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This paper proposes a saturated function series approach for generating multiscroll chaotic attrac-
tors from the fractional differential systems, including one-directional �1-D� n-scroll, two-
directional �2-D� n�m-grid scroll, and three-directional �3-D� n�m� l-grid scroll chaotic attrac-
tors. Our theoretical analysis shows that all scrolls are located around the equilibria corresponding
to the saturated plateaus of the saturated function series on a line in the 1-D case, a plane in the 2-D
case, and a three-dimensional space in the 3-D case, respectively. In particular, each saturated
plateau corresponds to a unique equilibrium and its unique scroll of the whole attractor. In addition,
the number of scrolls is equal to the number of saturated plateaus in the saturated function series.
Finally, some underlying dynamical mechanisms are then further investigated for the fractional
differential multiscroll systems. © 2006 American Institute of Physics. �DOI: 10.1063/1.2401061�

In 1695, Leibniz wrote a letter to L’Hôspital asking
whether or not the meaning of derivatives with integer
orders could be naturally generalized to the derivatives
with noninteger orders. L’Hôspital felt somewhat curious
about this question and then asked a simple question as a
reply: “What if the order will be 1/2?” In a re-reply
letter on September 30 of the same year, Leibniz antici-
pated: “It will lead to a paradox, from which one day
useful consequences will be drawn.” This special date,
September 30, 1695, is then regarded as the exact birth-
day of fractional calculus. Over the past few centuries,
the theories of fractional calculus (fractional derivatives
and fractional integrals) had attained the significant de-
velopment, primarily contributed to the pure, not ap-
plied, mathematicians. Until recently, some applied scien-
tists and engineers have realized that such fractional
differential equations indeed provide a natural frame-
work for various kinds of real-world questions, such
as viscoelastic systems and electrode-electrolyte
polarization.1–12 This paper extends the saturated func-
tion series approach from the classical differential equa-
tions to fractional differential equations for creating vari-
ous multiscroll attractors, including 1-D n-grid, 2-D n
Ãm-grid scroll, and 3-D nÃmÃ l-grid scroll attractors.
These scrolls are located around the equilibria corre-
sponding to the saturated plateaus of the saturated func-
tion series on a line in 1-D case, a plane in the 2-D case,
and a three-dimensional space in the 3-D case, respec-
tively. In particular, each saturated plateau corresponds

to a unique equilibrium and its unique scroll of the whole
attractor. Moreover, the number of scrolls is also equal to
the number of saturated plateaus in the saturated func-
tion series.

I. INTRODUCTION

The fractional differential systems have received in-
creased attention from various research fields over the past
few decades.1–15 On the one hand, more and more fractional
differential systems recently have been applied to the inter-
disciplinary fields, including model acoustics and thermal
systems, rheology and modeling of materials and mechanical
systems, signal processing and systems identification, control
and robotics, etc.1 On the other hand, many real-world sys-
tems modeled by fractional calculus also display rich frac-
tional dynamical behaviors, such as viscoelastic systems,2

colored noise,3 boundary layer effects in ducts,4 electromag-
netic waves,5 fractional kinetics,6–8 and electrode-electrolyte
polarization.9

Historically, Chua found the Chua’s double-scroll
circuit.16,17 Later, Suykens and Vandewalle proposed a fam-
ily of n-double scroll chaotic attractors.18 Yalcin and co-
workers introduced a family of chaotic attractors using step
functions, including one-directional �1-D� n-scroll, two-
directional �2-D� n�m-grid scroll, and three-directional
�3-D� n�m� l-grid scroll chaotic attractors.19,20 Lü and co-
workers presented a switching manifold technique for creat-
ing chaotic attractors with multiple-merged basins of
attraction.21 They also proposed the hysteresis series22 and
saturated series21,23 methods for generating 1-D n-scroll, 2-D
n�m-grid scroll, and 3-D n�m� l-grid scroll chaotic at-
tractors with rigorously mathematical proofs and experimen-
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tal verifications.23 Very recently, Lü and Chen reviewed the
main advances in theories, approaches, and applications of
multiscroll chaos generation over the last two decades.24 Up
to now, designing and realizing multiscroll chaotic attractors
is no longer a difficult task in the classical differential
systems.

Recently, many researchers surprisingly found that many
nonlinear fractional differential systems also display com-
plex bifurcation and chaos phenomena.14,15,25–30 For ex-
ample, the fractional Chua’s circuit also has a double scroll
chaotic attractor.15 Moreover, Ahmad introduced a step func-
tion method for creating n-scroll chaotic attractors from frac-
tional order systems.25 However, the design of multidirec-
tional multiscroll chaotic attractors is also a very challenging
question. Therefore, it is very interesting to ask whether the
fractional differential systems can also generate multidirec-
tional multiscroll chaotic attractors as the classical differen-
tial systems. This paper will give a positive answer to this
question.

This paper proposes a systematic design approach for
creating multidirectional multiscroll chaotic attractors from a
fractional differential system via saturated functions switch-
ing, including 1-D n-scroll, 2-D n�m-grid scroll, and 3-D
n�m� l-grid scroll chaotic attractors. Furthermore, we also
investigate the dynamical mechanics of the fractional differ-
ential multiscroll systems. It should be especially pointed out
that the fractional differential multiscroll systems are quite
different from the classical differential multiscroll systems
because the fractional derivative is a nonlocal operator. Also,
we demonstrate that each saturated plateau of the controller
corresponds to a unique equilibrium and also its unique
scroll of the whole attractor. Therefore, the number of scrolls
is equal to the number of saturated plateaus of the saturated
function series controller.

The rest of this paper is organized as follows: In Sec. II,
some preliminaries are introduced for the fractional differen-
tial systems. Then the saturated function series approach is
proposed for generating multidirectional multiscroll chaotic
attractors in Sec. III. The conclusions are finally given in
Sec. IV.

II. FRACTIONAL DIFFERENTIAL SYSTEMS

This section briefly introduces some background knowl-
edge for fractional differential systems.

As we know now, there are several different definitions
for the fractional differential operator. Hereafter, the frac-
tional differential operator is described by

D*
�y�x� = Jm−�y�m��x�, � � 0,

where m= ���, i.e., m is the first integer which is not less than
�, y�m� is the general m-order derivative, and J� is the
�-order Riemann-Liouville integral operator which is given
by

J�z�x� =
1

�����0

x

�x − t��−1z�t�d�t�, � � 0.

In general, the operator D*
� is called “�-order Caputo

differential operator” which is widely used in the engineering

field. As a matter of fact, the fractional order derivative was
first introduced earlier in the nineteenth century.10

A. Stability of the equilibria
of fractional linear systems

This subsection presents several basic definitions and a
Lemma for the stability of the equilibria of fractional linear
autonomous systems.

It is well known that D*
�c=0 for any constant c and �

�R+. In the following, one introduces several basic defini-
tions for the fractional differential systems.

Definition 1: The roots of the equation f�X�=0 are called
the equilibria of the fractional differential system D*

�X
= f�X�, where X= �x1 ,x2 , . . . ,xn�T�Rn, f�X��Rn and D*

�X
= �D*

�1x1 ,D*
�2x2 , . . . ,D*

�nxn�T, �i�R+, i=1,2 , . . . ,n.
Lemma 1: The equilibrium X0=−A−1b of the fractional

linear autonomous system D*
�X=AX+b is asymptotically

stable if and only if �arg��i����0� /2 for i=1,2 , . . . ,n,
where �i are the eigenvalues of matrix A, X
= �x1 ,x2 , . . . ,xn�T�Rn, A�Rn�Rn, �A��0,b�Rn, and
D*

�X= �D*
�1x1 ,D*

�2x2 , . . . ,D*
�nxn�T, �1=�2= ¯ =�n=�0�R+,

i=1,2 , . . . ,n.26,27

Definition 2: The equilibrium X0���� of D*
�X=AX+b

is called a saddle for n−n+�0 and an antisaddle for n−n+

=0, where n− and n+ are the number of eigenvalues �i, i
=1,2 , . . . ,n of matrix A satisfying �arg��i����0� /2 and
�arg��i��	�0� /2, respectively. Here X= �x1 ,x2 , . . . ,xn�T

���Rn, � is a bounded open set, A�Rn�Rn, �A��0,
b�Rn, and D*

�X= �D*
�1x1 ,D*

�2x2 , . . . ,D*
�nxn�T, �1=�2= ¯

=�n=�0�R+, i=1,2 , . . . ,n.
Definition 3: In Definition 2, for n=3, if one of the ei-

genvalues �1	0 and the other two eigenvalues �arg��2��
= �arg��3��	�0� /2, then the equilibrium X0�� is called a
saddle point of index 2; if one of the eigenvalues �1�0 and
the other two eigenvalues �arg��2��= �arg��3����0� /2, then
the equilibrium X0�� is called a saddle point of index 1.

B. Saturated function series

The simplest saturated function is described by

f0�x;k� = �k , if x � 1

kx , if �x� 
 1

− k , if x 	 − 1
� �1�

where k�0 is the slope of the middle segment. The upper
radial 	f0�x ;k�=k �x�1
 and lower radial 	f0�x ;k�
=−k �x
−1
 are called saturated plateaus, and the segment
	f0�x ;k�=kx � �x�
1
 between the two saturated plateaus is
called the saturated slope.

Definition 4: The piecewise linear �PWL� function

f�x;k,h,p,q� = �
i=−p

q

f i�x;k,h� �2�

is called a saturated function series,21,23 where k�0 and h
�2 are the slope and saturated delay time of the saturated
function series �2�, respectively, p and q are positive integers,
and

043120-2 W. Deng and J. Lu Chaos 16, 043120 �2006�

Downloaded 07 Dec 2006 to 59.79.87.13. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



f i�x;k,h� = �2k , if x � ih + 1

k�x − ih� + k , if �x − ih� 
 1

0, if x 	 ih − 1
�

and

f−i�x;k,h� = �0, if x � − ih + 1

k�x + ih� − k , if �x + ih� 
 1

− 2k , if x 	 − ih − 1.
�

Moreover, the saturated function series f�x ;k ,h , p ,q�
can be rewritten as follows:

f�x;k,h,p,q�

=�
�2q + 1�k , if x � qh + 1

k�x − ih� + 2ik , if �x − ih� 
 1, − p 
 i 
 q

�2i + 1�k , if ih + 1 	 x 	 �i + 1�h − 1

− p 
 i 
 q − 1

− �2p + 1�k , if x 	 − ph − 1.
� �3�

C. The basic fractional linear autonomous
system

This subsection will introduce a basic fractional linear
autonomous system and further discuss its potential ability to
generate the multidirectional multiscroll chaotic attractors
via a suitable controller.

The fundamental fractional linear autonomous system is
given by

�D*
�1x

D*
�2y

D*
�3z

 = � 0 1 0

0 0 1

− a − b − c
�x

y

z
 � A�x

y

z
 �4�

where x ,y ,z are state variables, a ,b ,c are positive real con-
stants, and �i� �0,1�, i=1,2 ,3.

When �i� �0,1� for i=1,2 ,3 are rational numbers, sys-
tem �4� can be transformed into its equivalent system with
the same fractional orders.26 Therefore, we only need to dis-
cuss the fractional differential system

D*
�X = AX , �5�

where X= �x ,y ,z�T, D*
�X= �D*

�1x ,D*
�2y ,D*

�3z�T, and �1=�2

=�3=�0� �0,1�.
The characteristic equation of the coefficient matrix A of

system �5� is described by

�3 + c�2 + b� + a = 0. �6�

Note that �6� is not the characteristic equation of �5� because
the characteristic equation of the fractional differential sys-
tem has a different meaning.26

According to Lemma 1, the stability of the equilibrium
�0, 0, 0� of the fractional differential system �5� is completely
determined by the eigenvalues of �6�. Denote q̂= �2/27�c3

− �1/3�bc+a, and �= �ac3 /27�− �b2c2 /108�− �abc /6�
+ �b3 /27�+ �a2 /4�. From �6�, one has

�1 = −
c

3
+�3 −

q̂

2
+ �� +�3 −

q̂

2
− �� �7�

and

�2,3 = −
c

3
−

1

2
��3 −

q̂

2
+ �� +�3 −

q̂

2
− ���

±
�3

2
i��3 −

q̂

2
+ �� −�3 −

q̂

2
− ��� = � ± i . �8�

Our theoretical and numerical analysis show that system
�5� with a saturated function series switching controller �3�
may generate chaotic behavior under the condition of �1

	0, ��0, �0 and �arctan� /���	�0� /2. Here �0, 0, 0� is
a saddle point of index 2 of �5�.

Hereafter, one always supposes that

� =
ac3

27
−

b2c2

108
−

abc

6
+

b3

27
+

a2

4
� 0,

�1 = −
c

3
+�3 −

q̂

2
+ �� +�3 −

q̂

2
− �� 	 0,

�9�

� = −
c

3
−

1

2
��3 −

q̂

2
+ �� +�3 −

q̂

2
− ��� � 0,

�arctan�/��� 	 �0�/2.

D. The numerical computational schemes

In the following, the predictor-corrector scheme is used
to numerically solve the fractional differential equation. No-
tice that this scheme is a natural generalization of the known
Adams-Bashforth-Moulton scheme.28

The fractional differential equation is given by

�D*
�1x�t� = l1�x,y,z�

D*
�2y�t� = l2�x,y,z�

D*
�3z�t� = l3�x,y,z� ,

�
where the initial values x�0�=x0, y�0�=y0, z�0�=z0, �i

� �0,1�, i=1, 2, 3, and 0
 t
T. Thus it is equivalent to the
Volterra integral equation

�
x�t� = x�0� +

1

���1��0

t

�t − s��1−1l1�x�s�,y�s�,z�s��ds

y�t� = y�0� +
1

���2��0

t

�t − s��2−1l2�x�s�,y�s�,z�s��ds

z�t� = z�0� +
1

���3��0

t

�t − s��3−1l3�x�s�,y�s�,z�s��ds .
�

Let h=T /N, tn=nh, n=0,1 , . . ., N�Z+. Discretizing the Vol-
terra integral equation as above yields
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�
xh�tn+1� = x�0� +

h�1

���1 + 2�
� �xh

p�tn+1� + �2��1+1� − 2� � l1�xh�tn�,yh�tn�,zh�tn�� + temp1�

yh�tn+1� = y�0� +
h�2

���2 + 2�
� �yh

p�tn+1� + �2��2+1� − 2� � l2�xh�tn�,yh�tn�,zh�tn�� + temp2�

zh�tn+1� = z�0� +
h�3

���3 + 2�
� �zh

p�tn+1� + �2��3+1� − 2� � l3�xh�tn�,yh�tn�,zh�tn�� + temp3� ,
�

where

�
xh

p�tn+1� = x�0� +
h�1

���1 + 2�
� ��2��1+1� − 1� � l1�xh�tn�,yh�tn�,zh�tn�� + temp1�

yh
p�tn+1� = y�0� +

h�2

���2 + 2�
� ��2��2+1� − 1� � l2�xh�tn�,yh�tn�,zh�tn�� + temp2�

zh
p�tn+1� = z�0� +

h�3

���3 + 2�
� ��2��3+1� − 1� � l3�xh�tn�,yh�tn�,zh�tn�� + temp3� ,

�
�

temp1 =
h�1

���1 + 2��j=0

n−1

a1,j,n+1l1�xh�tj�,yh�tj�,zh�tj��

temp2 =
h�2

���2 + 2��j=0

n−1

a2,j,n+1l2�xh�tj�,yh�tj�,zh�tj��

temp3 =
h�3

���3 + 2��j=0

n−1

a3,j,n+1l3�xh�tj�,yh�tj�,zh�tj�� ,
�

ai,j,n+1 = �n�i+1 − �n − �i��n + 1��i, j = 0

�n − j + 2��i+1 + �n − j��i+1

− 2�n − j + 1��i+1, 1 
 j 
 n − 1
�

where i=1,2 ,3.
Moreover, the error estimate is described by

max	 max
j=0,1,. . .,N

�x�tj� − xh�tj��, max
j=0,1,. . .,N

�y�tj� − yh�tj��,

max
j=0,1,. . .,N

�z�tj� − zh�tj��
 = O�hq� ,

where q=min	1+�1 ,1+�2 ,1+�3
.

III. DESIGN OF MULTIDIRECTIONAL MULTISCROLL
CHAOTIC ATTRACTORS

A systematic switching control approach is proposed for
creating the multidirectional multiscroll chaotic attractors
from the fundamental fractional differential linear system �4�
via saturated function series controller �3�. It includes 1-D
n-scroll, 2-D n�m-grid scroll, and 3-D n�m� l-grid scroll
chaotic attractors. The controlled fractional differential sys-
tem is described by

D*
�X = AX + BU�X� , �10�

where

B =� 0 −
d2

b
0

0 0 −
d3

c

d1 d2 d3

 ,

X= �x ,y ,z�T, D*
�X= �D*

�1x ,D*
�2y ,D*

�3z�T, and U�X� is the satu-
rated functions series switching controller.

A. 1-D n-scroll attractors

To generate n-scroll �n�3� chaotic attractors from the
controlled system �10�, the saturated function series switch-
ing controller is designed as follows:

U�X� = � f�x;k1,h1,p1,q1�
0

0
 �11�

where f�x ;k1 ,h1 , p1 ,q1� is defined by �3�, and a, b, c, d1 are
positive constants.

Suppose that
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d1k1 � a, 2d1k1 � ah1, max	p1,q1

�ah1 − 2d1k1�

d1k1 − a

 1,

�12�
�2d1k1 − ah1��q1 − 1� 	 ah1 − d1k1 − a .

Obviously, all �2�p1+q1�+3� equilibria of system �10� with
�11� are located along the x axis, and can be classified into
two different sets

Ax = �−
�2p1 + 1�d1k1

a
,
�− 2p1 + 1�d1k1

a
, ¯ ,

�2q1 + 1�d1k1

a
�

�13�

and

Bx = �−
p1d1k1�h1 − 2�

d1k1 − a
,
�− p1 + 1�d1k1�h1 − 2�

d1k1 − a
, ¯ ,

q1d1k1�h1 − 2�
d1k1 − a

� . �14�

Assume that �9� holds and �1=�2=�3=�0. Then the sta-
bility of the equilibria in Ax of system �10� with �11� is com-
pletely determined by the eigenvalues of �6� and these equi-
libria are saddle points of index 2. However, the stability of
the equilibria in Bx of system �10� with �11� is completely
determined by the eigenvalues of the following equation:

�3 + c�2 + b� + a − d1k1 = 0. �15�

Since �1+�2+�3=−c	0 and �1�2�3=−�a−d1k1��0, �15�
has one positive eigenvalue and two negative eigenvalues, or
one positive eigenvalue and a pair of complex conjugate ei-
genvalues with negative real parts. Figures 1�a� and 1�b�
show a 5-scroll chaotic attractor with fractional order �0.9,
0.9, 0.9� and a 6-scroll chaotic attractor with fractional order
�0.85, 0.9, 0.9�, respectively. The corresponding Lyapunov
exponents spectrums are LE1=0.2328, LE2=0, LE3

=−1.3306 and LE1=0.2251, LE2=0, LE3=−1.2143, respec-
tively. The parameters are given by a=2, b=1, c=0.6, d1

=2, and k1=10. Since �1=−1.1836	0, �=0.2981, 
=1.2667, �arg��2� � = �arg��3� � = �arctan� /�� � =1.3362
	 �0.9�� /2=1.4137, then the equilibria in Ax are saddle
points of index 2. Since �1=2.3180�0, �=−1.4590, 
=0.6409, �arg��2� � = �arg��3� � = ��+arctan� /�� � =2.7277
� �0.9�� /2=1.4137, then the equilibria in Bx are saddle
points of index 1.

It should be pointed out that the �p1+q1+2� equilibria in
Ax are responsible for generating the �p1+q1+2� scrolls of
attractor and the �p1+q1+1� equilibria in Bx are responsible
for connecting these �p1+q1+2� scrolls to form into a whole
attractor. In particular, each equilibrium in Ax corresponds to
a unique saturated plateau of the saturated function series
controller �3� and also corresponds to a unique scroll of the
whole attractor. However, each equilibrium in Bx corre-
sponds to a unique saturated slope of the saturated function
series controller �3� and also corresponds to a unique con-
nection between two neighboring scrolls. Here parameters
p1, q1 can control the numbers of scrolls in negative and
positive x directions, respectively.

B. 2-D nÃm-grid scroll attractors

To create 2-D n�m-grid scroll chaotic attractors from
the controlled system �10�, the saturated function series
switching controller is then recasted as follows:

U�X� = � f�x;k1,h1,p1,q1�
f�y ;k2,h2,p2,q2�

0
 �16�

where f�x ;k1 ,h1 , p1 ,q1� and f�y ;k2 ,h2 , p2 ,q2� are defined by
�3�, and a, b, c, d1, d2 are positive constants.

In addition to �13� and �14�, denote

Ay = �−
�2p2 + 1�d2k2

b
,
�− 2p2 + 1�d2k2

b
, ¯ ,

�2q2 + 1�d2k2

b
�

�17�

and

FIG. 1. Two 1-D n-scroll attractors. �a� 5-scroll with fractional order �0.9,
0.9, 0.9�; and �b� 6-scroll with fractional order �0.85, 0.9, 0.9�.
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By = �−
p2d2k2�h2 − 2�

d2k2 − b
,
�− p2 + 1�d2k2�h2 − 2�

d2k2 − b
, ¯ ,

q2d2k2�h2 − 2�
d2k2 − b

� . �18�

Assume that �12� and

d2k2 � b, 2d2k2 � bh2, max	p2,q2

�bh2 − 2d2k2�

d2k2 − b

 1,

�19�
�2d2k2 − bh2��q2 − 1� 	 bh2 − d2k2 − b

hold. Then system �10� with �16� has �2p1+2q1+3�
� �2p2+2q2+3� equilibria, which are located on the x-y
plane and given by

Oxy = 	�x*,y*��x* � Ax � Bx, y* � Ay � By
 . �20�

Clearly, all equilibria in �20� can be classified into four
different sets:

A1 = 	�x*,y*��x* � Ax, y* � Ay


A2 = 	�x*,y*��x* � Ax, y* � By


A3 = 	�x*,y*��x* � Bx, y* � Ay


A4 = 	�x*,y*��x* � Bx, y* � By
 .

Suppose that �9� holds and �1=�2=�3=�0. Figure 2
shows a 2-D 5�5-grid scroll chaotic attractor with fractional
order �0.9, 0.9, 0.9� and a 2-D 6�6-grid scroll chaotic at-
tractor with fractional order �0.8, 0.9, 1.0�, where the param-
eters are given by a=2, b=1, c=0.5, d1=2, d2=1, k1=50,
and k2=50. The corresponding Lyapunov exponents spec-
trums are LE1=0.2655, LE2=0, LE3=−1.4531 and LE1

=0.2131, LE2=0, LE3=−1.5718, respectively. Since �1

=−1.1480	0, �=0.3240, =1.2794, �arg��2� � = �arg��3� �
= �arctan� /�� � =1.3228	 �0.9�� /2=1.4137, then the equi-
libria in A1 are saddle points of index 2. Similarly, the equi-
libria in A3 are saddle points of index 1; the equilibria in A4

are saddle points of index 2; and the equilibria in A2 are not
saddle points of index 1 or 2.

Our numerical simulations demonstrate that only the
equilibria in A1 can create scrolls. Therefore, the condition of
saddle point of index 2 is only a necessary condition but not
a sufficient condition for generating scrolls. System �10� with
�16� has the potential ability to create a maximum of 2-D
�p1+q1+2�� �p2+q2+2�-grid scroll chaotic attractors for
some suitable parameters. Moreover, each equilibrium in A1

corresponds to a unique 2-D saturated plateau and also cor-
responds to a unique scroll in the whole attractor. However,
the other equilibria in A2, A3, A4 correspond to the saturated
slopes and are responsible for connecting these �p1+q1+2�
� �p2+q2+2� scrolls. Parameters p1, q1 control the numbers
of scrolls in negative and positive x directions, respectively.
Parameters p2, q2 control the numbers of scrolls in negative
and positive y directions, respectively.

C. 3-D nÃmÃ l-grid scroll attractors

To generate 3-D n�m� l-grid scroll chaotic attractors
from the controlled system �10�, the saturated function series
switching controller is then designed as follows:

U�X� = � f�x;k1,h1,p1,q1�
f�y ;k2,h2,p2,q2�
f�z;k3,h3,p3,q3�

 �21�

where f�x ;k1 ,h1 , p1 ,q1�, f�y ;k2 ,h2 , p2 ,q2�,
f�z ;k3 ,h3 , p3 ,q3� are defined by �3�, and a, b, c, d1, d2,

d3 are positive constants.
In addition to �13�, �13�, �17�, and �18�, denote

Az = �−
�2p3 + 1�d3k3

c
,
�− 2p3 + 1�d3k3

c
, ¯ ,

�2q3 + 1�d3k3

c
�
�22�

and

FIG. 2. Two 2-D n�m-grid scroll attractors. �a� 5�5-grid scroll with frac-
tional order �0.9, 0.9, 0.9�; and �b� 6�6-grid scroll with fractional order
�0.8, 0.9, 1.0�.
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Bz = �−
p3d3k3�h3 − 2�

d3k3 − c
,
�− p3 + 1�d3k3�h3 − 2�

d3k3 − c
, ¯ ,

q3d3k3�h3 − 2�
d3k3 − c

� . �23�

Assume that �12� and �19� hold and

d3k3 � c, 2d3k3 � ch3, max	p3,q3

�ch3 − 2d3k3�

d3k3 − c

 1,

�24�
�2d3k3 − ch3��q3 − 1� 	 ch3 − d3k3 − c .

Thus system �10� with �21� has �2p1+2q1+3�� �2p2+2q2

+3�� �2p3+2q3+3� equilibria, described by

Oxyz = 	�x*,y*,z*��x* � Ax � Bx,y
* � Ay � By,z

* � Az � Bz
 .

�25�

Similarly, the equilibria as above can be classified into eight
different sets as follows:

Ā1 = 	�x*,y*,z*��x* � Ax, y* � Ay, z* � Az


Ā2 = 	�x*,y*,z*��x* � Ax, y* � Ay, z* � Bz


Ā3 = 	�x*,y*,z*��x* � Ax, y* � By, z* � Az


Ā4 = 	�x*,y*,z*��x* � Ax, y* � By, z* � Bz


Ā5 = 	�x*,y*,z*��x* � Bx, y* � Ay, z* � Az


Ā6 = 	�x*,y*,z*��x* � Bx, y* � Ay, z* � Bz


Ā7 = 	�x*,y*,z*��x* � Bx, y* � By, z* � Az


Ā8 = 	�x*,y*,z*��x* � Bx, y* � By, z* � Bz
 .

Suppose that �9� holds and �1=�2=�3=�0. Figure 3
shows a 3-D 6�6�6-grid scroll chaotic attractor with frac-
tional order �0.9, 0.9, 0.9�, where the parameters are given by
a=2.2, b=1.3, c=0.6, d1=2.2, d2=1.3, d3=0.6, k1=100, k2

=40, and k3=40. The corresponding Lyapunov exponents
spectrum is LE1=0.3629, LE2=0, LE3=−1.2742.

Since �1=−1.4430	0, �=0.2722, =1.3596, �arg��2��
= �arg��3��= �arctan� /���=1.3732	 �0.9�� /2=1.4137, then

the equilibria in Ā1 are saddle points of index 2. Similarly,

the equilibria in Ā2, Ā5, Ā8 are saddle points of index 1; the

equilibria in Ā4, Ā6, Ā7 are saddle points of index 2; and the

equilibria in Ā3 are not saddle points of index 1 or 2. Nu-

merical observations reveal that only the equilibria in Ā1 can
create scrolls. Furthermore, system �10� with �21� has the
potential ability to create a maximum of 3-D �p1+q1+2�
� �p2+q2+2�� �p3+q3+2�-grid scroll chaotic attractor for
some suitable parameters. In particular, each equilibrium in

Ā1 corresponds to a unique 3-D saturated plateau and also
corresponds to a unique scroll in the whole attractor. How-

ever, the other equilibria in Āi �2
 i
8� correspond to the

saturated slopes and are responsible for connecting these
�p1+q1+2�� �p2+q2+2�� �p3+q3+2� scrolls. Parameters
p1, q1 control the numbers of scrolls in negative and positive
x directions, respectively. Parameters p2, q2 control the num-
bers of scrolls in negative and positive y directions, respec-
tively. Parameters p3, q3 control the numbers of scrolls in
negative and positive z directions, respectively.

IV. CONCLUSIONS

This paper has presented a systematic approach for gen-
erating the multidirectional multiscroll chaotic attractors
from the fractional differential systems. It includes the 1-D
n-scroll, 2-D n�m-grid scroll, and 3-D n�m� l-grid scroll
attractors. In particular, it is the first time in the literature to
report the multidirectional multiscroll chaotic attractors from
a fractional differential systems. Moreover, some underlying
dynamical mechanics are further explored for the generation
of multidirectional multiscroll chaotic attractors in the frac-
tional differential systems. We also discover that each satu-
rated plateau corresponds to a unique equilibrium and also
corresponds to the unique scroll of the whole attractor. Last
but not least, one can arbitrarily design a multidirectional
multiscroll chaotic attractor with the desired number of

FIG. 3. A 3-D 6�6�6-grid scroll attractor with fractional order �0.9, 0.9,
0.9�: �a� x-y plane; and �b� y-z plane.
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scrolls, the desired spatial positions and orientations by ad-
justing the parameters pi and qi �i=1,2 ,3� of the saturated
function series switching controller.
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