pressure but the post-peak pullout capacity decreases relatively 

slowly compared to that for 200 kPa overburden pressure. For 30 kPa overburden 

pressure, the undrained pullout capacity becomes almost constant after it reaches a 

maximum. As with other tests an increase in overburden pressure increases the pullout 

capacity, the displacement at where peak occurs, and the stiffness of the system. There is 

a reduction in the undrained pullout capacity compared to the drained tests. Again, more 

detailed comparisons of the drained and undrained test results are presented in section 

4.4.4.  

 

The drained and undrained pullout test results for 15% silty sand are shown in Figures 4-

19 and 4-20. The drained pullout test results for 200 kPa overburden pressure shows a 

clear peak while the other test results do not. As with previous test results, the following 

is observed; (1) the higher the overburden pressure, the higher the pullout capacity; (2) 

the higher the overburden pressure, the stiffer of the pullout response; and (3) the higher 

the overburden pressure, the larger the displacement at which the peak pullout load 

occurs. The repeatability tests performed at 100 kPa overburden pressure with drained 

conditions and at 30 kPa with undrained conditions show good agreement. The peak is 
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clearly observed at 100 and 200 kPa overburden pressure while it is not clear at 30 kPa 

overburden pressure.  

 

The drained pullout test results for 35% silty sand are shown in Figure 4-21. The pullout 

test result for 200 kPa overburden pressure shows the largest stiffness and the largest 

pullout capacity. As before, pullout capacity and stiffness increase with overburden 

pressure. The displacement at which peak loads are observed decrease as the overburden 

pressure decreases from 200 kPa to 100 kPa; for 30 kPa overburden pressure the 

displacement at peak load is similar to 100 kPa overburden pressure. Figure 4-22 shows 

the undrained test results for 35% silty sand. All the tests show peaks for all overburden 

pressures. The peaks occur at smaller displacements for smaller overburden pressures. As 

with other tests, the pullout capacity and initial stiffness increase with overburden 

pressure. What is most significant from a comparison of results between Figures 4-21 and 

4-22, i.e. drained vs. undrained tests, is the dramatic reduction in pullout capacity of 

undrained tests compared to drained tests.  

 

 

4.4.2 Effect of overburden pressure 

 

Table 4-5 and Figure 4-23 summarize the drained pullout test results. The values shown 

are the maximum pullout capacities obtained from each test. When the pullout test shows 

a peak followed by a softening, the pullout capacity has been taken as the value of the 



 89

peak. For cases that show no definite peak, the pullout capacity has been taken as the 

value of the load at the point of maximum curvature of the load-displacement curve.  

 

As seen in Table 4-5 and Figure 4-23, the drained pullout capacity increases as the 

overburden pressure increases for all the soils tested. The pullout capacity for 100 kPa 

overburden pressure is about twice the pullout capacity for 30 kPa overburden pressure, 

and the pullout capacities for 200 kPa overburden pressure are also about twice those for 

100 kPa. The results indicate that the pullout capacity increases almost proportionally 

with overburden pressure from 100 kPa to 200 kPa, but not from 30 kPa to 100 kPa.  

 

 

Table 4-5  Maximum Drained Pullout Capacity (in kN) 

Overburden Pressure  

Soil 30 kPa 100 kPa 200 kPa 

Clean Sand 2.12 4.24 8.19 

5% Silty Sand 1.92 4.09 7.6 

10% Silty Sand 2.51 4.66 8.61 

15% Silty Sand 1.92 3.48 6.79 

35% Silty Sand 1.02 2.2 4.37 
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The undrained pullout test results are summarized in Table 4-6 and Figure 4-24. Similar 

to drained tests, the undrained pullout capacity also increases with overburden pressure. 

The undrained pullout capacity for 200 kPa effective overburden pressure is about twice 

that for 100 kPa effective overburden pressure. However, no proportionality is observed 

between 30 kPa and 100 kPa effective overburden pressures. 

 

Table 4-6  Maximum Undrained Pullout Capacity (in kN) 

Overburden Pressure  

Soil 30 kPa 100 kPa 200 kPa 

Clean Sand 2.12 4.24 8.19 

5% Silty Sand 0.96 2.75 5.23 

10% Silty Sand 1.69 3.59 6.74 

15% Silty Sand 1.5 2.52 4.99 

35% Silty Sand 0.73 1.29 2.5 

 

 

 

4.4.3 Effect of material 

 

Figure 4-25 shows the drained pullout capacity for all soils tested. The pullout capacity is 

shown in Table 4-5. The drained pullout capacity decreases from clean sand to 5% silty 

sand, increases for 10% silty sand, where the drained pullout capacity is the highest, and 
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decreases from 10% silty sand as the silt content increases. This trend is observed for all 

overburden pressures.  

 

Table 4-7 and Figure 4-26 show the relative drained pullout capacity. The values are 

obtained by dividing the maximum pullout capacity of each soil at a given overburden 

pressure by the maximum pullout capacity of clean sand at the same overburden pressure. 

The pullout capacity ratio decreases from 1.0 (clean sand) to 0.91~0.96 for 5% silty sand 

and increases to 1.05~1.18 for 10% silty sand and then decreases to 0.82~0.91 and 

0.48~0.53, for 15% and 35% silty sand, respectively. 

 

Table 4-7  Relative Drained Pullout Capacity   

Overburden Pressure 

Soil 

30 kPa 100 kPa 200 kPa 

Clean Sand 1 1 1 

5% Silty Sand 0.91 0.96 0.93 

10% Silty Sand 1.18 1.10 1.05 

15% Silty Sand 0.91 0.82 0.83 

35% Silty Sand 0.48 0.52 0.53 

 

 

This trend can be understood by analyzing the peak friction angle of each material. The 

peak friction angle is the factor that governs the pullout capacity, but changes with fines 

content, relative density, and confinement. The pullout capacity should increase as the 
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peak friction angle increases since higher friction angles provide stronger frictional 

resistance at the soil-steel interface.  

 

Salgado et. al. (2000) have performed triaxial tests on Ottawa sand with 0, 5, 10, 15 and 

20% silt contents, for different void ratios (i.e. different relative densities) and different 

mean effective stresses. Results from the triaxial tests are very useful to evaluate the 

pullout test results performed in this research. 

 

Table 4-8 shows the triaxial test results from Salgado et al. (2000), which include the 

peak friction angle for different mean effective stresses, different fines contents, and 

different relative densities. A direct comparison between results from the triaxial tests 

and the pullout tests is not possible because the type of test (triaxial vs. plain strain), the 

mean effective stress, and the relative densities are not the same. However, an estimate of 

the peak friction angle is possible by interpolation and extrapolation from the data of 

Table 4-8. The triaxial test results with 100 kPa mean effective stress are used to obtain 

the peak friction angle for each silty sand with the actual relative density of the pullout 

tests. This is done because for pullout tests with 100 kPa overburden pressure, the mean 

effective stress is about 70kPa, which is similar to the 100 kPa mean effective stress of 

the triaxial tests.  

 

The values of the peak friction angle are 35.8° for clean sand, 35.5° for 5% silty sand, 

36° for 10% silty sand, 35.6° for 15% silty sand. There is no data from the triaxial tests 

for 35% silty sand. Results from Table 4-7 show that the peak friction angle for 35% silt 
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would be smaller than for 15% silty sand. As already indicated, the actual peak friction 

angle for the pullout test will be different than that from Table 4-8 because the friction 

angles in triaxial compression are smaller than in plain strain. However, the trend will be 

similar, and the peak friction angles obtained can be used as indicators of the relative 

magnitude of the pullout tests.   
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Table 4-8  Static Triaxial Test Results  (After Salgado et. al., 2000) 

Test 
Fines 

content 

(%) 

e 
DR 

(%) 
σ'3  

(kPa) 
φp 

p'p 

(kPa) 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

A9 

A10 

A11 

A12 

A13 

A14 

A15 

A16 

A17 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.633 

0.590 

0.643 

0.674 

0.635 

0.632 

0.678 

0.662 

0.674 

0.659 

0.610 

0.586 

0.537 

0.558 

0.645 

0.665 

0.699 

49.1 

63.3 

45.8 

35.3 

48.4 

49.3 

33.9 

39.3 

35.2 

40.2 

56.7 

64.6 

80.9 

74.1 

44.9 

38.3 

27.1 

200 

400 

100 

100 

200 

200 

100 

200 

300 

200 

100 

100 

100 

100 

400 

400 

400 

32.4 

34.7 

31.0 

30.1 

32.0 

31.1 

31.4 

30.9 

31.2 

32.4 

33.3 

34.0 

36.5 

35.9 

31.2 

31.5 

30.2 

359 

756 

173 

167 

352 

346 

177 

342 

523 

357 

181 

185 

198 

195 

687 

692 

669 

B1 

B2 

B3 

B4 

B5 

B6 

B7 

B8 

B9 

B10 

B11 

B12 

B13 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

0.660 

0.581 

0.661 

0.495 

0.630 

0.587 

0.657 

0.634 

0.609 

0.475 

0.502 

0.612 

0.632 

14.4 

42.3 

14.0 

73.4 

24.9 

40.4 

15.3 

23.7 

32.5 

80.3 

70.8 

31.4 

24.3 

150 

200 

250 

200 

200 

250 

200 

300 

200 

100 

100 

300 

400 

33.8 

36.8 

33.2 

38.7 

34.5 

36.8 

33.2 

33.6 

35.6 

40.4 

40.8 

33.7 

32.5 

275 

402 

456 

426 

379 

501 

366 

549 

390 

133 

225 

554 

709 
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C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

C10 

C11 

C12 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

0.583 

0.564 

0.569 

0.581 

0.571 

0.447 

0.567 

0.500 

0.447 

0.420 

0.563 

0.560 

23.1 

29.6 

28.0 

23.9 

27.2 

69.9 

28.8 

51.7 

70.0 

79.3 

30.2 

31.0 

250 

100 

250 

350 

300 

150 

200 

200 

100 

100 

400 

400 

35.9 

37.0 

37.0 

35.8 

37.0 

39.0 

35.6 

37.3 

40.5 

41.3 

33.7 

34.1 

489 

201 

504 

685 

607 

317 

393 

408 

224 

230 

733 

741 

 

Test 
Fines 

content 

(%) 

e 
DR 

(%) 
σ'3  

(kPa) 
φp 

p'p 

(kPa) 

D1 

D2 

D3 

D4 

D5 

D6 

D7 

D8 

D9 

D10 

D11 

D12 

D13 

D14 

D15 

D16 

D17 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

15 

0.500 

0.512 

0.363 

0.410 

0.390 

0.366 

0.412 

0.375 

0.392 

0.320 

0.607 

0.587 

0.588 

0.551 

0.533 

0.530 

0.522 

41.9 

37.9 

86.1 

70.9 

77.5 

85.1 

70.4 

82.4 

76.8 

100.0 

7.4 

13.7 

13.5 

25.6 

31.2 

32.1 

34.8 

100 

200 

100 

100 

100 

100 

100 

100 

100 

100 

100 

200 

200 

100 

100 

400 

400 

35.8 

34.9 

44.7 

39.5 

42.4 

43.1 

41.9 

42.1 

44.4 

45.5 

32.4 

33.9 

33.2 

35.0 

33.0 

34.9 

33.8 

199 

382 

258 

217 

238 

244 

235 

235 

256 

265 

179 

376 

364 

191 

182 

754 

738 

E1 

E2 

E3 

E4 

E5 

E6 

E7 

E8 

E9 

E10 

E11 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

0.423 

0.384 

0.402 

0.470 

0.494 

0.535 

0.448 

0.531 

0.484 

0.476 

0.487 

59.8 

71.5 

66.0 

45.4 

38.3 

25.9 

52.2 

27.0 

41.2 

43.5 

34.4 

500 

350 

450 

200 

100 

300 

450 

500 

400 

400 

400 

37.5 

38.4 

38.8 

34.5 

35.2 

35.0 

37.4 

34.7 

34.5 

34.7 

34.3 

408 

524 

428 

380 

198 

572 

305 

280 

747 

754 

744 
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Table 4-9 and Figure 4-27 show the relative pullout capacity for 100 kPa overburden 

pressure and the interpolated peak friction angles from Salgado et al. (2000). As seen in 

the table and the figure, the drained pullout capacity follows the trend of the peak friction 

angle, φp´. φp´ slightly decreases from clean sand to 5% silty sand, increases for 10% silty 

sand and then decreases for higher silt contents.  

 

Table 4-9  Correlation between Peak Friction Angle and Relative Drained Pullout  

                 Capacity 

Soil 

Relative Pullout Capacity 

(100 kPa overburden pressure) 

Peak Friction Angle 

(φp´) 

Clean Sand 1 35.8 

5% Silty Sand 0.96 35.5 

10% Silty Sand 1.10 36.0 

15% Silty Sand 0.82 35.6 

35% Silty Sand 0.52  

 

 

 

Figure 4-28 shows the undrained pullout capacity for all tests. The values are shown in 

Table 4-6. The undrained pullout capacity decreases as the silt content increases from 

clean sand to 5% while it increases as silt content increases from 5% to 10%. Afterwards, 

it decreases again as the silt content increases. The undrained pullout capacity for 200 

kPa overburden pressure decreases much faster with increasing silt content than for 
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smaller overburden pressures. Table 4-10 and Figure 4-29 show the relative undrained 

pullout capacity. The relative undrained pullout capacity is the capacity obtained by 

dividing the undrained pullout capacity of each soil by the undrained pullout capacity of 

clean sand. It significantly decreases for 5% and increases from 5% to 10%; afterwards it 

decreases as the silt content increases. This is the same trend observed in drained pullout 

capacity.  

 

Table 4-10  Relative Undrained Pullout Capacity  

Overburden Pressure 

Soil 

30 kPa 100 kPa 200 kPa 

Clean Sand 1 1 1 

5% Silty Sand 0.45 0.65 0.64 

10% Silty Sand 0.80 0.85 0.82 

15% Silty Sand 0.71 0.59 0.61 

35% Silty Sand 0.35 0.31 0.31 

 

 

 

4.4.4 Effect of drainage condition 

 

The undrained pullout capacity is not only influenced by the internal friction angle of the 

soil but also by the excess pore pressures generated during shearing (i.e. during pullout). 

The excess pore pressures generated when the soil is sheared reduce the effective normal 
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stress, which in turn decreases the pullout capacity. One would expect, and it is 

confirmed by the results, that as the fines in the soil increase, permeability would 

decrease and excess pore pressures would increase and cause a reduction of effective 

stresses and consequently of pullout capacity.  

 

Figure 4-30 shows the comparison of drained and undrained test results for clean sand.  

As expected, the pullout capacity for both drained and undrained tests is the same for all 

overburden pressures. The trend of the pullout capacity from both drained and undrained 

tests are virtually undistinguishable.  

 

It is observed for 5% silty sand that there is a large reduction from drained pullout 

capacity to undrained pullout capacity, as shown in Figure 4-31. Drained pullout tests 

shows a stiffer slope at small displacements than undrained pullout tests. Also, the 

maximum pullout capacity, taken at a point of maximum curvature, is observed at smaller 

displacements for undrained pullout tests. The drained pullout capacity continues to 

slightly increase after the peak is reached while the undrained pullout capacity becomes 

constant after the peak except for 200 kPa overburden pressure, where a slight increase is 

observed after the peak. 

 

The comparison between drained and undrained pullout tests for 10% silty sand is 

presented in Figure 4-32. A reduction of pullout capacity occurs for all overburden 

pressures. The initial stiffness for the drained tests is higher than for the undrained tests, 

except for perhaps 100 kPa overburden pressure where the difference is not noticeable. 
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As with 5% silty sand, the maximum pullout capacity occurs at smaller displacements for 

undrained than for drained tests. The post-peak behavior for 30 kPa overburden pressure 

undrained test is similar to the drained test, and both of them do not show a clear peak. 

What it is interesting for 100 kPa and 200 kPa overburden pressure tests is that the 

drained tests do not show a clear peak, which the undrained tests do, with quite a 

noticeable reduction after the maximum capacity is reached. This is a fundamental 

difference in post-peak behavior from a “strain hardening” response to a “strain 

softening” response.  

 

Figure 4-33 shows the comparison of drained and undrained tests for 15% silty sand. The 

drained test results show higher stiffness than for undrained tests for all overburden 

pressures. The trends observed in Figure 4-33 are similar to those discussed for 10% silty 

sand. For 30 kPa overburden pressure, no clear peak is observed for both drained and 

undrained tests, with both tests showing a slightly “strain hardening” behavior: this is not 

the case for larger overburden pressures, where a clear softening is observed after peak 

for undrained tests. It is also observed in Figure 4-33 that the maximum pullout capacity 

is achieved at smaller displacements for undrained tests than for drained tests. 

 

Figure 4-34 shows the comparison for 35% silty sand. The pullout capacity considerably 

decreases for 100 and 200 kPa overburden pressures, but not so much for 30 kPa. The 

initial stiffness of drained tests is higher than undrained tests for 100 and 200 kPa 

overburden pressure; however, the stiffness of the undrained test for 30 kPa is higher than 

the drained test. All undrained tests show a peak with a post-peak softening behavior; this 
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is only observed in drained tests for 100 kPa and 200 kPa overburden pressures. As with 

all previous tests the maximum pullout capacity is reached at smaller displacements for 

undrained tests than for drained tests.  

 

Table 4-11 and Figure 4-35 show the undrained to drained pullout capacity ratio. The 

ratio is obtained by dividing the maximum undrained pullout capacity for a given 

overburden pressure by the maximum drained pullout capacity from each soil.  

 

The undrained to drained (UD/D) pullout capacity ratio for clean sand is 1, since both 

drained and undrained pullout capacities are the same. The UD/D pullout capacity ratio 

significantly decreases for 5% silt, where a larger reduction is observed for 30 kPa than 

for 100 and 200 kPa overburden pressure. The ratio increases from 5% to 10% silt, with a 

similar value for 100 and 200 kPa, and a comparatively smaller value for 30 kPa. As the 

silt content increases from 5% to 10%, two different trends are observed; (1) for 30 kPa 

overburden pressure, the ratio increases; and (2) for 100 kPa and 200 kPa the ratio 

decreases, with a similar value for both overburden pressures. For 35% silt content the 

ratio decreases from 15% silt in all cases. 

 

Figure 4-36 shows the evolution of undrained pullout capacity with permeability. As 

already discussed the pullout capacity increases with overburden pressure. For each of 

the three overburden pressures, the general trend is a decrease of capacity as the 

permeability decreases. There is a recovery of pullout capacity between permeabilities of 

0.01 and 0.07 cm/sec (which correspond to silt contents of 5% and 10%, respectively); 



 101

this is due to a lower void ratio of the soil. Figure 4.36 is similar to Figure 4.28 since silt 

content and permeability are related. As discussed earlier an increase of silt content 

beyond 5% has a positive influence on the internal friction angle of the soil as the silt fills 

the voids of the sand. This is reflected in Figure 4.36 where both the effects of 

permeability and silt content are included. On the one hand as the permeability decreases 

the undrained pullout capacity decreases; on the other hand an increase of silt content 

may increase the internal friction angle of the soil and produce the opposite effect: an 

increase of pullout. It is expected that for two soils with the same internal friction angle, 

and for the same pullout rate, the pullout capacity will decrease with decreasing 

permeability (perhaps to a minimum pullout which may not decrease further with smaller 

permeabilities).  

 

In summary, the undrained to drained pullout capacity ratio is always similar for 100 and 

200 kPa overburden pressure for all soils tested. The ratio decreases as the silt content 

increases except from 5% to 10% silt. However, the ratio for 30 kPa overburden pressure 

decreases from clean sand to 5%, increases from 5% to 15%, and decreases again to 35% 

silty sand. In addition, the ratio for 30 kPa is smaller than the ratio for 100 and 200 kPa 

overburden pressure with 5% and 10% silty sand while it is larger with 15% and 35% 

silty sand. 
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Table 4-11  Undrained to Drained Pullout Capacity Ratio 

Overburden Pressure 

Soil 

30 kPa 100 kPa 200 kPa 

Clean Sand 1.00 1.00  1.00  

5% Silty Sand 0.50 0.67 0.69 

10% Silty Sand 0.67 0.77 0.78 

15% Silty Sand 0.78 0.72 0.73 

35% Silty Sand 0.72 0.59 0.57 

 

 

 

4.5 Conclusions 

 

 

 

This section summarizes material properties and conclusions obtained from all tests 

performed in this research, which include proctor tests, compaction tests, permeability 

tests and pullout tests. 

 

 

4.5.1 Material 

(1) The soils used are  clean (Ottawa) sand and silty sands with silt content of 5, 

10, 15 and 35%. 

(2) The minimum and maximum void ratios for the soils are presented in Table 4-

1. The grain size distribution is shown in Figure 4-1 (Salgado et. al. (2000)). 
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4.5.2 Proctor tests 

(1) Proctor tests are performed to determine the maximum dry unit weight of the 

soil samples and the results are presented in Table 4-2 and Figures from 4-2 to 

4-6. 

(2) The target dry unit weights for pullout tests are obtained from the proctor 

tests, and are the maximum dry unit weight for clean sand and 95% of Proctor 

for silty sands. 

 

4.5.3 Compaction tests 

(1) Compaction tests are performed to determine the compaction energy required 

to obtain the target dry unit weight for pullout tests. 

(2) Figures 4-8 to 4-11 show the results of the compaction tests, and the 

appropriate compaction energy required for each soil. 

 

 

4.5.4 Permeability tests 

(1) Permeability tests are performed to determine the relationship between the 

permeability (i.e. dissipation time of excess pore pressure) and the undrained 

pullout capacity. 

(2) Table 4-3 and Figure 4-12 show the result of permeability tests. Permeability 

decreases as the silt content increases. 
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4.5.5 Pullout tests 

(1) Pullout tests are performed with the following conditions: sands with 

different silt contents (0, 5, 10, 15 and 35%), different overburden pressures 

(30, 100 and 200 kPa), and different drainage conditions (drained and 

undrained). 

(2) Figures 4-13 to 4-22 show the results of both drained and undrained pullout 

tests for all the soils tested. Both drained and undrained pullout capacities 

decrease from clean sand to 5% silty sand, increase to 10% silty sand and 

decrease to 15 and 35% silty sand for all the overburden pressures.  

(3) Effect of overburden pressure  

- Pullout capacity increases as the overburden pressure increases. 

- The higher the overburden pressure, the stiffer soil response. 

- The displacement at maximum pullout capacity increases with 

overburden pressure. 

(4) Effect of material 

- The pullout capacity is governed by the internal friction angle of the 

soil, and increases as the peak friction angle increases.  

- Table 4-9 and Figure 4-27 show the correlation between the peak 

friction angle and the relative drained pullout capacity. 

(5) Effect of drainage condition 

- There is a reduction of pullout capacity in undrained tests compared to 

drained tests. 
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- The initial stiffness of the pullout response is higher in drained tests 

than in undrained tests. 

- The undrained to drained pullout capacity ratio for 100 and 200 kPa 

overburden pressure is similar and decreases from clean sand to 5%, 

increases to 10% and decreases to 35% silt. 

- The undrained to drained pullout capacity ratio for 30 kPa decreases 

from clean sand to 5%, increases from 5% to 15%, and decreases to 

35% silt. 
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Figure 4-1 Grain Size Distribution (After Salgado et. al., 2000) 
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Figure 4-2 Standard Proctor Test Results for Clean Sand and 2% Silty Sand 
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Figure 4-3 Standard Proctor Test Results for 5% Silty Sand
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Figure 4-4 Standard Proctor Test Results for 10% Silty Sand 
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Figure 4-5 Standard Proctor Test Results for 15% Silty Sand 
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Figure 4-6 Standard Proctor Test Results for 35% Silty Sand 
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Figure 4-7 Location of Soil Sample Containers in Compaction Tests
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Figure 4-8 Compaction Test Results for 5% Silty Sand 
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Figure 4-9 Compaction Test Results for 10% Silty Sand
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Figure 4-10 Compaction Test Results for 15% Silty Sand 
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Figure 4-11 Compaction Test Results for 35% Silty Sand 
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Figure 4-12 Coefficient of Permeability with Silt Content
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Figure 4-13 Drained Pullout Test Results for Clean Sand 
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Figure 4-14 Undrained Pullout Test Results for Clean Sand 

1
1
5

 



 116

0

2

4

6

8

10

0 5 10 15 20 25

Displacement (mm)

P
u

ll
o

u
t 

C
ap

ac
it

y
 (

k
N

)

200 kPa

100 kPa

30 kPa

 

Figure 4-15 Drained Pullout Test Results for 5% Silty Sand 
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Figure 4-16 Undrained Pullout Test Results for 5% Silty Sand 
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Figure 4-17 Drained Pullout Test Results for 10% Silty Sand 
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Figure 4-18 Undrained Pullout Test Results for 10% Silty Sand 
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Figure 4-19 Drained Pullout Test Results for 15% Silty Sand 
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Figure 4-20 Undrained Pullout Test Results for 15% Silty Sand 
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Figure 4-21 Drained Pullout Test Results for 35% Silty Sand 
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Figure 4-22 Undrained Pullout Test Results for 35% Silty Sand
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Figure 4-24 Undrained Pullout Capacity 
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Figure 4-25 Drained Pullout Capacity 1
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Figure 4-26 Relative Drained Pullout Capacity 
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Figure 4-27 Correlation between Peak Friction Angle and Relative Drained Pullout Capacity  1
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Figure 4-28 Undrained Pullout Capacity 1
2
9

 



 130

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 35

Silt  Content (%)

P
u

ll
o

u
t 

R
at

io

200 kPa

100 kPa

30 kPa

  

Figure 4-29 Relative Undrained Pullout Capacity 

1
3
0

 



 131

0

2

4

6

8

10

0 5 10 15 20 25

Displacement (mm)

P
u

ll
o
u
t 

C
ap

ac
it

y
 (

k
N

)

200 kPa

100 kPa

30 kPa

D,U

D, U

D, U

 

Figure 4-30 Comparison of Drained and Undrained Pullout Test Results for Clean Sand 
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Figure 4-31 Comparison of Drained and Undrained Pullout Test Results for 5% Silty Sand 
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Figure 4-32 Comparison of Drained and Undrained Pullout Test Results for 10% Silty Sand 
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Figure 4-33 Comparison of Drained and Undrained Pullout Test Results for 15% Silty Sand 
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Figure 4-34 Comparison of Drained and Undrained Pullout Test Results for 35% Silty Sand 
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Figure 4-35 Undrained to Drained Pullout Capacity Ratio 

 

1
3
6



 137

0

1

2

3

4

5

6

7

8

9

10

0.00010.0010.010.1

Coefficient of Permeability (cm/sec)

U
n

d
ra

in
ed

 P
u

ll
o

u
t 

C
a
p

ac
it

y
 (

k
N

)

200 kPa

100 kPa

30 kPa

 

 Figure 4-36 Undrained Pullout Capacity versus Permeability 
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CHAPTER 5.  NUMERICAL ANALYSIS 

 

 

 

5.1 Introduction 

 

The pullout capacity of a steel inclusion in silty sand for drained and undrained 

conditions is presented in Chapter 4. For undrained conditions, pore pressures are 

generated within the soil as it is sheared during pullout. The pullout capacity of the steel 

reinforcement depends on the friction at the interface with the soil, which in turn depends 

on the normal effective stress acting on the inclusion. With increasing pore pressures, the 

normal effective stress decreases and the pullout capacity decreases. As the pore 

pressures generated dissipate, the effective stress increases and the pullout capacity 

increases; thus the dissipation rate of pore pressures is an important factor. The 

permeability and the distance from a given point in the soil to the closest drainage 

boundary govern the time that will take for the pore pressures to dissipate. The time for 

pore pressure dissipation defines whether drained or undrained conditions occur. For 

example, if a section of the wall is submerged during flooding, undrained conditions 

within the soil will be generated if the water level decreases at a rate faster than the pore 

pressures inside the wall are dissipated; similarly, drained conditions will be attained if 

the water level drawdown occurs at a rate slower than pore pressure dissipation. 
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The size of the pullout box used for the experiments is quite small compared to the actual 

size of a MSE wall. The difference in size will require different times for pore pressure 

dissipation. In the experiments the drainage distance from any point within the soil to a 

drainage boundary (top and front in the pullout box) is much smaller than in a MSE wall 

(top and front also), and thus dissipation of excess pore pressure will occur faster. 

Undrained conditions may be maintained close to the end of the reinforcement while 

drained conditions are obtained near the facing. 

  

The effect of the two factors: permeability and reinforcement length, is investigated in 

this chapter. The Finite Element (FE) code, ABAQUS (1999) is used for the 

investigation. ABAQUS is a general-purpose FE software that is very well suited for this 

analysis since it can incorporate a coupled mechanical analysis with pore pressure 

dissipation in poroelastic materials. 

 

 

5.2 Finite Element Modeling 

 

5.2.1  Dimensions of the model 

 

The dimensions of the model used for the numerical analysis have been obtained from the 

Minnow Creek Wall (Runser, 1999), which is 17 m tall, so far the tallest MSE wall built 

in Indiana (see Figure 5-1). As shown in the figure, the longest reinforcement is 15.55 m, 

which is placed at the bottom of the wall. The reinforcements are spaced vertically at 



 140

0.75m. With a rapid drawdown, dissipation of pore pressures occurs both upwards and 

towards the facing of the wall.  

 

Because of the constant spacing of the reinforcement, the volume of wall that is modeled 

is the one comprised between two layers of reinforcement. Based on the wall dimensions 

and drainage conditions, a basic model for the analysis is taken as 16 m long and 0.75 m 

high with a vertical load corresponding to the weight of the 17 m backfill, as shown in 

Figure 5-2. In addition, the length of the reinforcement is varied to investigate the effect 

of wall size; this is discussed later in Section 5.2.7. 

 

 

5.2.2  Boundary conditions 

 

Figure 5-3 shows the boundary conditions of the finite element model. Both left and right 

sides of the model are supported by rollers allowing vertical displacements. Horizontal 

displacements are not allowed on the sides of the model to reproduce the initial geostatic, 

ko, loading conditions. Horizontal displacements are allowed at the bottom of the model 

by rollers and vertical displacements are constrained.  
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5.2.3  Meshing 

 

Since the purpose of the analysis is to investigate the dissipation rate of pore pressures, 

only the soil is modeled. The size of the soil element ranges from 0.075m to 0.25m 

horizontal, and 0.075 m vertical depending on the total length of the model. The total 

number of elements is about 2000. The finite element mesh is shown in Figure 5-3. 

 

 

5.2.4  Element selection 

 

Retaining walls are structures that can be considered very long in the dimension 

perpendicular to the cross section; thus plane strain conditions can be assumed. Because 

of that, all elements in the model are 8-node biquadratic plane strain elements, with pore 

pressure at the corner nodes (CPE8P, from the ABAQUS element library). All nodes 

have two degrees of freedom: horizontal translation and vertical displacements; the 

corner nodes have pore pressures as an additional degree of freedom.  

 

 

5.2.5  Initial stresses 

 

The numerical analysis is composed of two stages. In the first stage, the initial loading 

conditions are applied. This is done by imposing a vertical stress to the top of the mesh, 

corresponding to the self-weight of the 17 m backfill. In this stage, ko conditions are 
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reached since lateral movements are prevented and no excess pore pressures are 

generated (i.e. the vertical, σv, and horizontal stresses, σh = ko σv are effective stresses). 

The soil is fully saturated and the water level is at the top of the mesh. In the second 

stage, the pore pressures at the top and left hand side of the mesh are set to zero (i.e. rapid 

drawdown with drainage along these two sides), and pore pressures begin to dissipate as 

drainage of the water occurs through the top and left side of the model. Consolidation is 

allowed until 95% of dissipation of pore pressure is obtained within the entire mesh.  

 

 

5.2.6 Material properties 

 

The soil is modeled as an elastic material, with the properties of the clean sand used in 

the pullout tests. Among them, Young's Modulus and Poisson's ratio are estimated 30 

MPa and 0.25, respectively. The coefficient of lateral earth pressure is 0.4 and the initial 

void ratio is 0.52. Table 5-1 summarizes the material properties. 

 

Table 5-1 Material Properties of the Soil 

Young's Modulus 

(MPa) 

Poisson's Ratio Coefficient of 

Lateral Earth Pressure 

Initial Void Ratio 

 

30 

 

0.25 

 

0.4 

 

0.52 
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5.2.7  Factors investigated 

 

Two factors are investigated in this analysis: (1) permeability; and (2) length of 

reinforcement. The coefficients of permeability selected for the analysis range from 10
-1

 

cm/sec to 10
-4

 cm/sec, which cover the range of permeabilities of the material tested (See 

Chapter 4).  A total of 5 permeabilities are analyzed: 10
-1

, 2.27 × 10
-2

, 10
-2

, 10
-3

, and 10
-4 

cm/sec, and six reinforcement lengths: 0.75, 2, 4, 8, 12, and 16 m. The height of the wall 

is kept constant at 0.75 m, which is the standard reinforcement spacing used in practice. 

Table 5-2 shows the values of the factors investigated. 

 

 

Table 5-2  Factors Investigated 

Coefficient of Permeability (cm/sec) Length of Reinforcement (m) 

10
-1

 

2.27 × 10
-2 

10
-2 

10
-3 

10
-4

 

0.75 

2 

4 

8 

12 

16 
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5.3 Preliminary Analysis 

 

A preliminary analysis is performed to verify the model. A comparison between a 1-D 

analysis with ABAQUS and closed-form solutions is made. The FE model is the same 

model described in previous sections, except that the model has a unit width and 

dissipation of pore pressure occurs through the top boundary only. 

 

The closed-form solution is based on Terzaghi's theory of 1-D consolidation. The time 

factor (Tv) for a certain degree of consolidation (U) is obtained using Equation 5-1. For 

the analysis, the target degree of consolidation is 95%, and consequently, the time factor 

is 1.129 ( i.e. Tv = 1.129). 

 

%60)%100(log933.0781.1 >−−= UforUTv                        (Eq.  5-1) 

 

Equation 5-2 is used to obtain t95, the time required for 95% of consolidation. With the 

material properties, cv = 3.67 m/sec
2
, and with the model geometry, Hdr =  0.75 m. This 

results in t95 = 0.17 seconds.  

                                       

                                    
2

95
95

dr

v

H

tc
T

⋅
=                                                    (Eq.  5-2) 

   where, cv = coefficient of consolidation 

     t95 = 95% consolidation time 

    Hdr = average longest drainage path during consolidation 
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With ABAQUS 0.185 seconds are needed for 95% consolidation, as shown in Figure 5-4. 

The difference is about 10 %, which is small enough for practical purposes.  

 

 

5.4 Analysis of Consolidation Time 

 

The pore pressures will dissipate at different rates throughout the model depending on the 

distance to a drainage boundary; the nearer to the boundary, the more quickly the pore 

pressures dissipate. The point at the bottom right corner of the mesh (Figure 5-3) is taken 

as a reference to evaluate the dissipation of the pore pressures. This is the farthest point 

from the drainage boundaries, and thus if 95 % of pore pressures have dissipated at this 

point, the dissipation of excess pore pressures will be smaller in the rest of the model.  

  

 

5.4.1   Pore pressure distribution 

 

To investigate the dissipation and distribution of pore pressures throughout the model, 

detailed plots are presented for one particular case. The case corresponds to a soil with 

permeability 10
-2

 cm/sec and reinforcement length 4 m. Figure 5-5 (a) shows the pore 

pressure distributions at the beginning of the analysis (i.e. end of stage 1 or 

initial/geostatic conditions). As one can observe in the figure, the pore pressure 

distribution is linear with depth (i.e. hydrostatic), with a maximum of 7.36 kPa, which 

corresponds to a column of water of 0.75 m. Figures 5-5 (b) to (d) show the pore pressure 
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distribution with time. Note that in the figures the top and left boundaries are drainage 

boundaries where the pore pressures are zero. The plots show that dissipation occurs very 

rapidly on the left hand side and quickly progresses to the bottom and right sides of the 

model. After only 0.2 seconds, 60 % of consolidation has already occurred at the 

reference point (bottom right corner of the mesh). 95 % of pore pressure dissipation 

occurs at 1.9 seconds. The plots also show how the pore pressure contours adapt to the 

shape of the boundaries: the vertical contours are parallel to the left side and the 

horizontal are parallel to the top. This indicates how dissipation progresses towards the 

drainage boundaries. 

 

  

5.4.2  Effect of permeability 

 

Consolidation time increases as the permeability decreases. Figure 5-6 shows results of 

95% consolidation time for different reinforcement lengths and permeabilities. 

Permeability has a dramatic effect on the time it takes for the pore pressures to dissipate. 

For permeabilities larger than 10
-2

 cm/sec dissipation of pore pressures is almost 

immediate. As the permeability decreases below 10
-2

 cm/sec, the time required for 95 % 

consolidation increases dramatically. 
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5.4.3  Effect of reinforcement length 

 

Figure 5-6 shows that the length of reinforcement does not affect much the time for 

consolidation for permeabilities above 10
-2

 cm/sec. For permeabilities between 10
-2

 

cm/sec and 10
-3

 cm/sec the results are independent of the reinforcement length except for 

the case of reinforcement length 0.75 m. This indicates that for larger reinforcements the 

drainage path is mostly towards the upper boundary, which is located 0.75 m above the 

reference point. As expected, the consolidation time decreases as drainage increases in 

the two directions. For permeabilities lower than 10
-3

 cm/sec, the consolidation time 

increases and the influence of the reinforcement length is larger.   

 

 

5.5 Conclusions 

 

It has been found from the numerical analyses that the dissipation of pore pressures is 

very fast for permeabilities larger than 10
-2

 cm/sec. Because of the quick dissipation, it is 

expected that the pullout capacity for soils with permeability larger than 10
-2

 cm/sec will 

not change much with drainage conditions. Among the soils tested (Chapter 4), only 

clean sand and 5 % silty sand have higher or similar permeabilities. For permeability 10
-3

 

cm/sec, which corresponds to 10% and 15% silty sand (Chapter 4), the dissipation of pore 

pressures becomes slower, and it significantly becomes very slow for permeability 10
-4

 

cm/sec (35 % silty sand, Chapter 4). Thus for soils with permeability lower than 10
-3
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cm/sec the undrained pullout capacity should be much smaller than the drainage pullout 

capacity.  

 

It has been observed in Chapter 4 that the undrained pullout capacities for the clean sand 

are the same as the drained pullout capacities, which indicates that excess pore pressures 

do not have any influence. As the silt percentage increases, the permeability decreases, 

and the time for pore pressure dissipation increases; it is expected then, and it is 

confirmed by the experiments, that as the silt percentage increases the undrained pullout 

capacity decreases relative to the drained pullout capacity. 
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Figure 5-1 Minnow Creek Wall (After Runser, 1999) 
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L = (0.75 ~ 16) m 

H=0.75m

σ = 17 γ  

 

Figure 5-2 Dimensions of the Model 

 

 

 

 

Figure 5-3 Boundary Conditions and F.E. Mesh 
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Figure 5-4 Result of Preliminary Analysis for 1-D Consolidation
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Figure 5-5 Pore Pressure Distribution; (a) t = 0 sec, (b) t = 0.2 sec 
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Figure 5-5(Cont’d)  Pore Pressure Distribution; (c) t = 1.0 sec, (d) t = 1.9 sec 

 



 154

 

 

 

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 20 40 60 80 100 120 140 160

Time (sec)

k
 (

c
m

/s
e

c
)

L=16m

L=12m

L=8m

L=4m

L=2m

L=0.75m

 

 

Figure 5-6 Results of Numerical Analysis; 

 Effect of Permeability and Reinforcement Length 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 
 

 

 

The main purpose of this research is to define how pullout capacity of reinforced soil is 

affected by drainage conditions. A series of laboratory pullout tests are performed with 

granular soil and a steel inclusion, varying material type, overburden pressure, and 

drainage conditions: drained undrained. In addition, a series of preliminary laboratory 

tests such as proctor tests, compaction tests and permeability tests are performed prior to 

the pullout tests. Numerical analyses are also conducted to investigate effects of 

reinforcement length and permeability on the undrained pullout capacity. This chapter 

presents a summary of the findings, conclusions drawn from the test results, and 

recommendations. 
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6.1 Summary 

 

6.1.1 Test equipment 

 

The test setup for the pullout tests is as follows:  

(1) A soil chamber and water chamber. The dimensions of the soil chamber are 1.0 m 

long, 0.4 m wide, and 0.5 m high and the water chamber is 0.5 m long, 0.4 m wide 

and 0.5 m high. The dimensions of the entire pullout box are 1.5 m long, 0.4 m wide 

and 0.5 m high (Figure 3-1). The interior walls of the pullout box are lubricated with 

grease to minimize frictional resistance.  

(2) Two external water chambers supply water to the pullout box to maintain full 

saturation conditions inside the soil chamber. 

(3) An air bag placed on top of the soil is pressurized to apply the desired confinement 

stress to the soil.  

(4) A steel inclusion, 1.0 m long, 5 cm wide, and 3 mm thick is embedded (0.75 m of 

embedment) in the middle of the soil. The steel inclusion is connected to the loading 

frame through a shaft. A load cell placed inside the water chamber is attached to the 

shaft and to the steel inclusion grip system. 

(5) The pullout tests are performed by pulling out the steel inclusion embedded in the 

compacted soil while the overburden pressure is applied. Different overburden 

pressures are achieved by applying different air pressures to the air bag. For the 
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undrained tests the soil is saturated with water. The inclusion is pulled out relatively 

slowly for the drained tests (1 mm/min), and relatively rapidly for the undrained tests 

(10 mm/min). 

(6) A data acquisition system is used to read and store the following data: pullout load, 

pullout displacement, outside water pressure, inside pore water pressure, and 

overburden pressure.  

 

 

6.1.2 Preliminary laboratory tests 

 

A series of laboratory tests are performed to investigate the properties of the soil and 

include: Proctor tests, compaction tests, and permeability tests.  

(1)  The types of soil used in this research are sand (Ottawa sand) and silty sands with silt 

contents: 5, 10, 15, and 35 %. The peak friction angles of the soils are (Salgado et. al., 

2000): 35.8
 °
 (clean sand), 35.5

°
 (5 %), 36.0

°
 (10 %), and 35.6

°
 (15 % silty sand).  

(2) Proctor tests are performed on every soil to determine the maximum dry density. The 

soil in the pullout tests are compacted to 95 % Proctor density except clean sand, 

which is compacted to 100 % Proctor. The results are presented in Table 4-2 and 

Figures 4-2 to 4-6. 

(3) Compaction tests are performed to define how much compaction energy is required to 

obtain the target density of the soil (95 % Proctor density).  The results are presented 

in Figures 4-8 to 4-11. 
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(4) Permeability tests are performed to determine the correlation between permeability 

and undrained pullout capacity based on dissipation of excess pore pressures. The 

coefficients of permeability range from 2.27 × 10
-2  

(clean sand) to 1.75 × 10
-4 

cm/sec 

(35 % silty sand). The results are shown in Table 4-3 and Figure 4-12. 

 

 

6.1.3 Pullout tests 

 

The pullout tests are performed for different material (clean sand, 5, 10, 15, and 35 % 

silty sand), different overburden pressures (30, 100, and 200 kPa), and different drainage 

conditions (drained and undrained). The following is observed: 

 

(1) Effect of silt: Drained and undrained pullout capacities decrease from clean sand to 5 

% silty sand, increase from 5 % to 10 %, and then decrease from 10 % to 15 and 35 % 

silt. Pullout capacities change as the internal friction angle of the soil changes (i.e. 

pullout capacity increases as friction angle of the soil increases). 

(2) Effect of overburden pressure: Pullout capacity increases as the overburden pressure 

increases. Larger displacements are required to reach the maximum pullout capacity 

for higher overburden pressure. Higher soil stiffness is observed for higher 

overburden pressure. 

(3) Effect of drainage: The undrained pullout capacities are always smaller than the 

drained pullout capacities except for clean sand, that are equal. The ratio of undrained 

to drained pullout capacity changes with silt contents, but is the same for 100 and 200 
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kPa overburden pressure. This ratio is one for clean sand, decreases to 0.67~0.69 for 

5 % silty sand, increases to 0.77~0.78 for 10 % silt, decreases to 0.72~0.73 for 15 % 

and decreases again to 0.57~0.59 for 35 % silt. For 30 kPa overburden, the ratio is 

one for clean sand, 0.5 for 5 % silt, 0.67 for 10 % silt, 0.78 for 15 % silt and 0.72 for 

35 % silt.  

(4) The results and comparisons of the pullout tests are presented in Tables 4-5 to 4-11 

and Figures 4-13 to 4-34. 

 

 

6.1.4 Numerical analyses 

 

Numerical analyses are conducted to determine scale and permeability effects in the 

dissipation of excess pore pressures. The analyses are performed with the Finite Element 

(FE) program, ABAQUS. The analyses are performed for different coefficients of 

permeability (10
-1

, 2.27 × 10
-2

, 10
-2

, 10
-3

, and 10
-4 

cm/sec) and reinforcement lengths 

(0.75, 2, 4, 8, 12, and 16 m). The following observations are made: 

(1) The dissipation of pore pressures is very rapid for permeabilities larger than 10
-2 

cm/sec. For smaller permeabilities the dissipation becomes slower. For permeability 

smaller than 10
-3 

cm/sec, it takes a very long time for the pore pressures to dissipate. 

(2) Results from the numerical analyses correlate well with experiments in that for clean 

sand, with permeability larger than 10
-2 

cm/sec, pullout capacity does not change with 

drainage conditions; the undrained pullout capacity of the silty sands, with 
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permeabilities smaller than 10
-2 

cm/sec is reduced with undrained tests. The largest 

reduction occurs for 35 % silty sand that has a permeability of 1.75 × 10
-4 

cm/sec.  

(3) For larger permeabilities, the reinforcement length does not influence the time for 

pore pressure dissipation unless the reinforcement length is equal to the vertical 

drainage length. However, for smaller permeabilities, it is clearly noticeable that the 

longer the reinforcement, the larger the time for pore pressure dissipation 

 

 

6.2 Recommendations 

 

This investigation shows that for drained tests the pullout capacity of granular materials 

may increase with the addition of a small percentage of non-plastic fines. This is directly 

correlated with an increase of the internal friction angle of the material, which in turn 

increases because the void ratio of the soil decreases as the fines occupy pore space. Once 

the percentage of fines reaches a threshold value (10 % for this investigation, it depends 

on the particular material under consideration) the addition of fines is detrimental and the 

internal friction angle and consequently the pullout capacity decrease. This may be 

caused by the fines preventing the granular particles to be in contact with each other, and 

thus reducing the shear stress required to mobilize the grains. It is expected that as the 

size of the granular material increases, and thus the pore space increases, the threshold 

value of fines that will decrease the pullout capacity will increase.  
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These conclusions change substantially under undrained conditions. Even a small 

percentage of fines (5 %) may reduce the pullout capacity by 50 % to 70 %. This 

reduction depends on the overburden stress and on the percentage of fines. This reduction 

in pullout capacity under undrained conditions is caused by a decrease of effective 

normal stresses at the interface between the soil and the reinforcement, which in turn is 

caused by the generation of excess pore pressures produced as the soil is sheared. The 

reduction appears to be more significant at lower overburden stresses where the added 

benefit of dilation in drained tests disappears. Clean sand is the only soil where no 

reduction is observed. This is because of the large permeability of the soil (about 10
-2 

cm/sec) compared to the other soils. This finding is supported by results from the 

numerical model that indicate that excess pore pressures take a long time to dissipate for 

permeabilities smaller than 10
-2 

cm/sec. This is particularly significant in the field where 

the length of the reinforcement is much larger. Thus, granular materials with even a small 

percentage of fines are not recommended as backfill in walls where undrained conditions 

may occur. A review of the literature supports this conclusion since a number of walls 

with a low permeability backfill failed after a heavy rain. An additional detrimental effect 

of fines is that they can be washed out of the backfill as the water level behind the wall 

changes; this may produce internal erosion and damage the wall. 
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6.3   Implementation 

 

For practical reasons, it is not recommended to use granular materials with fines content 

larger than 5 to 10 % even on walls above the water table. The reasons for that are the 

potential for segregation of the fines, and that the material may be sensitive to changes in 

water content. As a general recommendation the fines should be non-plastic. For each 

project, the adequacy of a particular granular material as a backfill for a wall that will not 

experience undrained conditions can be evaluated by running triaxial tests on the material 

compacted to the specified density in the field. 

 

Submerged or partially submerged MSE walls can be used if a clean granular backfill is 

employed. Indiana DOT stone # 8 material is appropriate for this situation because of the 

low percentage of fines and large permeability. Both experiment and numerical tests 

show that with a clean material the time required for pore pressure dissipation is so small 

that for any practical purposes, no excess pore pressures are generated and the stability of 

the wall can be assessed through conventional calculations where effective stresses are 

used. 

 

The findings from this research also show that field tests under drained conditions are not 

appropriate to evaluate the undrained pullout capacity under undrained conditions. If for 

a particular project, the undrained pullout capacity of a reinforcement embedded in a soil 

matrix needs to be evaluated, laboratory tests similar to the ones performed in this 

research are recommended. As a lower bound, and thus on the safe side, the undrained 
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shear strength of the soil could be used for stability calculations with a reasonable 

estimate of the interface friction between the soil and the reinforcement; note that the 

undrained shear strength depends on the overburden effective stress. 
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